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Editorial on the Research Topic

BODIPYs and Their Derivatives: The Past, Present and Future

Over the past decades, boron-dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene,
BODIPY) fluorescent dyes, first described by Treibs and Kreuzer, have been the focus of
considerable research interest and rapidly growing (Treibs and Kreuzer, 1968). Their structural
versatility makes it possible to fine-tune their spectroscopic properties, and therefore they have
been used in many scientific and technological fields (Loudet and Burgess, 2007; Ulrich et al., 2008;
Boens et al., 2012, 2019; Kamkaew et al., 2013; Lu et al., 2014, 2016; Ni andWu, 2014; Kowada et al.,
2015; Zhao et al., 2015; Bañuelos, 2016; Sheng et al., 2019; Turksoy et al., 2019). This Research Topic
mainly focuses on the most innovative research regarding the synthesis, spectroscopic properties,
theoretical calculations, and application of BODIPY dyes and their derivatives. Four reviews and
six original research articles by recognized academic experts are collected, which will offer a
broad perspective for BODIPY chemistry and provide powerful guidance for the future rational
design of BODIPY dyes and their derivatives with properties suitable for applications. We believe
this Research Topic should attract the attention of multidisciplinary researchers and continue to
promote BODIPY chemistry as a vibrant and highly multidisciplinary research field.

The contribution of Miao et al. summarizes fluorescent molecular rotors based on BODIPY
for viscosity detection, providing key strategies for the design of various functional BODIPYs
covering the red to NIR wavelength region for biological-related viscosity imaging. Triplet
photosensitizers based on BODIPYs continue to attract increasing attention due to their
extensive applications in photocatalysis, photodynamic therapy and photon upconversion. The
contribution from Chen et al. reviews and classifies BODIPY-derived triplet photosensitizers
based on ISC mechanisms, including the heavy atom effect, exciton coupling, and charge
recombination (CR)-induced ISC, using a spin converter and radical enhanced ISC. Importantly,
the molecular structure factors and mechanism of ISC-efficient are analyzed in-depth. This
review affords fascinating insight for the rational design of novel BODIPY-based triplet
photosensitizers. Typically, BODIPY dyes demonstrate weak fluorescence in the aggregation
state duo to the self-absorption and strong intermolecular interactions, which restrict their
application as solid-state emitters. In recent years, a number of AIE-active BODIPYs have been
reported, but there remains a lack of general guidance regarding structural design. Therefore,
Liu et al. summarize the AIE-active BODIPYs, their analogs boron-complexes, and their
application in fluorescent imaging, gas sensors and as mechanofluorochromic (MFC) materials.
The mechanism and structural factor for the aggregated fluorescent enhancement are further
discussed to facilitate their future development. This review points out broad approaches for
the design and application of BODIPYs as aggregation-state emitters, thus promoting, and
enriching BODIPY chemistry. In addition to the three reviews already mentioned, which focus
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on molecular design and application, one contribution by Gupta
and Kesavan concentrates on the synthesis and spectroscopic
properties of BODIPY. Gupta and Kesavan summarize and
classify BODIPYs containing a carbazole ring at alpha, beta,
and meso-positions, and carbazole based hybrid BODIPYs,
carbazole linked aza-BODIPYs, as well as carbazole-fused boron-
complexes. The effects of a carbazole substituent in different
positions on the optical properties of the BODIPYs are presented
by tabulating their spectral properties.

The six research articles, on the other hand, focus on
different aspects, mainly fluorescent probe and imaging, as
well as synthesis and spectroscopic properties of bis-BODIPY
and its optical limiting properties. Bartelmess et al. develop a
BODIPY-cobaloxime complex for the detection of H2S in the
liquid and gas phase. The selective substitution by the HS−

anion at the cobalt center releases the free BODIPY fluorophore,
thus recovering the BODIPY fluorescence. The contribution by
Wang et al. designs a FRET fluorescent probe for ratiometric
detection of H2S in vitro and in vivo. Monochlorinated
BODIPY can react with HS− to form HS-BODIPY, thus
affording a ratiometric fluorescent change. Interestingly, NIR-
II fluorescence at 920 nm is observed, making the formation
mechanism worthy of further study. The work by Qu et al.
investigates a NIR BODIPY probe using triphenylphosphine
as a reactive site for hydroxyl radical recognition and its
bioimaging in HeLa cells, providing a new way to construct
a molecular recognition system for biological application. Self-
assembling BODIPY nanoparticles for bioimaging remain largely
unexplored. The work of Ma et al. looks into the nanoparticles
containing BODIPY with spherical and rod like morphology
for cell imaging. Interestingly, the rod-like nanoparticles display

great potential for bioimaging in efficient delivery and imaging
efficacy, affording promising information for the design of
bioimaging materials.

Oliden-Sánchez et al. describe the synthesis, photophysical,
and lasing properties of a serial of bis-BODIPYs with
spacers consisting of urea-, thiourea-, phosphonate-, amine-,
disulfur-, and ether-based linkers. The spectroscopic behavior
of bis-BODIPYs can be effectively tuned by the length
and/or stereoelectronic properties of the spacer. The influence
of the bridging moiety, solvent-effect and mechanism are
systematically studied and analyzed in-depth, thus providing
powerful guidelines for the future design of tailored bis-
BODIPYs for wide applications. Non-linear optical properties
of BODIPY have not been as extensively studied as their linear
optical properties. The work of Ngoy et al. investigates the optical
limiting properties of a 3.5-styryl BODIPY dye by using the
open-aperture Z-scan technique. Since transparence of optical
limiting materials remains a challenge, the authors point out how
the structural modification of the BODIPYs to enhance this ESA,
while shifting the main spectral band to the red, is the direction
of future efforts.
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A Highly Selective NIR Fluorescent
Turn-on Probe for Hydroxyl Radical
and Its Application in Living Cell
Images

Xingyu Qu 1,2, Wenting Song 1 and Zhen Shen 1*

1 State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and

Chemical Engineering, Nanjing University, Nanjing, China, 2Department of Chemistry and Chemical Engineering, Jinzhong

University, Jinzhong, China

A highly selective NIR fluorescent turn-on probe for hydroxyl radical (·OH) has been

built up using triphenylphosphine as a reactive-site for ·OH in an energy transfer

cassette 2b consisting of 8-2
′

-(thiophen-2-yl) quinoline (TQ) as a donor and 3,5-

diphenylphosphinostyryl-substituted BODIPY as an acceptor, which exhibits ca. 317 nm

pseudo Stokes’ shift due to efficient through-bond energy transfer (up to 169%). The

triphenylphosphine substituent of 2b selectively oxidized by ·OH over the other reactive

oxygen species (ROS) and the reactive nitrogen species (RNS) resulting in fluorescence

enhancement in aqueous solution and in living cells.

Keywords: NIR fluorescent probe, hydroxyl radical, living cell images, energy transfer, BODIPY

INTRODUCTION

Free radicals that are natrually produced in vivo, by normal cellular metabolism or through disease
process and xenobiotic activities, often cause many of the tissue changes associated with toxicities
and disease processes (Dixon and Stockwell, 2014). The hydroxyl radical (·OH) is the most reactive
species of oxygen in biological systems. It has a half-life about 1 ns and reacts unselectively in
preferences for coreactants, resulting in a wide range of initial molecular changes, such as oxidative
damage to DNA, proteins, lipids, and mediate redox alteration of cell-membrane Ca2+ channels
(Cleveland and Kastan, 2000; Ayala et al., 2014). The difficulty in detecting such a short-lived
species has made determining its involvement in toxic events difficult. Therefore, developing
a rapid and sensitive method for monitoring ·OH in biological systems greatly improves our
understanding of the roles of this reactive species in toxic mechanisms and disease processes
(Wiseman and Halliwell, 1996; Pennathur et al., 2001). The common detection method for ·OH
is the electron spin resonance (ESR). As the ESR measures the electron paramagnetic resonance
spectrum of a spin adduct derivative after spin trapping, this method is insensitive and only
qualitative estimates of ·OH (Valavanidis, 2000; Vidrio et al., 2008). Valavanidis to overcome
these limitations, several fluorescent probes for ·OH have been developed. These probes include
fluorescein with ·OH reactive-site (Zhang et al., 2016; Bai et al., 2017), cyanine dye based on
a hybrid phenothiazine platform (Liu et al., 2016), a hybrid carbazole-cyanine dye (Zeng et al.,
2017), fluorophore with nitroxide function group (Liras et al., 2016). However, limitation of
these ·OH-responsive probes in intracellular imaging is their absorption and emission bands
being situated in the Ultraviolet (UV) or Visible region, weak sensitivity or poor selectivity.
Moreover, the difference in lifetimes of ROS/RNS further increases the difficulty to design

6
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multiple probes. Up to date, the approach of a single fluorescent
probe to the simultaneous detections of several ROS/RNS has still
been a challenging task.

The 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)
dyes have many favorable photophysical properties, such as high
extinction coefficient, high fluorescence quantum yields, facile
derivatization, and good photostability (Lu et al., 2014; Kowada
et al., 2015). They have been investigated intensively as labeling
reagents (Cheng et al., 2017), fluorescent switches (Dolan et al.,
2017), chemosensor (Ren et al., 2018), and laser dyes (Zhu
et al., 2018) in the last three decades. Since the absorption and
emission bands of the unmodified BODIPY lie at ca. 500 nm, one
important approach to red shift the main BODIPY absorption
band is introducing styryl-substituents at 3-, 5- and/or 1-, 7-
positions on the pyrrole moieties (Patalag et al., 2017; Verwilst
et al., 2017). The following characteristics are highly desirable
for intracellular imaging: (i) selectivity and sensitivity toward a
specific ion; (ii) fluorescence maxima appear in the near infrared
(NIR) region (650–900 nm); (iii) minimize the scattering effects
from the excitation source (Ali et al., 2015, 2017). Herein, we
report two NIR BODIPY probes using the triphenylphosphine
as substituents at 3-, 5-positions of the BODIPY core. The two
probes exhibits excellent optical properties and can be used
as fluorescence turn-on chemosensor for ·OH, as ·OH -trigger
oxidation of the triphenylphosphine. Their sensing properties
have been investigated for living cell images. To the best of our
knowledge, no attempt to employ NIR probe for detection of ·OH
in living cells has previously been made.

MATERIALS AND METHODS

The 1H and 13C NMR spectroscopic measurements were carried
out on a Bruker 500 MHz spectrometer. The measurements for
1H and 13C NMR were performed at 500 (DRX-500), and 125
MHz (DRX-500), respectively. Mass spectra were measured on a
Bruker Daltonics Autoflex IITM MALDI-TOF MS spectrometer.
Fluorescence spectral measurements were carried out by using
a Hitachi F-4600 fluorescence spectrophotometer. Electronic
absorption spectra were recorded with a Shimadzu UV-2550
spectrophotometer. Cyclic voltammograms were recorded using
a platinum working electrode, a platinum wire counter electrode
and an Hg/Hg2Cl2 reference electrode. The measurements were
carried out in dichloromethane (CH2Cl2) solution using 0.1M
Bu4NPF6 as the supporting electrolyte at a scan rate of 0.1
V/s. Peak potentials were determined from differential pulse
voltammetry experiments. The Fc/Fc+ redox couple was used
as an internal standard. Unless otherwise noted, all reagents
or solvents were obtained from commercial suppliers and used
without further purification. All air and moisture sensitive
reactions were carried out under an argon atmosphere. Dry
CH2Cl2 was obtained by refluxing and distilling over CaH2 under
nitrogen. Dry THF was distilled from sodium/benzophenone.

X-ray crystallographic data for ox-2a were recorded at
100K on a Rigaku CCD detector (Saturn 724) mounted on
a Rigaku rotating anode X-ray generator (MicroMax-007HF)
using Mo-Kα radiation from the corresponding set of confocal

optics. The structure was solved by direct methods and
refined on F2 by full-matrix least-squares using the Crystal
Clear and SHELXS-2000 programs. CCDC 875597 contains
the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge
Crystallographic Data Center via www.ccdc.cam.ac.uk/conts/
retrieving.html (or from the Cambridge Crystallographic Data
Center, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44)
1223-336-033; email: deposit@ccdc.cam.ac.uk).

Spectra were measured in 1 cm quartz cuvettes with
spectroscopic grade solvents. The slit width was set at 5 nm
for both excitation and emission measurements. Cresyl violet
perchlorate in methanol (8f = 0.55) was used as the standard for
the fluorescent quantum yield calculation using the absorption
of the test sample. The emission spectra area was obtained
from 550 to 800 nm. Dilute solutions (10−6 M) were used to
minimize reabsorption effects. Fluorescence measurement were
made three times for each dye and averaged. Quantum yields
were determined using the following equation:

8samp = (8stand× Fsamp/Fstand)×(Asamp/Astand)

×(nsamp
2/nstand

2)

Fsamp and Fsamp are the quantum yield of the sample and the
cresyl violet perchlorate standard. Fsamp and Fstand are the areas
under the emission spectra of the sample and standard. Asamp

and Astand are the absorbance values for the sample and standard
at the excitation wavelength. nsamp and nstand are the refractive
index values of the solvents used for the sample and standard
measurements. Molar extinction coefficients were obtained from
the slope of a graph of absorbance vs. concentration for each dye
at five different concentrations (10−6 M).

The HeLa cell line was provided by the Institute of
Biochemistry and Cell Biology, SIBS, CAS (China). Cells were
grown in high glucose Dulbecco’s Modified Eagle Medium
(DMEM, 4.5 g of glucose/L) supplemented with 10% fetal bovine
serum (FBS) at 37◦C and 5% CO2. Cells (5 × 108/L) were
plated on 14mm glass coverslips and allowed to adhere for 24 h.
Experiments to assess phorbol myristate acetate (PMA) uptake
were performed over 2 h in the same medium.

Immediately before the experiments, cells were washed with
PBS buffer and then incubated with 10µM 2b in PBS buffer for
2 h at 37◦C. Cell imaging was then carried out after washing
the cells with PBS buffer. Confocal fluorescence imaging was
performed with a Zeiss LSM 710 laser scanning microscope and a
63 × oil-immersion objective lens. Cells incubated with 2b were
excited at 633 nm using a multi-line argon laser.

The compounds 1a and 1b were synthsised according to the
literature (Qu et al., 2012). 1a was obtained as yellow solid with
38.6% yield., 1H NMR(CDCl3, 500 MHz): 7.45 (t, J = 5Hz, 3H),
7.27 (s, 2H), 6.95 (s, 2H), 2.53 (s, 6H), 1.34 (s, 6H).

1b was obtained as red solid with 65% yield. 1HNMR(CDCl3,
500 MHz): 8.19 (d, 1H, J = 10Hz), 8.08 (d, 1H, J = 10.0Hz), 7.81
(m, 2H), 7.76 (d, 1H, J = 3.5Hz), 7.71 (t, 1H, J = 5.0Hz), 7.51
(t, 1H, J = 5.0Hz), 7.04 (d, 1H, J = 5.0Hz), 6.02 (s, 2H), 2.57 (s,
6H), 1.76 (s, 6H).
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The compounds 2a and 2b were synthsised according to
the literature (Buyukcakir et al., 2009). Compound 1a (0.16
mmol, 50mg) and 2-(diphenylphosphino)benzaldehyde (0.32
mmol, 100mg) were added to a 100mL round bottomed flask
containing 50mL acetonitrile, and then piperidine (0.4mL) and
acetic acid (0.4mL) were added to this solution. The mixture
was heated under reflux by using a Dean Stark trap and reaction
was monitored by TLC in solvent CH2Cl2. When all the starting
material had been disappeared, the mixture were cooled to room
temperature and concentrated at reduced pressure. The dark
brown reaction mixture was washed with 100mL water and
extracted twice with 50mL chloroform., dried over Na2SO4,
and concentrated at reduced pressure. The crude products were
purified by silica-gel column chromatography using mixture
solvent (ethyl acetate:petroleum, 1:1, v/v) as the eluant to give
2a as a black solid with 77% yield. 1H NMR (500 MHz, CDCl3):
8.04 (1H, d, J = 5.1), 8.01 (1H, d, J = 5.2), 7.98–7.92 (2H, m),
7.65 (1H, s), 7.62 (1H, s), 7.47 (3H, d, J = 3.4), 7.42 (2H, t, J
= 7.6), 7.33 (11H, d, J= 2.8), 7.31–7.27 (7H, m), 7.21 (2H, t, J
= 7.5), 6.93–6.86 (2H, m), 6.45 (2H, s), 1.38 (6H, s); 14B NMR
(160 MHz, CDCl3): 1.05;

31P NMR (202 MHz, CDCl3): −14.29.
MALDI-TOF MS: m/z: 867.6 (M+) (Figures S1, S2 and S9, ESI).

Compound 1b (0.11 mmol, 50mg) and 2-
(diphenylphosphino)benzaldehyde (0.33 mmol, 110mg)
were added to a 100mL round bottomed flask containing 60mL
mixture solvent (acetonitrile: 1,2-dichloroethane, 1:1, v/v), and
then piperidine (0.4mL) and acetic acid (0.4mL) were added
to this solution. The mixture was heated under reflux by using
a Dean Stark trap and reaction was monitored by thin-layer
chromatography (TLC) in solvent CH2Cl2. When all the starting
material had been disappeared, the mixture were cooled to room
temperature and concentrated at reduced pressure. The dark
brown reaction mixture was washed with 100mL water and
extracted twice with 50mL chloroform., dried over Na2SO4,
and concentrated at reduced pressure. The crude products were
purified by silica-gel column chromatography using mixture
solvent (dichloromethane:petroleum, 1:1, v/v) as the eluant to
give 2b as a black solid with 45% yield. 1H NMR (500 MHz,
CDCl3) 8.23–8.16 (2H, m), 8.05 (3H, dd, J = 15.9, 5.4), 7.99–
7.93 (2H, m), 7.82 (3H, dd, J = 12.3, 8.3), 7.75–7.69 (2H, m),
7.63 (2H, d, J = 15.7), 7.55–7.49 (3H, m), 7.44 (3H, dd, J =
17.4, 9.7), 7.33 (12H, d, J = 2.3), 7.29 (7H, dd, J = 7.3, 2.4),
7.22 (2H, t, J = 7.6), 7.06–7.00 (1H, m), 6.90 (3H, dd, J = 7.3,
4.9), 6.48 (2H, s), 1.76 (6H, s) 13C NMR (126 MHz, CDCl3) δ

= 153.17, 151.57, 142.34, 140.90, 140.74, 136.85, 136.70, 136.59,
136.23, 135.05, 134.83, 134.05, 133.90, 133.68, 132.38, 131.99,
130.10, 129.34, 129.25, 128.88, 128.67, 128.63, 127.52, 127.40,
126.45, 125.78, 120.45, 118.51, 117.26, 77.27, 77.02, 76.77, 14.16,
−0.00.31P NMR (202 MHz, CDCl3): −14.30. MALDI- TOF MS:
m/z: 1002 (M+) (Figures S3–S5 and S10, ESI).

The compound ox-2a was synthsized according to the
literature (Ali et al., 2017). Compound 2a (0.02 mmol) and
hydrogen peroxide (0.2 mmol) were added to a 100mL round
bottomed flask containing 50mL tetrahydrofuran, and then
FeSO4•7H2O (0.12 mmol) were added to this solution. The
solution was stirred for 30min at ambient temperature. When all
the starting material had disolved, was washed with 100mL water

and extracted twice with 50mL chloroform., dried over Na2SO4,
and concentrated at reduced pressure. The products were the
remainder that the mixture was washed with 100mL of water to
give ox-2a as a black solid in quantitative yield. 1H NMR (500
MHz, CDCl3): 8.13 (2H, d, J = 16.1), 8.03 (2H, dd, J = 7.7, 3.9),
7.67 (8H, dd, J = 11.8, 7.5), 7.63–7.41 (20H, m), 7.17 (2H, dd,
J = 14.1, 7.6), 6.28 (2H, s), 1.33 (6H, s); 13C NMR (126 MHz,
CDCl3): δ 152.42, 142.30, 141.26, 139.50, 134.90, 134.31, 133.81,
133.71, 133.57, 133.23, 132.40, 132.31, 131.97, 131.90, 131.02,
130.22, 129.06, 128.69, 128.59, 128.25, 127.69, 127.58, 121.42,
118.64, 77.26, 77.01, 76.75, 14.47. 14B NMR (160 MHz, CDCl3):
0.95; 31PNMR (202MHz, CDCl3): 31.41.MALDI- TOFMS:m/z:
800 (M+-F) (Figures S6–S8 and S11, ESI).

RESULTS AND DISCUSSIONS

Design and Synthesis
The synthesis of BODIPYs 2a and 2b bearing triphenylphosphine
as a reactive-site for ·OH are outlined in Scheme 1.
Compounds 1a and 1b were synthesized in 65 and 39%
yields according to a published procedure. Using knoevenagel
condensation method, the sensors 2a and 2b can be obtained
in 77% and 45% yield by condensation of 1a and 1b with
2-diphenylphosphinobenzaldehyde. Oxidation reaction
of 2a with hydroxyl radical gives compound ox-2a in
100% yield.

The structure of compound ox-2a has been determined
by X-ray analysis. Single crystal of ox-2a is obtained by
slow evaporation of hexane/CH2Cl2 solution at ambient
temperature. Similar to the previously reported structures of
alkyl substituted BODIPYs (Qu et al., 2012), the meso-phenyl
ring is virtually orthogonal to the indacene plane with the
torsion angle being 87.69◦. The indacene plane of BODIPY
is nearly planar with the deviations from the mean plane
0.0285 Å. It is interesting to note that the dihedral angles
between the neighboring phenyl in triphenylphosphine are
78.53◦, 88.57◦, 88.56◦, respectively in the unit cell (Figure 1
and Table S1).

Spectral Properties
The UV/vis absorption and emission spectra of 2a, 2b and
TQ are measured in various solvents with different polarities
and the photophysical properties are summarized in Table 1.
As shown in Figure 2, the absorption maxima of 2a and 2b

are centered at 628 and 650 nm, respectively, which can be
ascribed to the S0 → S1 transition of the BODIPY. The
absorption band at 350 nm for 2a and 2b can be assigned
to the intramolecular charge transfer (ICT) band due to
the electron-donating 2-diphenylphosphinostyryl moiety. The
absorption spectra of 2a, 2b, and ox-2a are slightly varied
with increasing the solvent polarity (Table S2, ESI). Upon
exciting 2-(thiophen-2-yl)quinoline moiety at 334 nm in 2b, the
emission from the TQ moiety is almost quenched completely,
instead strong emission at 665 nm is observed. These results
imply that efficient energy transfer from the donor to the
BODIPY acceptor occurs. The energy transfer efficiency is
evaluated according to the equation: [1-Id]/Ip × 100%, where
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SCHEME 1 | Synthetic procedures for compounds 2a and 2b: (i) 2-diphenylphosphinobenzaldehyde, AcOH/piperidine, in CH3CN, reflux, 77% for 2a and 45% for

2b; (ii) Fenton’s reagent, in THF, rt, 100%.

FIGURE 1 | ORTEP views of the molecular structure of ox-2a with the thermal ellipsoids set at 30% probability (left) and packing diagram (right).

TABLE 1 | Optical properties of 2a, 2b, and TQ in CH2Cl2 at 298K.

compounds λabsmax

(nm)/logεmax

λflu

(nm)

Quasi-Stokes’

shift [cm−1]

8
b
fex334 8

a
f accptor ETEb τ (ns)c

2a 633/4.91, 577/4.58, 350/4.65 650 55,555 – 0.72 – 4.25

2b 650/5.05, 594/4.64, 350/4.65, 665 3,154 0.54 0.32 169% 4.03

TQ 334/4.27 386 19,230 0.09 – – –

aFluorescence quantum yield.
bEnergy transfer efficiency.
cFluorescence lifetimes.

FIGURE 2 | The absorption (left) and emission (right) spectra of 2a, 2b, and TQ in CH2Cl2 (10µM, λex = 334 nm for 2b and TQ, λex = 555 nm for 2a).
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FIGURE 3 | (A) Changes in the fluorescence spectrum of 2b (10µM in DMSO) as the concentration of ·OH is increased upon excitation at 580 nm. (B) Fluorescence

reactivity of 2b (10µM in DMSO) with various ROS/RNS species upon excitation at 580 nm (F and F0 were the fluorescence intensity of the probe in the presence and

absence of various ROS/RNS species).

FIGURE 4 | Cyclic voltammograms of compounds 1a, 2a, 1b, 2b (0.1mM) in CH2Cl2 containing 0.1M NBu4PF6 (vs. NHE). The ferrocene/ferrocenium (Fc/Fc+)

couple was used as an external standard.

Id is the fluorescence intensity of 2b excited at 334 nm, Ip
is the fluorescence intensity of 2b excited at 580 nm (Yan
et al., 2016). In addition, due to the antenna effect (Greene
et al., 2017), the fluorescence quantum yields of 2b upon
excitation of the TQ moiety (λex = 334 nm) are higher than
that obtained by directly excitation of the BODIPY acceptor
(λex = 580 nm) (Table 1). The fluorescence quantum yield
of 2b in DMSO (λex = 580 nm; 8 = 0.08) is weak, which
can be ascribed to the photo-induced electron transfer (PET)
from the triarylphosphine moiety to the BODIPY fluorophore
(Table S2, ESI).

Fluorescence Detection of ·OH
The sensitivity of probe 2b toward ·OH is investigated by
spectrometric titration in DMSO (Figure 3). Fenton reaction
between Co(OAc)2 and hydrogen peroxide was used to
generate ·OH in situ in a sample solution. Upon addition
of increasing amount of ·OH, the fluorescence intensity
at 665 nm increases remarkably with a virtually unchanged
peak position upon excitation at 580 nm (Figure 3A) or

excitation at 334 nm (Figure S12, ESI). The titration curve
of 2b shows a quick enhancement upon addition small
amount of ·OH and then reaches a plateau at 10 equiv
of ·OH. The detection limit for ·OH is determined to be
10µM based on the signal-to-noise ratio of three (Figure S15,
ESI). A good linear relationship between the fluorescence
response and concentration of ·OH is obtained with a 0.9808
correlation coefficient.

To evaluate the selectivity of 2b for ·OH, the interference
experiments in the presence of several ROS/RNS both in
respective and integrated manners are carried out. Almost
no change is observed in the fluorescence intensity of 2b

by adding 20 equiv. of O−

2 , 100 equiv. of other ROS/RNS
species, such as H2O2, ClO−, TBHP, NO, NO−

2 , NO−

3 , Vc,
GSH, respectively, upon excitation at 580 nm (Figure 3B)
or excitation at 334 nm (Figure S13, ESI). Moreover, the
fluorescence turn-on response toward ·OH is nearly not
interfered in the presence of excess amount of background
containing appropriate ROS/RNS species, such as H2O2, ClO

−,
NO−

2 , NO
−

3 , GSH, and is little interfered in the background

Frontiers in Chemistry | www.frontiersin.org 5 August 2019 | Volume 7 | Article 59810

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Qu et al. NIR Fluorescent Hydroxyl Radical Probe

containing NO and Vc (Figure S14, ESI). The above results
demonstrate that 2b is a highly selective and sensitive
fluorescence turn-on probe for ·OH and its response for
·OH is not interfered in the background containing various
ROS/RNS species.

Sensing Mechanism
As the most obvious explanation for the fluorescence turn-
on response is that the photo-induced electron transfer (PET)
from the lone pair electrons of P(III) atom of triarylphosphine

FIGURE 5 | MTT assay of 2b.

to the BODIPY fluorophore is inhibited upon oxidation by
·OH to form triphenylphosphine oxide P(V)O2. To further
demonstrate this mechanism, the reaction mode of ·OH with
2b is investigated by 31P NMR spectroscopy (Figure S16, ESI).
The 31P NMR spectra of 2b in the presence of different
concentrations of ·OH are recorded in DMSO-d6 and compared
to the spectrum of the free probe. As shown in the 31P
NMR spectra of 2b, upon addition of ·OH, the chemical
shift of P(III) atom of the triarylphosphine group at −15.73
ppm is significantly down field shifted to 28.89 ppm, which
is corresponding to the P(V) of triphenylphosphine oxide,
indicating that ·OH oxidize the phosphorus atom of 2b to
form triphenylphosphine oxide. Furthermore, according to the
database, the standard oxidation potentials of ·OH, H2O2, ClO

−,
O−

2 , NO, NO−

2 , NO−

2 are 2.8, 1.76, 1.63, 1.59, 0.99, 0.94V,
respectively. Santhanam and Bard reported that the reduction
electrode potentials of triphenylphosphine (−2.7V vs. sce) early
in 1967 year (Santhanam and Bard, 1968). Therefore, only the
·OH radical can oxide the triphenylphosphine. Electrochemical
properties of 1a, 2a, 1b, 2b were studied by cyclic voltammetry
measured in dry dichloromethane (Figure 4). Probe 2b consists
two reversible reduction potentials at −1.992 and −2.49V vs.
NHE. These results reveal that compound 2b can be selectively
oxidized by ·OH radical without interference in the background
containing other RON/ROS.

The Cell Imaging of ·OH
Prior to assess the sensing properties of probe 2b in a cellular
environment, the cytotoxicity of 2b was evaluated through an
MTT assay in HeLa cells. As shown in Figure 5, more than 80%
cells are viable after incubation with 2b over a wide range of

FIGURE 6 | Confocal fluorescence and brightfield images of Hela cells. (a) Cells incubated with 10µM of sensor 2b for 2 h at 37◦C. (b) Brightfield image of cells

showed in (a). (c) One overlay image of (a,b). (d) Cells incubated with 10µM probe at 37◦C for 2 h and then treated with phorbol myristate acetate (PMA) for 2 h. (e)

Brightfield image of cells showed in (d). (f) One overlay image of (d,e).
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concentrations (5–50µM) for 24 h, indicating that 2b do not
negatively affect the cell viability to HeLa cells. This encouraged
us to explore the potential utility of 2b as a fluorescent probe
for ·OH in living cells (Figure 6 and Figure S17 ESI) (Yang
et al., 2017). HeLa cells were incubated with 10µM of 2b

for 30min at 37 ◦C and subsequently viewed under confocal
microscope upon excitation at 633 nm as control experiments.
No intracellular fluorescence was observed (Figure 6a). Then
phorbol myristate acetate (PMA) was added in the cells
for 2 h, the microscope images exhibited intense intracellular
fluorescence (Figure 6d). Bright field measurements, after
treatment with both PMA and 2b, confirmed that the cells are
viable throughout the imaging experiments (Figures 6b,c,e,f).
Therefore, probe 2b can clearly be used for intracellular detection
of ·OH.

CONCLUSIONS

In summary, a highly selective and sensitive Near IR fluorescent
turn-on probe for hydroxyl radical have been designed by
utilizing triphenylphosphine as a reaction-site for ·OH in the
presence of other reactive oxygen species (ROS) and reactive
nitrogen species (RNS). In addition, 2b can also be applied for
bioimaging ·OH in HeLa cells with almost no cytotoxicity, thus
demonstrating its application for studying the effect of ·OH
in biological systems. These results point the way to a new
generation of molecular recognition systems in the NIR window
for biological system.
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Development of a “Turn-on”
Fluorescent Probe-Based Sensing
System for Hydrogen Sulfide in
Liquid and Gas Phase
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Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany

A “turn-on” fluorescence sensing system based on a BODIPY-cobaloxime complex for

the detection of H2S in liquid and gas phase was developed. To that aim, two cobaloxime

complexes bearing an axial pyridyl-BODIPY ligand were initially evaluated as sensitive

fluorescent HS− indicators in aqueous solution. The sensing mechanism involves the

selective substitution of the BODIPY ligand by the HS− anion at the cobalt center, which

is accompanied by a strong fluorescence enhancement. The selection of a complex

with an ideal stability and reactivity profile toward HS− relied on the optimal interaction

between the cobalt metal-center and two different pyridyl BODIPY ligands. Loading the

best performing BODIPY-cobaloxime complex onto a polymeric hydrogel membrane

allowed us to study the selectivity of the probe for HS− against different anions and

cysteine. Successful detection of H2S by the fluorescent “light-up” membrane was not

only accomplished for surface water but could also be demonstrated for relevant H2S

concentrations in gas phase.

Keywords: sulfide sensing, fluorescence, BODIPY, cobaloxime complex, gas sensing

INTRODUCTION

Hydrogen sulfide is a toxic gas of pungent odor (Malone Rubright et al., 2017; Szabo, 2018),
affecting the well-being of humans and animals already at very low concentrations (Nimmermark,
2004; Godoi et al., 2018). Although the smell is usually offensive, the human olfactory system adapts
rather quickly to it (ca. 1min for a concentration of 8 ppm of H2S in air) (Stuck et al., 2014),
contributing to the gas’ hazardousness. The main sources of H2S emission are animal feeding
operations and industrial livestock facilities (Blunden et al., 2008; Feilberg et al., 2017) as well as
sewage, waste water treatment and storage systems (Carrera et al., 2016; Jiang et al., 2017) yet also
landfills where H2S is formed by the biodegradation of municipal solid waste (Ko et al., 2015).
As a ubiquitous product of the degradation of sulfur containing matter, it can be also present in
significant amounts in fossil fuels or in geothermal fluids in which it is the most dominant non-
condensable gas (NCG) (Bayer et al., 2013; Marriott et al., 2016). For environmental safety and
human health preservation, the monitoring of H2S emissions is thereby crucial (Pandey et al.,
2012). Although it has a major impact as an air pollutant, transit through the gas–liquid interface
from a waste water reservoir into air is one of its main migration pathways in urban areas (Blunden
et al., 2008; Prata et al., 2018). Monitoring of the HS− anion, the form in which dissolved H2S is
commonly present in water, is thus also highly desirable for pollution management, for instance, in
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terms of the effectiveness of biofiltration in H2S treatment
processes (Vikrant et al., 2018). Among the various sensor
types that have so far been developed for H2S determination,
optical methods are particularly appealing when it comes to
miniaturization, remote operation and the build-up ofmultipoint
monitoring schemes, no matter whether for the gas or the liquid
phase (Liang et al., 2004; Pandey et al., 2012). The considerable
number of optical H2S sensors reported until today basically
rely on three different photochemical modes of operation.
First, the reductive potential of the analyte can be exploited
by reducing functional groups on fluorophores such as azide,
leading to a switching on of the fluorescence of the dye (Lippert
et al., 2011; Peng et al., 2011; Zhang et al., 2016). Second,
metal-bound fluorophores can be modified in a way that the
sulfide anion binds to the metal center, resulting in a release
of the fluorophore, and thus a restoration or “turn-on” of the
fluorophore’s emission features upon photoexcitation. Typical
metal centers are transition and heavy metals such as Cu, Zn,
or Hg (Strianese and Pellecchia, 2016; Kaushik et al., 2017; El-
Maghrabey et al., 2019). The third prominent approach involves
the cleavage of quencher molecules, leading to the release of
highly emissive fluorophores (Liu et al., 2011, 2012; Dai et al.,
2014; Karakuş et al., 2016; Chen et al., 2019; Das and Sahoo,
2019; Gomathi and Viswanathamurthi, 2019). In this report,
we utilize a cobalt complex, namely cobaloxime, with an axial
pyridyl-BODIPY ligand as hydrogen sulfide sensitive indicator.
While a focus of many previous research efforts was on hydrogen
sulfide sensing in living cells (Qian et al., 2011; Yu et al., 2014;
Kowada et al., 2015), our aim is to develop a chemosensing
system that can be used for both, the sensitive determination
of H2S in liquid samples such as surface waters and airborne
H2S. This contribution reports the identification of a suitable
fluorophore-based molecular probe and its performance both as
HS− indicator in solution and in the gas phase.

Pyridyl-BODIPY complexes were reported for the first time
by one of us (Bartelmess et al., 2013b) with the purpose to create
novel hydrogen evolving photocatalysts (Bartelmess et al., 2014).
Other groups expanded their application to electrocatalytic
hydrogen generation (Manton et al., 2014) and improved the
photocatalytic efficiency as well as the turnover numbers through
chemical modification of the pyridyl-BODIPY fluorophores (Luo
et al., 2014, 2015). More recently, analogous BODIPYs were
used for the first time as homogeneous hydrogen-generating
photosensitizers under acidic aqueous conditions (Xie et al.,
2019). Two features of these BODIPY-cobaloxime complexes
were notable in the present context and led us to study some
of those compounds in more detail for HS− sensing: The bright
emission of the BODIPY fluorophore was almost quantitatively
quenched upon complexation with the cobaloxime’s cobalt
center and the stability of the coordinative bond could be
altered by introducing pyridyl linkers with different substituents.
Recent work by Strianese et al. then supported our approach.
These researchers found that pyridyl-cobaloxime complexes (not
bearing fluorophores) were subject to a substitution reaction
of the pyridine by the hydrogen sulfide anion HS− (Strianese
et al., 2015), which is formed by dissolving H2S in water (or, for
example, dissolving the Na2S salt, respectively).

In the present study, we combine and exploit these previous
findings and present an efficient and sensitive hydrogen
sulfide sensing approach based on pyridyl-BODIPY-cobaloxime
complexes. First, we demonstrate a “turn-on” fluorescence
behavior for HS− detection in water. Second, we apply the
pyridyl-BODIPY-cobaloxime complex to a polymeric matrix,
which shows the same “turn-on” fluorescence behavior upon
exposure to H2S gas.

MATERIALS AND METHODS

BODIPY-cobaloxime complexes 1 and 2 and their precursor
molecules were synthesized according to refs (Bartelmess et al.,
2013a,b). Toward this, chemicals purchased from Sigma-Aldrich
were used as received. Reactions and measurements were carried
out under ambient conditions unless otherwise noted in the
respective protocols. All solvents were of highest purity available
and used as received.

NMR titration experiments were recorded on a Varian
Mercury 400 NMR spectrometer (1H: 400 MHz, 19F: 376 MHz).
A solution of complex 1 (7.0mM) in a mixture of CD3CN/D2O
(5%) was titrated with increasing amounts of Na2S × 9 H2O in
D2O (c[Na2S × 9 H2O] = 0.4M). The residual proton signal
(CHD2CN= 1.94 ppm) was used as standard.

Ultra-high-performance liquid chromatography electro-spray
ionizationmass spectrometry (UPLC-ESI-MS) was performed on
aWaters Acquity UPLC (gradient mixtures of acetonitrile/water)
with a Waters LCT Premier XE mass detector. Additionally,
a Waters Alliance System with Waters Separations Module
2695, a Waters Diode Array Detector 996, and a Waters Mass
Detector ZQ 2000 were used. Chromatographic separations were
performed with a gradient of 20 to 95% acetonitrile in water.

Initial emission titration experiments were carried out in
acetonitrile, using 1 × 10−7 M solutions of the respective
BODIPY-cobaloxime complexes, and subsequent addition of
small aliquots of an aqueous solution of Na2S × 9 H2O
from 0.2 to 2.0 eq. A comparable concentration range was
used for kinetic studies, monitoring the development of the
emission maximum of the BODIPY dye vs. time. Absorption
measurements were carried out on an Analytik Jena Specord 201
Plus UV/Vis spectrophotometer; fluorescence measurements in
solution were carried out on a Horiba Jobin–Yvon Fluoromax-
4P. Further spectroscopic experiments were carried out in
96-well microplates, made of polystyrene, non-binding, with
transparent bottom and black body, purchased from Greiner
Bio-One. Initially, a small amount of HydroMed’s polyurethane
hydrogel D4, dissolved in 96% ethanol (0.9 g of D4 in 4.0 g of
ethanol), was deposited in the well and after drying, 5 × 10−8

mmol of the respective BODIPY cobaloxime complex (as 1 ×

10−6 M solution in acetonitrile) was added. After drying, 50 µL
of an aqueous solution of Na2S (of the respective concentration,
indicated by the molar eq. of the analyte) was added. After an
incubation time of 10min, the wells were analyzed with a TECAN
infinite 200 Pro microplate reader.

To probe interactions with different anions and a typical
organic thiol, the microplate was prepared as described before.
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Subsequently, 200 µL of 0.3mM solutions of the respective
analyte were added and after an incubation time of about
1.5 h, the respective fluorescence intensities were determined. In
addition to the analyte solutions inDI water, also pure DI water as
well as a sample of surface water, collected in June 2019 from the
Müggelspree river in Berlin-Friedrichshagen, was tested in the
described manner. The latter sample was also spiked with HS−

(0.3mM) and analyzed accordingly. The extended incubation
time was chosen to reach full conversion of the respective analyte,
and to avoid false negative results due to possibly increased
reaction times of the different anions. Relative measurement
uncertainties were estimated following our previously published
considerations on this topic (Rurack and Spieles, 2011; Bell
et al., 2016). Major contributions came from deviations of repeat
measurements of the well-plate setup with only minor processing
effects, all remaining below 6.0%. Only for the slightly turbid
surface water sample a larger relative uncertainty of about 22%
was estimated.

FIGURE 1 | Molecular structures of the investigated BODIPY-cobaloxime

complexes 1 (A) and 2 (B).

To probe the sensing of H2S in the gas phase, the microplate
was also prepared as described before and sealed with an
aluminum foil sticker. The wells were exposed to H2S gas from
a H2S gas cylinder (C[H2S] = 11.13 ppm) with a 4 L h−1 flow
rate for different periods of time.

RESULTS AND DISCUSSION

The synthesis of meso-pyridyl-BODIPY-cobaloxime
[Co(dmgH)2(Cl)(BODIPY)] (dmgH = dimethylglyoximate
anion) complexes 1 and 2 (Figure 1), together with their
structural and photophysical characterization, was previously
published (Bartelmess et al., 2013a,b). The fluorescence quantum
yields of the parent BODIPY fluorophores were reported to be
0.30 in the case of BODIPY 1 and 0.90 in the case of BODIPY
2 in dichloromethane (Bartelmess et al., 2013a). By carefully
evaluating the properties of BODIPY-cobaloxime complexes,
especially in terms of stability, we focused our H2S sensing
studies on complexes 1 and 2.

The stability of complex 2 is slightly lower compared with
complex 1 due to the introduction of an electron withdrawing
chlorine substituent on the pyridyl linker. We hypothesized
that this lower complex stability of 2 will provide faster
sensing responses as compared to 1. Initial titration experiments,
where the respective BODIPY-cobaloxime complexes were
dissolved in acetonitrile and then titrated with an aqueous Na2S
solution, revealed promising results (Figure 2). Both investigated
complexes showed a fluorescence enhancement upon addition
of the analyte. However, a lower reaction rate was derived for
complex 1, based on the continued evolution of the fluorescence
band upon addition of two eq. of the analyte. In the case of
complex 2, the system was entering a plateau after the addition
of 2 eq. indicating a completion of the reaction already at
lower concentrations (Figure 2, insets). The lower stability of
complex 2 is a rational explanation for this observation. A
more detailed determination of the reaction rate of complex 1

FIGURE 2 | Fluorescence titrations of 10−7 M solutions of complexes 1 (A) and 2 (B) in acetonitrile with increasing amounts of aqueous Na2S solution. Excitation

wavelength 490 nm. Insets: Plots of the fluorescence intensity at the emission maximum vs. the number of added HS− eq., relative to the BODIPY-cobaloxime

complexes (legend with color code in graph A applies to both graphs).
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FIGURE 3 | Kinetic investigation of complex 1 in acetonitrile (2 × 10−8 M)

upon addition of 1.5 eq., of aqueous HS− solution (black), and in the absence

of an analyte (red).

is shown in Figure 3 and corroborates the initial findings of
the titration experiment. The reaction of complex 2 was already
completed before the measurement could be initiated, thus no
results are shown here. The absorption titration spectra revealed
virtually no changes upon addition of aqueous HS− solution. The
absence of absorption spectroscopic changes corroborated our
earlier findings (Bartelmess et al., 2013b, 2014), that is, that the
attachment of a BODIPY fluorophore to the cobaloxime metal-
center through an internally orthogonally oriented and thus
electronically decoupled meso-4-pyridyl linker does not allow
for electronic coupling between BODIPY and metal ion in the
ground state. The negligible shifts of ca. 4 nm only reflect the
change in inductive effect at the pyridyl-N when the coordinative
bond is cleaved.

We then performed 1H-NMR titration experiments to obtain
a better understanding of the mechanism behind the HS−-
triggered fluorescence enhancement (Figure 4). To a 7.0mM
acetonitrile/5% water solution of 1 (Figure 4A) increasing
quantities of Na2S in water were added (Figures 4B,C). Initially,
the addition of 0.75 eq. of Na2S resulted in the formation of
a new set of proton signals (H’) which are in slow chemical
exchange on the NMR time scale with the signals of complex
1 (H) (Figure 4B). This new set of protons signals resonate at
the same chemical shift as the protons of the free BODIPY in
solution (Figure 4D). The addition of 1.4 eq. of Na2S then already
produced the disappearance of the BODIPY-cobaloxime signals
with the concomitant increase of the intensity of those signals
assigned to the free BODIPY. The methyl protons (H6) of the
BODIPY-cobaloxime also vanish upon the addition of Na2S. This
is due to precipitation of the HS-cobaloxime which is insoluble in
acetonitrile at these concentrations.

UPLC-MS analysis of the NMR sample containing a mixture
of the BODIPY-cobaloxime complex 1 and 0.75 eq. of Na2S
was further invoked to reveal the mechanism, yielding a
chromatogram with three major absorption bands at 5.15,

5.05, and 2.93min retention times (Supplementary Figure 2)
which were assigned to the BODIPY ligand, the BODIPY-
cobaloxime complex, and HS-cobaloxime complex according
to their corresponding ions [BODIPY + H]+ (m/z =

326), [[Co(dmgH)2(Cl)(BODIPY)] + H]+ (m/z = 650) and
[Co(dmgH)2(Cl)(HS)]+ (m/z = 356) in the ESI positive mode,
respectively (see Supplementary Figures 2–4).

To identify a suitable solid support for further H2S
sensing studies in the gas phase, we performed more detailed
spectroscopic studies loading polystyrene 96-well microplates
with a thin layer of a D4 hydrogel. Subsequently, the BODIPY-
cobaloxime complexes were also added to the wells. After plate
preparation, aqueous HS− solutions of different concentrations
were added to the respective wells of the microplates.
Fluorescence measurements were carried out through the
transparent bottom of the plates (Figure 5) after an incubation
time of 10min. Since this time depends on the thickness
of the hydrogel, reduction of the assay time is merely an
engineering task.

In these experiments, the results for higher HS−

concentrations were largely comparable for the two BODIPY-
cobaloxime complexes. When investigating lower HS−

concentrations, however, the decreased stability of complex
2 was obvious and no conclusive results could be obtained.
Nevertheless, for complex 1 the results of the entire concentration
range studied showed favorable features, that is, a pronounced
response and an acceptable linearity, allowing for concentration-
dependent measurements over a range from 10µM to 1.0mM.
Complex 1 thus qualifies as a suitable fluorescent indicator for
the determination of HS− in aqueous solutions.

The effect of other, possibly competing anions which are
typical constituents of drinking or surface water on the stability
of 1 were studied as well. Additionally, the potential interference
of biologically relevant molecules, mainly existing in the form
of cysteine-containing biomolecules exhibiting free thiol groups,
was also evaluated. Toward this, a microplate was loaded with
the complex in the described manner and solutions containing
similar anion or thiol concentrations (0.3mM; 200 µL) of
NO−

3 , SO2−
4 , Cl−, CO2−

3 , PO3−
4 , OCl−, HSO−

3 , SCN−, and
cysteine (as well as HS−) were added. The fluorescence intensity
was evaluated in the reader for up to 1.5 h of incubation. It
was found that for most of the anion-containing samples the
fluorescence response was low and of a similar intensity than
for DI water. Solely HS−, and to a lesser extent HSO−

3 , led
to a largely increased emission of the BODIPY dye, compared
to a DI water reference (Figure 6). In addition, a sample
of surface water, collected from the Müggelspree in Berlin-
Friedrichshagen was analyzed. A certain increase in fluorescence
intensity was observed, which however is a matrix effect that
did only marginally influence the HS− detection performance.
The latter was corroborated by analyzing a Müggelspree sample
spiked with HS−, yielding a fluorescence that amounted to
the sum of the HS−, and the matrix signal (Figure 6). The
matrix effect of real water samples most likely stems from thiol-
containing organic matter, as the moderate fluorescence response
recorded for cysteine suggests. This is not surprising considering
the chemical similarity of HS− and an organic thiol group
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FIGURE 4 | Selected regions of the 1H-NMR spectra (400 MHz, CD3CN/5% D2O) of: (A) 1, c1 = 8.0 × 10−3 mM, (B) 1 + 0.5 eq., of Na2S in D2O, (C) 1 + 1.4 eq.,

of Na2S in D2O, and (D) free BODIPY in CD3CN. Primed numbers indicate free BODIPY dye.

and the absence of a dedicated supramolecular binding site in
complex 1. However, such background signals can be accounted
for by appropriate (automated) calibration procedures and
background libraries.

Finally, a sealed microplate containing BODIPY-cobaloxime
complex 1 loaded onto the hydrogel support was exposed to
H2S gas simply by flowing gas of a defined concentration
though the system for different time intervals (Figure 7). These
experiments revealed that the fluorescence response after 5min
of exposure to an atmosphere containing 11 ppmH2S is distinctly
higher compared to a reference sample which was exposed to
synthetic air for 30min. 11 ppm H2S is a concentration that
for instance workers involved in manure storage or handling on
farms are frequently exposed to (Fabian-Wheeler et al., 2017).
For the hydrogel film format used here, we determined that
approximately 1 h is needed to achieve complete saturation of
the system. Most likely, the sensing event involves first the
transformation of H2S into the anion HS− once the gas is
dissolved in the water contained in and at the surface of the
hydrogel and, second the reaction of the anionic species with the

BODIPY-cobaloxime indicator. Altogether, these experiments
demonstrate that BODIPY-cobaloxime complex 1, when applied
to an adequate polymer matrix, can be used for the detection of
H2S gas in a straightforward manner.

CONCLUSION

In conclusion, BODIPY-cobaloxime complexes were successfully
employed as fluorescent “turn on” indicators for the detection
of HS− in liquid and gas phase. Dissolving H2S in water always
leads to the formation of HS− which reacts with the title
complexes and allowed us to postulate a sensing mechanism
which involves the selective replacement of the pyridyl-BODIPY
dye by the HS− anion in the cobaloxime complex via 1H-
NMR titration experiments. Fluorescence titration experiments
indicated that both BODIPY-cobaloxime complexes 1 and 2

are in principle suitable molecules for the sensing of HS−

in liquid phase. However, the lower stability of complex 2

rendered it less applicable once the sensor dye was loaded onto a
hydrogel support.
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FIGURE 5 | Top: Fluorescence response of solid complex 1 (5 × 10−8 mmol

per well) deposited on hydrogel D4 in a 96 well-microplate upon addition of 50

µL of aqueous Na2S solutions of different concentrations. Eq., of Na2S added

as indicated. Bottom: Concentration dependency of the fluorescence

response at the emission maximum.

BODIPY-cobaloxime complex 1 was successfully loaded
onto a polymer matrix and its higher stability was suitable
for using the sensory film for HS− determination by a
pronounced fluorescence response in the concentration range
from 10µM up to 1.0mM in surface water. Cross-reactivity
studies revealed that anions typically present in drinking water
did not lead to a significant enhancement of fluorescence
and only cysteine led to a certain background signal that
has to be accounted for. Finally, we demonstrated that the
combination of the BODIPY-cobaloxime complex with an
adequate hydrophilic polymer matrix was suitable for H2S gas
detection at a concentration relevant in a farming context.
Since cysteine and related thiol-containing compounds are non-
volatile, an application in the gas phase would not suffer from
these cross-reactivities.

Having successfully devised an indicator system for H2S, we
are currently integrating the sensory matrix into a dedicated
measurement device to realize an automated sensor unit.
The latter is the second part of a multi-gas sensing device

FIGURE 6 | Cross-reactivity study investigating the fluorescence response of

complex 1 (5 × 10−8 mmol per well) adsorbed on hydrogel D4 upon addition

of 200 µL of 0.3mM aqueous solutions of different anions and thiols. The

incubation time was 1.5 h. Sample 13 is surface water spiked with a similar

amount of HS− than sample 1.

FIGURE 7 | Fluorescence enhancement observed after the exposure of

complex 1 loaded on top of a hydrogel matrix (5 × 10−8 mmol per well) to

synthetic air and H2S (cH2S = 11.13 ppm ± 0.33 Mol-ppm) for different time

intervals at a 4 L h−1 flow rate in both cases.

for hazardous gases currently being developed within an
interdisciplinary research project at BAM, the first target analyte
having been NH3 (Gawlitza et al., 2017). In the case of the
present analyte, challenges beyond matrix integration and a
unique detection mechanism are its high toxicity in combination
with a pungent odor and the human olfactory system’s fast
adaption which do not only require the provision of a special
laboratory setting but also the development of a dedicated H2S
test and reference gas generator currently being undertaken in
our laboratories.
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With the development of organic optoelectronic materials and bioimaging technology,

to exploit organic luminescent materials with high luminescent efficiency in

aggregation-state has become a research hotspot. BODIPYs have become one

of the research objects of this kind of material because of their obvious advantages.

This review focuses on the design and synthesis of AIE-type BODIPYs, the mechanism

of AIE properties and their applications in recent years. Through classification, analysis,

and summary, this review aims to explore the structure-activity relationship of AIE-type

BODIPYs and to provide ideas for the further design and potential applications of

AIE-active fluorescent materials.

Keywords: BODIPY, aggregation-induced emission, fluorescence, bioimaging, sensor

INTRODUCTION

Organic luminescent materials (OLMs) are widely used in chemo/biosensors and light-emitting
devices in light of their rich advantages, which include great diversity, easily modified structures,
rich colors, and low environmental pollution (Chan et al., 2012; Uoyama et al., 2012; Yan et al.,
2018). Since most of these applications heavily depend on their luminescent capabilities in the
condensed state, the development of luminophores with excellent photophysical properties in the
aggregation state is highly required. Traditional organic fluorescent dyes with a π-conjugated
structure show excellent luminescent properties in dilute solution but become weakly or non-
emissive in high concentration solutions or the aggregation-state, which is called the aggregation-
caused emission quenching (ACQ) effect (Förster and Kasper, 1954). This effect is due to the
collision between the ground state and the excited state of the fluorescent molecule at high
concentration, which leads to the non-radiation deactivation process, or because the strong
interaction between the planar π-conjugated structures leads the formation of excimers or
exciplexes, and the energy of the excited state decays through the non-radiative form. The ACQ
effect greatly limits the practical application of OLMs because the aggregated states are unavoidable
for both light-emitting devices and fluorescent sensors.

Aggregation-induced emission (AIE), which was first introduced by Tang et al. has been widely
accepted as a novel strategy to mitigate the ACQ effect on OLMs (Mei et al., 2015). Generally,
AIE molecules such as 1,1,2,3,4,5-hexaphenylsilole (HPS, Figure 1) and tetraphenylethylene (TPE,
Figure 1) usually possess highly twisted structures and show weak fluorescence in diluted solutions
due to non-radiative transition induced by intramolecular motion (IM) in their excited state. In the
aggregation state, such IM progress is effectively suppressed, resulting in their enhanced emission.
Additionally, the highly twisted structure can effectively inhibit the π-π interactions between AIE
molecules, which is conducive to improving their solid-state luminescence efficiency. Based on the

22
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FIGURE 1 | Chemical structures of HPS, TPE, and BODIPY.

widely accepted restriction of intramolecular motion (RIM)
mechanism, AIE materials, including not only various newly
designed molecules but also classical fluorophores including
coumarins, pyrene, squaraines, cyanies, perleneimides, and
BODIPYs, have been developed and applied in bioimaging, data
encryption/decryption, OLEDs, and stimuli-responsive materials
(Mei et al., 2015; Kokado and Sada, 2019).

As a classical luminophore, BODIPY dyes (boron
dipyrromethene and its analogs, Figure 1) have achieved great
development in the field of fluorescent sensing and bioimaging
because of their excellent photophysical properties, including
large molar extinction coefficients, high fluorescence quantum
yields, tunable emission from visible light to near-infrared
(NIR), and high photo- and chemical-stability (Loudet and
Burgess, 2007; Boens et al., 2012; Lu et al., 2014; Kowada et al.,
2015; Fan et al., 2016; Ge and O’shea, 2016; Wang et al., 2017).
Unfortunately, in contrast to their excellent luminescence in a
solution, most BODIPYs suffer from the ACQ effect and show
weak fluorescence in the aggregation state. This is mainly because
of the self-absorption and strong intermolecular interactions
(π-π stacking, etc.) induced by their small Stokes shift and
planar π-conjugated structures. These problems greatly restrict
the further applications of BODIPYs as solid-state emitters.
Therefore, the development of BODIPYs with aggregation-state

fluorescence has received intense attention in the past decades.
AIE has been proved to be an efficient strategy for the

construction of BODIPYs with efficient fluorescence in the
aggregation state. A number of AIE-active BODIPYs have been
rationally designed by various strategies, such as the direct
integration of AIE molecules with the BODIPY skeleton (Hu
et al., 2012; Gomez-Duran et al., 2015), J-type aggregation
(Choi et al., 2014; Kim et al., 2015), and dipyrromethene
bidentate ligand modification (Yang et al., 2012; Wang et al.,
2015b). Taking the advantages of AIE, the intense aggregation-
state fluorescence of BODIPYs has been successfully achieved.
Moreover, their application as aggregation-state emitters for
bioimaging, stimuli-response switches as well as OLEDs has been
demonstrated (Mei et al., 2015; Baysec et al., 2018; Che et al.,
2019). This mini review focuses on providing an overview of
the design, mechanism and application of AIE-active BODIPYs
and BODIPY analogs so as to facilitate their future application
in the solid-state luminescence field. For the convenience
of explanation, AIE-active BODIPYs are divided into two
categories: one is based on the boron dipyrromethene platform
(classical BODIPYs); the other is BODIPY analogs based on
heterocycle-based bidentate chelates. The key photophysical
data of each compound discussed are listed in Table 1.
Moreover, boron difluoride complexes based on β–diketonate,
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TABLE 1 | Compilation of the photophysical data of BODIPY dyes with AIE.

In solution In H2O-THF mixture In solid-state

Dye solvent λabs (nm)a (ε/M−1 cm−1) λem
b (nm) Φ f (%) λem (nm)b (fw) Φ f (%) λem

b (nm) Φ f (%)

1 THF - 650 0.2 618 (90) - - 5

2 THF - 640 0.3 640 (90) - - 27

3 THF - 529 0.1 600 (90) - - 7.5

4 THF 536 567 59 569 (80) 53 - -

5 THF 572 (54600) 630 2.9 630 (90) 3.9 642 10

6 THF 619 (26400) 697 6.4 697 (90) 2.32 706 6.9

7 THF 665 (80100) 690 42 690 (90) - 690 1.3

8 THF 513 663 6.1 645 (99) - - -

9 THF 498 586 0.74 700 (95) - - -

10 THF 515 688 1.1 658 (99) - - -

11 THF 501 754 0.27 - - - -

12 THF 540 641 3 - 4 - -

13 THF 513 633 4 - 10 - -

14 THF 536 636 5 - 5 - -

15a CH2Cl2 550 (50000) 592 80 - - 630 ± 4 -

15b CH2Cl2 587 (48000) 618 81 - - 636 ± 4 -

15c CH2Cl2 589 (54000) 618 86 - - 636 ± 4 -

15d CH2Cl2 589 (47000) 619 87 - - 636 ± 4 -

16 THF 514.5 525 - - - 537g -

17a CH3CN 549 (46310) 620 0.3 625 (99)d 6 - -

17b CH3CN 509 (87180) 535 0.3 587 (99)d 7 - -

17c CH3CN 509 (92160) 537 0.4 594 (99)d - - -

17d CH3CN 501 (85070) 536 0.8 557 (99)d 1.57 - -

18a EAc 503 (84000) 511.5 94 - - - -

18b EAc 503 (80000) 511 90 - - - -

18c EAc 503 (86000) 511 90 - - - -

19a EAc 503 (69000) 514.5 89 - - - -

19b EAc 503.5 (53000) 516.5 98 - - - -

20a CH2Cl2 507 514 2 575 (45)e 6.6 592 3

20b CH2Cl2 502 515 2 - - 595 5

21a CH2Cl2 506 512 75 565 (50)e 32 609 16

21b CH2Cl2 501 512 22 - - 576 18

22a CH2Cl2 508 515 40 545 (75)e 3.2 585 13

22b CH2Cl2 502 515 13 - - 590 28

23 CHCl3 484 (12882) 515 5 515 (96) 23 515g 14

24 THF 668 (128000) 683 0.8 683 (90)f 21.9 - -

25 THF 677 (115000) 697 1.1 697 (90)f 18.8 - -

26 THF 440 473 12 610 (90) - 540g -

27a CH2Cl2 432 538 7 - - 525g 20

27b CH2Cl2 413 512 6 - - 497g 52

27c CH2Cl2 404 497 4 - - 508g 19

27d CH2Cl2 408 506 4 - - 49 g 5

27e CH2Cl2 384 545 3 - - 515g 6

28a THF 434 (47000) 514 <1 549 (90) <1 573 2

28b THF 398 (57000) 524 <1 564 (90) 1 543 1

29a THF 305 (33000), 420 (76000) 506 <1 523 (90) 1 541 10

29b THF 292 (35000), 394 (41000) 556 <1 562 (90) <1 560 1

30a hexane 380 (43700) 440 <1 495 (80) - 495 26

30b hexane 402 (25800) 499 41 - - 503 60

(Continued)
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TABLE 1 | Continued

In solution In H2O-THF mixture In solid-state

Dye solvent λabs (nm)a (ε/M−1 cm−1) λem
b (nm) Φ f (%) λem (nm)b (fw) Φ f (%) λem

b (nm) Φ f (%)

31a CH2Cl2 391 (33300) 429 2 - - 525 13

31b CH2Cl2 388 (24000) 426 1 - - 488 15

31c CH2Cl2 459 (70800) 529 78 - - 629 20

32a CH2Cl2 362 (16000) 450 <1 450 (90) 1 460 53

32b CH2Cl2 387 (12000) 471 <1 475 (90) 1 494 46

33a THF 373 (140000) 462 3 463 (90) 13 498 10

33b THF 348 (370000) 441 1 443(90) 9 459 44

33c THF 350 (310000) 437 2 440 (90) 23 463 38

33d THF 367 (390000) 522 10 524 (90) 15 491 37

34a CHCl3 459 (25119) 475 92 - - 580 2

34b CHCl3 452 (15848) 467 81 - - 537 9.1

34c CHCl3 510 (39810) 605 30 - - 624 1.8

34d CHCl3 466 (25119) 482 78 - - 523 22

34e CHCl3 525 (39810) 617 10 - - 620 9.3

35a THF 392 (19000) 447 1 480 (99) 7 494 29

35b THF 397 (19300) 438 3 576 (99) 16 547 27

35c THF 409 (37700) 485 1 521 (80) 7 506 21

35d THF 408 (35500) 448 2 545 (90) 20 555 23

35e CH2Cl2 395 (34200) 458 <1 - - 473 0.60

35f CH2Cl2 409 (43800) 522 <1 - - 518 0.27

36a CH2Cl2 407 (20000) 471 <1 471 (99) 14 481 12

36b CH2Cl2 416 (21000) 464 <1 518 (90) <1 534 20

36c CH2Cl2 448 (11000) 522 <1 522 (90) 35 538 26

36d CH2Cl2 461 (14000) 513 <1 583 (90) <1 577 10

aLongest absorption band.
bLongest emission band.
cEA, ethyl acetate.
dMeasured in CH3CN/H2O mixture.
eMeasured in methanol/H2O mixture.
fMeasured in CH2Cl2/Hexane mixture.
gMeasured in the film state.

ketoiminate, and diiminate will not be discussed in this review.
A review that summarizes the photophysical properties and
applications of these complexes would be helpful to readers
(Tanaka and Chujo, 2015).

CLASSICAL BODIPYS WITH AIE

AIE-Active BODIPYs Based on TPE
Due to the planar π-conjugated structure of boron
dipyrromethene core, strong intermolecular interactions
such as π-π stacking and hydrogen bonds are usually observed
in the aggregation state of BODIPYs, leading to distinct emission
quenching. In order to suppress the strong intermolecular
interactions, the well-known AIE luminescent element, TPE,
has been successfully integrated with BODIPYs; thus, both AIE
and intense aggregation-state emission were achieved. Tang
et al. first reported TPE-containing BODIPYs (1–3, Figure 2)
with AIE effect (Hu et al., 2012). In compounds 1–3, TPE
was simply introduced to the meso-position of the BODIPY
core via a palladium-catalyzed cross-coupling reaction. In

tetrahydrofuran (THF)-water mixture, both locally excited
(LE) state, and twisted intramolecular charge transfer (TICT)
state emission bands were observed in the emission spectra of
compounds 1–3. Compound 1 showed ACQ with the increment
of the fraction of water (fw) in THF. In contrast, the intensity of
the TICT emission band of compounds 2 and 3 was increased
dramatically and accompanied by the decrement of the LE
emission band. Meanwhile, the fluorescence quantum yields
(Φ f) of compounds 2 and 3 in the solid state were determined
to be 27 and 7.5%, respectively, which are higher than those
of obtained in THF solution (Φ f < 1%). Clearly, the relative
stronger TICT effect of compounds 2 and 3 compared to
compound 1 should be responsible for their different AIE and
ACQ behavior.

The AIE behavior of TPE-BODIPY is highly dependent
on the position and the number of TPE units attached to
the BODIPY core. For example, Wu et al. (Chua et al.,
2015), Scherf et al. (Baysec et al., 2018), and Atilgan et al.
(Baglan et al., 2013) have reported that BODIPY derivatives
with TPE or triphenylethene units at 2,6- or 2,6,8-positions
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FIGURE 2 | Chemical structures of compounds 1–7.

(4–5, Figure 2) could effectively inhibit ACQ and act as
aggregation-induced emission enhancement (AIEE). However,
the conjugating of TPE at 3,5-position of the BODIPY core
resulted in large π-conjugated structures with ACQ (6–7)
(Gomez-Duran et al., 2015).

AIE-Active BODIPYs Based on
Triphenylamine (TPA)
Designing the propeller-shaped BODIPY molecules to consist
of electron donor (D) and acceptor (A) units is another
method to hinder the ACQ effect. Tang et al. developed a
group of AIE-active BODIPYs with a D-A structure (8–11,
Figure 3). Due to the strong electronic interaction between

TPA (D) and BODIPY (A), compounds 8–11 displayed
TICT and AIE properties. When the water was added
to the THF solution of 8–11, the LE emission intensity
decreased with an increment of fw, accompanied by the
red-shift of emission. This progress is mainly dominated
by the polarity effect. However, when the fw reached the
point of aggregation, the rotation of the aromatic rings
was efficiently restricted, resulting in blue-shifted emission,
and AIE (Figure 4) (Hu et al., 2009; Lager et al., 2009).
Moreover, compounds 12–14 with TPA unit incorporated
into the 2-, 2,6-, 2,6,8-positions showed more enhanced TICT
effect than compounds 8–11, and only aggregation-induced
emission enhancement of TICT was observed
(Bui et al., 2019).
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FIGURE 3 | Chemical structures of compounds 8–14.

AIE-Active BODIPYs Based on
J-aggregation
Most BODIPYs tend to form H-type (face to face) aggregates
in the aggregated state, which leads to fluorescence quenching.
Recent studies indicated that the packing of BODIPYs could
be engineered to favor the formation of J-type (head to tail)
aggregates, and they would then give out red-shifted emission in
comparison to their respective monomers in solution. Under this
aggregation, the transition dipoles of the monomers aligned in a
coplanar inclined way with a slip angle <54.7◦ to form dimers,
trimers or even larger J-aggregates (Wurthner et al., 2011; Choi
et al., 2014; Tian et al., 2018).

Johansson et al. first evidenced the formation of non-
fluorescent BODIPY H-dimers in double-labeled proteins
and emissive J-dimers in labeled lipid vesicles (Bergström
et al., 2002). Vu et al. found that bulky substituents at the 3-
and 5-positions of the BODIPY core, such as paracyclophane
(15, Figure 5) (Vu et al., 2009) and the adamantyl group
(16) (Vu et al., 2013), could facilitate the formation of
emissive J-aggregates in the aggregation state. To elucidate
the factors that govern the formation of emissive J-aggregates
of BODIPYs, Kim et al. carried out a systematic study of the
substitution effect on the meso-position (Choi et al., 2014;
Kim et al., 2015). For 1,3,5,7-tetramethyl derivatives, the
meso-substituents 17, that are -CF3, -COOMe, -COOtBu, and
-iPr, demonstrably formed emissive J-aggregates. Meanwhile,

other meso-substituents, such as -CH3, -CHO, -CN, and
-Cl, exhibited the ACQ effect or were fluorescent in the
solid state without forming J-aggregates (Figure 6). The
formation of emissive J-aggregates is quite sensitive to minute
structural changes. J-aggregations were not encountered in
the closely related 3,5-dimethyl derivatives. Both the electron-
withdrawing meso-substituents and flanking methyl groups are
necessary for the formation of emissive BODIPY J-aggregates.
Moreover, by using the AIEE-type meso-ester-substituted
BODIPY probe 17b, they realized the need to detect specifically
HOBr generated by eosinophil peroxidase (EPO) for a clean
turn-on signal: the red emissive (621 nm) J-aggregates of 2,6-
dibrominated 17b self-assembled into orange emissive (581 nm)
J-aggregates (Kim et al., 2018).

Besides the abovementioned J-aggregation tuning tuned
via variation the meso-substitutions, the modification of BF2
moiety with a diacyloxyl or diaryl substituent should be
another potential strategy. For example, AIE behavior induced
by J-aggregation of BODIPY in pure organic solvents was
described by Chiara et al. in O-BODIPYs with a B-spiranic
4,4-diacyloxyl substitution pattern (18, 19, Figure 5). The
high conformational rigidity of this design along with the
orthogonal disposition of the B-diacyloxyl substituent and
the meso-aryl group were analyzed to be the key factors of
the J-aggregation process (Manzano et al., 2016). Wang et al.
investigated spiro-BODIPYs with a diaryl chelate unit that
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FIGURE 4 | Proposed mechanism for TICT and AIE behaviors in AIE-active BODIPYs based on TPA (Reprinted from Hu et al., 2009. Copyright 2009 American

Chemical Society).

could form J-aggregates in the alcohol-water mixture. The
J-aggregates of 20a showed increased emission efficiency
while those of 21a and 22a indicated decreased emission
efficiency, suggesting that the change in emission intensity
is not a reliable indicator for the formation of J-aggregates.
An important detail to mention is that similar structures
substituted by phenyl at meso-position (20b–22b) were not
observed in the J-aggregation formation of the alcohol-
water mixture or in the tetrahydrofuran-water mixture
(Yuan et al., 2017).

BODIPY ANALOGS WITH AIE

AIE strategy, relying on the RIM, has produced numerous
systems with high emission in the aggregation state. Except
for classical BODIPYs, the development of new members
of BODIPYs family viz. BODIPY analogs with AIE-active
will undoubtedly contribute to a better understanding of the
phenomena and lead to novel applications.

In the process of elucidating the optical properties of benzo[c,
d]indole-containing aza-BODIPYs, Kobayashi et al. found that
the photophysical property of aza-BODIPYs could be tuned by
incorporating heteroaromatic moieties in place of pyrrole or

isoindole rings. Moreover, they reported the first aza-BODIPY
(23, Figure 7) exhibiting AIEE behavior. Compound 23 showed
weak fluorescence in a diluted solution (Φ f = 2% in THF
solution), however, fluorescence enhancement was observed both
in film-state (drop-cast film,Φ f = 14%) and aggregation-state (fw
= 90%, Φ f = 23%). Clearly, the restricted molecular dynamics
induced by the non-conjugated moiety should be responsible for
such AIEE phenomenon (Shimizu et al., 2015).

Similar to the strategy mentioned in section AIE-active
BODIPYs Based on TPE, the AIE property of NIR-emissive
aza-BODIPYs based on a diketopyrrolopyrrole-benzo[d]thiazole
ligand was realized by linking one or two TPE moieties to
its planar π-conjugated structure (Li et al., 2017). Compounds
24 and 25 showed weak fluorescence with Φ f of 0.7 and
0.4% in diluted dichloromethane solution. After the adding
of hexane as a poor solvent to the dichloromethane solution,
great fluorescence enhancement of around 690 nm was observed
(21.9% for compound 24, and 18.8% for compound 25) due to
the formation of high emissive aggregates. Moreover, the imaging
ability of 25-NPs, which was prepared from compound 25 and
Pluronics 127, has been proved in HeLa cells.

By incorporating two phenothiazine units into the
biquinoline-based ligand, an AIE-active aza-BODIPY with
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FIGURE 5 | Chemical structures of compounds 15–22.

FIGURE 6 | Different aggregation behavior of 17a (2 × 10−5 mol L−1) and it’s analog with a methyl group at the meso-position in acetonitrile and acetonitrile-water

mixtures (1:99, v: v). Dotted and solid lines refer to the absorption and emission spectra of BODIPYs, respectively (adapted with permission from Choi et al., 2014,

Copyright 2014, Royal Chemistry Society).
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FIGURE 7 | Chemical structures of compounds 23–26.

FIGURE 8 | Chemical structures of compounds 27–36.
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highly twisted structure (26, Figure 7) was reported by Zhu et al.
(2014). Compound 26 showed weak blue emission at 480 nm
in THF solution. The addition of water to the THF solution (fw
≤ 50%) first induced emission quenching due to the enhanced
TICT effect. Then, great red-shifted emission from 480 to 610 nm
accompanied by emission enhancement was observed because of
the formation of aggregates.

Besides the strategies of incorporation of AIE units into the
BODIPY core and J-aggregation engineering, modification of
the dipyrromethene bidentate to give BODIPY analogs with
desymmetrized and propeller-shaped structure has also proved
to be an efficient method to achieve AIE-active BODIPYs with
high aggregation-state Φ f. Generally, these BODIPY analogs
usually show a larger Stokes shift than classical BODIPY, which
is helpful for suppressing the self-absorption in the condensed
phase. Moreover, as a benefit of their high twisted structure,
the strong π-π interaction can be efficiently avoided. Based on
the above conception, various AIE-active BODIPY analogs with
the propeller-shaped structure have been developed by replacing

the dipyrrole units to various heterocycles such as pyridine,
benzo[d]thiazole, quinoline, etc.

Heterocycle-hydrazone-based boron difluoride complexes,
which were first reported by Aprahamian et al. are a new
class of AIE-active BODIPY analogs (27, Figure 8) (Yang
et al., 2012). Due to the desymmetrized and propeller-
shaped structure, compound 27a showed weak fluorescence
at 512 nm (Φ f < 10%) with a large Stokes shift (101,010
cm−1) in dichloromethane. After restricting the intramolecular
rotations, enhanced emission both in the film and crystalline
state was observed. Most importantly, the AIE mechanism
of pyridine-hydrazone-based boron difluoride complexes was
rationalized by TD-DFT calculations (Qian et al., 2017).
The calculated results demonstrated that the emission of
these compounds was not generated from the S1 state but
from the other excited states with higher energy (>S1).
The authors also suggested that suppression of Kasha’s rule
should be the real mechanism responsible for emission in the
solid state.

FIGURE 9 | (A) Preparation of the AIE NPs of compound 12. (B) In vivo confocal images of the tumor-bearing mouse with AIE NPs of compound 12 from day 0 to

day 14 (adapted with permission from Che et al., 2019, Copyright 2019, Royal Chemistry Society).
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Inspired by the AIE-active BOIDPY analogs based on
pyridine-hydrazone ligands, a group of new AIE-active
monoboron (28) and bisboron (29) difluoride complexes was
developed by adopting benzo[d]thiazole-hydrozone as the
chelates (Duan et al., 2018). Similar to compound 27a, these
complexes showed weak emission (Φ f < 1%) and large Stokes
shifts (up to 7,400 cm−1) in a diluted solution and AIEE in the
aggregation state. The AIE behavior of these complexes was
investigated and found to be closely related to the RIR of the
aromatic rings.

In consideration of the attractive properties of heterocycle-
amidine and heterocycle-hydrazone ligands based BODIPY
analogs, it is worth to further expand the family of these
BODIPY analogs so as to develop more AIE-active functional
materials. In this case, various BODIPY analogs based on
heterocycle-enolate ligands have been successfully developed.
Matsui et al. synthesized a boron difluoride complexes derivate
from βbenzo[d]thiazole-enolate ligands (30, Figure 8) (Kubota
et al., 2012). The desymmetrized structure and AIEE effect make
these complexes show high emission with Φ f up to 60% in the
solid state. Based on this pioneering work, Matsui et al. also
investigated the photophysical and AIE properties of monoboron
and bisboron complexes based on pyrimidine-enolate ligands
(31, Figure 8) (Kubota et al., 2013). By tuning the CT and
conjugation effect, an intense solid-state emission maximum
from 488 to 641 nm was achieved (Φ f = 7–20%). Next, a number
of propeller-shaped BODIPY analogs based on pyridine- (Wu
et al., 2015), quinoxaline- (Liao et al., 2015), pyrimidine- (Qi

et al., 2016), and benzo[d]thiazole-enolate (Gong et al., 2015)
ligands (32–34, Figure 8) were reported by different groups.
Like HPS and TPE, the propeller-shaped structure quenched the
emission of these complexes in a diluted solution, and, after
restricting the intramolecular rotations by aggregation, distinct
AIE behavior was observed.

By reacting pyridine- and benzo[d]thiazole-enolate ligands
with arylamine, our group developed a series of pyridyl-
and benzothiazole-enamide N∧N-bidentate ligands, which
facilitated the generation of a new family of propeller-shaped
BODIPY analogs (Liu et al., 2015; Wang et al., 2015a,b).
Similarly to the abovementioned compounds 27–34, compounds
35 and 36 showed very weak emission in low-viscosity
solvents and displayed AIE in the aggregation state. All of
these compounds showed large Stokes shifts and very weak
intermolecular interactions in the aggregation state, resulting
in high Φf. Moreover, the applications of these compounds
as solid-emitters for acid gas and pressure sensing were
also demonstrated.

APPLICATIONS OF AIE-ACTIVE BODIPYS

Although BODIPYs have gained great success in biological
sensing and imaging, their application as the emitter
in the aggregation state was rarely reported in the past
decades. This obstacle would be well-solved by the rational
designing of aggregation-state emissive BODIPYs and
their analogs. Indeed, taking the advantages of AIE, the

FIGURE 10 | (a) Photographs of the powder of compound 26 before and after grinding under ambient and light UV light (365 nm): (i) crystalline powder, (ii) ground

powder, (iii) ground powder upon adding of a drop of CH2Cl2, and (iv) the letters “NJ Tech” were written on the ground powder using CH2Cl2. (b) Emission spectra

and (C) PXRD patterns of the powder, after being ground and CH2Cl2-fumed (Reprinted from Zhu et al., 2014, Copyright 2014, Royal Chemistry Society).
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application scope of BODIPYs has been successfully
expanded from solution state to aggregation state in
recent years.

Fluorescent Imaging
Fluorescence imaging technology has been demonstrated as a
powerful tool for investigating biological processes in living

FIGURE 11 | Emission spectra of compounds 35e (A,B) and 35f (C,D) upon the compressing (A,C) and following decompressing processes (B,D) (Reprinted from

Wang et al. (2015a), Copyright 2015, Royal Chemistry Society).

FIGURE 12 | (A) Photographs of compound 34d on sliding glass taken under ambient and UV light (λex = 365 nm). (B) Emission spectra of compound 34d after

treating with TEA–TFA vapors in solid-state. (C) Recycling of the emission switching of the power of compound 34d upon fuming with TFA and TEA vapors (Reprinted

from Liao et al., 2015, Copyright 2015, Royal Chemistry Society).

Frontiers in Chemistry | www.frontiersin.org 12 October 2019 | Volume 7 | Article 71233

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Liu et al. Luminescent Materials

cells and clinical diagnostics because of its high specificity and
sensitivity, high resolution, and its nondestructive properties
(Johnson and Spence, 2010). Numerous fluorescent materials
such as fluorescent proteins, quantum dots, polymer dots,
and small organic fluorescent molecules with photo-active or
photoswitch properties have been developed (Lavis and Raines,
2008; Chan et al., 2012; Li et al., 2014). Compared with
the above fluorescent materials, AIE materials have distinct
advantages, including high emission at high concentration
or in the aggregation state, low toxicity and good anti-
photobleaching ability, which make them hold great potential
as candidates for fluorescent imaging (Chen et al., 2016). As
an important member of AIE materials, AIE-active BODIPYs
have been employed as imaging agents in biological sensing
and imaging.

Tang et al. first used the aggregates of compound 3 for
fluorescence imaging in living HeLa cells. After staining
living cells with the aggregates, both the LE emission, and
TICT emission were detected (Hu et al., 2012). After that, the
biocompatible AIE dots that were prepared from AIE-active
BODIPY molecules were applied for intracellular fluorescent
imaging. For example, red emissive nanoparticles of compound 4
were obtained by encapsulating compound 4 with 1,2-sistearoyl-
sn -glycero-3-phosphoethanolamine-N-[methoxy(polyethylene
glycol)-2000] (DSPE-PEG2000). Benefitting from their good
biocompatibility and two-photon absorption and excited
fluorescence (TPEF), these AIE NPs were further applied
in TPEF cellular imaging and mouse brain blood vascular
visualization, suggesting their potential application in TPEF
sensing and imaging (Zhao et al., 2014).

Very recently, the efficient imaging capabilities of TPA- and
carbazoyl-based AIE-active BODIPYs have also been reported
by Tang and Su. After fabricating in the presence of DSPE-
PEG2000, the NPs of compound 12 were obtained with intense
far-red emission (around 650 nm) and excellent photostability.
Moreover, these NPs showed an ultrafast cell staining time of a
few seconds and excellent cell imaging ability. More importantly,
these NPs can be used for long term imaging both in vitro and
in vivo (Figure 9), demonstrating their great potential imaging
abilities in the practical biological applications (Che et al., 2019).

Mechanofluorochromic (MFC) Materials
MFC materials that change their luminescence upon mechanical
grinding/shearing have been attracting a great deal of interest
owing to their promising applications (Sagara et al., 2016).
Generally, AIE molecules with a strong twisted skeleton with
rotatable aryl units, resulting in the stacking of loose molecules
in the crystal state, can be easily destroyed by mechanical
stimulation, resulting in a change of luminescence color. Thus,
twisted π-conjugated AIE-active BODIPY analogs have been
used as potential candidates for promising MFC materials. For
example, the yellow powder of compound 26 showed bright
fluorescence with λem at 540 nm. After grinding with the motor,
the yellow emissive powder immediately changed its emission
color to red (λem = 635 nm), resulting in a 95 nm red-shift
of emission. Moreover, the mechanic-induced color change can

be switched back via dichloromethane fuming. The crystalline-
amorphous-crystalline state transformation of 26 during the
grinding and fuming stimuli processes has been demonstrated by
powder X-ray diffraction (PXRD) (Figure 10) (Zhu et al., 2014).

Upon mechanical grinding or hydrostatic compression,
compounds 35e and 35f displayed red-shift emission under
high pressure, while 35f with ICT effects showed a more
sensitive piezochromic response at low pressure (<1.5 GPa),
which implied that the pressure-dependent π-π intermolecular
interaction and the intramolecular CT effect were efficient
in inducing piezochromic luminescence (Figure 11) (Wang
et al., 2015a). The distinct piezochromic effect of 35f at low
compression pressure suggested that the propeller-shaped AIE
luminophore with the ICT effect could be a valuable basis
upon which to design MFCs with high sensitivity. In the
process of studying pyrimidine-based BF2 complexes, 33a–d,
we found that only 33d showed distinct luminescence change
upon mechanical stimuli. 33d underwent red-shift from 491 to
509 nm onmechanical grinding, while it recovered to the original
state when exposed to dichloromethane vapor for 10min. In
addition to the XRD characteristic, we rationalized that the
mechanochromism is attributed to the desymmetric propeller-
shaped configuration and donor-acceptor character of 33d (Qi
et al., 2016).

Gas Sensors
Due to their strong fluorescent properties in the solid state, AIE-
active BODIPYs and their analogs are proposed to be an ideal
candidate for gas sensing. A number of compounds have been
reported as the fluorescent switch for organic solvent, acid and
base gases. For example, compounds 34a–e possessed unusual
acidochromic behavior triggered by acid vapor (Liao et al.,
2015). After exposure to trifluoroacetic acid (TFA) vapors, the
colors of 34a-e turned obscure, and absorption spectra were red-
shifted and accompanied by strong quenching of luminescence.
The effect of fluorescence quenching upon acid fuming should
be attributed to the synergistic effects of the protonation of
nitrogen resulting from the pyrazine segment-induced push-pull
effect and the changes of intermolecular packing and molecular
conformation upon acid protonation (Figure 12).

Another example is that the intense solid-state emission of
compound 26 could be switched by multiple external stimuli,
including grinding, organic solvent vapors as well as acid and
base vapors (Zhu et al., 2014). Fumigation of 26 with HCl–TEA
vapors exhibited an off/on switching fluorescence effect. Based on
the protonation–deprotonation stimuli luminescence property
of 26, a simple, convenient and efficient piece of technology
for data encryption and decryption was designed. All these
comprehensive investigations suggested that complex 26 was a
very promising candidate for application in sensing, detection,
and security protection.

The introduction of the N,N-dimethylamino group as an
acid-sensitive group to the π-conjugated structure of AIE-active
BODIPYs has been demonstrated to be an efficient strategy
for achieving highly sensitive acidic vapor sensing. Taking
compound 35b as an example, when exposed to HCl vapors for a
few seconds, 35b exhibited blue-shifted emission with the color
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changing from yellow to cyan (547–518 nm). The protonated
powder samples gradually recovered their original color and
fluorescence when they were treated with NH3 vapor for a few
minutes. Such an acidic/basic gas-triggered solid-state emission
change was also observed in compounds 35d, 36b, and 36d (Liu
et al., 2015; Wang et al., 2015b).

SUMMARY AND OUTLOOK

Among many organic fluorescent molecules, the synthesis of
BODIPY fluorescent molecules and their analogs is relatively
simple, and the advantages of photophysical properties are
prominent, such as a high molar extinction coefficient, high
quantum yield, tunable emission wavelength, and high stability.
The methods of achieving AIE activity of classical BODIPY and
BODIPY analogs mainly include linking AIE-active molecules
on the chromophore core, the J-aggregation method, and
designing fluorescent molecules into propeller-shaped structures.
Because of their high luminescence efficiency in aggregates and
solid-state, these molecules have been successfully applied to
bioimaging, solid-state stimulus-responsive materials, OLEDs
and other fields. However, some challenges still exist for the
design and application of the AIE-active BODIPYs.

Fundamental understanding of the aggregation effect on
photophysical property is not yet satisfactory. Mechanisms based
on RIM and J-aggregation are generally applied in molecular
design, and in some cases they do not work as well as expected
yet. For example, integrating the TPE unit to BODIPY is
generally thought to induce AIE, but ACQ behavior toward some
BODIPYs bearing TPE units was reported (Gomez-Duran et al.,
2015). On the other hand, J-aggregation of BODIPYs should
result in emissive J-aggregates in the aggregation state; however,
we recently demonstrated that the J-aggregation could generate
multiple emissions across the red to NIR region (Tian et al.,
2018).

Improving the fluorescent efficiency in the aggregation state
is highly required. Although the ACQ effect of BODIPYs was
suppressed by introducing an AIE unit, the aggregation-state

Φ f for most of AIE-active BODIPYs remained low, which
restricted their further applications. Exploring a new strategy or
a proper platform to achieve intense aggregation-state emission
of BODIPYs remains a challenge.

There is huge scope in exploring AIE-active BODIPYs with
NIR emission (700–1,700 nm). Compared to the large number
of AIE-active BODIPYs with a short emission wavelength,
successful examples of NIR emission are rather limited. Exploring
the suitable building block and fine-tuning of the π-conjugated
structures should be helpful for achieving NIR aggregation-state
emission. Aggregation-state emissive BODIPYs, especially those

with NIR-II (1,000–1,700 nm) emission, could have a bright
future for in vivo and clinical imaging (Zhu et al., 2019).

Taken together, under the guidance of AIE, efficient
aggregation-state emissive BODIPYs with diverse chemical
structures and intriguing photophysical properties will be
developed. These BODIPY derivatives will undoubtedly show
their capabilities in various application fields.
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The optical limiting (OL) properties of a 3,5-di-p-benzyloxystyrylBODIPY dye with an

p-acetamidophenyl moiety at the meso-position have been investigated by using the

open-aperture Z-scan technique at 532 nmwith 10 ns laser pulses. There is a ca. 140 nm

red shift of the main spectral band to 644 nm relative to the corresponding BODIPY core

dye, due to the incorporation of p-benzyloxystyryl groups at the 3,5-positions. As a result,

there is relatively weak absorbance across most of the visible region under ambient

light conditions. Analysis of the observed reverse saturable absorbance (RSA) profiles

demonstrates that the dye is potentially suitable for use in optical limiting applications as

has been reported previously for other 3,5-distyrylBODIPY dyes. Time-resolved transient

absorption spectroscopy and kinetic studies with femtosecond and nanosecond scale

laser pulses provide the first direct spectral evidence that excited state absorption (ESA)

from the S1 state is responsible for the observed OL properties.

Keywords: BODIPY dyes, optical limiting, knoevenagel condensation, Z-scan, transient absorbance spectroscopy

INTRODUCTION

Non-linear optics (NLO) is a field that focuses on changes in the optical properties of materials
upon interacting with intense incident laser pulses. One aspect of NLO that has gained considerable
interest over the past few decades is the development of optical limiting (OL) materials that
are capable of significantly attenuating the transmittance of light at high incident intensities
while remaining optically transparent under ambient light conditions. This normally involves
multiphoton processes such as two-photon absorption (2PA), a third-order non-linear process
of materials. Since nanosecond laser pulses are used in this study, excited state absorption (ESA)
from either the S1 or T1 states can also result in an OL response. If the ESA is more intense than
absorption from the ground state at the wavelength of the incident pulsed laser beam, a solution
of the molecular dye absorbs more strongly once the S1 and/or T1 states are populated after it has
interacted with an incident laser pulse (Saleh and Teich, 1991; Tutt and Boggess, 1993; de la Torre
et al., 2004). Optical limiting materials can be formed using molecular dyes and other materials
that can be used to protect light-sensitive objects such as the human eye and optical sensors by
attenuating intense incident laser beams (Dini and Hanack, 2003; Chen et al., 2005). The molecular
dyes that have been used as optical limiters typically have a delocalizedπ-conjugation systemwhich
is highly polarizable when interacting with intense laser light (Kandasamy et al., 1997; Ogawa et al.,
2002; de la Torre et al., 2004). Phthalocyanines and porphyrins have been the main compounds of
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interest in this context (Calvete et al., 2004; Chen et al., 2005;
Senge et al., 2007), while until recently there had been relatively
little research reported on boron-dipyrromethene (BODIPY)
dyes in this context (Zhu et al., 2008; Zheng et al., 2009, 2018;
Frenette et al., 2014; Kulyk et al., 2016, 2017; Thakare, 2017). Over
the past 2 years, we have demonstrated that 3,5-distyrylBODIPY
dyes exhibit strong OL responses on the nanosecond timescale
(Ndebele et al., 2019).

BODIPY dyes are structural analogs of the porphyrins and
consist of two pyrrole units linked by a methene bridge
and a BF2 moiety. These dyes are structurally versatile due
to the stability of the highly robust BODIPY core, allowing
facile structural modification for the enhancement of selected
properties depending on the potential application of the dye
(Loudet and Burgess, 2007; Ulrich et al., 2008; Lu et al., 2014).
The second harmonic for Nd:YAG laser beams lies at 532 nm and
is particularly important with respect to OL applications given
challenges in fields such as aviation safety due to the ever-growing
irresponsible use of laser pointers (Harris et al., 2017). The optical
properties of the BODIPY dyes must be modified to be useful
in OL applications at 532 nm, since this lies close to the main
BODIPY spectral band of BODIPY core dyes. One of the most
widely used methods to achieve a red shift of the main BODIPY
spectral band toward the NIR region is the introduction of styryl
groups at the 3,5-positions (Loudet and Burgess, 2007; Ulrich
et al., 2008; Lu et al., 2014). Dyes modified in this fashion have an
extended degree of π-conjugation and this results in a shift of the
main absorption and fluorescence bands to longer wavelengths,
hence achieving two of the necessary requirements for NLO
studies at 532 nm: a π-conjugation system that results in high
polarizability and a main absorption band that lies well to the red
of the second harmonic wavelength for Nd:YAG lasers at 532 nm
with minimal absorption across most of the visible region.

The main aim of this study is to further investigate the
mechanism that is responsible for the observed NLO properties
of 3,5-divinyl- and 3-5-distyrylBODIPY dyes at 532 nm on the
nanosecond timescale (Harris et al., 2017; Kubheka et al., 2017,
2018; May et al., 2018; Ngoy et al., 2018). Since these dyes
possess an extended π-system, an enhanced NLO response has
been reported even in the absence of heavy atoms that promote
intersystem crossing to the triplet manifold, in contrast with what
has been found with phthalocyanines where the incorporation of
heavy atoms has been found to significantly enhance the optical
limiting properties in the context of nanosecond laser pulses
(Dini andHanack, 2003). For this reason, we report the first study
of the femtosecond pump-probe transient absorbance properties
of a novel 3,5-distyrylBODIPY dye (Figure 1A), so that the ESA
properties of the singlet manifold can be explored.

METHODS

Materials
4-Acetamidobenzaldehyde, 4-bromobenzaldehyde, N-
bromosuccinimide (NBS), boron trifluoride diethyl etherate
(BF3·OEt2), 2,4-dimethylpyrrole, glacial acetic acid, piperidine,
Rhodamine 6G, anhydrous sodium sulfate (Na2SO4),
tetrachloro-1,4-benzoquinone (p-chloranil), triethylamine

(TEA), trifluoroacetic acid (TFA), and zinc phthalocyanine
were purchased from Sigma-Aldrich. Spectroscopic grade
solvents were used for the photophysical and the open aperture
Z-scan studies.

Instrumentation
1H NMR data were measured on a Bruker AMX 600 NMR
instrument. Mass spectral data were recorded with a Bruker
AutoFLEX III Smart beam TOF/TOF Mass spectrometer. The
spectra were acquired using α-cyano-4-hydroxycinnamic acid
as the MALDI matrix, and a 355 nm Nd:YAG laser as the
ionizing source. UV-visible absorption spectra were recorded on
a Shimadzu UV-2550 spectrophotometer, and infrared spectra
were measured with a Perkin Elmer Spectrum 100 FT-IR
spectrometer. Fluorescence emission spectra were recorded with
a Varian Eclipse instrument, while fluorescence lifetime (τF)
values were calculated by using a Picoquant FluoTime 200 time-
correlated single-photon counting instrument. Fluorescence
quantum yield (ΦF) values were calculated by using the
comparative method (Ogunsipe et al., 2004). Standard and
sample solutions with identical optical densities were excited
at the same wavelength in DMSO, with zinc phthalocyanine
used as the standard. Triplicate measurements were made to
ensure accuracy.

A frequency-doubled Quanta-Ray Nd:YAG laser was used in
a near Gaussian transverse mode to carry out open aperture
Z-scan measurements on BODIPY dyes (Ndebele et al., 2019)
using an instrumental setup that has been described previously
(Neethling, 2005). The 532 nm beam was spatially filtered
with Glan Thompson GTH10M polarizers to remove higher-
order modes and was tightly focused with a plano-convex
Thorlabs LA1433 lens with a 15 cm focal length. To enable
the Z-scan measurement the sample was translated along the
z-axis direction parallel to the incident laser beam with a
Newport M-ILS250CCL translation stage in 0.5mm steps over
a total 80mm path centered on the focal point of the lens.
Coherent J5-09 energy detectors (energy ranges of 0.1 µJ−0.1
mJ) and a Coherent EPM2000 energy meter were used to
determine normalized transmittance values. A Thorlabs BSW07
beam splitter enables the measurement of both the incident
intensity and that transmitted through the sample. Normalized
transmittance values determined for 32 consecutive laser pulses
were averaged to obtain a value at each z value during the Z-scan
measurements. A 2mm optical glass cuvette was used to obtain
the Z-scan data for BODIPY 2 in CH2Cl2 solution.

Femtosecond transient absorption measurements were made
with a Clark MXR CPA2001 titanium-sapphire (Ti/Sa) laser
system with a pulse energy of 0.9 mJ, and a full width at half-
maximum (FWHM) of 150 fs, and an operating frequency of
426Hz as has been reported previously (Klíčová et al., 2012)
with slight modifications. The pump-supercontinuum probe
technique was implemented. Since BODIPY 2 does not absorb in
the near infrared region, the output of the Ti/Sa laser at 775 nm
was directly frequency-doubled by a β-barium borate (BBO)
crystal to 387.5 nm to generate the pump beam. The energy of
the laser pulses were 1 µJ energy in this context, while the pulse
width was kept below 150 fs. The probe beam was generated
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FIGURE 1 | The synthesis of BODIPY dyes 1 and 2 (A). Reagents and conditions: (i) TFA at r.t. in dry CH2Cl2, (ii) p-chloranil at 0
◦C in dry CH2Cl2, (iii) BF3·OEt2 and

TEA at 0◦C in dry CH2Cl2, and (iv) p-benzyloxybenzaldehyde, piperidine, acetic acid in benzene at reflux with a fitted Dean-Stark trap. Normalized absorption spectra

for 1 (red) and 2 (blue) in CH2Cl2 (B).

by focusing a 2mm CaF2 plate in front of the 775 nm beam
to produce a 270–690 nm supercontinuum span. The CH2Cl2
solution of BODIPY 2 was passed through an optical flow cell
with a thickness of 0.4mm, and the probe and pump beams were
focused onto a 0.2mm spot. The pump beam and a reference
signal that was also passed through the solution in the absence
of the probe beam were dispersed spectrally and recorded with
two 512 pixel photodiode arrays. The ratio of the intensities of
the two beams was used to generate the transient absorption
spectra. The pump-probe cross-correlation was determined to be
<100 fs across the whole spectrum. Measurements on time scales
below 50 ps were corrected for chirp in the manner described
previously (Klíčová et al., 2012). Data were averaged over three
pump-probe scans with 400 shots per temporal point to lower
the signal-to-noise ratio.

Nanosecond laser flash photolysis kinetics were studied with
an Ekspla NT 342B-20-AW laser that contains an Nd:YAG
(355 nm, 78 mJ/7 ns, 20Hz) pumping a 420–2,300 nm range
optical parametric oscillator (8 mJ/7 ns, 20Hz) to provide the
pump beam for an Edinburgh Instruments LP980 transient
absorption spectrometer. A 150W Xe arc lamp provided the
probe beam and was used in its continuous mode. The
LP980 instrument is fitted with a Quantum Composers 9512+
pulse generator and a Tektronix TDS 3012C oscilloscope to
collect data under the control of Edinburgh Instruments’ L900
software. The spectrometer contains 500 nm blazed gratings
for both excitation and emission and is fitted with a PMT-LP
(Hamamatsu R928P) and an ICCD camera (Andor DH320T-
25F03). The CH2Cl2 solution of 2 was excited with the
pump beam at the band maximum of the main BODIPY
spectral band at 644 nm. Samples were deoxygenated with inert
nitrogen gas.

Synthesis
An adapted version of the conventional 1-pot 3-step reaction
procedure for BODIPY synthesis (Yogo et al., 2005) was used to
prepare BODIPY 1 (Figure 1A). BODIPY 1 was then used as a
precursor to form 3,5-distyryl BODIPY 2 (Figure 1A) through
a Knoevenagel condensation reaction (Rurack et al., 2001) by
introducing the p-benzyloxystyryl groups by reacting 1 with
p-benzyloxybenzaldehyde. TLC plates were used to verify the
completion of the reaction through the absence of unreacted
BODIPY core 1, and to confirm after purification of 2 by column
chromatography that other side products are not present. No
additional UV-visible absorption bands were observed due to
unwanted side products. The MALDI-TOF MS data for 2 and
1H NMR spectra obtained for 1 and 2 were found to be fully
consistent with the anticipated structures.

4,4′-Difluoro-8-(4-acetamidophenyl)-1,3,5,7-

tetramethyl-4-bora-3a,4a-diaza-s-indacene (1)
A solution of 2,4-dimethylpyrrole (2 eq) and 4-
acetamidobenzaldehyde (1 eq) was prepared in dry CH2Cl2
(50mL) under inert Ar gas. Two to three drops of TFA were
added, followed by stirring at room temperature. TLC was
used to confirm the complete consumption of the aldehyde.
A p-chloranil solution (1.2 eq) in dry CH2Cl2 (10mL) was
then added at 0◦C, and the reaction mixture was stirred for
30min at room temperature under Ar gas. A deep purple
color was observed, and TLC confirmed the synthesis of the
dipyrromethene. TEA (7 eq) was added dropwise at 0◦C and
BF3·OEt2 (11 eq) was then added in a similar manner, followed
by stirring for 12 h at room temperature. The reaction mixture
was filtered, washed with water (100mL), and dried over
anhydrous Na2SO4. Silica gel column chromatography with
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FIGURE 2 | Open-aperture Z-scan for a 4.9 × 10−6 M solution of 2 in CH2Cl2 at an input intensity of 32 µJ with the calculated NLO parameters (A). Normalized

transmittance vs. input fluence (Iin) curve for 2 in CH2Cl2 (B). The calculation of the Ilim value is shown with horizontal and vertical lines. Output fluence (Iout) vs. input

fluence (Iin) curves for 2 (C). Details of the optical limiting parameters are provided in Table 1.

ethyl acetate:petroleum ether (1:4) as the eluent provided the
pure target compound in 33% yield. 1HNMR (600MHz, CDCl3)
δH, ppm 7.70 (d, J = 7.9Hz, 2H), 7.47 (s, 1H), 7.24 (d, J =

7.9Hz, 2H), 6.00 (s, 2H), 2.57 (s, 6H), 2.25 (s, 3H), 1.44 (s,
6H). FT-IR: ν, cm−1 3,368 (N-H amide stretch), 2,920 (C-H
stretch), 2,852 (C-H stretch), 1,529 (N-H amide bend), 1,459,
1,399 (C-N stretch), 1,186 (C-N stretch), 967 (=C-H bend),
470 (C-H).

4,4′-Difluoro-8-(4-acetamidophenyl)-1,7-dimethyl-

3,5-di-(4-benzyloxy)styryl-4-bora-3a,4a-diaza-s-

indacene (2)
Piperidine (1mL) and glacial acetic acid (1mL) were added to
a solution of 4-benzyloxybenzaldehyde (2 eq) and 1 (1 eq) in
benzene (50mL). The reaction mixture was heated at reflux for
several hours, and water was removed with a Dean-Stark trap.
The solvent was removed under vacuum on a rotary evaporator
and the crude product was diluted in CH2Cl2, washed with
water and then dried over anhydrous Na2SO4. The solvent was
removed under vacuum and pure target compound was obtained
in 32% yield by silica gel column chromatography with ethyl
acetate:petroleum ether (1:4) as the eluent. 1H NMR (600 MHz,

TABLE 1 | Photophysical data for BODIPYs 1 and 2 in CH2Cl2, and optical

limiting parameters for 2 in CH2Cl2.

Photophysical properties

λAbs (nm) λex (nm) λem (nm) 8F τF (ns)

1 501 500 514 0.50 3.3

2 644 644 660 0.40 4.6

Optical limiting properties

Energy

(µJ)

α

(cm−1)

βeff

(cm.GW−1)

Im[χ(3)]

(esu)

γ

(esu)

Ilim
(J.cm−2)

2 30 0.78 145.5 3.17 ×

10−10

3.25 ×

10−29

0.80

CDCl3) δH, ppm 7.70 (d, J = 7.9Hz, 2H), 7.64–7.58 (m, 6H),
7.51–7.46 (m, 5H), 7.46–7.42 (m, 4H), 7.39–7.35 (m, 2H), 7.27–
7.21 (m, 4H), 7.02 (d, J = 8.2Hz, 4H), 6.62 (s, 2H), 5.13 (s, 4H),
2.24 (s, 3H), 1.48 (s, 6H). FT-IR: ν, cm−1 3,377 (N-H amide
stretch), 2,916 (C-H stretch), 2,853 (C-H stretch), 1,471 (N-H
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amide bend), 1,368 (C-N stretch), 1,103 (C-N stretch), 1,154 (C-
O-C), 979 (=C-H bend). MS (MALDI-TOF): m/z 769.30 (calc.
for [M]+ 769.86).

RESULTS AND DISCUSSION

A typical 3,5-distyrylBODIPY dye was synthesized so that
its photophysical and optical limiting properties could be
investigated. A p-acetamidophenyl group was introduced at
the meso-position to form a novel BODIPY core dye 1

(Figure 1A) and benzyloxystyryl moieties were added at the 3,5-
positions to form a novel 3,5-distyrylBODIPY dye 2. We have
previously reported the optical limiting properties of 3,5-di-p-
benzyloxystyrylBODIPY dyes with a range of different meso-
substituents (Ngoy et al., 2018; Ndebele et al., 2019). The results
were found to be broadly similar and to suggest that these
dyes are potentially suitable for use as OL materials. In this
study, transient absorbance spectroscopy and kinetic studies
with femtosecond and nanosecond laser pulses are used to
investigate the role of ESA from the S1 state in the context
of 3,5-distyrylBODIPY dyes. Since there are no heavy atoms
incorporated, these dyes are not expected to undergo significant
intersystem crossing to the triplet manifold.

Optical Spectroscopy and Photophysical
Properties
The UV-visible absorption spectra of 1 and 2 (Figure 1B)
are typical of what is normally observed for a 1,3,5,7-
tetramethylBODIPY core dye and its 3,5-distyryl derivative (Lu
et al., 2014). Since the BODIPY chromophore lacks a macrocycle,
the visible region is dominated by a single intense spectral band
and does not give rise to the Q and B bands that dominate
the optical spectra of porphyrins and phthalocyanines (Lu et al.,
2014). The main absorption band of BODIPY core dye 1 lies
at 501 nm in CH2Cl2, while that of 2 lies at 644 nm with a
log ε value of 5.56 in CH2Cl2. The main emission bands of
1 and 2 lie at 514 and 660 nm, respectively, and were found
to have ΦF values of 0.50 and 0.40 and τF values of 3.3 and
4.6 ns (Table 1). 2 is hence moderately fluorescent, in a similar
manner to what has previously been observed for a wide range
of BODIPY dyes that have extended π-systems with co-planar
styryl or vinylene substituents (Ndebele et al., 2019). Theoretical
calculations have demonstrated that the large red shift of the
main BODIPY spectral band of 3,5-distyrylBODIPY dyes upon
styrylation results primarily from a relative destabilization of the
HOMO (Lu et al., 2014; Ndebele et al., 2019), which has larger
MO coefficients at the 3,5-positions at the LUMO. This results
in a significant narrowing of the HOMO–LUMO gap. Since a
relatively large energy gap is predicted between the S1 and S2
excited states of 3,5-distyrylBODIPY dyes (Ndebele et al., 2019),
these dyes exhibit only relatively weak absorbance under ambient
light conditions across most of the visible region (Figure 1B).
These properties make 3,5-distyrlBODIPY dyes suitable for use
in OL applications in the context of visible region laser pulses.

Optical Limiting Properties
The mechanisms that can result in an optical limiting effect are
non-linear absorption (NLA), non-linear refraction (NLR), and
non-linear scattering (NLS). Since a solution of a molecular dye
is involved in the context of this study, NLA is the dominant
mechanism. Z-scan measurements were carried out for 2 in a 4.9
× 10−6 M CH2Cl2 solution (Figure 2A) with 10 ns laser pulses.
The concentration used lies within the linear range according to
the Beer-Lambert law. This prevents aggregation that can result
in significant NLS.

Since nanosecond laser pulses were used in this study, the
concave downward dipping reverse saturable absorption (RSA)
response (Figure 2A) that is observed for 2 in the open aperture
Z-scan data is unlikely to arise exclusively from multiphoton
processes such as 2PA. ESA from the S1 or T1 state can result in
an RSA response when the ESA is more intense than the ground
state absorbance, due to the effect of depopulating the ground
state (Saleh and Teich, 1991; Tutt and Boggess, 1993; de la Torre
et al., 2004), so only a βeff value can be quantified for the non-
linear absorption coefficient rather than the intrinsic β value that
is associated with 2PA. There have been a limited number of
studies of the intrinsic β values of BODIPY dyes in femtosecond
pump-probe studies (Wang et al., 2010; Kim et al., 2015; Zheng
et al., 2018).

The normalized transmittance values at each z-axis position
[T(z)] were analyzed as the sample is translated through the focal
point of the lens used in the Z-scan measurements by using
the approach developed by Sheik-Bahae et al. (1989, 1990) and
Sheik-Bahae and Van Stryland (1998) (Equations 1–4):

T(z) =
1

√

πq0(z)

∫

∞

-∞
ln[1+ q0(z)e

-τ2]dτ (1)

where the size of the non-linear response is described by q0(z).
For a circular beam, the q0(z) value is described by Equation 2:

q0(z) =
2βeffP0leff

πw(z)2
(2)

where P0 is the peak power of the laser pulse, βeff is the
effective non-linear absorption coefficient, and leff is the effective
pathlength, given by Equation 3:

leff =

1− e(−αL)

α
(3)

where L is the pathlength. The linear absorption coefficient, α, is
described by Equation 4:

α =
2.303 ·OD

L
(4)

where OD is the optical density of the solution at 532 nm. The
beam width [w(z)], in Equation 2 can be described as a function
of sample position using Equation 5:

w(z) = w0

√

1+

(

z

z0

)2

(5)
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where z is the translation distance of the sample from the laser
focal point, and z0 is the Rayleigh length that is defined as πw2

0/λ
where λ is the wavelength of the laser, w0 is the beam waist value
at the focal point (z = 0) of the laser beam which describes the
distance where there is 1/e2 intensity relative to the on axis value.

Although the effective non-linear absorption coefficient, βeff,
can be described using Equations 1–5, the q0(z) value is usually
derived from the normalized transmittance data by applying an
analytical version of Equation 1 (Ndebele et al., 2019):

T(z) = 0.363e

(

-q0(z)
5.60

)

+ 0.286e

(

−q0(z)
1.21

)

+ 0.213e

(

−q0(z)
24.62

)

+0.096e

(

−q0(z)
115.95

)

+ 0.038e

(

-q0(z)
965.08

)

(6)

When Equation 2 is substituted into Equation 5, the q0(z) value
can be described as:

q0(z) =
Q0

1+ z2

z20

(7)

where Q0 is given as:

Q0 =
2βeffP0leff

πw2
0

(8)

The FWHM and peak maximum values for the Gaussian curve
that is defined by Equation 1 are proportional to the z0 and
Q0 values as defined by Equations 7, 8. Equation 9 is used to
determine the βeff value, which is dependent on the population
of molecules in the excited state. The magnitude of the βeff value
provides an indication of how suitable materials are for use in
optical limiting applications:

βeff =
λz0Q0

2P0leff
(9)

The imaginary component of the third-order non-linear
susceptibility, Im[χ(3)], provides a measure of how rapidly an OL
material responds to perturbations that are initiated by intense
incident laser pulses (Sheik-Bahae and Van Stryland, 1998; Dini
and Hanack, 2003). The relationship between the Im[χ(3)] and
βeff values is described by Equation 10:

Im
[

χ(3)
]

=

η2ε0cλβeff
2π

(10)

Where ε0, η, and c are the permittivity of free space, the linear
refractive index and speed of light, respectively.

The interaction between the permanent dipole of molecules
with incident laser beams of high intensity can modulate the
average orientation of the molecules in a manner that also
induces second-order hyperpolarizability, γ. The relationship
between the γ and Im[χ(3)] values is shown in Equation 11:

γ =

Im
[

χ(3)
]

f4CmolNA

(11)

where NA, f, and Cmol are Avogadro’s constant, the Lorentz local
field factor (f = (η2+2)/3), and the molar concentration of the
active species, respectively.

The data were analyzed in a similar manner to what has been
described previously (Harris et al., 2017; Kubheka et al., 2018;
Ngoy et al., 2018, 2019; Ndebele et al., 2019) to determine the
βeff, Im[χ(3)], and γ values. A linear absorption coefficient, α,
of 0.78 cm−1 was obtained at 532 nm for the 4.9 × 10−6 M
CH2Cl2 solution of 2 that was studied (Table 1), so the S1 state is
likely to be populated primarily by linear absorption rather than
through multiphoton processes. The βeff value obtained for 2

(Figure 2A and Table 1) provides a measure of the magnitude of
the non-linear absorptivity, and lies within the range previously
reported for other organic compounds (Dini and Hanack, 2003;
Sutherland et al., 2003). OL materials have positive βeff values
since there is a marked decrease in transmittance at the focal
point of the Z-scan instrument.

The γ and Im[χ(3)] values that were obtained (Table 1)
confirm that BODIPY 2 has promising OL properties, since
they lie in the 10−29–10−34 and 10−9–10−15 esu ranges (Dini
and Hanack, 2003; Sutherland et al., 2003), respectively, that
have previously been reported to be favorable for use in optical
limiting in the context of molecular dyes, such as porphyrins and
phthalocyanines (de la Torre et al., 2004; Senge et al., 2007; Dini
et al., 2016). A review was recently published that provides the
βeff, γ and Im[χ(3)] values for 17 different π-expanded BODIPY
dyes on the nanosecond timescale at 532 nm (Ndebele et al.,
2019). No comparison can be made with femtosecond timescale
data for BODIPYs, since a multiphoton absorption mechanism
is involved in that context in the absence of ESA (Wang et al.,
2010; Kim et al., 2015; Zheng et al., 2018). The γ value is the
most useful parameter for making direct comparisons between
the OL properties, since Equation 11 includes the concentration,
while Equations 9 and 10 do not since the βeff and Im[χ(3)] values
are concentration dependent. The γ value for 2 (3.25× 10−29) is
one of the highest we have reported to date for a 3,5-distyryl- or
3,5-divinyleneBODIPY and is comparable in magnitude to the
value of 9.6 × 10−30 esu that was recently reported for a 3,5-
di-p-benzyloxystyrylBODIPY with a p-hydroxyphenyl group at
the meso-position (Ngoy et al., 2018). The γ values of most 3,5-
distyrylBODIPYs have been reported to lie in the 10−30 esu range
(Ndebele et al., 2019).

For a material to be considered to be viewed as suitable for OL
applications, the transmittance should decrease by over 50% as
is the case with dye 2 (Figure 2B). It is important to be able to
determine the input energy at which this happens. Irradiance has
units of W.cm−2, with the maximum value, I00, occurring at the
focus (z= 0), determined by Equation 12.

I00 =
E

τπw2
0

(12)

where w0 is the beam waist (cm), τ is the laser pulse length
(s), and E is the energy of the laser pulse (J). The maximum
irradiance values can be expressed in units of W.cm−2, since
1 J.s−1

= 1W. Since the energy of the laser pulses is kept constant
during the Z-scan measurements, the overall power of the laser
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beam is also constant throughout, but the irradiance value will
change with the beam width as the sample is moved into and out
of focus along the z-axis direction, w(z). The area of the beam
is circular and hence equal to πw(z)2. Multiplying the circular
cross-sectional beam area, πw(z)2, by the irradiance gives the
laser power, P, at the focal point (z= 0), Equation 13:

P = I00πw
2
0 (13)

At other z positions, P can be expressed by Equation 14.

P = Iin(z)πw(z)
2 (14)

Since P is kept constant, Equations 13 and 14 can be combined to
provide the input fluence value, Equation 15:

Iin(z) = I00

(

w0

w(z)

)2

(15)

Since the transmittance provides the percentage of light that
passes through the material, values for output fluence can be
determined from the product of T(z) and Iin(z) at each z position,
Equation 16.

Iout(z) = Iin(z)T(z) (16)

The limiting threshold fluence (Ilim) can be defined as the
input fluence value at which the output fluence (Iout) is
decreased to 50% of the input fluence (Iin), and this can be
readily determined using a plot of normalized transmittance
vs. input fluence (Figure 2B). A relatively low Ilim value
of 0.80 J.cm−2 was obtained in CH2Cl2 solution (Table 1).
This provides further evidence that 3,5-distyrylBODIPYs are
potentially suitable for use in OL applications. A wide range
of different π-expanded BODIPY dyes have provided broadly
similar Ilim values (Ndebele et al., 2019). Since the limiting
threshold can be lowered by increasing the concentration of the
solution, Ilim values reported in the literature cannot be readily
compared. The International Commission on Non-Ionizing
Radiation Protection has published a guideline (International
Commission on Non-Ionizing Radiation Protection (ICNIRP),
2000) for exposure to a variety of lasers, which has been
determined to provide a limit of 0.95 J.cm−2 for the 0.25 s
exposure time for the normal human blink reflex to prevent
significant damage to the human eye (Harris et al., 2017). Plotting
Iout against Iin (Figure 2C) can be used to demonstrate whether
the Iout values approach a plateau as the Iin value increases, which
is the type non-linear response that would normally be expected
for an OL material that is suitable for practical applications (Dini
and Hanack, 2003; Sutherland et al., 2003).

Pump-Probe Transient Spectroscopy
Studies
BODIPY 2 is not halogenated and contains no other heavy
atom. BODIPY dyes of this type usually have very low triplet
state and singlet oxygen quantum yields in the absence of
heavy atoms (Yogo et al., 2005; Jiao et al., 2011; Yang et al.,

FIGURE 3 | Time-resolved transient absorption spectra of 2 in CH2Cl2 after a

150 fs laser pulse at an excitation wavelength of 387.5 nm (A). The transient

absorption spectrum of 2 at 10 ps after a 150 fs laser pulse at 387.5 nm in

CH2Cl2 (B). The 532 nm wavelength used for the open-aperture Z-scan

measurement is highlighted with a green vertical line.

2013; Frenette et al., 2014), so the S1 state is believed to be
involved with the ESA of non-halogenated 3,5-distyrylBODIPY
dyes (Harris et al., 2017; Kubheka et al., 2018; Ngoy et al.,
2018, 2019). This was confirmed in this study by carrying out
the femtosecond and nanosecond pump-probe spectroscopy and
kinetic studies. A time-resolved transient spectroscopic study
was carried out for solutions of BODIPY dye 2 (ca. 5.0 × 10−3

M) in CH2Cl2 with a femtosecond laser at 387.5 nm in order
to study what happens during Z-scan measurements when the
S1 state is populated upon electronic excitation (Figure 3A). As
would normally be anticipated, intense ground state depletion
peaks are observed at 371, 596, and 645 nm, which correspond
to the main absorption bands of 2 (Figures 1B, 3B). These
signals decay on a nanosecond timescale (Figure 3A) in amanner
that is consistent with the observed fluorescence lifetime of
4.6 ns (Table 1), since the decay of the ESA and fluorescence
intensities are both dependent upon changes in the population
of the S1 state after its initial population by an incident laser
pulse. An intense broad peak is observed due to ESA across
most of the visible region between 400 and 580 nm with a
maximum at 481 nm (Figure 3B). When attempts were made
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to measure transient absorption spectra and decay curves on
the microsecond timescale for the T1 state of 2 using 7 ns laser
pulses to excite at the band maximum at 644 nm (Figure 1B), no
decay curve was observed for 2 in degassed CH2Cl2 solutions.
In contrast, data could be readily measured with comparable
solutions of halogenated BODIPYs using a similar approach,
since the rate of intersystem crossing is greatly enhanced by the
heavy atom effect. This demonstrates that ESA associated with
the T1 state does not play a significant role in the optical limiting
properties of 2.

CONCLUSIONS

The open aperture Z-scan study on a 3,5-di-p-
benzyloxystyrylBODIPY dye at 532 nm on the nanosecond
timescale demonstrates that dyes of this type have favorable
OL properties as has been reported previously. Time-resolved
transient-absorption spectra were recorded after a 150 fs laser
pulse to provide further insights into the mechanism of the
observed optical limiting response. A broad and intense band is
observed between 400 and 580 nm due to ESA from the S1 state,
which is consistent with the observed strong RSA response at the
532 nm. In contrast, no triplet decay curve was observed on the
microsecond timescale for 2 when 7 ns laser pulses were used
instead. This provides the first direct spectroscopic evidence that
the OL effects that have consistently been observed at 532 nm for
3,5-divinyl- and 3,5-distyrylBODIPY dyes that contain no heavy
halogen atoms at the 2,6-positions are due primarily to ESA
from the S1 state to higher energy states in the singlet manifold.
The key to further enhancing the reverse saturable absorbance
response that is observed for nanosecond laser pulses in the
visible region is to further enhance this ESA. Since it is usually
important that optical limiting materials remain transparent
under ambient light conditions, the goal in future will be to
identify how the structure of the BODIPY chromophore can
be modified in a rational manner to further enhance this ESA,
while also shifting the main spectral band of the BODIPY
chromophore to the red so that there is minimal absorbance
across the entire visible region. The use of hybrid materials
in which BODIPY dyes are conjugated with nanomaterials in

a similar manner to what has been reported previously for
porphyrins and phthalocyanines (Dini et al., 2016) also merits in
depth investigation in the years ahead.
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To design efficient nanoparticles for bioimaging, it is necessary to obtain nanoparticles

with desired cellular uptake and biofunction. There are many studies have shown that

cellular uptake largely depends on the geometric properties of nanoparticles. In this

work, the organic nanoparticles with rod-like and spherical shapes were fabricated,

and their cellular behaviors were studied and compared in detail via cellular uptake

and bioimaging effect. The nanoparticles with spherical and rod-like morphology both

can be internalized by HeLa and HepG2 cells, but the rod-like nanoparticles showed

better imaging performance than their spherical counterpart. Above results presented

that the rod-like nanoparticles possess great potential for bioimaging in efficient delivery

and ideal imaging efficacy. Our studies may provide useful and fundamental information

for designing efficient bioimaging systems.

Keywords: BODIPY, imaging, nanoparticles, rod, spherical

INTRODUCTION

Nanomedicines are very important for various biomedical applications because if the prolong
circulation times, overcome biological barriers, and reduce system side effects (Lee et al., 2012;
Kunjachan et al., 2015). More importantly, nanomedicines have the capacity to design their
physicochemical parameters such as surface charge, shape, size, and surface functionalization to
achieve desired properties (Biju, 2014; Aula et al., 2015). In the past decade, many studies have
shown that physicochemical parameters of nanomedicines could extremely impact their functions
(Zhang et al., 2015; Kinnear et al., 2017). For example, particles with diameter in 50–100 nm
show a suitable size range for maximizing tumor accumulation and minimizing the ensuing
clearance (Black et al., 2014). Besides the size, another important parameter is the morphology
of nanomedicines (Herd et al., 2013; Blanco et al., 2015). As a matter of fact, some microorganisms
with non-spherical morphologies, such as rod bacteria or polygonal adenovirus, have great
capabilities to infect specific cell types (Geisbert and Jahrling, 2004). Rencently, researchers have
systematically studied the different of nanomedicines with various shapes on cellular internalization
(Alemdaroglu et al., 2008; Chauhan et al., 2011). Compared to their spherical counter parts, the
rod-like nanoparticles have more advantages in their cellular behaviors. However, the vast majority
of nanomedicines in lab studies or clinical trials are spherical because of their ease of preparation
(Yan et al., 2016; Zhang et al., 2016). To date, the development of progress in morphology control

47

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2019.00765
http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2019.00765&domain=pdf&date_stamp=2019-11-15
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:shi123jingwei@163.com
mailto:xiez@ciac.ac.cn
https://doi.org/10.3389/fchem.2019.00765
https://www.frontiersin.org/articles/10.3389/fchem.2019.00765/full
http://loop.frontiersin.org/people/798482/overview


Ma et al. Bioimaging

has resulted in preparing kinds of non-spherical inorganic
nanoparticles, and study of specific structure-function
relationships between morphology and their biological behaviors
had been extensively explored (Burda et al., 2005; Ni et al.,
2008). Compared to the successful studies of non-spherical
inorganic nanoparticles, there are few researches on the
construct of non-spherical organic nanoparticles on account of
the flexibility and variability of organic molecules. Moreover,
it is difficult to generate organic nanostructures with the same
size but different shapes. While some researches partially
studied the cellular behaviors of organic nanoparticles with
different shapes, more comprehensive understanding of this
issue will be pivotal to design efficient, optimal nanosystems for
bioimaging applications.

Among various bioimaging techniques, fluorescence imaging
attracted much attention due to its numerous advantages
including high sensitivity, minimal invasiveness, good temporal
resolution, high contrast, and ease of use (Zhang et al., 2015;
Guo et al., 2016). In particular, organic nanomaterials are
advantageous for real-time cell visualizations, diagnosis, and
treatment of diseases (Chen et al., 2016). While nanoparticles
bioimaging indicates a interdependent role of shape, size, and
surface chemistry, how to adjust the relevant parameters to
obtain better imaging results is very important.

In this paper, rod-like organic nanoparticles were synthesized
by self-assembling of small molecules borondipyrromethene
(BDP), and their spherical counterpart was prepared by
traditional polymeric micelles. Then their ability of imaging
was compared in detail (Scheme 1). BDP have attracted much
attention in bioimaging because of excellent optoelectronic
properties and easy of functionalization (Liu et al., 2019; Zhang
T. et al., 2019). To overcome the poor water-solubility, some
nanomaterials containing BDP have been prepared by physical
capsulation and chemical covalent connection (Kamkaew and
Burgess, 2015; Zhang W. et al., 2019). Herein, BDP was
encapsulated by Pluronic F127 to acquire spherical micelles,
while the corresponding rod-like nanoparticles were prepared
according to our previous study. The rod-like BDP nanoparticles
showed good stability and biocompatibility. Importantly, the
rod-like nanoparticles showed better imaging performance
than their spherical counterpart. Our studies may provide
useful and fundamental information for designing efficient
bioimaging systems.

MATERIALS AND METHODS

Materials
BDP was synthesized based on the protocol reported in earlier
studies. Pluronic F127 was purchased from Shanghai Yuanye
Biological Technology Co., Ltd. The detailed description of
the synthesis of BPF NPs and BSA NRs is shown in the
Supporting Information.

Characterization Techniques
Dynamic light scattering, transmission electron microscopy
(TEM), UV-vis absorption spectra, fluorescence emission
spectra, cell confocal laser microscope (CLSM), and flow

cytometry were used to determine the characterization of BPF
NPs and BSANRs. Test parameters and experimental procedures
are shown in the Supporting Information.

Measurement of Fluorescence Quantum

Yield
We firstly detected the concentration of BDP in BPF NPs and
BSA NRs by absorbance curve, respectively. Then we adjusted
them with the same concentration of BDP and also prepared
BDP acetone solution with the same concentration. Fluorescence
quantum efficiency was obtained on a Hamamatsu Absolute PL
Quantum Yield Measurement System C9920-02.

Cell Culture
HeLa cells and HepG2 cells were purchased from the Institute
of Biochemistry and Cell Biology, Chinese Academy of
Sciences, Shanghai, China. The cells were propagated to
confluence in Dulbecco’s modified Eagle’s medium (DMEM,
GIBCO) supplemented with 100 U/mL penicillin, 100µg/mL
streptomycin (Sigma) and heat-inactivated fetal bovine serum
(FBS, GIBCO), and maintained at 37◦C in a humidified
atmosphere of 5% CO2 for further cell experiments.

Biocompatibility of Pluronic F127, BDP,

BPF NPs and BSA NRs in vitro by MTT

Assay
Cells harvested in a logarithmic growth phase were seeded in 96-
well plates at a density of 8 × 103 cells per well and incubated
in DMEM for 24 h. The medium was then replaced by 200 µL of
cell culture medium within various concentrations of Pluronic
F127. After incubation for 24 h, the MTT assays were used to
measure the live cells. Untreated cells served as a control group.
The cell survival rates (%)=A sample/A control×100%.We also
detected the cytotoxicity of Pluronic F127 for different culture
time. The procedures were the same for that of BDP, BPF NPs,
and BSA NRs.

Cellular Uptake and Tracking in vitro
The Cellular uptake of BPF NPs and BSA NRs was
detected using CLSM and flow cytometry. Test parameters
and detailed experimental procedures are shown in the
Supporting Information.

Studies on Endocytosis Pathway
After cells in six-well plates reaching the required density, sucrose
(clathrin-mediated endocytosis, 450mM), genistein (caveolin-
dependent endocytosis, 100µM), Amiloride (micropinocytosis,
13.3 µg mL−1) were used in FBS-free DMEM for 1 h and 4◦C
culturing was used to inhibit energy-dependent mechanisms.
Then, change the culture solution within BPF NPs or BSA
NRs for 4 h incubation at normal cell culture conditions.
Untreated cells served as a control group. After collecting and re-
suspending the cells in 0.5mL PBS 7.4, flow cytometry analysis
was performance. Test parameters and detailed experimental
procedures are shown in the Supporting Information.
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SCHEME 1 | Illustration showing the preparation of spherical and rod-like nanoparticles from BDP, and comparison of cellular imaging in cancer cells.

FIGURE 1 | Size distribution of (A) BPF NPs and (B) BSA NRs measured by DLS in aqueous solution. Insets: TEM image and CLSM image of BPF NPs or BSA NRs.

Scale bars in all TEM images are 200 nm. Scale bars in all CLSM images are 500 nm. (C) UV-vis absorption spectra of BDP or Pluronic F127 in acetone and BPF NPs

or BSA NRs in aqueous solution, respectively. (D) Photos of BDP, BPF NPs, and BSA NRs in room light field and under 365 nm light irradiation, respectively.

(E) Fluorescence spectra of BDP, BPF NPs, and BSA NRs, respectively. (F) Time-resolved decay profiles of BDP, BPF NPs, and BSA NRs, respectively.
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FIGURE 2 | Average size changes of BPF NPs (A,B), BSA NRs (C,D) during 7 days in different solutions. The data are shown as the mean values ± standard

deviation (SD) (n = 3). The absorbance intensity of (E) BPF NPs and (F) BSA NRs during 7 days.

RESULTS AND DISCUSSION

Preparation and Characterizations of BDP

Nanoparticles
According to our previous work, BDP could self-assemble into
rod-like nanoparticles (BDP self-assembly, BSA NRs). Then
we used Pluronic F127 to make spherical BDP nanoparticles
(BDP@Pluronic F127, BPF NPs) for comparison. The size
distribution and morphology of BSA NRs/BPF NPs were well-

characterized by dynamic light scattering (DLS), transmission
electron microscopy (TEM), and confocal fluorescence

microscopy (CLSM). As shown in Figures 1A,B, the average

diameters were 258.3 nm for BPF NPs and 261.4 nm for BSA
NRs. TEM images revealed spherical morphology of BPF NPs

(inset A1), while the BSA NRs (inset B1) was rod-like with
smooth surface. These structures were further confirmed by
CLSM. The BPF NPs and BSA NRs exhibited spherical and
rod-like morphology with green fluorescence, respectively
(inset A2 and B2). These results indicate that fluorescence BDP
nanoparticles have been successfully prepared. The UV-Vis

absorption of free BDP, Pluronic F127, BPF NPs, and BSA
NRs were shown in Figure 1C. To compare their spectra, the
concentration of BDP in all samples was same, which was
adjusted according to UV-Vis standard curves (Figure S1).
After the formation of nanoparticles, the UV-Vis spectra of
both BPF NPs and BSA NRs showed a broad spectrum with
blue-shifted absorption relative to that of BDP. Photographs of
BDP in acetone, BPF NPs and BSA NRs in water (from left to
right) under room light and UV light (365 nm) were shown in
Figure 1D. Interestingly, compared to BDP solution, the color
of BPF NPs and BSA NRs produced remarkable changes, which
was consistent with spectral changes in Figure 1C. The green
fluorescence of BDP was quenched after formation of BPF NPs
and BSA NRs due to the typical aggregation induced quenching
effect (Figures 1D,E). The quantum yield of BSA NRs was 6.1%
and higher than that of BPF NPs (0.58%), which was in favor
of imaging. The fluorescence lifetime (Figure 1F) of BPF NPs
and BSA NRs was 2.75 and 3.77 ns, respectively, which were
both shorter than that of free BDP (6.28 ns). It is well-known
lifetime of fluorophores would greatly reduce when fluorescence
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FIGURE 3 | (A) Cell survival rate of HeLa cells after incubation with BDP, BPF NPs, and BSA NRs for different hours, respectively. (B) Cell survival rate of HeLa cells

after incubation with various concentrations of BDP, BPF NPs, and BSA NRs for 24 h, respectively. (C) Cell survival rate of HepG2 cells after incubation with BDP, BPF

NPs, and BSA NRs for different hours, respectively. (D) Cell survival rate of HepG2 cells after incubation with various concentrations of BDP, BPF NPs, and BSA NRs

for 24 h, respectively. Data represent mean values ± standard deviation, n = 3.

quenching occurs. All above results further confirm that BPF
NPs and BSA NRs have been successfully prepared.

Stability of BPF NPs and BSA NRs
To investigate the stability of BDP nanoparticles, we monitored
the size distribution and absorbance spectra of nanoparticles at
various time points, and visual comparisons were made between
the freshly prepared nanoparticles and the nanoparticles stored
for 7 days. As shown in Figure S2, all solutions remained clear
without aggregation and precipitation in 1 week. The mean
sizes and size distributions of the BPF NPs (Figures 2A,B) and
BSA NRs (Figures 2C,D) dispersed in aqueous solution and cell
culture medium (DMEM) with 10% fetal calf serum and 1%
penicillin/streptomycin changed negligibly for the whole period
of time tested. Moreover, the absorbance spectra of BPF NPs and
BSA NRs in water were collected during 7 days. As displayed
in Figures 2E,F, the absorbance of both BPF NPs and BSA NRs
declined slightly and kept more than 90% of the initial value
within 7 days. These results suggest that the BPF NPs and BSA
NRs possess excellent physical and optical stability, which is
conducive to their application in biomedicine.

Biocompatibility of BDP Nanoparticles
The biocompatibility of nanoparticles is important for their
biomedical applications. We firstly studied the biocompatibility
of Pluronic F127 in living cells by the standard thiazolyblue
tetrazolium bromide (MTT) proliferation test. As shown in
Figure S3, little cytotoxicity of Pluronic F127 had been observed

against Human cervical carcinoma (HeLa) cells and Liver
hepatocellular carcinoma (HepG2), and more than 90% of those
cells were alive at different incubation time or concentrations.
In addition, both BPF NPs and BSA NRs showed very low
cytotoxicity (90% viability) toward HeLa (Figures 3A,B) and
HepG2 cells (Figures 3C,D). Therefore, the two nanoparticles are
suitable for further biological research.

Comparing Cellular Imaging Between BPF

NPs and BSA NRs
CLSM was used to study the cellular uptake of BPF NPs/BSA
NRs on HeLa and HepG2 cells. After incubation with BPF NPs
or BSA NRs for 2 h at 37◦C, the nucleus was stained by 4, 6-
diamidino-2-phenylindole (DAPI). As shown in Figure S4, the
bright green fluorescence appeared in the cytoplasm, suggesting
that both BPF NPs and BSA NRs could be effective endocytosis
by cancer cells. The intracellular fluorescence increased with
the increase of BDP concentration, indicating concentration-
dependent cellular uptake.

To further compare the cellular imaging capacity between
BPF NPs and BSA NRs, the HeLa and HepG2 cells were
incubated with the BPF NPs and BSA NRs (BDP: 3µg/mL),
respectively. As shown in Figure 4A, the green fluorescence
intensity increased with the incubation time from 0.5 to 2 h,
suggesting time-dependent endocytosis. BSA NRs exhibited
stronger green fluorescence than that of BPF NPs under the
same experiment conditions. Moreover, flow cytometry was
carried out to further compare the cellular imaging capacity

Frontiers in Chemistry | www.frontiersin.org 5 November 2019 | Volume 7 | Article 76551

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Ma et al. Bioimaging

FIGURE 4 | (A) CLSM images of HeLa cells incubated with BPF NPs or BSA NRs for 0.5, 1, and 2 h at 37◦C, respectively. Cells are viewed in the blue channel for

DAPI, the green channel for BDP. Scale bars represent 20µm in all images. (B) Flow cytometry histograms of HeLa cells treated with BPF NPs and without treatment

(control) for different hours, respectively. (C) Flow cytometry histograms of HeLa cells treated with BSA NRs and without treatment (control) for different hours,

respectively. (D) Quantitative analysis of (B,C). The data are presented as the mean values ± standard deviation, n = 3.

of the two BDP nanoparticles. As reported in Figures 4B,C,
the endocytosis of the two nanoparticles was time-dependent,
and the BSA NRs showed higher imaging efficiencies than
BPF NPs (Figure 4D). These results are consistent with
the CLSM results. Similar results were obtained in HepG2
cells (Figure S5). One possible trigger for higher imaging
performance of BSA NRs is that rod-shaped nanoparticles
have more contact sites with the cell membranes, leading to
stronger adhesions and endocytosis with respect to spheres,
which theoretically have only one contact point with a single
cancer cell.

Pathways of Endocytosis
To determine endocytosis pathway of BDP nanoparticles,
different inhibitors were selected, sucrose for clathrin-mediated
endocytosis, genistein for caveolae-mediated endocytosis, and
amiloride for macropinocytosis, respectively. Moreover, the
endocytosis was studied by low temperature (4◦C) treatment
to see if it is energy dependent. To reduce the side effects

of inhibitors on cancer cells, we optimized the experiment
conditions according to previous reports. The CLSM images
of HeLa and HepG2 cells pretreated with inhibitors are
shown in Figures 5A,B and the relative uptake rates are
displayed in Figures 5C,D. The flow cytometry results
are shown in Figure S6. The low temperature treatment

groups all showed a sharp reduction in endocytosis of the
nanoparticles, confirming endocytosis is energy dependent. The

internalization of BPF NPs by HeLa cells is mainly through

the clathrin-mediated endocytosis and micropinocytosis.
The cellular internalization of BSA NRs through mutiple
endocytosis pathways may lead to more rod-like nanoparticles
internalized. Nevertheless, BSA NRs was uptaken by HepG2
cells mainly through pathway of micropinocytosis. Thus, we
deduced that the endocytosis pathway varied significantly
on the basis of both the physical properties of nanoparticle
and the cell type, and internalization of nanoparticles
with different morphologies seems to be mediated by
different pathways.
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FIGURE 5 | Flow cytometry histograms of (A) HeLa cells and (B) HepG2 cells treated with BPF NPs, BSA NRs and control pretreated with various endocytic

inhibitors, respectively. (C) Quantitative analysis of (A). (D) Quantitative analysis of (B). The data are presented as the mean values ± standard deviation, n = 3.

CONCLUSION

Herein, rod-like organic nanosystems have been rationally
designed and prepared. BDP nanoparticles showed robust
stability in aqueous media. In vitro studies have confirmed
that these tailored nanosystems are biocompatible and could be
uptake by living cells. Intriguingly, we found that the imaging
capacity of the rod-like nanoparticles were better than their
spherical nanoparticles. These results suggested a special role
associated with the physical property of the particles. Our work
demonstrates high-performance organic nanomaterial with ideal
biological geometries for tumor imaging in vitro. This work
highlights the potential of rational design to develop functional
nanoparticles for tumor imaging.
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Real-time and accurate detection of endogenous hydrogen sulfide is of great biomedical

significance. Here, a FRET-based fluorescent probe for ratiometric detection of H2S

was designed to comprise an AIE luminophore TPE as an energy donor and a

monochlorinated BODIPY dye as an energy acceptor and H2S-responsive site. Such

a designed probe showed H2S-dependent ratiometric and light-up NIR-II emission,

enabling accurate imaging of H2S-rich cancer cells and identification of H2S-rich tumors

with high resolution.

Keywords: ratiometric, light up, FRET, AIE, NIR-II imaging

INTRODUCTION

Endogenous hydrogen sulfide is an important signaling molecule, mainly derived from the
enzymatic hydrolysis of L-cysteine (Chiku et al., 2009; Singh et al., 2009). Studies have found that
H2S is associated with many pathological processes, while an abnormal level of H2S may associated
with some diseases, such as Alzheimer’s disease, hypertension, and cardiac ischemia disease (Eto
et al., 2002; Zhao et al., 2015; Shi et al., 2017). Therefore, real-time and accurate detection of
hydrogen sulfide is of great biomedical significance. Until now, many fluorescence-based H2S
probes have been reported (Jin et al., 2016; Wang et al., 2018, 2019b); however, the fluorescence of
many probes generally locates in the visible or the near-infrared I region (650–900 nm), inevitably
leading to some drawbacks of poor tissue penetration, severe background interference from living
tissue (Zhou et al., 2014). Compared with the traditional NIR-I imaging (650–900 nm) (Li et al.,
2018), fluorescent imaging in the second near-infrared window (NIR-II, 1,000–1,700 nm) has
attracted more and more attention due to lower tissue absorption, stronger tissue penetration, and
reduced autofluorescence (Hong et al., 2012; Dang et al., 2016; Shi et al., 2018; Xu et al., 2018).
Another issue is the hydrophobic nature of most traditional fluorescent dyes, which generally
triggers the aggregation in physiological conditions due to π-π stacking. Such a process can
give rise to aggregation-caused quenching (ACQ) (Sun et al., 2014; Yuan et al., 2015) and thus
compromise the accuracy of bioimaging. In comparison, fluorogens with AIE characteristics show
enhanced fluorescence in the aggregate states, thus providing an alternative strategy for the design
of fluorescent light up probes (Zhao et al., 2012; Mei et al., 2014, 2015; Zhang et al., 2015; Fu
et al., 2019). Since the hydrophobic fluorescent probes undergo the intrinsic aggregation process
in aqueous media, it is desirable to develop H2S-activatable probes with AIE characteristic for in
vivo imaging.
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Herein, we reported a H2S-responsive probe that showed
ratiometric fluorescence and NIR-II emission light-up upon
activation for in vitro and in vivo imaging (Scheme 1). Such a

probe was designed by appending an AIE luminophore TPE,
as an energy donor, to a monochlorinated BODIPY dye as
an energy acceptor and H2S-responsive site. As compared to
conventional intensity-based fluorescent probes (Huang et al.,
2014; Tang et al., 2016), this Förster resonance energy transfer
(FRET)-based ratiometric probe can enable accurate detection
through elimination of the limitations of experimental conditions
including probe concentration, light source, and background

SCHEME 1 | Schematic illustration of the design of probe TPE-BODIPY-Cl and the mechanism for H2S-mediated ratiometric and NIR fluorescence light up.

SCHEME 2 | Synthesis of the target compound TPE-BODIPY-Cl.

interference effects (Wang et al., 2019a). Such a design strategy
is applicable to the design of various ratiometric probes for
different targets. As expected, in the absence of H2S, due to
the good spectral overlap between the emission spectra of the
TPE and the absorption spectra of the BODIPY, efficient FRET
occurs. In contrast, in the presence of H2S, the absorption
spectra of BODIPY undergo an obvious red shift, resulting in
a significant reduction of the overlap with the TPE emission.
Correspondingly, the FRET process is significantly attenuated.
More importantly, upon activation by H2S, the probe produces
a new fluorescence light-up at 920 nm with the fluorescence tail
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extending to 1,300 nm, indicative of the suitability for fluorescent
imaging in the second near-infrared (NIR-II).

EXPERIMENTAL

Synthesis
The TPE-BODIPY-Cl was obtained from the synthetic route
of Scheme 2. Br-TPE and BODIPY were synthesized according
to the literature procedure (Zhao et al., 2013, 2014). Animal
experiments were performed in compliance with Chinese
legislation on the Use and Care of Research Animals and
guidelines by Fudan University Animal Studies Committee for
the Care and Use of Laboratory Animals. All experimental
procedures were approved by this committee.

Synthesis of Compound A
Br-TPE (165mg, 0.39 mmol) and 2,3,3-trimethyl-3H-indole
(62mg, 0.39 mmol) were dissolved in 25mL CH3CN and
refluxed for 10 h. Then, the solvent was removed under reduced
pressure, and the crude product was dissolved in CH2Cl2.
The mixture was dropped into the ether solvent to precipitate
white solid, which was used for next reaction without further
purification. HRMS (ESI, m/z): calculated for C38H34N [M-Br]+:
504.2691, found: 504.2699.

Synthesis of Compound TPE-BODIPY-Cl
Compound A (100mg, 0.17 mmol) and BODIPY (80mg, 0.21
mmol) were dissolved in dry ethanol and refluxed for 4 h. Then,
EtOH was evaporated and the crude product was purified by
a silica gel column with CH2Cl2/MeOH (20/1, v/v) as eluent
to give TPE-BODIPY-Cl (90mg, 56%). 1H NMR (400 MHz,
CDCl3) δ 8.00 (d, 1H, J = 12.00Hz), 7.63–7.55 (m, 2H), 7.52–
7.46 (m, 4H), 7.43–7.36 (m, 2H), 7.09–7.06 (m, 7H), 7.03–
7.00 (m, 3H), 6.98–6.96 (m, 4H), 6.95–6.92 (m, 4H), 6.87–
6.85 (m, 4H), 6.08 (s, 2H), 2.71 (s, 3H), 2.44-2.39 (q, 2H, J
= 6.67Hz), 1.78 (s, 6H), 1.52 (s, 3H), 1.09–1.05 (t, 3H, J =

8.00Hz). 13C NMR (101 MHz, CDCl3) δ 144.43, 144.21, 143.73,
143.25, 143.06, 142.64, 141.75, 141.48, 139.85, 132.12, 131.79,
131.20, 130.44, 129.50, 129.38, 129.06, 128.96, 127.76, 127.68,
127.61, 126.62, 126.52, 126.39, 122.35, 115.31, 51.90, 31.94, 29.71,
29.67, 29.37, 27.60, 22.71, 17.29, 14.14, 13.94, 13.90, 12.81. HRMS
(ESI, m/z): calculated for C58H50BF2N3Cl [M-Br]+: 872.3754,
found: 872.3750.

RESULTS AND DISCUSSION

TPE-BODIPY-Cl was prepared via a Knoevenagel
condensation reaction. The synthesis and
characterization are outlined in Scheme 2 and
Supporting Information.

FIGURE 1 | (A) Fluorescence changes of TPE-BODIPY-Cl (10µM) in Tris/CH3CN mixtures with different water fractions. (B) Absorption and (C) fluorescence spectra

in the absence and presence of 100µM NaHS in Tris/CH3CN buffer solution (0.5M Tris-HCl, 40% CH3CN, pH = 7.4), λex = 360 nm. (D) The fluorescence intensity

ratio (I438/I598) in the absence and presence of 100µM NaHS. (E) Time-dependent NIR-II emission spectra upon addition of 100µM NaHS, λex = 760 nm.

(F) Ratiometric fluorescence changes of TPE-BODIPY-Cl in the presence of 100µM NaHS and other biologically relevant reactive sulfur and anions (1mM) in Tris/

CH3CN buffer solution (0.5M Tris-HCl, 40% CH3CN, pH = 7.4): (1) Free; (2) F−; (3) Cl−; (4) Br−; (5) I−; (6) NO−

2 ; (7) N
−

3 ; (8) HCO
−

3 ; (9) SO
2−
4 ; (10) HPO2−

4 ; (11) ClO−;

(12) H2O2; (13)
−OAc; (14) S2O

2−
3 ; (15) GSH; (16) Cys; (17) Hcy; (18) NaHS.
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Spectroscopic Studies of TPE-BODIPY-Cl
With the probe in hand, we initially evaluated the photophysical
properties. Because the probe contains the TPE AIEgen, we
explored the AIE performance of the probe to obtain the best
test conditions. As shown in Figure 1A, we tested the FRET
process of the probe under different ratios of H2O/CH3CN.With
the increasing water content, the degree of aggregation of the
probe intensifies, accompanying the increase of TPE fluorescence
while the occurrence of ACQ for BODIPY chromophore. As is
well-known, a ratiometric fluorescencemode has higher accuracy
than turn-on or turn-off fluorescence detection mode (Wang
et al., 2015; Zhang et al., 2019), we here selected Tris/CH3CN
buffer solution (0.5M Tris, 40% CH3CN, pH = 7.4) as the next
testing condition in order to obtain the ratiometric fluorescent
responsiveness. The aggregation of our probe under this buffer
solution was proven by dynamic light scattering (Figure S1).

Next, we evaluated the response capability of TPE-BODIPY-
Cl toward H2S (Figure 1 and Figure S2). As shown in Figure 1B,
the free probe showed strong absorption at 550 nm. The typical
absorption band of the TPE around 300–360 nm was also noted.
In the fluorescence spectrum, due to FRET process, we can
observe two strong fluorescence peaks with maxima at 438
and 598 nm, corresponding to TPE and BODIPY, respectively.
When treated with 100µM H2S, the absorption band at 550 nm
decreased significantly and a new absorption band appeared at
760 nm with a red-shift of 220 nm due to the formation of TPE-
BODIPY-SH that was proven by HRMS analysis (Figure S3).
Such treatment with NaHS attenuated the FRET, thus affording
an enhancement of the fluorescence intensity ratio (I438/I598)

by 12 times. This indicated that TPE-BODIPY-Cl was indeed
a ratiometric fluorescent probe for H2S. Most importantly,
H2S-triggered a new NIR-II fluorescence light up with a
maximum emission of 920 nm (λex = 760 nm). These results
demonstrated that TPE-BODIPY-Cl could be used as a H2S-
activatable NIR-II fluorescent probe to enable high-resolution
bioimaging with deep-tissue penetration. Utilizing the linear
relation of fluorescence intensity ratio at 438 and 598 nm with
H2S concentration (0–50µM) (Figure S4), the detection limit
was determined to be 6.5 × 10−7 M, indicating that TPE-
BODIPY-Cl has high sensitivity for H2S detection. Of note, the
probe exhibits minimal optical responsiveness to biologically
related reactive sulfur (RSS), oxygen (ROS), and nitrogen species
(RNS) and some ions, showing its high selectivity for H2S
(Figure 1F and Figure S5). In addition, the good photostability
of probe TPE-BODIPY-Cl, evidenced byminimal optical changes
under continuous irradiation with light irradiation (Figure S6),
indicated its suitability for bioimaging.

Imaging of H2S in Living Cells
Inspired by the promising response to H2S, we then assessed
the ability of TPE-BODIPY-Cl for fluorescence imaging in living
HCT116 cells that express high levels of H2S [20–100µM, Szabo
et al., 2013]. As shown in Figure 2, the incubation of HCT116
cells and 10µM TPE-BODIPY-Cl for 30min afforded the bright
and stable fluorescence signal in the green channel and relatively
weak fluorescence in the red channel. The ratio of the green
to red channel is ∼2.82. When a CBS inhibitor aminooxyacetic
acid (AOAA) which can inhibit the H2S production was added,

FIGURE 2 | (A) HCT116 cells pretreated with 1mM AOAA for 1 h, followed by incubation with TPE-BODIPY-Cl (10µM) for 30min. (B) HCT116 cells incubated with

TPE-BODIPY-Cl for 30min. (C) HCT116 cells pretreated with SAM (3mM) for 1 h, followed by loading with TPE-BODIPY-Cl for 30min.
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FIGURE 3 | NIR-II fluorescent images of HCT116 subcutaneous xenograft

nude mice. Images were taken at various time points after subcutaneous

injection of TPE-BODIPY-Cl into tumor region.

the ratio dropped to 0.70. In contrast, with the addition of
an allosteric CBS activator S-adenosyl-L-methionine (SAM) to
promote the production of H2S, the ratio increased to 3.59.
These results indicated that TPE-BODIPY-Cl can efficiently enter
living cells and serve as a potential sensor to detect endogenous
hydrogen sulfide rapidly and specifically.

Imaging of H2S in vivo
Finally, we explored the ability of the probe for visualizing
H2S-rich cancers using HCT116 subcutaneous xenograft nude
mice. TPE-BODIPY-Cl was administrated to nude mice through
intratumoral injection. As shown in Figure 3, after the injection,
obvious NIR-II fluorescence in the tumor region was observed
and the signals gradually increased over time, producing a 14.8-
fold enhancement at the time point of 60min (Figure S7). These
results indicated that the TPE-BODIPY-Cl could be activation of
NIR-II fluorescence in H2S-rich colorectal cancers.

CONCLUSION

In summary, we have designed a FRET based probe through
appending the AIE luminophore TPE to the monochlorinated
BODIPY dye for imaging of H2S-rich cancer cells and tumors,
wherein TPE serves as an energy donor and BODIPY dye as
an energy acceptor. This probe showed H2S-dependent FRET

process, thus enabling the selective visualization of endogenous
H2S in HCT116 cells. Furthermore, this probe displayed H2S
specific activation of NIR II emission light up. By using this
activatable NIR II emission, accurate identification of colorectal
tumors was realized. We expect our design strategy here can help
the development of a new activatable probe.
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Abnormal changes of intracellular microviscosity are associated with a series of

pathologies and diseases. Therefore, monitoring viscosity at cellular and subcellular levels

is important for pathological research. Fluorescent molecular rotors (FMRs) have recently

been developed to detect viscosity through a linear correlation between fluorescence

intensity or lifetime and viscosity. Recently, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene

(boron dipyrrins or BODIPY) derivatives have been widely used to build FMRs for viscosity

probes due to their high rotational ability of the rotor and potentially high brightness. In

this minireview, functionalized BODIPYs as FMRs for viscosity detection were collected,

analyzed and summarized.

Keywords: viscosity, BODIPY, fluorescent molecular rotor, viscosimeter, fluorescent probe, dyes

INTRODUCTION

The viscosity of cells is an important parameter of the cellular microenvironment, which influences
the interaction and transport of biological molecules and signals in living cells (Minton, 2001).
Abnormal changes of intracellular microviscosity are associated with a series of pathologies and
diseases (Nadiv et al., 1994). Thus, the development of suitable imaging tools to monitor and
detect cellular microviscosity is important to study cellular function in both health and disease.
Fluorescentmolecular rotors (FMRs) are established as tools formonitoring cellular and subcellular
viscosity changes because of their high sensitivity, fast-response and non-invasive testing of targets
in biological systems. A common feature of FMR is that it consists of two moieties, which are
connected by a single bond. One moiety with a large moment of inertia is considered to be
fixed, called the stator, and the other moiety with a smaller moment of inertia is called the rotor
(Figure 1A). In a low viscosity medium, the rotor rotates freely, and the energy of excitation is
dissipated with non-radiative energy. However, in a high viscosity medium, rotation through the C-
C bond is constrained, and the excitation energy is released as emission with enhanced fluorescence
intensity and lifetime (Uzhinov et al., 2011; Lee et al., 2018). Therefore, the physical mechanism of
viscosity dependence of fluorescence quantum yield and lifetime is caused by the steric hindrance
of intramolecular rotation. Recently, FMRs have been widely used to measure viscosity of local
environment using their changes in fluorescence intensity and lifetime (Kuimova, 2012). From a
practical point of view, FMR with high extinction coefficients, long (NIR) excitation wavelength,
and potentially high brightness would be desirable (Ning et al., 2017; Hou et al., 2018).
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FIGURE 1 | (A) The working principle of FMRs. (B) Pictures of BODIPYs 1-2 in dichloromethane under 365 nm UV-light irradiation. (C) Synthetic route for

meso-functionalized BODIPY 3. (D) Meso-functionalized BODIPYs 4. (E–G) Fluorescence lifetime and rotational correlation time recorded for BODIPY 3 in solvents of

various viscosities. Reproduced with permission from Kuimova et al. (2008), Copyright 2008 American Chemical Society. (H–J) Meso-functionalized BODIPYs 5-12 as

FMRs.

Recently, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes
(BODIPYs) and their derivatives have been paid much attention
because of their excellent chemical and physical properties
(Loudet and Burgess, 2007; Lu et al., 2014), such as easy
functionalization, high molar extinction coefficients, tunable
visible to red excitation wavelength, tunable fluorescence
quantum yields, as well as excellent photostabilities (Miao et al.,
2019; Wang et al., 2019). Not surprisingly, BODIPY derivatives

are widely used as imaging probes, fluorescent organic devices,
chemical sensors, and as photosensitizers (Cui et al., 2014, 2015;
Peterson et al., 2018; Turksoy et al., 2019).

The fluorescence quantum yield of meso-(2,4,6-
trimethylphenyl)BODIPY 1 is 0.93 in toluene. However,
the fluorescence quantum yield of meso-phenylBODIPY 2 is
only 0.06 in toluene (Figure 1B; Kee et al., 2005). The difference
results from free rotations of the meso-phenyl group of BODIPY
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2 causing energy dissipations as non-radiative. The rotation
of its meso-phenyl group is constrained by increasing the
viscosity of local environment around BODIPY 2. Therefore,
meso-phenylBODIPY 2 has the potential to be used as a FMR for
viscosity detection. Subsequently, various BODIPY derivatives
have indeed been developed as FMRs for viscosity sensors, and
the rotor-moiety is mainly attached at the meso-position and
2,6-position of the BODIPY scaffold (Dziuba et al., 2016). In
this minireview, functionalized BODIPYs as FMRs for viscosity
detection are collected, analyzed, and summarized.

Meso-Functionalized BODIPYs as FMRs
In biological systems, changes in viscosity at the cellular level
are associated with diseases and pathologies, such as diabetes,
infarction, and hypertension. Initially, FMRs were designed
to detect cellular viscosity through fluorescence intensity
(Haidekker and Theodorakis, 2007). However, measurements
based on fluorescence intensity are affected by intracellular
uncertainty concentrations. To overcome the problem, Kuimova
et al. reported a first meso-functionalized BODIPY 3 as a
FMR, which detects intracellular viscosity by using fluorescence
lifetime instead of fluorescence intensity (Kuimova et al.,
2008). As shown in Figure 1C, BODIPY 3 was synthesized
through oxidation of the corresponding dipyrromethane with
DDQ followed by addition of excess amounts of base and
BF3.OEt2. The authors measured the fluorescence of BODIPY 3

at various viscosities, and indicated that both the fluorescence
quantum yield and lifetime (from 0.7 ± 0.05 to 3.8 ± 0.1
ns; Figure 1E) increased dramatically when increasing of the
viscosity between 28 and 950 cP. Importantly, the plot of
log τ (τ is fluorescence lifetime) vs. log η (η is viscosity)
was fitted by a straight line (Figure 1F). Control BODIPYs
4a-b (Figure 1D) were also studied. Since free rotations of
the phenyl groups of BODIPYs 4a-b are restricted, the non-
radiative decay process in both dyes is thus prevented. As
expected, BODIPYs 4a-b have fluorescent quantum yields of
close to unity in solvents. No apparent viscosity induced
fluorescent intensity or lifetime was observed for both 4a and
4b. Subsequently, the fluorescence lifetime imaging (FLIM)
using 3 was carried out to study intracellular viscosity, and
the results indicated that the average viscosity of SK-OV-3
cells was 140 ± 40 cP. Time-resolved fluorescence anisotropy
decays with various viscosities were recorded to confirm that
the above high viscosity value didn’t result from the binding
of the rotor to the intracellular targets. The results showed
that the rotational correlation time (θ) of BODIPY 3 increased
linearly with solvent viscosity (Figure 1G). Finally, the viscosity
in SK-OV-3 cells was also measured by using polarization-
resolved time correlated single photon counting (TCSPC),
and found that the average viscosity of SK-OV-3 cells is
80 cP according to a linear relationship between rotational
correlation time θ and viscosity η. The average viscosity of
SK-OV-3 cells measured by the two methods is compatible,
which shows that the rotor does not combine to intracellular
targets. Therefore, the FLIM method using BODIPY based on
FMRs is a versatile and also practical method for detecting
intracellular viscosity.

Viscosity changes in membranes are associated with various
intracellular physiological processes, particularly with various
diseases. A few FMRs have successfully detected the viscosity
of model lipid bilayers (Hosny et al., 2013; Wu et al., 2013).
However, it is difficult to detect viscosity of plasma membranes
because of possible effective endocytosis of the probe. For
example, BODIPY 3 was only reported to detect viscosity of
the lipid membranes of internal cellular organelles. López-
Duarte et al. reported a meso-functionalized BODIPY 5 to
selectively detect viscosity of plasma membranes by adding a
double positive charge to the hydrocarbon tail of BODIPY 3

(López-Duarte et al., 2014), which could prevent enucleation
and maintain rotor function at the same time (Figure 1H).
The fluorescence intensity and lifetime measurements of rotor
5 were studied in solvents of various viscosities. As expected,
the gradual increase of the viscosity from 0.6 to 930 cP gave
a continuous enhancement of both its fluorescence emission
intensity and lifetime. In order to illustrate that this dye is mainly
distributed on the cell membrane, the uptake experiments of
5 (8.9µM) were carried out at 4◦C with Mg2+ and Ca2+ free
medium in SK-OV-3 cells. The colocalization results indicated
5 exclusively stained the plasma membranes of SK-OV-3 cells
after incubation for more than 30min. The internal staining of
the cells became obvious after incubation time of 55min. In
addition, the FLIM of 5, measured in SK-OV-3 cells, showed
that some staining of internal organelles for an incubation time
of 40min. The lifetimes obtained from this lifetime histogram
(40min) were lower than that obtained after only 10min
incubation. The lifetime histogram for the 40min image is more
adequately fitted with a bimodal Gaussian peak fit, and individual
peaks are centered at 1.9 ns (organelles, 200 cP) and 2.2 ns
(plasma membrane, 270 cP).

The lysosomal viscosity reflects the microscopic state
and function of this organelle. When lysosomal function is
impaired, especially through lysosomal storage disease caused by
single lysosomal enzymes deficiency, macromolecular substances
cannot be decomposed and accumulate in lysozyme. Therefore,
it is important to monitor the changes of lysosomal viscosity
in real time. In this respect, Wang et al. reported BODIPY 6

with a morpholine moiety at the 2-position of meso-phenyl-
BODIPY as a FMR to detected viscosity of lysosome by using the
FLIM method (Figure 1H; Wang et al., 2013). Morpholine unit
was used as an excellent lysosomal localization group according
to previous reports (Yu et al., 2012). Indeed, colocalization
experiments showed that 6 can selectively strain cell lysosome. At
first, they measured the fluorescence intensity of 6 in different pH
at a particular viscosity, and revealed that fluorescence intensity
of 6 was disturbed by pH changes. In contrast, the lifetimes
of 6 at different pH were very similar. Next, they measured
fluorescence lifetime of 6 in a series of buffers with different
viscosities (from 0.6 to 359.6 cP), and the results showed that
its fluorescence lifetimes (log τ ) have a strong linear relationship
with viscosities (log η). Subsequently, the FLIM of 6was recorded
in MCF-7 cells, and suggested that the average viscosity was
∼65 cP in lysosome of MCF-7 cells according to the linear
relationship of lifetime against viscosity. Finally, the FLIM of 6
was successfully monitored the dynamic changes of lysosomal
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FIGURE 2 | (A) Conformational extremes of BODIPY dimer 13. (B) The fluorescence spectra of BODIPY 13 in solvent of various viscosities. (C) 2,6-Functionalized

BODIPY 14 as a FMR. (D) The fluorescence lifetime measurements of BODIPY 14 (3.0µM) with different viscosities. Reproduced with permission from Li et al. (2016),

Copyright 2016 American Chemical Society. (E) 2,6-Functionalized BODIPY 15 as a FMR. (F) Fluorescence lifetime spectra of BODIPY 15 (0.5µM at 590 nm) in

various viscosities (pH = 1). Reproduced with permission from Li et al. (2018), Copyright 2018 American Chemical Society.

viscosity in both dexamethasone and chloroquine stimulated
MCF-7 cells.

Mitochondria, as a membrane-bound subcellular organelle,
have been found in almost all eukaryotic cells. Mitochondrial
viscosity deviations from normal levels will affect the respiratory
state of mitochondria, and induce cell dysfunction or even
death. Song et al. reported BODIPY 7a as a novel fixable
sensor for detecting mitochondrial viscosity of living cells by
the FLIM method (Song et al., 2017). Initially, they synthesized
two mitochondrial-localized BODIPYs 7a and 7b as showed
in Figure 1H. Fluorescence lifetimes (log τ ) of both dyes have
excellent linear relationships with viscosities (log η) from 0.6 to
360 cP. Moreover, colocalization studies confirmed that both 7a

(Pearson’s coefficient 0.92) and 7b (Pearson’s coefficient 0.97)
can specially localized in the mitochondria of the SMMC7721
cells. Another set of colocalization imaging experiments of 7a and
7b with Mito Tracker Deep Red were recorded under extreme
condition (4% formaldehyde solution treatment). Interestingly,
7a exhibited strong intracellular fluorescence before and after
the formaldehyde treatment. In contrast, 7b only showed
strong fluorescence before formaldehyde treatment, however,
its fluorescence was remarkably decreased after formaldehyde
treatment. These data showed that BODIPY 7a was immobilized
in the mitochondria. Next, the mitochondrial FLIM of BODIPYs
7a-b suggested that the average viscosity around BODIPYs 7a-
b in the mitochondria of the SMMC7721 cells is 95 and 63
cP, respectively. Similar results were also found in other types
of cells, e.g., MCF-7 cells. The authors explained that these
different values are due to the different locations of probes: 7a is
mainly immobilized on proteins of the mitochondria, while 7b is
freely distributed in the mitochondria. The larger viscosity value

measured by 7amay be the contribution of the macromolecule of
the protein. Finally, the authors further monitored the viscosity
changes in abnormal mitochondria (stimulated with rotenone)
using BODIPY 7a. The fluorescence lifetime of BODIPY 7a

was increased from 2.0 to 2.45 ns after stimulated for 8.5 h,
and further increased to 2.73 ns after stimulated for 18 h. Thus,
7a, as a fixable and mitochondria selective FMR, shows a great
potential for monitoring mitochondrial viscosity in real time
(Zhang et al., 2019).

The second approach for quantitatively determining
viscosity through FMRs is based on ratiometric fluorescence
measurements. The ratiometric fluorescence probes have
a self-calibration effect, which overcomes the uncertainty
associated photobleaching, microenvironments, and local probe
concentration for conventional fluorescence probes based on
intensity changes. Yang et al. reported a fluorescence ratiometry
viscosity probe 8 containing a coumarin unit, a BODIPY unit,
and a mitochondria selective triphenylphosphonium group
(Figure 1I; Yang et al., 2013). The fluorescence changes of 8 in
a series of viscosities (from 0.59 to 945.35 cP) revealed that the
emission intensities at 427 nm (the emission of the coumarin
moiety) and 516 nm (the emission of the BODIPY moiety) both
increased with increased viscosity. A strong linear relationship
between fluorescence intensity ratio (I516/I427) and viscosity
(η) was obtained. In addition, fluorescence lifetimes (log τ )
also have a good linear relationship with viscosities (log η).
According to the above linear relationships, the mitochondrial
viscosity in HeLa cells is 62.8 and 67.5 cP, respectively, by using
both fluorescence ratiometry and FLIM. Using similar strategy,
Yang et al. also reported BODIPY 9 to detect microviscosity
of the endoplasmic reticulum by using both fluorescence
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ratiometry and the FLIM method (Figure 1I; Yang et al.,
2014).

The BODIPY based FMRs described above all contain rotable
meso-phenyl groups, while BODIPY 4b (Figure 1) containing
substituents on the 1,7-positions of the BODIPY fluorophore is
not suitable to be used as FMRs because themeso-aromatic group
is restricted by the substituents on the 1,7-positions. Thus, it is
possible that a less bulky group (than phenyl) on meso-position
of BODIPY with substituents on the 1,7-positions may allow
the rotation in non-viscous media and thus might provide an
alternative strategy for designing BODIPY based efficient micro-
viscosity probes. Indeed, Yu et al. recently reported a meso-
2-ketopyrrolyl-derived BODIPY 10 as a new FMR containing
substituents on the 1,7-positions (Figure 1J; Yu et al., 2019).
The fluorescence lifetime (log τ ) of BODIPY 10 has a linear
relationship with viscosity (log η). Subsequently, this probe
was used to detect viscosity changes during the pathological
processes using the FLIM inMCF-7 cells. Moreover, a “distorted-
BODIPY”-based viscosity probe 11 with meso-CHO group was
reported by Zhu et al. (Figure 1J; Zhu et al., 2014). Zatsikha et al.
reported a five-membered ring substituted BODIPY 12, in which
the fluorescence intensity (log I) has a linear relationship with
viscosity (log η) (Figure 1J; Zatsikha et al., 2019).

2,6-Functionalized BODIPYs as FMRs
In comparison with the meso-functionalized BODIPYs, only a
few 2,6-functionalized BODIPYs have been reported to be used as
FMRs to detect viscosity. They typically built through the alkyne
bridged rotor and BODIPY core. Recently, Zhang et al. reported
a ratiometric fluorescence probe 13 with the two BODIPY units
linked by butadiyne group (Figure 2A; Zhang et al., 2017). The
fluorescence spectra of 13 at different viscosities (from 1.2 to 664
mPa.s) were measured, and its fluorescent emission maximum
peaks gradually shifted from 624 to 593 nm with the increase of
viscosities (Figure 2B). These two fluorescence emission peaks
may be contributed by two extreme conformers of 13with planar
or twisted orientations of the two BODIPY units.

Li et al. reported a RNA-targeted BODIPY 14 as a new FMR to
detect intracellular viscosity (Figure 2C; Li et al., 2016). FMR 14

showed two different maximum wavelengths at 496 and 565 nm,
respectively. Similar to most fluorescent ratiometry probes,
fluorescence measurements of BODIPY 14 showed two different
emitted wavelengths (496 and 565 nm), and both fluorescence
intensity (log F565/F496) and lifetime (log τ ) have a linear
relationship with and viscosity (log η) (Figure 2D). In addition,
the colocalization experiments of BODIPY 14 and commercial
RNA dye revealed that BODIPY 14 mainly distributed in
cytoplasmic RNA (Pearson’s correlation 0.96). This result was

further supported by imaging of BODIPY 14 in four blood cell
types. There was strong fluorescence in reticulocytes (contain
RNA), but no fluorescence in red blood cells and other cells
(without RNA).

Another FMR 15 (Figure 2E; Li et al., 2018) with two
morpholine moieties selectively detected lysosomal viscosity
using FLIM. Similar to BODIPY 6, the fluorescence lifetime
(log τ ) of BODIPY 15 linearly increased with the increased
viscosity (Figure 2F, pH = 1). Moreover, the colocalization
experiments indicated that BODIPY 15 mainly distributed in
lysosome in Hela cells (Pearson’s coefficient 0.95). Next, they
monitored the viscosity changes in abnormal mitochondria using
BODIPY 15 by treating Hela cells with dexamethasone. Without
treating dexamethasone, the histogram of BODIPY 15 indicated
the viscosity of the lysosome is 15 cP in Hela cells. However,
the viscosity of the lysosome becomes 159 cP after treating
with dexamethasone for 1 h according to the linear relationship
of lifetime-viscosity.

CONCLUSION

In summary, functionalized BODIPYs have recently been
developed as novel FMRs for viscosity detection by fluorescence
intensity and fluorescence lifetime, in which the rotor-
moieties are mainly attached at the meso-position and
2/6-positions of the BODIPY scaffold. Those BODIPY
based FMRs can be used to detect the subcellular viscosity
by introducing a localization group, such as a pyridinium salt,
triphenylphosphine salt or morpholine, through fluorescence
ratiometry and FLIM methods. By taking advantage of
the rapid development of BODIPY synthesis and post-
functionalization, we can anticipate that more exciting
BODIPY based FMRs decorated with various functional
groups with red to near infrared absorption and emission
will be developed. BODIPY based FMRs with rotation
around other positions (B position, especially) will also be
highly anticipated.
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Inmaculada García-Moreno 2, Clara Uriel 3, J. Cristobal López 3 and Ana M. Gómez 3*
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University (UPV/EHU), Bilbao, Spain, 2 Laser Materials Laboratory, “Rocasolano” Physical Chemistry Institute, Department of

Low-Dimension Systems, Surfaces and Condensed Matter, CSIC, Madrid, Spain, 3 Bioorganic Chemistry Department,

Instituto de Química Orgánica General (IQOG-CSIC), Madrid, Spain

Herein we describe the synthesis, computationally assisted spectroscopy, and lasing

properties of a new library of symmetric bridged bis-BODIPYs that differ in the

nature of the spacer. Access to a series of BODIPY dimers is straightforward through

synthetic modifications of the pending ortho-hydroxymethyl group of readily available

C-8 (meso) ortho-hydroxymethyl phenyl BODIPYs. In this way, we have carried out

the first systematic study of the photonic behavior of symmetric bridged bis-BODIPYs,

which is effectively modulated by the length and/or stereoelectronic properties of

the spacer unit. The designed bis-BODIPYs display bright fluorescence and laser

emission in non-polar media. The fluorescence response is governed by the induction

of a non-emissive intramolecular charge transfer (ICT) process, which is significantly

enhanced in polar media. The effectiveness of the fluorescence quenching and also the

prevailing charge transfer mechanism (from the spacer itself or between the BODIPY

units) rely directly on the electron-releasing ability of the spacer. Moreover, the linker

moiety can also promote intramolecular excitonic interactions, leading to excimer-like

emission characterized by new spectral bands and the lengthening of lifetimes. The

substantial influence of the bridging moiety on the emission behavior of these BODIPY

dyads and their solvent-sensitivity highlight the intricate molecular dynamics upon

excitation in multichromophoric systems. In this regard, the present work represents

a breakthrough in the complex relationship between the molecular structure of the

chromophores and their photophysical signatures, thus providing key guidelines for

rationalizing the design of tailored bis-BODIPYs with potential advanced applications.

Keywords: dye chemistry, charge transfer, excimers, lasers, BODIPY-dimers

INTRODUCTION

Modern avenues in dye chemistry are not only oriented to the development of single fluorophores
with tailor-made molecular structures (De Moliner et al., 2017) but are also focused on the rational
design of multichromophoric architectures where the fluorophores are linked through covalent
bonds (Ahrens et al., 2013; Fan et al., 2013). The proximity of the chromophoric subunits enables
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FIGURE 1 | Basic molecular structure of BODIPY (1), our BODIPY starting materials (2 and 3), and all BODIPY dimers synthesized therefrom, i.e., 4 and 5, with

spacers consisting of urea-, thiourea-, phosphonate-, amine-, disulfur-, and ether-based linkers, differing in length and/or stereoelectronic properties.

intramolecular interactions, giving rise to new photophysical
phenomena ranging from a wide assortment of excitonic
interactions (H- and/or J-aggregates, excimers) (Alamiry et al.,
2011; Ahrens et al., 2016; Patalag et al., 2017) to charge (Zhao
et al., 2013; Liu et al., 2018) and/or energy transfer (Speiser,
1996; Avellanal-Zaballa et al., 2017) processes. The balance
between them or the promotion of one of them determines the
final photonic performance of the multichromophoric system
and, consequently, its potential field of application. It is well-
established that the photonic behavior of fluorescent molecular
assemblies becomes effectively modulated through a rational
election of the chromophoric building blocks and the tether
between them (Wang et al., 2017; Zhang, 2017; Blázquez-
Moraleja et al., 2018). However, understanding and unraveling
the impact of the molecular structure into the dynamics of
their excited state remains a challenge owing to the complexity
of multichromophoric dyes and the coexistence of several
deactivation pathways competing at the same time and showing
also a marked dependence on the solvent properties (Thakare
et al., 2016). This knowledge becomes critical for designing
straightforward and low-cost synthesis routes for smart dyes with
multifunctional properties, fulfilling the tight requirements of the
most advanced technological applications (Alberto et al., 2018).

Toward this aim, boron-dipyrromethene (BODIPY) scaffolds,
e.g., 1 in Figure 1, are ideal candidates as building blocks owing
to the chemical versatility of the chromophoric core (Loudet and
Burgess, 2007; Ulrich et al., 2008). The boron-dipyrrin backbone
is ready amenable to a wide range of post-functionalization
routes (Boens et al., 2015), whichmight allow its ulterior covalent

linkage to additional chromophoric units (Dumas-Verdes et al.,
2010; Misra et al., 2014; Gartzia-Rivero et al., 2015; Kesavan
et al., 2015; Arroyo-Córdoba et al., 2018; Xu et al., 2018; Zhang
et al., 2018). Such tailoring of the molecular structure being
available enables the modulation of the spectral bands of the
BODIPY, leading to stable and bright dyes along the whole visible
spectrum and even reaching the near-infrared region (Lu et al.,
2014; Bañuelos, 2016). Multichromophoric dyes based on the
BODIPY core are currently being intensively applied in various
technological fields such as photovoltaics (Galateia et al., 2015),
photosynthetic antennae (Ke et al., 2017), sensing and electronics
(Squeo et al., 2017), electrochemistry (Qi et al., 2013), near-
infrared emitters (Sakamoto et al., 2012), and as photosensitizers
and labeling tools in biomedicine (Turksoy et al., 2019).

In this context, we have recently reported a straightforward
synthetic approach from ortho-functionalized 8-aryl-BODIPYs,
e.g., 2 and 3 (Del Río et al., 2017), to stable and luminescent
urea-bridged symmetric bis-BODIPYs, i.e., 4a and 5a (López
et al., 2017) (Figure 1). The fluorescence response of this
covalent molecular assembly was sensible to the properties of
the environment owing to the capability of the spacer moiety
to induce “through-space” intramolecular charge transfer (ICT)
processes. Herein, to achieve deeper insight into this ICT
mechanism, which triggers the fluorescence efficiency of the
whole molecular entanglement, we have synthesized a new
battery of bis-BODIPYs, where the length and stereoelectronic
properties of the spacer unit have been systematically modified
(Scheme 1). Accordingly, the impact of the electron-releasing
ability of the urea spacer was assessed by replacing the urea
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SCHEME 1 | Derivatization of the hydroxymethyl group in BODIPYs 2 and 3, leading to differently functionalized BODIPYs. (A) oxidation to formyl-BODIPYs 6; (B)

obtention of azidomethyl BODIPYs 7 as precursors of aminomethyl derivatives 9 and isothiocyanyl-BODIPYs 10; (C) preparation of bromomethyl-BODIPYs 8 and their

conversion to BODIPY thiolacetates 11.

oxygen by a less electronegative moiety such as a sulfur atom
(thiourea-bridged, i.e., 4b and 5b, Scheme 1). On the other hand,
the effect of the distance between BODIPY subunits has been
studied by incorporating a phenyl tether in bis-thiourea-derived
BODIPYs, e.g., 4c (Figure 1). Furthermore, by taking advantage
of the synthetic potential of the ortho-hydroxymethyl group in
BODIPYs 2 and 3, an additional collection of dimers with spacers
that incorporate phosphorous, i.e., 4e and 5d, nitrogen, i.e., 4f, 5f,
4g, 5g, and 4h, sulfur, i.e., 4i, 5i, and 4j, and oxygen, i.e., 4k and
5k, atoms, which differed in their electronic properties and/or
the tether lengths have also been efficiently obtained (Figure 1).
The computationally aided photophysical and laser study of this
new set of bis-BODIPYs have contributed to the understanding of
the structural controls behind the fluorescence response of these
multichromophoric laser dyes.

RESULTS AND DISCUSSION

Synthesis of Bridged bis-BODIPYs
As previously mentioned, symmetric bis-BODIPYs 4a–k and 5a–
k were prepared from BODIPYs 2 and 3, respectively, following

standard synthetic procedures that are highlighted in Schemes 1–
3 (see also Supplementary Material for detailed experimental
conditions). In this context, the divergent sequences to all of
the BODIPY dimers used in this study serve to illustrate the
synthetic potential of ortho-hydroxymethyl 8-aryl BODIPYs 2

and 3, available through a one-pot transformation from phthalide
and differently substituted pyrroles (Del Río et al., 2017).

Accordingly, synthetic transformations on the hydroxymethyl
group in BODIPYs 2, 3 gave access to a “second generation”
of BODIPY derivatives comprising formyl-BODIPYs 6a and 6b

(a R1
= H, b R1

= Et, throughout the series; Scheme 1A)
(Dess and Martin, 1983), azidomethyl-BODIPYs 7a and 7b,
(Scheme 1B), and bromomethyl-BODIPYs 8a and 8b (Godoy
et al., 2015) (Scheme 1C). The latter was also a precursor of
azidomethyl BODIPYs 7a and 7b by nucleophilic displacement
with sodium azide.

Azidomethyl and bromomethyl BODIPYs 7 and 8,
respectively, were next used as starting materials for a “third
generation” of ortho-methyl functionalized BODIPYs, 9–11.
Accordingly, azidomethyl-BODIPYs 7a and 7b could be
transformed into aminomethyl derivatives 9a and 9b (PMe3,
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SCHEME 2 | Generation of dimeric BODIPY species from single BODIPY units. (A) esterification of PBr3 by hydroxymethyl BODIPYs to dialkyl H-phosphonates 4d

and 5d, followed by oxidation to phosphate 4e; (B) triethylsilane-mediated reductive etherification of formyl-BODIPYs 6a and 6b to ether-linked dimers 4k and 5k;

(C) ureation-dimerization of azidomethyl BODIPYs 7a and 7b, to urea-bridged bis-BODIPYs 4a and 5a; (D) saponification-oxidation on thiolacetates 11a and 11b, to

disulfide-bridged bis-BODIPYs 4i and 5i; (E) access to “homologated” bis-disulfide 5j from BODIPY 12; (F) coupling reaction of isothiocyanyl-BODIPY 10a with

1,4-phenylenediamine, leading to bis-thiourea derivative 4c.
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SCHEME 3 | Combination of two BODIPY units leading to symmetrical bis-BODIPYs. (A) Reductive amination of formyl-BODIPYs 6 with aminomethyl-BODIPYs 9,

leading to bridged-aminomethyl dimers 4f and 5f, and their transformation to acetamido-BODIPYs 4g and 5g or ammonium-bridged BODIPY 4h; (B) combination of

azidomethyl BODIPYs 7a and 7b with isothiocyanyl-BODIPYs 10a and 10b, respectively, leading to thiourea-bridged BODIPY dimers 4b and 5b.

H2O) or isothiocyanyl-BODIPYs 10a and 10b (PPh3, CS2) by
way of reactions that involved BODIPY-iminophosphorane
intermediates (Scheme 1B). Alternatively, nucleophilic
displacement on bromomethyl-BODIPYs 8a and 8b with
thiolacetic acid led to BODIPY thiolacetates 11a and 11b,
respectively (Scheme 1C).

Regarding the formation of the dimeric structures,
some were produced by dimerization of these BODIPY
monomers (Scheme 2), whereas the rest of the dimers were
obtained by a combination of two differently functionalized
BODIPYs (Scheme 3).

Thus, hydroxymethyl-BODIPYs 2 and 3 were efficiently
transformed into H-phosphonate-bridged bis-BODIPYs 4d and
5d, respectively, upon treatment with PBr3 (Kotlarska et al., 2013)
(Scheme 2A). The oxidation of phosphonate 4d (I2) (Li et al.,
2014) then paved the way to phosphate-bridged bis-BODIPY
4e (Scheme 2A). On the other hand, triethylsilane-mediated
reductive etherification of formyl-BODIPYs 6a and 6b (Huo
et al., 2018) was used in the preparation of ether-linked dimers 4k
and 5k, respectively (Scheme 2B). Urea-bridged bis-BODIPYs 4a
and 5a were conveniently prepared by a ureation-dimerization
protocol from azidomethyl BODIPYs 7a and 7b (Del Río
et al., 2017) (Scheme 2C). A saponification-oxidation protocol
on thiolacetates 11a and b allowed the synthesis of disulfide-
bridged bis-BODIPYs 4i and 5i (Scheme 2D). Likewise, the
“homologated” bis-disulfide 5j was prepared via an intermediate
thiolacetate obtained from ortho-hydroxyethyl BODIPY 12,

followed by a synthetic sequence related to that mentioned
above (Scheme 2E).

Finally, the “elongated” 1,1′-(1,4-phenylene)-bis-(3-
BODIPY-thiourea) derivative 4c, was prepared by reaction
of isothiocyanyl-BODIPY 10a with 1,4-phenylenediamine
(Scheme 2F).

Alternatively, the combination of aminomethyl-BODIPYs 9
with formyl-BODIPYs 6 (reductive-amination conditions) led to
bridged-aminomethyl dimers 4f and 5f, which were uneventfully
transformed into the corresponding acetamido- (4g and 5g)
or ammonium-bridged (4h) BODIPYs (Scheme 3A). Along this
line, the combination of azidomethyl BODIPYs 7a and 7b with
isothiocyanyl-BODIPYs 10a and 10b led to thiourea-bridged
BODIPY dimers 4b and 5b (Scheme 3B).

Photophysical Properties of Bridged
bis-BODIPYs
The conducted and joined computational-spectroscopic
characterization revealed that the spacer bridging the
chromophoric cores in the designed library of bis-BODIPYs
played a key role in the final photophysical properties of
the dyads. Therefore, hereafter, we thoroughly describe the
interplay between the molecular structure and the photophysical
signatures, with special attention to the fluorescence response
and the ongoing non-radiative channels related to intramolecular
charge transfer and excitonic couplings. Toward this aim, the
photophysical properties of the new symmetric bis-BODIPYs
(whose structures are shown in Figure 1) were systematically
analyzed in dilute solutions (see details in experimental section
Spectroscopic Properties) in polar (dimethylformamide (DMF),
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TABLE 1 | Photophysical properties of the bis-BODIPYs based on 2 and 3 as building blocks and linked through different bridges (urea, thiourea, phosphonate, amine,

acetylamine, ammonium, and disulfur) in an apolar solvent (cyclohexane, except those not soluble, marked as *, whose data are provided in diethyl ether).

λab

(nm)

εmax·10
−4

(M−1 cm−1)

λfl

(nm)

ϕ τ

(ns)

4a 502.5 13.4 515.0 0.83 5.66

4b 503.5 10.0 517.5 0.51 1.86 (46%)−6.29 (54%)

4c 504.5 16.0 511.0 0.40 0.22 (31%)−1.86 (12%)−5.12 (57%)

4e* 500.5 13.3 514.0 0.43 0.55 (28%)−6.41 (72%)

4f 501.5 14.0 517.5 0.50 2.34 (56%)−6.59 (44%)

4g 499.0 12.3 522.5 0.89 7.51

4h 504.5 11.5 513.0 0.90 4.98

4i* 503.0 21.0 524 0.85 6.76

4j 503.5 14.5 518.0 0.92 6.68

5a 525.5 16.2 540.5 0.98 6.76

5b 525.5 15.5 540.0 0.76 6.79

5d 526.5 22.6 542.5 0.79 7.28

5f 526.0 15.9 540.5 0.77 7.22

5g 524.5 13.2 544.0 0.90 8.37

5i 527.0 19.6 542.5 0.84 7.04

Full data in more solvents of different polarities are listed in Tables S1, S2. Absorption (λab ) and fluorescence (λfl ) wavelength, molar absorption at the maximum (εmax ), fluorescence

quantum yield (ϕ), and lifetime (τ ).

acetonitrile, and ethanol) and apolar (cyclohexane) solvents
(Table 1; Tables S1, S2). With the exception of the ether-bridged
dyads, whose particular photophysics will be discussed in
detail below (section Excitonic Coupling Induced by an Ether
Spacer), the spectral absorption and emission properties of all
the other dyes followed a common behavior, which was also
similar to that previously described for urea-based derivatives
(López et al., 2017). The absorption profile of these dyads
peaked at wavelengths similar to those of the corresponding
single counterpart precursors (2 and 3, Del Río et al., 2017),
while the absorption probability increased significantly (up to
23 × 104 M−1 cm−1), becoming roughly twice that of each
single chromophore (Figure 2, Table 1). Indeed, the theoretical
simulation revealed that the absorption transition resulted from
the contribution of two configurations that were energetically
close (just separated by 0.03 eV), with the electronic density
allocated on each dipyrrin chromophoric unit. Moreover, after
molecular assembly, both BODIPY subunits were held apart
(the distance between the center of masses range from merely
8 Å to around 20 Å, depending on the kind of spacer bridging
the chromophores), hampering any intramolecular interaction
between them. In this configuration, each BODIPY moiety was
electronically decoupled, retaining its identity, and photophysical
properties and contributing additionally to the global transition.
Furthermore, the orthogonal disposition between the 8-aryl unit
and the BODIPY core (≈90◦ twisting dihedral angle) owing to
the steric hindrance exerted by its ortho-substituent and the
methyl groups at C1 and C7 avoids any resonant interaction
among the building blocks of these bridged bis-BODIPYs. The
absorption and fluorescence spectral band positions became
hypsochromically shifted by increasing the solvent polarity

(Tables S1, S2), according to the behavior of the corresponding
parent monomeric dyes.

Regarding the emission, and owing to the claimed electronic
isolation of the chromophoric units in the dyads, the high
fluorescence efficiency distinctive of BODIPY dyes was retained
by these bis-BODIPYs built from scaffolds 2 and 3 in apolar
media (Table 1). Unlike the parent dyes, whose fluorescence
was nearly solvent-independent (Bañuelos, 2016), the emission
efficiency from the new dyads was markedly influenced by the
solvent (discussed below in detail in sections Effect of Solvent
Polarity on ICT Stabilization and The Special Case of DMF). As
previously stated, while analyzing the photophysics behavior of
the urea-bridged BODIPY dyes (López et al., 2017), the emission
process in these dyads took place by an effective “through-
space” ICT mechanism, with the urea spacer acting as donor
unit and the BODIPY core behaving as the electron acceptor.
In fact, the computed molecular electrostatic potential surfaces
(MEP in Figure 3) placed remarkable negative charge at the
oxygen atom of the urea bridge, showing its electron donor
ability, which was even amplified by the flanking amines as
well as by its proximity to the dipyrrin planes of the BODIPY
skeleton. Consequently, the fluorescence emission from the
herein-synthetized dyads became markedly dependent on the
polarity of the media, and, even more interestingly, this solvent
dependence was unambiguously modulated by the alkylation
of the BODIPY core and especially by the length and the
stereoelectronic properties of the spacer unit.

Spacer Effect on ICT Mechanism and Probability
Actually, the photophysical signatures of the new dyads, even in
an apolar solvent such as cyclohexane (Table 1), were determined
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FIGURE 2 | Normalized absorption and fluorescence spectra of representative bis-BODIPYs derived from building blocks 2 and 3 and linked by urea (4a and 5a),

thiourea (4b and 5b), amino (4f and 5f), acetylamino (4g and 5g), and disulfur (4i and 5i) bridges in an apolar environment. All the spectra in different solvents are

collected in Figures S60, S61.

by this ongoing ICT mechanism, with the spacer playing a
key role:

i) The higher the electron donor ability of the linker, the
lower became the fluorescence efficiency. Thus, the mere
replacement of the urea moiety (4a and 5a) by a thiourea
bridge (4b and 5b) reduced the fluorescence quantum yield
(i.e., from 83 to 51% in Table 1). The phosphorous-bridged
dyads based on two different oxidation states (valence III
in 5d with a “pendant” hydrogen atom and valence V in
4e with a “pendant” hydroxyl group) further supported this
behavior. With respect to the urea linker, the phosphorous

was less electronegative than the nitrogen, therefore increasing

the negative charge on the oxygen atoms, as reflected in the
corresponding MEP maps (more intense red color around

the phosphonyl in Figure 3). This was especially noticeable

for the spacer bearing a “pendant” hydroxyl group in dyad
4e, where its higher electron-donor ability enhanced the ICT

probability even more, leading consequently to one of the

lowest fluorescence quantum yields recorded in cyclohexane
(43% in Table 1).

ii) Following the same argument, reducing the electron-

releasing ability of the spacer enhanced the fluorescence
efficiency of the bis-BODIPY dyes significantly. Trying

to nullify the contribution of the spacer-induced ICT, we

designed BODIPY dyads with the chromophoric units linked
through electronically inert moieties such as disulfur groups
(4i, 5i, and 4j), which led to one of the highest fluorescence

efficiencies recorded herein (up to 92% in Table 1). Similar
behavior was observed on the ammonium salt-linked
BODIPYdyad 4h, which exhibited a 90% fluorescence
efficiency. Thus, the ammonium salt in 4h acted as an effective
electron-withdrawing moiety according to the MEP, which
located a high positive charge on the spacer (Figure 4).

iii) The smaller the distance between the BODIPY cores
interposed by the spacer, the lower became the fluorescence
performance, even reducing the electron-releasing ability
of the connector. This dependence was well-illustrated by
analyzing the behavior of the bis-BODIPYs linked through
the shortest bridges tested herein, such as the amino-linked
(4f and 5f) and N-acetylamino-linked (4g and 5g) dyads.
Thus, the connection of the 8-benzyl groups of the BODIPYs
through an amine group implied a shortening of the spacer
length and hence the disposition of the electronic clouds
of the BODIPY subunits closer than in other synthetized
dyads. In spite of this geometrical arrangement, no evidence
of excitonic interaction was detected in the ground state, as
supported by the unaltered profile of the absorption spectra
(Figure 2), but it led to an effective deactivation on the
fluorescence emission (down to 50% Table 1). This trend
could be understood in terms of a higher probability of
the spacer-induced ICT owing to the closer proximity of
the electron-donor amine to the electron-acceptor BODIPY
subunits (Figure 4). Nevertheless, this drastic decrease of the
fluorescence signal could demonstrate an additional pathway
of non-radiative deactivation, since an ICT could also be
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FIGURE 3 | Molecular electrostatic potential (MEP) maps of the bis-BODIPYs derived from building block 2 bearing different urea-based and phosphonate-based

spacers (negative charge in red and positive charge in blue). Similar MEPs are computed for the corresponding analogs built on scaffold 3.

promoted between the electronic clouds of the BODIPYs (Yu
et al., 2015; Li et al., 2016) due to the mentioned proximity
imposed by the amine-based spacers. This intramolecular
deactivation process was what is known as photoinduced
symmetry-breaking charge transfer (SBCT). According to
the literature focusing on ICT processes in BODIPY dimers
(Cakmak et al., 2011; Whited et al., 2012; Zou et al., 2017),
the SBCT pathway has been seen to be characteristic of
orthogonally disposed and directly linked BODIPY dyads,
but also took place in non-orthogonal and electronically
decoupled subunits through sterically hindered phenyl spacers
(Liu et al., 2018). Moreover, these authors claimed that SBCT
in bridged dimers did not lead to a triplet state population, as
in directly linked and orthogonal dimers. In fact, no singlet
oxygen generation from the triplet state of the bridged bis-
BODIPYs tested herein was detected under any experimental
conditions. Collectively, all these strands of evidence allowed
us to state that the fluorescence deactivation in the amine-
bridged bis-BODIPYs could be driven by the spacer-
mediated ICT mechanism along with the aforementioned
SBCT process.

iv) The insertion of more than one electron-donor group in the
linker quenched the fluorescence more effectively, even if the
connector imposed the highest distance between BODIPYs
among all the structures synthesized herein. Accordingly, the
increase in the number of thiourea groups at the linker on
going from 4b to 4c reinforced the extension and effectiveness
of the spacer-induced ICT process, reducing the fluorescence
quantum yield from 51 to 40% (Table 1), in spite of the
consequent lengthening of the linking unit, which separates
the BODIPY electronic clouds further (the distance between
molecular centers in the optimized geometries increased from
13.5 to 20.5 Å; Figure 3).

v) Compared to the dyads arising from the C2,C6-non-
alkylated BODIPY 2, the alkylation (ethylation) at positions
C2 and C6 of each dipyrrin unit promoted a further
enhancement of the fluorescence efficiency [e.g., dyads linked
by thiourea moieties (4b vs. 5b), from 51% on the non-
ethylated derivatives (4b) to 76% for the fully substituted (5b)
derivatives; Table 1]. In the dyads derived from the C2,C6-
diethyl scaffold 3, all the decay curves are properly analyzed
as monoexponentials. Conversely, in the bis-BODIPYs based
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FIGURE 4 | Molecular electrostatic potential (MEP) maps of the bis-BODIPYs derived from building block 2 linked by different amine-based spacers (negative charge

in red and positive charge in blue). Similar MEPs are computed for the corresponding analogs built on scaffold 3.

on non-ethylated building block 2, where the fluorescence
efficiency decreased owing to the higher impact of the
ICT, up to three exponentials were required to fit the
corresponding decay curves (Table 1). This behavior was
attributed to the inductive electron donor effect exerted by
the alkyl moieties grafted to the BODIPY, which decreased
the electron-withdrawing ability of the chromophoric core
and consequently hampered the ICT probability from the
corresponding spacer.

Effect of Solvent Polarity on ICT
Stabilization
Owing to the capability of the spacer moieties to induce effective

ICT processes, especially in combination with the electron-

withdrawing character of the BODIPY core, the fluorescence

emission of the new dyads depended markedly on the solvent

polarity (Figures 5, 6). Without exception, an increase of the

solvent polarity led to a drastic decrease in the emission

efficiency of all the dyads, so that in the most polar solvents

such as acetonitrile, these systems could be considered as non-

fluorescent, with quantum yields as low as 2%. Moreover,

the fluorescence-quenching correlated with a drastic change

in the fluorescence decay curves, since the time-resolved
emission profile acquired a multi-exponential character, with the
contribution of the shorter-lived component gaining prominence
as the solvent polarity increased (Tables S1, S2). This trend
also became modulated by the electron donor character of the
molecular structure of these dyads. As we mentioned above,
the full alkylation of the BODIPY core reduced its electron-
withdrawing character, thereby weakening the solvent-sensitivity
of the fluorescence emission (Figures 5, 6). As a matter of
fact, the fluorescence quantum yield of the thiourea-bridged

bis-BODIPYs derived from 2 (i.e., 4b) decreased from 51%
in cyclohexane to just 8% in a more polar media such as
acetonitrile, while a similar dyad derived from the fully-alkylated
scaffold 3 (i.e., 5b) retained an efficiency of 13% in the same
polar solvent. Likewise, two structural factors imposed by the
spacer moiety enhanced this fluorescence deactivation: (i) a
further increase of the electron donor ability of the spacer,
for instance, the emission quantum yield in acetonitrile on
going from urea-bridged dyad 4a to double thiourea-linked bis-
BODIPY 4c decreased from 16% to just 6% (Figure 5), and (ii)
a shortening of the spacer bridge, activating both charge transfer
mechanisms mentioned above (ICT and SBCT). Thus, the lowest
fluorescence quantum yield in acetonitrile was recorded from
amine-bridged bis-BODIPY dyads (2% for 4f and 4g arising from
BODIPY 2, and ≈10% for 5f and 5g derived from BODIPY 3;

Figures 5, 6).

The Special Case of DMF
To obtain additional insight into the solvent-sensitive
fluorescence of these dyads, we also analyzed their photophysical
signatures in an electron-donating solvent such as DMF.
Owing to high polarity of DMF [described by the Catalán
polarity solvent scale (Catalán, 2009) as SdP = 0.977, similar
to that of acetonitrile, 0.974], low fluorescence efficiency and
a bi-exponential decay curve, dominated by a short lifetime
component, should be expected as result of a further stabilization
of the ICT process. However, the bis-BODIPYs obtained
from both 2 and 3 skeletons and based on urea (4a and 5a),
thiourea (4b and 5b), and double thiourea (4c) linkers exhibited
fluorescence quantum yields higher than those recorded in less
polar solvents like ethanol (Figure 5). This unusual behavior
prompted by DMF should be related not only to its polarity but
also to its electron-donor ability [basicity scale (Catalán, 2009)
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FIGURE 5 | Dependence of the fluorescence efficiency on the solvent polarity for the urea-based and phosphonate-based bridged bis-BODIPYs built on

chromophoric scaffolds 2 (Left) and fully alkylated 3 (Right). Full data are reported in Tables S1, S2.

FIGURE 6 | Dependence of the fluorescence efficiency on the solvent polarity for the amine- and disulfur-based bridged bis-BODIPYs built on chromophoric scaffolds

2 (left) and 3 (right). Full data are reported in Tables S1, S2.

SB = 0.613], the highest among the solvents selected herein.
The basicity of DMF could induce specific interactions between
this hydrogen-bond-acceptor solvent and the proton of these
linkers so long as the electron lone pair of the latter was mainly
located on the amine moiety and less shifted toward the oxygen
atom. In agreement with this, the positive charge (see the blue
color in Figure 3) was mostly located around the nitrogen
atoms of the spacer, highlighting this position as the most
suitable for interaction with electron donor solvents. These
interactions must have decreased the electron donor capacity
of the urea-based bridges and, hence, have efficiently hampered
the probability of the ICT process. Therefore, the fluorescence
recorded in DMF arose from the balance between two opposite
effects: the intrinsic polarity-induced stabilization of the charge
separation counterbalanced by the high basicity of DMF. This
last specific interaction hindered the ICT population and yielded
higher fluorescence efficiencies and larger lifetimes than those

expected in this polar solvent (Tables S1, S2). Two further
experimental trends confirmed this hypothesis: on the one hand,
the enhancement of the fluorescence efficiency induced by DMF
decreased in the bis-BODIPYs grafted by urea > thiourea >

double thiourea bridges (Figure 5) and, on the other hand, this
enhancement was no longer recorded with the other spacer
moieties selected herein (Figure 6). In these latter dyads, the
corresponding fluorescence quantum yield decreased according
to the polar character of the solvent once the specific interaction
of the DMF with the spacer was no longer taking place, probably
due to the absence of ionizable hydrogen atoms flanking the
spacer moiety, as happened in the urea-based linkers.

Excitonic Coupling Induced by an Ether
Spacer
The absorption profiles of the ether-bridged bis-BODIPYs
(4k and 5k) were noticeably different with respect to those
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FIGURE 7 | Normalized absorption (thick line) and fluorescence (thin line) spectra of the ether-bridged bis-BODIPY 5k and its corresponding amino-bridged analog 5f

(black line) in cyclohexane. The optimized ground state geometry of the former bis-BODIPY is also included in different views to highlight the feasible excitonic

coupling between the transition dipole moments oriented along the longitudinal molecular axis.

recorded from their analog amine-bridged dyads (Figure 7,
Figure S1). Regardless of the solvent, the absorption spectrum
was hypsochromically shifted with respect to the rest of the
bis-BODIPYs and also split into two peaks of similar intensity
(Figures S60, S61). This deep disruption of the absorption profile
pointed to intramolecular excitonic interaction between the
BODIPY subunits. Indeed, the optimized geometry (Figure 7)
revealed that the oxygen hybridization left the chromophoric
subunits very close together (around 3.8 Å) and almost in
a twisted cofacial arrangement (a dihedral angle between the
transition dipolemoments of 68◦). This geometrical arrangement
could promote excitonic interactions between the BODIPY
electronic clouds (see the feasible overlap between one pyrrole
and the central ring of the other BODIPY, Figure 7). According
to the exciton theory, the growth of new absorption bands
at higher energies is indicative of head-to-head interactions
between the transition dipole moment (intramolecular H type
aggregate), favored by the stated mutual disposition of the
chromophoric units. However, this excitonic coupling provides
forbidden transitions from the excited state (H aggregates
are usually non-emissive). In contrast, these bis-BODIPYs
displayed strong fluorescence bands, slightly red-shifted with
respect to other dyads and with a marked shoulder at 580 nm
(Figure 7). Moreover, in an apolar solvent like cyclohexane,
the fluorescence turned out to be highly efficient (around 80%,
Table 2) with surprising long lifetimes (up to 19 ns in both
dyads; Figure 8, Figure S2). In this regard, the excitation and
fluorescence spectra, as well as the fluorescence quantum yield
and lifetime, became almost independent on the emission or/and
the excitation wavelengths. All these photophysical properties
could be consistent with excimer formation (long lifetimes are
a fingerprint of excimer emission) upon excitation of these
BODIPY dyads. Therefore, the mutual parallel and cofacial
arrangement of the BODIPY units inside these dyads could
enable a π-π stacking in the ground state, which led to

TABLE 2 | Photophysical properties of the ether-bridged bis-BODIPYs in different

solvents.

λab

(nm)

εmax·10
−4

(M−1 cm−1)

λfl

(nm)

ϕ τ (ns)

4k

ACN 475.0/490.5 14.6/13.4 520.5 0.01 0.02 (81%)−2.26 (19%)

DMF 478.0/493.0 14.7/13.2 522.5 0.01 0.03 (81%)−2.09 (11%)−3.00

(8%)

EtOH 476.5/497.5 15.1/12.8 521.0 0.03 0.13 (63%)−2.00 (37%)

c-hex 477.5/492.5 16.0/12.6 521.5 0.82 19.29

5k

ACN 495.5/514.0 13.6/12.7 545.0 0.06 3.36 (26%)−5.52 (74%)

DMF 497.0/515.5 13.0/13.1 546.0 0.15 7.00

EtOH 496.0/514.5 14.0/13.3 545.5 0.29 10.11

c-hex 496.5/515.0 14.1/14.9 545.0 0.84 19.34

c-hex, cyclohexane; EtOH, ethanol; DMF, dimethylformamide; ACN, acetonitrile.

Absorption (λab) and fluorescence (λfl ) wavelength, molar absorption at the maximum

(εmax ), fluorescence quantum yield (ϕ), and lifetime (τ ).

the recorded split of the absorption bands at higher energies
and, upon excitation, to subsequent geometrical rearrangement
leading to the emission from intramolecular excimer species.

Regarding the fluorescence efficiency and lifetime, the ether-
bridged dyads 4k and 5k exhibited similar dependence on
the solvent polarity to that previously described for the
other BODIPY dyads herein synthesized (Table 2 vs. Table 1).
Therefore, in spite of the excimer formation, the emission of
the ether-dyads was still mediated by an ICT process. However,
and with respect to other moieties acting as BODIPY linkers,
the lower electron release of the ether bridge should significantly
reduce its ability to promote ICT itself. Hence, we hypothesized
that the intramolecular charge transfer had to take place mainly
through other mechanisms, such as an SBCT process and the
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FIGURE 8 | Fluorescence decay curves of 5k with increasing solvent polarity.

so-called intervalence charge transfer (IVCT), invoked by some
authors to account for the emission behavior recorded from
closely packed intramolecular BODIPY dimers (Benniston et al.,
2010), the cofacial arrangement of which led also to effective
excimer formation. The significant influence of the bridging
moiety on the emission behavior of BODIPY dyads, as well as its
solvent-sensitivity, highlighted the complexity of the molecular
dynamics upon excitation, which involved an effective excitonic
coupling and the ensuing formation of an emissive excimer
coexisting with an effective ICT process in polar media.

Laser Properties of Bridged bis-BODIPYs
According to the absorption properties of the new bis-BODIPYs,
their lasing properties were studied under pumping at 355 nm
(dyads derived from scaffold 2) and 532 nm (dyads derived from
scaffold 3). All the dyes studied in this work exhibited broad-
line-width laser emission, with a pump threshold energy of ∼0.8
mJ, divergence of 5 mrad, and a pulse duration of 8 ns full-
width at half maximum (FWHM), placed in a simple plane-
plane non-tunable resonator cavity. The laser emission peaked
at ca. 541 and 563 nm for the dyads derived from scaffolds
2 and 3, respectively. Following the photophysical analysis,
the actual effect of the solvent on the dye laser action was
analyzed for solutions of polar and apolar solvents. Although the
photophysical studies showed that the new derivatives exhibited
their highest fluorescence capacity when dissolved in apolar
solvents such as cyclohexane (Figures 5, 6), the low solubility
of BODIPY dyes in this solvent prevented the concentrated
solutions required for laser experiments from being attained.
To analyze the dependence of the laser action on the medium
polarity, we then carried out the experiments in solvents of
increasing polarity enabling at the same time good solubility of
the new dyes, such as ethanol, DMF, and acetonitrile.

To optimize the laser action of the new dyes in the
different solvents, we first analyzed the dependence of their
lasing properties on dye concentration in an ethanolic solution
by varying the optical densities over an order of magnitude

FIGURE 9 | Dependence of lasing efficiency on solvent polarity in the

bis-BODIPYs derived from building block 2.

FIGURE 10 | Dependence of lasing efficiency on solvent polarity in the

bis-BODIPYs derived from building block 3.

while keeping all other experimental parameters constant (see
experimental section Laser Properties). It should be noted that
the optimal concentration for these bis-BODIPYs was about
three-fold lower than those required to induce effective laser
action in similar commercial BODIPYs (PM546 and PM567) as
well as in their mono-BODIPY precursors (scaffolds 2 and 3)
(Del Río et al., 2017). The lasing behavior of the new compounds
(Figures 9, 10) agreed with their photophysical properties, with
the fluorescence quantum yield and the lasing efficiency showing
a similar dependence on the solvent polarity and the substitution
pattern of the BODIPY core as well as the spacer moiety:
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i) The higher the polarity of the solvent, the lower the lasing
efficiency became; for the same skeleton and spacer, the lowest
laser efficiency was always registered in acetonitrile.

ii) The higher the degree of substitution in the BODIPY core, the
higher the emission efficiency became. Therefore, for the same
solvent and spacer, the laser efficiencies recorded for dyads
derived from scaffold 2 were consistently lower than those
displayed by dyads built on the fully alkylated BODIPY 3.

iii) The ability of DMF to induce specific interactions with the
dyads linked by urea and thiourea bridges led to a significant
increase in the laser efficiency with respect to those recorded
in a less polar solvent such as ethanol. In fact, the highest
lasing efficiencies among all the targets synthesized herein
were recorded from the dyads 5a (52%) and 5b (42%) built
on scaffold 3 with urea and thiourea as linkers.

iv) Shortening the spacer and/or reducing its electron donor
ability impaired the laser action significantly. Thus, dyads built
on scaffold 2 and linked by moieties d-j only showed effective
laser emission in ethanol, not becoming laser emitters in more
polar solvents such as acetonitrile. This is not the case of the
derivatives from skeleton 3, which maintained laser emission,
even in acetonitrile, although, depending on the d-j spacer, the
efficiency could be just 4%.

An important parameter for any practical applications of these
bis-BODIPYswas their lasing photostability under hard radiation
conditions and long operation times. A reasonable evaluation of
the photostability of these dyads can be obtained by irradiating
a small amount of ethanolic solution with exactly the same
pumping energy and geometry as used in the laser experiments
and monitoring the evaluation of the laser-induced fluorescence
intensity with respect to the number of pump pulses under
transversal excitation at 355 and 532 nm, with 5 mJ/pulse
and a 10-Hz repetition rate after 100,000 pump pulses (see
experimental section Laser Properties). To properly compare
the behavior of the new dyads, the lasing photostabilities of
commercial PM546 and PM567 as scaffolds of the new bis-
BODIPY derivatives were also analyzed under otherwise identical
experimental conditions. Both commercial dyes displayed good
photostability under drastic pumping conditions, with the laser
emission losing 50 and 25% of its efficiency, respectively, after
100,000 pump pulses at a 10-Hz repetition rate. Nevertheless, the
laser action of the bis-BODIPYs derived from such commercial
dyes was superior, with high lasing efficiencies and no signs of
degradation under the same pumping conditions.

The main result that draws our attention is the capacity of

the bis-BODIPYs to lase with high efficiency and photostability,
although their fluorescence quantum yields in ethanol never

exceeded 30% (see Figures 5, 6). Rational design linking the

BODIPY units in these bis-BODIPYS is key in accounting
for their lasing behavior. On the one hand, it enables an

absorption increase at the pumping wavelength, which leads

to a significant decrease in the dye concentration in the
active medium, drastically reducing deleterious effects such
as reabsorption/reemission and aggregation processes, which
becomes particularly important when highly concentrated
solutions are required to induce efficient laser emission. On the

other hand, the ongoing ICT process leads to a short fluorescence
lifetime, which allows radiative rate constants similar to that
observed for other BODIPY dyes to be reached. These facts
account for the origin and unique features of the laser behavior
of these bis-BODIPYs.

CONCLUSIONS

The length and stereoelectronic properties of the spacer linking
the chromophoric building blocks in the symmetric bridged
bis-BODIPYs designed herein played a key role in their
photophysical and laser signatures. The computationally assisted
spectroscopic characterization carried out herein unambiguously
revealed the complex and intriguing excited state dynamics
induced in these new multichromophoric systems. In fact,
the photonic behavior (fluorescence and lasing efficiency) of
all the tested BODIPY dyads became highly sensitive to the
solvent polarity owing to the activation of ICT processes,
whose effectiveness and mechanism strongly depended on the
moiety acting as a spacer. We highlight that even with non-
polar solvents, the connector moiety modulated the emission
efficiency as follows: the higher the electron donor ability
of the linker, and/or the smaller the distance between the
BODIPY cores interposed by the spacer, the lower the emission
efficiency and photostability became. Furthermore, up to three
potential charge transfer mechanisms could be promoted by
the different moieties acting as linkers in these BODIPY dyads:
direct ICT between the spacer and the BODIPY core and/or a
photoinduced symmetry breaking charge transfer (SBCT) and/or
an intervalence charge transfer (IVCT) in closely-packed dyads,
the extension and balance of which defined the final properties
of these symmetric BODIPY dyads. Besides, some spacers were
also able to promote intramolecular excitonic coupling, leading
to an excimer-like emission. Collectively, the present work
represents a breakthrough in the complex relationship between
the molecular structure and the photophysical signatures
of multichromophoric systems, providing key guidelines to
rationalize the design of tailored photonic materials for
advanced applications.

EXPERIMENTAL SECTION

General Experimental Methods
All solvents and reagents were obtained commercially and
used as received unless stated otherwise. Residual water was
removed from starting compounds by repeated coevaporation
with toluene. Reactions were executed at ambient temperatures
unless stated otherwise. All moisture-sensitive reactions
were performed in dry flasks fitted with glass stoppers or
rubber septa under a positive pressure of argon. Anhydrous
MgSO4 or Na2SO4 was used to dry organic solutions during
workup, and evaporation of the solvents was performed under
reduced pressure using a rotary evaporator. Flash column
chromatography was performed using 230–400 mesh silica gel.
Thin-layer chromatography was conducted on a Kieselgel 60
F254. Spots were observed under UV irradiation (254 nm).
1H, 13C, 19F, and 31P NMR spectra were recorded in CDCl3
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or CD3OD at 300, 400, or 500 MHz, 75, 101, or 126, 376, and
161.97 MHz, respectively. Chemical shifts are expressed in
parts per million (δ scale) downfield from tetramethylsilane
and are referenced to residual protium in the NMR solvent
(CHCl3: δ 7.25 ppm; CD3OD: 4.870 ppm). Mass spectra were
recorded by direct injection with an Accurate Mass Q-TOF
LC/MS spectrometer equipped with an electrospray ion source
in positive mode.

Compounds 2, 3, 6a, 7a, and 7b were prepared following
the methods described in Del Río et al. (2017). A full detailed
description of the synthesis protocols for the preparation of
the required monomeric BODIPY units 6b, 8a, 8b, 9a, 9b,
10b, 11a, 11b, and 12, along with the characterization and
copies of NMR spectra of all products, is included in the
Supplementary Material.

General Procedures for the Preparation of
Symmetrical bis-BODIPYs
Urea-Bridged bis-BODIPYs
The appropriate azidomethyl-BODIPY 7 (0.2 mmol) was added
at room temperature to a mixture of 1M triethylammonium
hydrogen carbonate buffer (0.44 mmol) and 1,4-dioxane
(1.0mL). Next, triphenylphosphine (0.026 mmol) was added,
and the resulting mixture was stirred at room temperature.
The reaction progress was monitored by TLC. After the
disappearance of the startingmaterial, the solvent was evaporated
in vacuo to dryness. The residue was then purified by flash
chromatography on silica gel (hexane-ethyl acetate 8:2).

Thiourea-Bridged bis-BODIPYs
The appropriate BODIPY-isothiocyanate 10 (0.1 mmol)
was dissolved in 1,4-dioxane (2mL) and treated with the
corresponding azidomethyl-BODIPY 7 (0.1 mmol), water
(0.5mL), and triphenylphosphine (0.15 mmol). The resulting
solution was stirred under argon at room temperature for 24 h
and then concentrated. The ensuing residue was then purified by
chromatography on silica gel (hexane-ethyl acetate 7:3).

Phosphonate-Bridged bis-BODIPYs
The appropriate BODIPY-isothiocyanate 10 (0.1 mmol)
was dissolved in 1,4-dioxane (2mL) and treated with the
corresponding azidomethyl-BODIPY 7 (0.1 mmol), water
(0.5mL), and triphenylphosphine (0.15 mmol). The resulting
solution was stirred under argon at room temperature for 24 h
and then concentrated. The ensuing residue was then purified by
chromatography on silica gel (hexane-ethyl acetate 7:3).

Phosphate-Bridged bis-BODIPYs
Iodine (0.15 mmol) and water (30 µL) were added to a cooled
solution (0◦C) of H-phosphonate (0.05 mmol) in pyridine
(1mL). The reaction mixture was allowed to warm to room
temperature and stirred for 1 h. The crude was then poured
into a saturated solution of sodium sulfite (10mL) and extracted
with AcOEt (3 × 20mL). The combined organic solutions were
washed with HCl 5%, dried, and concentrated. The resulting
crude mixture was purified by chromatography on silica gel
(CH2Cl2-MeOH; 9:1).

Amine-Bridged bis-BODIPYs
A mixture of the corresponding aldehyde 6 (0.06 mmol) and
the appropriate amine 9 (1 equiv.) was refluxed overnight
in methanol (3mL) under argon. The mixture was then
concentrated in vacuo. The residue was dissolved in acetic acid
(3mL), and sodium cyanoborohydride (3 equiv.) was added.
The reaction mixture was stirred at room temperature for
24 h and then concentrated, and the residue was purified by
chromatography on silica gel (hexane-ethyl acetate 85:15).

Acetamide-Bridged bis-BODIPYs
Ac2O (10 equiv.) was added to a stirred solution of aminomethyl
dimer 4f or 5f (0.012 mmol) in pyridine (2mL). The reaction
mixture was stirred at room temperature overnight and then
concentrated. The resulting crude mixture was purified by
chromatography on silica gel (hexane-ethyl acetate; 8:2).

Ammonium-Bridged bis-BODIPYs
The corresponding amine-bridged bis-BODIPYs dissolved in
diethyl ether under argon was added to a solution of
tetrafluoroboric acid (0.034 mmol) in diethyl ether (3mL). The
mixture was stirred for 20min. The precipitate was filtered and
extensively washed with diethyl ether.

Disulfide-Bridged bis-BODIPYs
The appropriate thioacetate, 11a, 11b, or 12SAc (see
Supplementary Material) (0.11 mmol), was dissolved in
iPrOH (3mL), and K2CO3 (2 equiv.) was added. After stirring
for 24 h, the mixture was poured into 10mL of water and
extracted with CH2Cl2 (3 × 20mL); the organic layer was
dried over sodium sulfate and concentrated. The crude reaction
mixture was purified by flash chromatography (hexane-ethyl
acetate 8:2).

Ether-Bridged bis-BODIPYs
The appropriate formyl-BODIPY 6 (0.07 mmol), dissolved in
anhydrous CH2Cl2 (3mL) under an argon atmosphere, was
treated with triethylsilane (0.035 mmol) and indium trichloride
(0.07 mmol). After stirring for 24 h, the mixture was washed with
sodium bicarbonate and extracted with CH2Cl2 (3× 20mL), and
the organic layer was dried over sodium sulfate and concentrated.
The crude was purified by flash chromatography (hexane-ethyl
acetate 98:2).

Characterization Data of bis-BODIPYs
Urea-dimer (4a): Obtained from azide 7a according to procedure
A. (Yield = 36mg, 95 %;) m. p. 92–93◦C 1H NMR (300 MHz,
CDCl3) δ 7.57–7.29 3 (m, 6H), 7.21–7.07 (m, 2H), 5.94 (s, 4H),
4.59 (t, J = 6.2Hz, 2H), 4.14 (d, J = 6.1Hz, 4H), 2.51 (s, 12H),
1.33 (s, 12H). 13C NMR (75 MHz, CDCl3) δ 158.1, 156.1, 143.4,
140.8, 137.6, 133.2, 131.2, 130.0, 128.8, 128.8, 128.5, 128.3, 121.8,
42.5, 14.9, 14.3. HRMS (ESI-TOF): calcd for C41H42B2F4ONaN6:
[M+ Na]+ 755.3440, found 755.3382.

Urea-dimer (5a): Obtained from azide 7b according to
procedure A. (Yield = 38mg, 90 %); m. p. 96–98◦C; 1H NMR
(400 MHz, CDCl3) δ 7.49–7.30 (m, 4H), 7.28–7.24 (m, 2H),
7.14–7.00 (m, 2H), 4.67–4.48 (m, 2H), 4.16–3.96 (m, 4H), 2.40
(s, 12H), 2.17 (q, J = 7.5Hz, 8H), 1.16 (s, 12H), 0.86 (t, J =
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7.6Hz, 12H); 13C NMR (101 MHz, CDCl3) δ 157.7, 153.9, 138.8,
138.3, 137.5, 133.6, 133.0, 130.1, 129.3, 128.4, 127.8, 42.2, 17.0,
14.5, 11.1. HRMS (ESI-TOF): calcd for C49H58B2F4N6NaO: [M
+ Na]+ 867.47022, found 867.46969.

Thiourea-dimer (4b): Obtained from azide 7a and
isothiocyanate 10a according to procedure B. (Yield = 24mg,
65%); m. p. 152–153◦C; 1HNMR (300 MHz, CDCl3) δ 7.44–7.39
(m, 6H), 7.19–7.12 (m, 2H), 6.02 (t, J = 6.3Hz, 2H), 5.95 (s,
4H), 4.49 (d, J = 5.9Hz, 4H), 2.49 (s, 12H), 1.34 (s, 12H); 13C
NMR (75 MHz, CDCl3) δ 183.6, 155.9, 143.2, 140.1, 135.8, 133.1,
130.9, 129.7, 129.1, 128.4, 128.3, 121.6, 46.0, 14.6, 14.2. HRMS
(ESI-TOF): calcd for C41H42B2F4SNaN6: [M + Na]+ 771.3212,
found 771.3177.

Thiourea-dimer (5b): Obtained from azide 7b and
isothiocyanate 10b according to procedure B. (Yield = 25mg,
58%); 1HNMR (400 MHz, CDCl3) δ 7.48–7.31 (m, 6H), 7.17 (dt,
J = 7.3, 1.0Hz, 2H), 5.80 (t, J = 6.3Hz, 2H), 4.45 (d, J = 6.2Hz,
4H), 2.45 (s, 6H), 2.25 (q, J = 7.5Hz, 4H), 1.26 (s, 6H), 0.94 (t,
J = 7.5Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 179.1, 154.3,
154.1, 138.9, 138.7, 138.4, 137.6, 133.7, 133.4, 133.2, 130.3, 130.2,
129.5, 128.9, 128.8, 128.6, 128.1, 128.0, 42.3, 29.5, 17.2, 14.7, 11.3.
HRMS (ESI-TOF): calcd for C49H58B2F4N6NaS: [M + Na]+

883.4464, found 883.4437.
Thiourea-bridged bis-BODIPY (5c). Obtained from

BODIPY-isothiocyanate 10a and 1,4-phenylenediamine (1.5
equiv). (Yield = 25mg, 45%); m. p. 175–176◦C; 1H NMR (500
MHz, CDCl3) δ 7.74–7.69 (m, 2H), 7.48–7.41 (m, 6H), 7.38
(ddd, J = 7.8, 7.6,1.3Hz, 2H), 7.15 (dd, J = 7.6, 1.4Hz, 2H),
6.86–6.80 (m, 2H), 6.63–6.57 (m, 2H), 6.06–5.98 (m, 2H), 5.90
(s, 4H), 4.76 (d, J = 6.2Hz, 4H), 2.54 (s, 12H), 1.28 (s, 12H); 13C
NMR (75 MHz, CDCl3) δ 181.8, 156.0, 146.4, 142.8, 139.4, 135.2,
133.8, 130.8, 130.0, 129.7, 128.6, 127.5, 125.8, 116.0, 46.4, 14.8,
14.2. HRMS (ESI-TOF): calcd for C48H49B2F4S2N8: [M + H]+

899.3644, found 899.3680.
H-phosphonate-dimer (4d): Obtained from alcohol 2 and

PBr3 according to procedure C. (Yield= 175mg, 48%); 1HNMR
(500 MHz, CDCl3) δ 7.58–7.44 (m, 6H), 7.27–7.22 (m, 2H), 6.59
(d, J = 707Hz, 1H), 5.95 (s, 4H), 4.96–4.82 (m, 4H), 2.54 (s, 12H),
1.30 (s, 6H), 1.29 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 156.1,
142.9, 138.4, 133.7, 133.1, 130.9, 129.8, 129.6, 129.4, 128.5, 121.6,
121.5, 64.5, 64.4, 14.6, 13.8; 31P NMR (161.97 MHz, CDCl3)
δ 9.18.

H-phosphonate-dimer (5d): Obtained from alcohol 3 and
PBr3 according to procedure C. (Yield= 189mg, 52%); 1HNMR
(500 MHz, CDCl3) 7.54–7.41 (m, 6H), 7.26–7.20 (m, 2H), 6.61
(d, J = 707.0Hz, 1H), 5.00–4.85 (m, 4H), 2.52 (s, 12H), 2.26 (q, J
= 7.5Hz, 8H), 1.20 (s, 6H), 1.19 (s, 6H), 0.95 (t, J = 7.5Hz, 12H).
HRMS (ESI-TOF): calcd for C48H61B2F4N5O3P: [M+NH4]

+

884.46442, found: 884.46722. calcd for C48H57B2F4N4NaO3P:
[M+Na]+ 889.41981, found: 889.41976.

Phosphate-dimer (4e). Obtained from H-phosphonate bis-
BODIPY 4d according to procedure D. (Yield = 13.5mg, 65%).
1H NMR (500 MHz, CDCl3) δ 7.62–7.51 (m, 3H), 7.34–7.24 (m,
3H), 7.13–7.05 (m, 2H), 5.81 (m, 4H), 4.69–4.49 (m, 4H), 2.47 (s,
12H), 1.18 (s, 12H); 31P NMR (161.97 MHz, CDCl3) δ −2.16.

Amine-dimer (4f): Obtained from aldehyde 6a and amine 9a
according to procedure E. (Yield= 97.3mg, 45%); 1HNMR (500

MHz, CDCl3) δ 7.47–7.31 (m, 6H), 7.15–7.13 (m, 2H), 5.94 (s,
4H), 3.62 (s, 4H), 2.54 (s, 12H), 1.27 (s, 12H); 13C NMR (125
MHz, CDCl3) δ 155.6, 142.9, 140.6, 137.8, 133.7, 131.2, 129.5,
128.3, 128.2, 127.9, 121.4, 50.8, 14.7, 13.9. HRMS (ESI-TOF):
calcd for C40H42B2F4N5: [M+H]+ 690.35625, found: 690.35814.

Amine-dimer (5f): Obtained from aldehyde 6b and amine 9b
according to procedure E. (Yield= 15.4mg, 40%); 1HNMR (500
MHz, CDCl3) 7.45–7.30 (m, 6H), 7.14–7.12 (m, 2H), 3.62 (s, 4H),
2.51 (s, 12H), 2.27 (q, J = 7.5Hz, 8H), 1.18 (s, 12H), 0.94 (t, J =
7.5Hz, 12H); 13C NMR (125 MHz, CDCl3) 153.8, 138.9, 138.1,
138.0, 134.5, 132.9, 130.4, 129.3, 128.5, 128.0, 127.7, 50.6, 17.2,
14.7, 12.6, 11.2). HRMS (ESI-TOF): calcd for C48H58B2F4N5:
[M+H]+ 802.48243, found: 802.48314.

Acetamide-dimer (4g): Obtained from amine-bridged bis-
BODIPY 4f according to procedure F. (Yield= 4.5mg, 85%); 1H
NMR (500 MHz, CDCl3) δ 7.50 (m, 1H), 7.44–7.38 (m, 2H), 7.34
(m, 1H), 7.20 (m, 1H), 7.14–7.11 (m, 2H), 5.95 (s, 2H), 5.93 (s,
2H), 4.36 (s, 2H), 4.31 (s, 2H), 2.54 (s, 6H), 2.51 (s, 6H), 1.96 (s,
3H), 1.28 (s, 6H), 1.21 (s, 6H); 13C NMR (125 MHz, CDCl3) δ

171.6, 156.4, 155.8, 143.1, 142.3, 139.8, 139.0, 134.2, 133.9, 133.1,
132.8, 130.7, 130.6, 130.5, 129.9, 129.2, 128.8, 128.7, 128.1, 126.5,
126.2, 121.7, 121.4, 51.5, 49.6, 21.0, 14.8, 14.7, 14.0, 13.9. HRMS
(ESI-TOF): calcd for C40H43B2F4N5NaO: [M+Na]+ 754.34957,
found: 754.35211.

Acetamide-dimer (5g): Obtained from amine-bridged bis-
BODIPY 5f according to procedure F. (Yield= 9.1mg, 90%); 1H
NMR (500 MHz, CDCl3) δ 7.47 (td, J = 7.6, 1.4Hz, 1H), 7.41
(td, J = 7.6, 1.3Hz, 1H), 7.37 (dd, J = 7.5, 1.6Hz, 1H), 7.34
(td, J = 7.5, 1.5Hz, 1H), 7.22 (dd, J = 7.4, 1.4Hz, 1H), 7.19
(dd, J = 7.8, 1.2Hz, 1H), 7.16 (dd, J = 7.3, 1.6Hz, 1H), 7.10
(dd, J = 7.7, 1.4Hz, 1H), 4.43 (s, 2H), 4.36 (s, 2H), 2.53 (s, 6H),
2.52 (s, 6H), 2.30–2.24 (m, 8H), 1.86 (s, 3H), 1.23 (s, 6H), 1.16
(s, 6H), 0.95 (t, J = 7.6Hz, 12H). HRMS (ESI-TOF): calcd for
C50H59B2F4N5NaO2: [M+Na]+ 882.46991, found: 882.47366.

Ammonium-dimer (4h). Obtained from amine-bridged bis-
BODIPY 4f according to procedure G. (Yield= 10mg, 80%); 1H
NMR (300 MHz, CD3OD) δ 7.70 (m, 6H), 7.52 (d, J = 7.5Hz,
2H), 6.12 (s, 4H), 4.21 (bs, 4H), 3.32 (s, 12H), 2.99 (d, J = 8.7Hz,
2H), 2.53 (s, 12H). HRMS (ESI-TOF) (positive mode): calcd for
C40H42B2F4N5: [M+H]+ 690.35625, found: 690.35822; HRMS
(ESI-TOF) (negative mode): [BF4]

− 87.00326, found: 86.00634.
Disulfide-dimer (4i): Obtained from thiolacetate 11a

according to procedure H. (Yield = 18mg, 40%); 1H NMR
(500 MHz, CDCl3) δ 7.40–7.35 (m, 6H), 7.19–7.17 (m, 2H),
5.97 (s, 4H), 3.77 (s, 4H), 2.54 (s, 12H), 1.35 (s, 12H); 13C
NMR (125 MHz, CDCl3) δ 155.9, 143.3, 139.5, 134.9, 134.3,
131.3, 131.0, 129.7, 128.7, 128.5, 121.5, 41.1, 14.8, 14.5. HRMS
(ESI-TOF): calcd for C40H41B2F4N4S2: [M+H]+ 739.29027,
found: 739.28922. calcd for C40H44B2F4N5 S2: [M+NH4]

+

756.31682, found: 756.31544; calcd for C40H40B2F4N4NaS2:
[M+Na]+ 761.27222, found: 761.27138.

Disulfide-dimer (5i): Obtained from thiolacetate 11a

according to procedure H. (Yield = 21mg, 45%); 1H NMR
(500 MHz, CDCl3) δ 7.40–7.33 (m, 6H), 7.19–7.17 (m, 2H),
3.76 (s, 4H), 2.51 (s, 12H), 2.29 (q, J = 7.5Hz, 4H), 1.24 (s,
12H), 0.96 (t, J = 7.5Hz, 6H).13C NMR (125 MHz, CDCl3)
δ 154.2, 138.6, 137.9, 135.2, 135.0, 133.1, 130.8, 130.6, 129.4,
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129.0, 128.3, 41.2, 17.2, 14.7, 12.7, 11.8. HRMS (ESI-TOF): calcd
for C48H57B2F4N4S2: [M+H]+ 851.41569, found: 851.41495;
calcd for C48H60B2F4N5S2: [M+NH4]

+ 868.44224, found:
868.44135; calcd for C48H56B2F4N4NaS2: [M+Na]+ 873.39764,
found: 873.39923.

Elongated disulfide-dimer (5j): Obtained from thiolacetate
12Sac (see Supplementary Material) according to procedure H.
(Yield = 14.5mg, 42%); 1H NMR (500 MHz, CDCl3) 7.41(dt, J
= 7.5, 1.5Hz, 2H), 7.35–7.31 (m, 4H), 7.18–7.16 (m, 2H), 5.95
(s, 4H), 2.84 (dd, J = 8.9, 6.5Hz, 4H), 2.60 (dd, J = 8.7, 6.7HZ,
4H), 2.52 (s, 12H), 1.34 (s, 12H).13C NMR (125 MHz, CDCl3)
δ 155.7, 142.8, 140.6, 137.4, 134.4, 131.3, 130.3, 129.5, 128.5,
127.5, 121.4, 37.2, 32.5, 14.7, 14.3. HRMS (ESI-TOF): calcd for
C42H45B2F4N4S2: [M+H]+ 767.32163, found 767.32171; calcd
for C42H48B2F4N5S2: [M+NH4]

+ 784.34818, found 784.34983.
Ether-dimer (4k): Obtained from aldehyde 6a according to

procedure I. (Yield = 8mg, 56%); 1H NMR (300 MHz, CDCl3)
δ 8.07–7.96 (m, 2H), 7.53–7.41 (m, 2H), 7.30 (t, J = 7.5Hz,
2H), 7.07 (dd, J = 7.5, 1.3Hz, 2H), 5.80 (s, 4H), 3.78 (s,
4H, 2.46 (s, 12H), 1.21 (s, 12H). HRMS (ESI-TOF): calcd for
C40H41B2F4N4O: [M+H]+ 691.3403, found: 691.3389.

Ether-dimer (5k): Obtained from aldehyde 6b according to
procedure I. (Yield = 5mg, 48%); 1H NMR (300 MHz, CDCl3)
δ 7.99 (d, J = 7.7Hz, 2H), 7.54–7.39 (m, 2H), 7.33–7.29 (m, 2H),
7.11–7.04 (m, 2H), 3.63 (s, 4H), 2.44 (s, 12H), 2.14 (q, J= 7.5Hz,
8H), 1.08 (s, 12H), 0.84 (t, J = 7.5Hz, 12H). HRMS (ESI-TOF):
calcd for C48H57B2F4N4O: [M+H]+ 803.4655, found: 803.4639.

Spectroscopic Properties
Spectroscopic properties were registered in diluted solutions
(around 2 × 10−6 M) prepared by adding the corresponding
solvent (spectroscopic grade) to the residue from an adequate
amount of a concentrated stock solution in acetone after vacuum
evaporation of this solvent. UV-Vis absorption spectra were
recorded on a Varian model CARY 4E spectrophotometer,
whereas the fluorescence and excitation spectra were registered
in an Edinburgh Instruments spectrofluorimeter (model FLSP
920), as were the decay curves. Fluorescence quantum yields (ϕ)
were obtained using commercial BODIPYs in ethanol (PM546
ϕr = 0.85 and PM567 ϕr = 0.84) as a reference. The values
were corrected by the refractive index of the solvent. Radiative
decay curves were registered with the time-correlated single-
photon counting technique using a multichannel plate detector
with picosecond time resolution. Fluorescence emission was
monitored at the maximum emission wavelength after excitation
by means of a wavelength-tunable Fianium Supercontinuum
laser. The fluorescence lifetime (τ ) was obtained after the
deconvolution of the instrumental response signal from the
recorded decay curves by means of an iterative method. The
decay curve was essentially the same regardless of the excited
visible absorption band. The goodness of the exponential fit was
controlled by statistical parameters (chi-square and the analysis
of the residuals).

Quantum Mechanical Calculations
Ground state geometries were optimized at the Density
Functional Theory (DFT) level using the range-separated

hybrid wB97XD method and the triple-valence basis set with
one polarization functions (6–311 g∗). To check that the
optimized geometries correspond to a true energy minimum, the
corresponding frequency analysis was conducted (no negative
value). The solvent effect (ethanol) was considered in the
theoretical simulations by means of the Polarizable Continuum
Model (PCM). All the calculations were performed using
Gaussian 16 software as implemented in the computational
cluster “arina” of the UPV/EHU.

Laser Properties
Liquid solutions of dyes were contained in 1-cm optical-
path rectangular quartz cells carefully sealed to avoid solvent
evaporation during the experiments. The liquid solutions were
transversely pumped with 5-mJ, 8-ns FWHM pulses from the
second harmonic (532 nm) and the third harmonic (355 nm)
of a Q-switched Nd:YAG laser (Lotis TII 2134) at a repetition
rate of 1Hz. The exciting pulses were line-focused onto the
cell using a combination of positive and negative cylindrical
lenses (f = 15 cm and f = −15 cm, respectively) perpendicularly
arranged. The plane-parallel oscillation cavity (2 cm length)
consisted of a 90%-reflectivity aluminum mirror acting as the
back reflector and the lateral face of the cell acting as output
coupler (4% reflectivity). The pump and output energies were
detected by a GenTec powermeter. The photostability of the
dyes in ethanol was evaluated by using a pumping energy and
geometry exactly equal to that of the laser experiments. We
used spectroscopic quartz cuvettes with a 0.1 cm optical path to
allow for the minimum solution volume (40 µL) to be excited.
The lateral faces were grounded, whereupon no laser oscillation
was obtained. Information about photostability was obtained
by monitoring the decrease in laser-induced fluorescence (LIF)
intensity after 100,000 pump pulses at a 10Hz repetition rate
to speed up the running of the experiment. The fluorescence
emission and laser spectra were monitored perpendicular to
the exciting beam, collected by an optical fiber, imaged onto
a spectrometer (Acton Research corporation), and detected
with a charge-coupled device (CCD) (SpectruMM:GS128B). The
fluorescence emission was recorded by feeding the signal to
the boxcar (Stanford Research, model 250) to be integrated
before being digitized and processed by a computer. The
estimated error in the energy and photostability measurements
was 10%.
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Difluoroboron-dipyrromethenes (BODIPYs) are highly popular fluorescent dyes with

applications as NIR probes for bioimaging, fluorescent tags/sensors and as

photosensitizers in cancer therapy and organic photovoltaics. This review concentrates

on the synthesis and spectral properties of BODIPY dyes conjugated with carbazole

heterocycle. The carbazole is an electron rich tricyclic compound and due to its excellent

electronic properties, it is extensively used in the production of electroluminescent

materials and polymers. This review highlights the recent progress made on the series

of BODIPY derivatives containing carbazole ring at alpha, beta, and meso-positions of

the BODIPY skeleton. Carbazole based hybrid BODIPYs, carbazole linked aza-BODIPYs

and carbazole-fused BODIPYs are also discussed.

Keywords: BODIPY, carbazole, fluorescence, absorption, dyes

INTRODUCTION

Certain organic or inorganic molecules can act as fluorophores; and they can re-emit the light
upon irradiation with the light source. The fluorescent organic dyes have been extensively used
in the wide range of applications such as: biomolecular labels (Celli et al., 2010; Kowada and
Kikuchi, 2015), chemosensors (Wu et al., 2015), energy transfer cassettes (Fan et al., 2013), organic
light emitting diodes (Zampetti et al., 2017), dye-sensitized solar cells (Klfout et al., 2017), etc.
Among the highly fluorescent organic molecules reported in the literature, the dyes based on 4,4-
difluoro-4-bora-3α,4α-diaza-s-indacene (difluoroboron dipyrromethene, abbreviated as BODIPY,
Figure 1); show possibly the highest potential and have become enormously popular in recent
times. Although, Treibs and Kreuzer first reported these molecules in 1968 (Treibs and Kreuzer,
1968); the field was not developed much till 1980. In the 1980s, researchers reported potential use
of these dyes for biological labeling (Vedamalai et al., 2018). After that, there was a clear rise in the
number of reports on BODIPY dyes; making them hugely popular among chemists and biologists
to develop BODIPY based fluorescent sensors (Vedamalai et al., 2016, 2018), bioimaging agents
(Kesavan et al., 2019), and photosensitizers for PDT (Kamkaew et al., 2013; Zheng et al., 2018).

By mid of the 1990s BODIPY’s potential applications in the area of biological sciences
(Vedamalai and Gupta, 2018) and materials sciences were fully recognized and research
reports in this area tremendously increased (Ulrich et al., 2008). These molecules showed
remarkable properties like sharp absorption and emission, large molar absorption coefficients,
high fluorescence quantum yields and high photo-stability. Thus, this group of fluorescent
dyes meet the criteria for a good fluorophore; they exhibit enormous synthetic variations and
versatile applications (Loudet and Burgess, 2007; Ziessel et al., 2007; Kolemen and Akkaya,
2018). Understanding the photophysical properties of these systems (Lu et al., 2014) is of
principal importance, not only because of the intrinsic potential applications but, also in the
design of new dyes with specific properties. The main synthetic advantage of BODIPY dye
is that, the unique structure of dye skeleton provides eight positions which can be easily
functionalized to fine-tune their electronic properties (Lakshmi et al., 2015, 2016). There are
excellent reviews available on the BODIPYs based on the different applications, such as: fluorescent
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FIGURE 1 | s-indacene and basic BODIPY core structure.

NIR probes (Yuan et al., 2013), sensitizers for PDT (Kamkaew
et al., 2013), organic materials for photovoltaics (Bessette and
Hanan, 2014), D-A type systems with focus on energy/electron
transfer (Loudet and Burgess, 2007), fluorescent sensors (Boens
et al., 2012; Ni and Wu, 2014), BODIPY based multi-
chromophore cassettes (Ziessel et al., 2007), etc. This review
presents the structural diversity of the carbazole-BODIPY
conjugates, with the emphasis on the effect of the substitution of
carbazole heterocycle on the optical properties of the BODIPYs.

Carbazole is a well-known heterocyclic aromatic system.
The aromatic nature of carbazole makes it chemically and
thermally stable; and the ring can be easily functionalized at
different positions. Carbazole and its derivatives are electron
rich compounds and they exhibit good absorption and emission
properties (Li et al., 2004; Barberis and Mikroyannidis,
2006; Mudadu et al., 2008). Also, due to their excellent
photoluminescence and hole-transport property; these systems
are used for various applications in photovoltaic systems
and OLEDs. They are also employed as photosensitizers
(Promarak et al., 2008; Wang et al., 2008; Tang et al.,
2010) in DSSCs. Carbazole derivatives are also known for
their anti-microbial, anti-tumor properties and as bioimaging
agents (Głuszyńska, 2015).

In recent years, the reports on carbazole substituted
BODIPYs and porphyrinoids (Das and Gupta, 2019) have
significantly increased. It is observed that, the presence of
electron rich carbazole moiety can alter the absorption and
emission properties of BODIPYs; which depend on the position
and kind of linkage through which carbazole is attached
on the BODIPY skeleton. In this review, we present the
overview of synthetic strategies used to prepared various kinds
of carbazole substituted BODIPYs; also, the change in the
electronic properties due to substitution and their applications
are discussed.

Abbreviations: AIEE, aggregation induced enhanced emission; BODIPY,

difluoroboron dipyrromethene; CDCA, chenodeoxycholic acid; DSSC, dye

sensitized solar cell; FET, field effect transistor; FRET, fluorescence resonance

energy transfer; ICT, inrtamolecular charge transfer; LHE, light harvesting

efficiency; OLED, oraganic light emitting diode; OPV, organic photovoltaic; PET,

photoinduced energy transfer; TPEF, two-photon emission fluorescence; TTA,

triplet–triplet annihilation.

Beta-Substituted BODIPYs
Main advantage of BODPY core is that, the three available
positions (α, β, and meso) are prone to derivetisation (Figure 1).
But the feasibility of substitution is highly depended on the
other functional groups, already present on the BODIPY core.
The substitution of electron rich groups at the beta-positions is
expected to enhancethe electronic communication between the
BODIPY core and the substituents.

In 2009, Zhang et al. reported the synthesis of BODIPY
3 (Scheme 1); the key precursor 2 was coupled with 9-ethyl-
3-(prop-1-ynyl)-9H-carbazole via Pd-catalyzed Sonogashira
reaction. The ethynyl linkages present in this molecule
helped to show efficient ICT process. The absorption and
emission maxima of BODIPY 3 were very much red shifted
(Scheme 1) as compared to the parent meso-tetraphenyl
BODIPY, which reflected the effect of carbazole ring linked
via rigid ethyne linker to the boron-dipyrrin core. The linear
D-π-D type structure resulted in the extended conjugation
along with efficient ICT process, which made this molecule
to exhibit two-photon absorption properties (Zhang et al.,
2009). As a result, this compound showed a sharp emission
peak around 670 nm with reasonable quantum yield. This
emission was attributed to two-photon emission fluorescence
(TPEF). Since this emission wavelength fall in human body’s
therapeutic window (650–800 nm), this molecule has potential
in bioimaging applications.

The BODIPYs 6 and 7 linked to carbazole via thiophene
spacer were used for organic photovoltaic (OPV) applications
(Lin et al., 2012). The target BODIPYs 6 and 7 were
synthesized by Stille and/or Sonogashira coupling reactions
between precursors BODIPY 4 and 5 with the appropriate
stannyl functionalized carbazole derivative (Scheme 2). The
studies showed that, insertion of an alkyne moiety renders
flexibility between the donor carbazole and acceptor BODIPY
core, which is beneficial for light harvesting. The large Stokes
shift displayed by BODIPYs 6 and 7 suggests that, the excited
state of the molecules have a more planar conformation, which
is not favorable for solar cell applications. Both the molecules 6
and 7 showed reasonable light to current conversion efficiency
of 1.8 and 2.6%, respectively. Zhao and co-workers reported
BODIPYs 9 and 10 where, one beta-position is substituted
with carbazole ring and the other beta-position is linked to
C60 (Scheme 3) (Yang et al., 2012) or rhenium metal complex
(Chart 1). In BODIPYs 9 and 10, the electron rich carbazole
derivative is attached through rigid ethynyl bond by Pd(0)
catalyzed Sonogashira coupling. The carbazole derivative linked
to the BODIPY unit, is acting as a light-harvesting antenna
system. In compound 10, intramolecular energy transfer was
observed from the BODIPY based singlet excited state to the
singlet excited state localized on the C60 unit.

The intrinsic intersystem crossing resulted in the triplet-
excited state of the C60 in the absence of a heavy atom. The
dyad 10 showed TTA up-conversion with quantum yield up to
2.9% (Yang et al., 2012). Complex 11 showed much weaker TTA
up-conversion, which can be assigned to the weak absorption
of 11 at the excitation wavelength and less efficient ISC
(Yi et al., 2013).
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SCHEME 1 | BODIPY–carbazole conjugates inked via ethyne bridges.

SCHEME 2 | BODIPYs linked to carbazole derivatives with thiophene spacer. (i) Pd(PPh3)2Cl2, CuI, THF, Et3N, TBAF, THF; (ii) Pd(PPh3)2Cl2, CuI, THF,

diisopropylamine; (iii) Pd(PPh3)2Cl2, PPh3, DMF.
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SCHEME 3 | Synthesis of BODIPY linked via ethyne linkage to carbazole and C60. (i) PdCl2(PPh3)2, PPh3, CuI, NEt3, THF, argon atmosphere, 60◦C, 6 h; (ii) sarcosine,

C60, toluene, reflux.

CHART 1 | Carbazole BODIPY with rhenium metal complex.

Direct substitution at the beta-positions of BODIPYs
(Scheme 4) through Suzuki coupling between boronic ester
derivative of carbazole and the 2,6-dibromo substituted BODIPY
12 is another method to incorporate carbazole ring on the
BODIPY core. The pronounced effect of substitution of carbazole
rings on the beta-position of the BODIPY, reflected in the
increased absorption efficiency from 300 to 900 nm; thus
molecule 13 acted as a panchromatic dye. This molecule showed
an excellent red-shift in its emission and had high thermal
stability. Photovoltaic performance studies showed that, by
further engineering the molecular structure and optimization
of the morphology; this type of dyes can become potential

candidates for the efficient organic solar cell materials (Liao
et al., 2016). Wanwong et al. reported the application of
beta -carbazole substituted BODIPY dyad and triad (Scheme 5;
15 and 16) as field effect transistors (FET). Though these
derivatives provided moderate performance, modification of this
structure may help to develop better dye with better performance
(Wanwong et al., 2018).

Electron rich carbazole ring acts as very good electron
donor and its derivatives exhibit photorefractive and hole-
trasnport properties; thus they are polupar constituents of
electroluminescent materials. Mao et al. reported application of
beta-substituted BODIPYs, having D-A-π-A system (Scheme 6)
for DSSC applications. Incorporation of the extra acceptor in
between the donor moiety and π-conjugating unit decreases the
HOMO-LUMO energy gap, and as a result, these BODIPYs can
show an efficient photoinduced electron transfer from the donor
to the BODIPY acceptor unit; which is linked to the anchor group
at the opposite end (Mao et al., 2017).

BODIPY 24 with cyanoacetic acid anchoring group was

used as a photosensitizer for DSSC; this linear system showed

reasonable PCE efficiency of 3.1%. A series of beta-substituted
BODIPYs 25–28 having D-π-A system were constructed for
DSSC application (Scheme 6). The N-alkyl carbazole ring served
as donor and BODIPY core linked to cyanoacetic acid was
the acceptor unit (Liao et al., 2017b). The DSSC analysis
revealed that photosensitizers 26 and 28, having 2-carbazolyl
substituent at the beta-position showed better Jsc than BODIPYs
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SCHEME 4 | Synthesis of directly linked carbazole-BODIPY system.

SCHEME 5 | Synthesis of 2,6-direct linked carbazole BODIPY dyad and triad.

25 and 27 where carbazole is substituted through 3-position
and it was reflected in their overall efficiency (Liao et al.,
2017b). BODIPY derivatives having heavy atoms such as: bromo,
iodo groups on the dipyrrin core, have been used as triplet
sensitizers. Such metal-free triplet sensitizers can be effectively
used for singlet-oxygen generation, PDT agents and triplet-triplet
annihilation upconversion (TTA-UC). Wei et al. (2017) have
prepared BODIPY based organic photosensitizers connected to
C60 andN-butylcarbazole at the β-positions 29 and 30 (Chart 2).
As per the report, C60 has high ISC (inter system crossing)
efficiency but weak absoprtion in the visible region of the solar
spectrum. Thus, linking of C60 to the carbazole substiuted
BODIPY can be useful to effectually populate the triplet excited
state of the C60, which in turn can transfer the energy to
perylene acceptor. The calculated TTA-UC quantum yield was
4.9 for the carbazole-BODIPY—C60 triad 30 shown in Chart 2

(Wei et al., 2017).

Alpha-Substituted BODIPYs
There are two alpha positions on the BODIPY skeleton
which are available for derivatization after various reactions
such as: nucleophilic or electrophilic substitution, cross-
coupling reactions, and Knoevenagel condensation (Wood and
Thompson, 2007), etc.

Ooyama et al. recently reported a new strategy to develop
effective BODIPY based sensitisers possessing a good light
harvesting efficiency (LHE) in the range of visible light to
NIR region. They developed (D)2-π-A type BODIPYs 33

and 34 (Scheme 7) having pyridyl and cyanoacrylic acid
groups, respectively. The electron-withdrawing anchoring group
(pyridyl/cyanoacetic acid) helps to bind the BODIPY on the
titanium dioxide layer for photovoltaic application. The presence
of strong electron-donating units of 9-butyl-N,N-phenyl-7-
(thiophen-2-yl)-9H-carbazol-2-amine at alpha-positions of the
BODIPY core, helped to obtain strong and broad absorption
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SCHEME 6 | beta-carbazole substituted BODIPYs for DSSC application; a: Pd(PPh3 )4, K2CO3, toluene/THF; b: piperidine, CNCH2COOH, DCM/ACN.

band ranging from 600 to 850 nm. Also, these molecules showed
high LHE in the range of visible light to NIR region. Though
these molecules showed good photophysical properties; these

BODIPY dyes showed low photovoltaic performance in DSSC
studies, which was attributed to the low lying LUMO levels
(Ooyama et al., 2017).
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CHART 2 | Carbazole-BODIPY-C60 triad as triplet sensitizer.

SCHEME 7 | Synthesis of 3,5-carbazole substituted BODIPY for DSSC. (i) Pd(PPh3)4, toluene; (ii) 2M HCl, THF; (iii) NEt3, CH2Cl2; (iv) Cyanoacetic acid,

piperidine, CHCl3/CH3CN

Knoevenagel condensation is another method to introduce
carbazole unit on the BODIPY core. Zhang et al. reportedmono-,
di- and tetra-styryl carbazole substituted BODIPYs (35, 38,

and 39). The Knoevenagel condensation between methyl-2-(2-
formyl-9H-crbazole-9-yl)acetate with BODIPY 35 (Scheme 8)
produced target styryl BODIPYs 36, 37, and 38 in good yields.
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SCHEME 8 | Synthesis of star-shaped BODIPY derivatives.

The extended π-conjugation converted the simple BODIPYs
to NIR dyes with strong absorption maxima in between the
600 and 727 nm range. Their corresponding emission maxima
were also considerably red shifted; which reflected the increased
conjugation between the carbazole units and the BODIPY core.
The BODIPY 39 with four styryl-carbazole unit showed the
highest PCE of 2.7% (Zhang et al., 2015).

The synthesis of di-styryl BODIPY based D-A and D-π-
A systems (40–44) was reported, where thiophene served as
π-linker between the N-alkylcarbazole unit and the BODIPY
core (Chart 3) (Brzeczek et al., 2016; Kurowska et al., 2018).
The target BODIPYs were synthesized through multistep
synthetic procedure; firstly the precursor 1,3,5,7-tetramethyl-8-
mesityl BODIPY was prepared by the conventional synthetic
protocol. Microwave assisted Knoevenagel condensation of
the precursor BODIPY with appropriate carbazole derivative
afforded target BODIPYs 40–44 (Chart 3). The carbazole
substituion at alpha-positions of the BODIPY core has
prominent effect on the electronic properties of the dyes;
the target compounds 40–44 showed markdly red shifted
absorption (736–740 nm) and emission maxima (775–780 nm).
Particularly, the BODIPY–carbazole conjugates with single

thiophene linker showed highly red-shifted absorption and
emission spectra. On increasing the number of thiophene
linkers, the effect of carbazole donor on the BODIPY acceptor
was diminished; the quenched emission was attributed to
the stronger push-pull effect for systems with elongated
conjugation framework.

Followed by this work, Cheema et al. studied the application
of 3,5-di-styryl BODIPYs having N-alkyl carbazole units (45–46)
for DSSC application (Chart 3). Carboxylic acid group on the
meso-phenyl ring of the BODIPY acted as anchor group (Cheema
et al., 2016). It was revealed that, the alkyl substitution did not
change the position of absorption and emission maxima; but
the intensity of these bands was altered. With the increases in
the length of N-alkyl chain, the intensity of the lower energy
absorption band decreased. DSSC performance for the dyes was
much less than expected, which was attributed to the aggregation
related losses (Cheema et al., 2016).

Alpha-styryl substituted BODIPY derivatives have excellent
photophysical properties; they exhibit strong absorption
and fluorescence in near infra-red (NIR) region. Such α-
styryl substituted BODIPY derivatives have tremendous
potential as bioimaging agents; particularly cell organelle
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CHART 3 | α-styryl linked carbazole BODIPYs.

targeting becomes facile as their absorption and emission
falls in the biological window. The α-styryl BODIPYs 48–50

(Scheme 9) having one or two N-ethynyl-carbazole groups
were prepared by Zhang et al. (2013). Extended conjugation
of the BODIPY core with the carbazole ring resulted in strong
absorption with high extinction coefficients between 620 and
703 nm and red emission in the range of 650–730 nm. These
BODIPYs showed high fluorescence quantum yields and decent
two-photon absorption properties; also, the NIR probe 50

demonstrated significant localization in the mitochondria of
MCF-7 cells, due to the presence of triphenylphosphonium
group (Zhang et al., 2013).

An interesting system of subphthalocyanine-BODIPY scaffold
containing one or two N-ethyl-carbaole moieties was reported
by Eçik et al. (2017). Synthesis of these molecules followed
multistep synthetic procedure, Knoevenagel condensation of
the precursor BODIPY (51) with 9-ethyl-9H-carbazole-2-
carbadehyde (Scheme 10) afforded 52 and 53. Click reaction of
ethyne functionalized subphthalocyanine with BODIPYs 52 and
53, resulted in the formation of the desired target molecules 54
and 55 (Scheme 10). These systems (54 and 55) showed efficient
energy transfer from subphthalocyanine unit to the BODIPY
unit via fluorescence resonance energy transfer (FRET). Authors

suggested that, these kinds of systems can be developed into a
BODIPY-based multi-chromophore systems and this will help to
reveal their energy transfer potential in efficient light-harvesting
systems (Eçik et al., 2017).

Another method to introduce carbazole ring on the BODIPY
core is through N-linkage (Scheme 11; 57 and 58). Zhang
et al. showed that, 4-(9H-carbazol-9-yl)benzaldehyde can be
linked to BODIPY 56 via Knoevenagel condensation, followed
by the deprotection of 57 to produce 58. The presence of N-
phenyl carbazolyl groups on the BODPY 58 can help to reduce
the aggregation of dye to some extent; hence 58 exhibited
enhanced photon to electron conversion efficiency of 4.4%. Since
the electron rich carbazole ring has excellent hole-transport
properties; it is widely used in optoelectronics; most of the
scientists are interested in substituting carbazole to BODIPY
core to enhance their photovoltaic applications (Zhang et al.,
2016). A new synthetic approach for the modification of alpha-
positions of the BODIPY with carbazole was reported by
Satoh et al. (2018). As shown in the Scheme 12, to obtain
60, alpha-positions of the BODIPY core can be substituted
by nucleophilic aromatic reaction (SNAr) of carbazole with
compound 59 in THF (Satoh et al., 2018). Absorption and
emission spectra exhibited bathochromic shifts as compared
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SCHEME 9 | α-styryl linked carbazole-BODIPY based probes for mitochondria imaging.

to the parent BODIPY; these molecule promises development
of new BODIPY based fluorophores through this synthetic
methodology (Satoh et al., 2018).

Alpha-styryl BODIPY having one N-alkylcarbazole
substituent was prepared by Mani et al. (2017); Knoevenagel
condensation of the precursor compound 61 with 7-bromo-
9-butyl-9H-carbazole-2-carbaldehyde (Scheme 13) afforded
62. The BODIPY 62 exhibited huge red shifts of 92 nm in
the absorption and 118 nm in the emission w.r.t. the starting
BODIPY 61 (Mani et al., 2017). Chang et al. reported donor-
acceptor systems of alpha-styryl BODIPYs 63 and 64 (Chart 4)
havingN-alkylcarbazole and/or cyanuric chloride as linker group
(Su et al., 2014b). BODIPYs 63 and 64 exhibited red shifted
absorption and fluorescence around 617 nm and considerable
pseudo Stokes shift (∼120 nm) due to intramolecular DRET
(dark resonance energy transfer) in such systems (Su et al.,
2014a). Significant pseudo Stokes shifts, red shifted fluorescence,
and biocompatibility of cyanuric chloride linker group in 64

suggest its potential application in bioimaging of live cells (Su
et al., 2014a).

Han et al. reported the alpha-styryl BODIPY 65 (Chart 5)
having two carbazole rings with N-PEGylated chains for the deep
tissue imaging and PDT application (Huang et al., 2016). The
BODIPY 65 showed NIR absorption at 661 and emission at
755 nm with fluorescence quantum yield of 4%. The calculated
singlet oxygen quantum efficiency 67% for compound 65 was
considerably high and its water soluble nanoparticles were

prepared by mixing it with the biodegradable polymer PLA-
PEG-FA (comprising of poly-lactic acid, poly-ethyleneglycol,
and folate). The biocompatible nanoparticles showed broad
absorption and emission in the NIR region (650–800 nm)
with 58% singlet oxygen quantum yield upon excitation by
NIR light ∼670–800 nm; also they can be used for deep
tissue imaging and for the treatment of tumors. The organic
nanoparticles displayed green emission upon light irradiation
in HeLA cells ∼670–800 nm and negligible cytotoxicity; making
them suitable candidates for PDT studies (Huang et al.,
2016). The alpha-distyryl BODIPYs 66–68 (Chart 6) having two
carbazolylethynyl groups and two beta-bromo groups was used
as photosensitizers for PDT (Zhou et al., 2018). Compound
67 exhibited strong absorption bands around 513 and 708 nm
corresponding to the carbazolyl group and boron-dipyrrin core.
For the BODIPY 67 containing glibenclamide analogous moiety,
the fluorescene band appeared at 753 with 45 nm Stokes shift; also
it demonstrated effective localization in endoplasmic reticulum
(ER) of HeLa (human cervical cancer) and HepG2 (human
hepatocarcinoma) cells. The compound 67 was able to generate
singlet oxygen upon excitation at 610 nm; ER stress was the main
reason of cell death as per the report (Zhou et al., 2018).

Meso-Substituted BODIPYs
Apart from beta- and alpha- positions of the BODIPY skeleton,
the meso-position (C-8) can also be substituted with carbazole
to prepare variety of dyes with improved absorption and
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SCHEME 10 | Carbazole substituted BODIPY and subphthalocyanine based light harvesting systems.

SCHEME 11 | Synthesis of α-Styryl linked N-phenyl carbazole BODIPY.
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emission properties. Carbazole-based D–π-A type BODIPYs
69–71 were synthesized and studied for DSSC application
(Chart 7) (Ooyama et al., 2013a). In BODIPY 69, two 4-
(thiophene-2-yl)pyridine units on the alpha-positions served as
electron-withdrawing anchor groups and the meso-position was
substituted with an electron donating 9-butyl-N,N-phenyl-7-
(thiophen-2-yl)-9H-carbazol-2-amine group. The introduction
of thiophene linkers between the donor and BODIPY core,
extended the π conjugation of the entire system; which was
indicated by the noticeable bathochromic shifts in absorption
and emission of 69 (673, 696 nm, respectively). In BODIPYs 70
and 71 (Chart 7), the meso-substituent: 9-butyl-N,N-phenyl-7-
(thiophen-2-yl)-9H-carbazol-2-amine acted as donor unit, which
was linked to BODIPY core with the phenyl linker. The presence
of small methyl/ethyl groups on the alpha-position of the
BODIPY core in 70 and 71 does not cause much shifts in their
absorption and emission maxima (Ooyama et al., 2013b).

The BODIPY 69 showed significant red shift in its absorption
and emission; however, it showed moderate performance in

SCHEME 12 | Synthesis of α-N-carbazole BODIPY.

DSSC studies. Authors attributed the low performance mainly
to the following reasons: (1) Formation of strong π-stacked
aggregates of BODIPY on the TiO2 surface; (2) The lower LUMO
level and the radiation less relaxation of the photoexcited dye
which leads to a reduction in the electron-injection yield; (3)
faster charge recombination between the injected electrons and
I−3 ions, leading to a decrease in the Voc value (Ooyama et al.,
2013a). Aggregation between BODIPY cores can be prevented
by using co-adsorption of chenodeoxycholic acid (CDCA). One
of the main reasons for radiation less relaxation is the free
rotation of the aryl substituents at alpha- and meso-positions of
the BODIPY skeleton. This rotation can be reduced by methyl
substitution on BODIPY core (Ooyama et al., 2013b). Also,
dyes 70 and 71 (Chart 7) showed solid-state red fluorescence
and green metallic luster properties in both crystalline and
amorphous states (Ooyama et al., 2014).

Substitution of carbazole unit on the meso-position of
the BODIPY core through direct linkage is another method
to incorporate carbazole unit on BODIPY skeleton. Gupta

et al. reported synthesis and photophysical properties of meso-
substituted carbazole-BODIPY dyad 72 (Scheme 14). This dyad

exhibited energy transfer efficiency from donor carbazole unit

to the acceptor BODIPY core. As shown in the Scheme 14,

dyad was synthesized from the dipyrromethane having meso-
carbazolyl unit, followed by complexation with BF3.OEt2 to
obtain the desired product. BODIPY 72 was further used to
make BODIPY derivatives 73–75 (Scheme 14). It was found
that the meso-carbazoyl group altered the electronic properties
of the four BODIPYs which was reflected in the higher
extinction coefficient, red-shifted emission maxima, increased
quantum yields and large Stokes shifts. Fluorescence studies
indicated an efficient energy transfer from meso-carbazolyl
moiety to the boron-dipyrrin core in all the compounds.
Due to increased conjugation with the electron donor meso-
carbazole group, anodic shifts were observed in the redox
potentials of all four BODIPYs 72–75 (Kesavan and Gupta,
2014). The synthesis and photovoltaic application of meso-
carbazolyl substituted BODIPY based photosensitizers 77 and

SCHEME 13 | α-Styryl BODIPY with N-butylcarbazole group.
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CHART 4 | Carbazole-BODIPY based systems for DRET.

CHART 5 | α-Styryl carbazole-BODIPY based nanoparticles for PDT.

80 (Scheme 15) was reported. The photosensitizers were
synthesized in four steps from the precursor BODIPYs 72 and
78 as shown in the Scheme 15. The BODIPY 80 exhibited higher
photovoltaic performance than the photosensitizer 77 in DSSC
studies (Kesavan et al., 2017).

Sekar et al. reported BODIPYs 81–83 having 9-ethyl-9H-
carbazole or 9-phenyl-9H-carbazole group at the meso-position;
the alpha- and beta-positions were substituted with the alkyl
groups (Chart 8). The direct substitution of carbazole ring on
the BODIPY skeleton resulted in the enhanced photostability,
good lasing ability and singlet oxygen generation property of
the dyes (Thorat et al., 2015; Telore et al., 2016). Misra et al.
(2014) reported meso-ethynyl linked carbazole-BODIPYs 84–86
(Chart 9); efficient intramolecular charge transfer from carbazole
unit to the BODIPY unit was observed (Dhokale et al., 2015).
Compounds 84–86 showed high open circuit voltage and thus
exhibited good application in bulk heterojunction organic solar
cells (Jadhav et al., 2015).

Farfan and Correon-Castro groups (Corona-Sánchez et al.,
2016) reported DFT studies of the thin films of meso-substituted
BODIPY 87 having N-ethyl-carabzole ring (Chart 10). The thin
films of BODIPY 87 were prepared by the vapor deposition
on indium tin oxide; packing morphology of the films was
simulated through computational methods and their semi-
conductor behavior was predicted. Such kind of DFT study can
be helpful when such BODIPY dyes are used in the electronic
devices for OPV applications (Corona-Sánchez et al., 2016).
Another interesting report by Xing et al., used BODIPYs 88 and
89 to make liposomes encapsulated fluorescent nanoparticles (Lv
et al., 2017). The nanoparticles of 88 and 89 showed decent
absorption in HEPES buffer at 504 nm; also their emission
was centered on 525 nm with about 21 nm Stokes shift. These
hydrophilic fluorescent nanoparticles were also tested for live
cell imaging on HeLa cells, and the results indicated primary
localization in the lysosomes (Lv et al., 2017).

Carbazole ring can also be linked to the meso-position
of BODIPY core via N-linkage (Chart 11); Nguyen et al.
(2014) revealed the OLED application of BODIPY 90,
having 9-phenyl-9H-carbazole group at the meso-position.
BODIPY 90 exhibited green emission with low turn-on
voltage in OLED performance, maximum brightness, current
efficiency and power efficiency. Report by Li et al. revealed
the AIEE ability of BODIPY 91 (Chart 11), which showed
enhanced emission in the aggregated form. BODIPY 91

showed weak emission in THF; and the nano aggregates of
91 were prepared in THF water mixture by precipitation
method. The noticeable increment in fluorescence intensity
of 91 was observed with the gradual increase in the water
fraction. In 90% water/THF mixture molecule 91 showed
the strongest emission intensity. Similar aggregation study
was carried out by preparing carbazole-BODIPY 91 loaded
silica nanoparticles, and these nanoparticles demonstrated
a stable uniform morphology and strong fluorescence. This
AIEE effect was successfully applied for cell imaging and found
that BODIPY 91 showed good cellular uptake in MCF-7 cells
(Li and Qian, 2016). The recent report by Reddy et al. showed
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CHART 6 | α-Styryl carbazole-BODIPYs for bioimaging and PDT.

CHART 7 | Meso N-alkyl carbazole BODIPYs for solar cell application.

that meso-substitution of BODIPY with carbazole ring can be
achieved through N-linkage; such BODIPYs 92–94 (Chart 12)
exhibited photoinduced energy transfer (PEnT). They studied
the effect of linker length on PEnT using varying lengths of

bridges (phenyl, biphenyl and diphenylethyne) on the BODIPYs
92–94 (Chart 12). Selective excitation of these molecules at
carbazole unit resulted in a very efficient energy transfer process
(Reddy et al., 2018).
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SCHEME 14 | Synthesis of meso-carbazole substituted BODIPYs.

SCHEME 15 | Meso-carbazolyl substituted BODIPYs.

Recently, Thayumanavan et al. prepared donor-acceptor type
BODIPYs 95–97 (Chart 13) and studied photo-induced electron
transfer process for these dyes (Strahan et al., 2019). The electron
rich carbazole donor group was attached at either beta- or
meso-position of the BODIPYs to access intramolecular charge
transfer (ICT) in the dyes 95–97 (Chart 13). The ICT was more
facile in the BODIPY 95 as compared to the 96 and 97 in
polar solvents; also the carbazole substation at beta-position
of the BODIPY skeleton shifted the absorption of 95 toward
red region with higher molar extinction coefficient than the
meso- substituted BODIPYs 96 and 97 (Strahan et al., 2019).
Qian’s group had reported meso-N-ethylcarbazole substituted
BODIPYs 98–100 (Scheme 16); the molecule 101 containing

nitro-substituted benzoxadiazole (NBD) moieties, was used as
fluorescent probe for biothiol detection and live cell imaging
(Xia and Qian, 2018). The probe 100 also demonstrated visible
color change from blue to green upon addition of biothiols in the
solution; thus it can be used to develop sensor-kit for biothiols
in future. In addition, 100 was successfully applied to detect Cys,
Hcy, and GSH in living cells (Xia and Qian, 2018).

Carbazole Bridged BODIPY Dimers
Zong et al. reported carbazole bridged BODIPY dimers 101–103
with extended π conjugation (Chart 14) by introducing linker
moieties in between carbazole and BODIPY units. The linkers
varied from phenyl, thiophene to furan rings; all these conjugates
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CHART 8 | Meso-carbazolyl substituted BODIPY derivatives.

CHART 9 | Meso-ethynyl linked carbazole-BODIPYs.

CHART 10 | Meso-carbazole substituted BODIPYs.

possess good thermal stability. From the photophysical and
electrochemical analysis, it was revealed that thiophene and
furan linked carbazole-BODIPY dimers (101, 102) are potential
candidates for p-type semiconductor materials in organic solar

CHART 11 | N-Phenyl carbazole units linked to meso-position of BODIPYs.

CHART 12 | N-Phenyl carbazole linked BODIPY with varying linker size.

cells (Zong et al., 2017). Report by Liao et al. showed that
presence of alkynyl group as bridging unit (Chart 13; 104)

shifted the absorption and emission toward red region.
BODIPY 104 exhibited average photovoltaic performance of
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CHART 13 | β-substituted and meso-substituted carbazole-BODIPYs.

SCHEME 16 | Meso-carbazole substituted BODIPY for biothiol detection.

3.1% by a hole mobility mechanism (Liao et al., 2017a). Also,
compound 105 (Chart 14) showed decent cytotoxic activity
against HT29 cell lines (Sengul et al., 2015). In another report
Gupta et al. synthesized N-butylcarbazole bridged BODIPY
dimer 106 (Chart 14); the compound showed bathochromic

shift in the emission band with good Stokes shift of 83 nm
(Kesavan et al., 2015).

Meso-carbazole substituted BODIPY 107 and N-alkyl-
carbazole bridged BODIPY dimer 108 (Chart 15) were
prepared and their biological activities were tested in
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CHART 14 | Carbazole bridged BODIPY dimers.

the human colon cancer cell lines (Sengul et al., 2015).
The BODIPYs 107 and 108 exhibited strong absorption
around 503 nm and fluorescence at 512 nm; cytotoxicity
assays in HT29 cancer cells revealed that, 108 is more
toxic than 107 (Chart 15). The observed IC50 values for
107 and 108 were 21.7 ng/mL and 8.3 ng/mL, respectively
(Sengul et al., 2015).

BODIPY based nanocar containing p-carborane wheels and
central N-butylcarbazole moiety was prepared by Godoy et al.
(2010). The BODIPY nanocar 109 (Chart 16), was highly
emissive in nature making it ideal candidate for single molecule
fluorescence spectroscopy. Such nanocars are reported to move
by an average speed of 4 nm/s on the glass surface under
ambient conditions due to the presence of p-carborane wheels
(Godoy et al., 2010).

Miscellanious Systems
In 2013, Ma et al. reported NIR emissive D–π-A polymers
112, where aza-BODIPY moiety acted as acceptor and electron
rich carbazole group served as donor. The synthesis of
beta-diiodinated derivative of aza-BODIPY 111 was prepared
by treating 110 with N-iodosuccinimide (Scheme 17). The
polymerization of BODIPY 111 was accomplished by a
palladium-catalyzed Sonogashira coupling reaction with 3,6-
diethynyl 9-octyl-9H-carbazole moiety (Scheme 17). The good
advantage of such polymer systems is that, these molecules
exhibit near-infrared fluorescence around 750 nm and also
show tunable band gap in the range of 0.96–1.14 eV. These
photophysical and electrochemical properties promises the
application of this polymer 112 in device based applications
(Ma et al., 2013).
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Another interesting report by Patra et al. described the
synthesis of porous organic polymer 113 (Chart 17) consisting
ofN-alkyl bridged carbazole and BODIPY units (Bandyopadhyay
et al., 2018); the macromolecule was able to generate substantial

CHART 15 | Meso-substituted carbazole-BODIPYs.

CHART 16 | BODIPY based nanocar having p-carbone wheels.

singlet oxygen in solution. The porous soluble polymer 113

exhibited red shifted absorption and emission in the range
of 530–610 nm; and used as fluorescent probe for superoxide
anion (Bandyopadhyay et al., 2018). The π-conjugated polymers
having BODIPY backbone are used as photosensitizers in
organic photovoltaics (OPV); and strong absorption in the red
or NIR region is desired for high performance of the devices.
Combination of BODIPY unit with good electron rich donor
moiety in the polymer chain can yield the copolymer with
strong absorption profile in the visible-NIR region of the solar
spectrum. The optical band gap can be reduced in copolymers
by linking donor and acceptor units; Thayumanavan et al. have
synthesized π-conjugated BODIPY copolymers 114 (Chart 18)
having N-alkylcarbazole/dithienopyrrole/bithiophene/fluorene
as donor moieties (Popere et al., 2012). The rationally designed
copolymers exhibited lower band gap and broad absorption
spectra encompassing the entire visible region; thus, making
them good panchromatic dyes for OPV applications (Popere
et al., 2012). Such copolymers containing π-conjugated donor-
acceptor units also show interesting charge transfer and/or
energy transfer properties with enhanced absorption and
fluorescence in the visible to red region.

Another π-conjugated copolymer 116 incorporating
indolo[3,2,-b]-carbazole and BODIPY units (Chart 18) was

prepared from 115, by Khetubol et al. (2015). Copolymer
116 showed broad and red shifted absorption and emission

spectra along with the energy transfer from donor indolo[3,2,-
b]-carbazole to the acceptor BODIPY unit. The electronic

properties of organic π-conjugated polymers can be fine-
tuned by introducing electron donor and accepter moieties

in the main chain; the resultant macromolecules are popular

in OPV, solar cells, and OLEDs, etc. due to light weight
and flexible structures. Ma et al. (2014) had reported D-
π-A type chiral copolymer 117 by joining BODIPY and
N-alkylcarbazole via ethyne linkages (Chart 18). Chiral polymer
117 displayed red shifted fluorescence (624–650 nm) and small
band gap of about 159–196 eV (Ma et al., 2014). Organic

SCHEME 17 | Synthesis of carbazole aza-BODIPY polymer.
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CHART 17 | Synthesis of carbazole-BODIPY based soluble polymer.

CHART 18 | Carbazole-BODIPY based polymers.
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CHART 19 | 1,7 N-phenylcarbazole or N-alkylcarbazole substituted aza-BODIPYs.

conjugated copolymers are popular for their applications
in OLEDs and solar cells due to low cost and light weight;
and their electronic properties can be fine-tuned by altering
the donor and acceptor units in the polymer backbone.
Such BODIPY based macromolecules can be synthesized
by replacing the electron donor moieties with different
aromatic heterocycles like fluorene, phenothiazine, bithiphene,
and carbazole derivatives to enhance their photophysical

and electrochemical properties for various applications
(Ma et al., 2014).

Aza-BODIPYs are class of BODIPYs which are obtained by
substitution of the meso-carbon (C-8) atom by nitrogen-atom
(Balsukuri et al., 2018). This alteration shifts the absorption
and emission maxima of the resultant aza-BODIPY toward NIR
region (600–900 nm). Aza-BODIPYs (Balsukuri et al., 2016a)
are excellent candidates for the deep tissue imaging as NIR
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fluorescent probes and as photosensitizers for PDT and DSSC
applications. In 2016, Gupta et al. have reported synthesis and
optical studies of donor-acceptor type NIR aza-BODIPYs 118–
121 (Chart 19), having N-phenylcarbazole or N-butylcarbazole
at the 1,7-positions of the BODIPY core (Balsukuri et al., 2016a).
These molecules showed significantly red shifted (∼100 nm)
absorption and emission relative to the parent tetraphenylaza–
BODIPY (Balsukuri et al., 2016b). Also, Fluorescence studies
of these molecules suggested effective energy transfer (up to
93%) from donor groups to the aza–BODIPY core. This strategy
validated that, simple substitution with energy-donor groups
on aza–BODIPYs can induce large red shifts in their electronic
spectra, and this approach can be applied to make novel

NIR dyes. In 2017, Gawale’s group reported synthesis of N-
ethylcarbazole linked aza-BODIPYs 122–125 (Chart 19), and
studied their efficiency to produce triplet excited state and
singlet oxygen generation (Gawale et al., 2017). The presence
of iodo groups at the beta-positions of the aza-BODIPY helped
in the enhancement of intersystem crossing efficiency in these
molecules. Aza-BODIPYs 122–125 (Chart 19) were able to have
sufficiently long triplet excited state and showed 70% singlet
oxygen generation efficiency. Also, authors reported application
of these molecules in deep tissue photo-acoustic imaging
and up to 2 cm deep photoacoustic imaging was successfully
demonstrated by using 122 as contrast agent; making it a
potential candidate for theranostic application.

CHART 20 | BODIPY triad having Aza-BODIPY as central unit.

CHART 21 | Carbazole linked Aza-BODIPY model system for DFT studies.
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CHART 22 | Triazatruxene linked BODIPY dyes.

Triplet photosensitizers based on porphyrins and transition
metal complexes are widely used in photo-catalysis of organic
transformations and PDT. However, triplet sensitizers based
on BODIPYs have iodo- or bromo- substituents to induce
efficient ISC in such molecules. Typically, triplet sensitizers show
strong absorption in the visible region, corresponding to the
chromophores present in the molecule; though, panchromatic
absorption of such molecules is highly desirable for various
applications. Zhao and co-workers have combined the BODIPY
and aza-BODIPY units to prepare a triad 126 (Chart 20) with
interesting photophysical properties (Guo et al., 2014). The
triad 126 displayed wide absorption in the visible-red region;
along with the intramolecular energy transfer from donor units
(BODIPY) and acceptor unit (aza-BODIPY). The resonance
energy transfer (RET) in the triad 126 (Chart 20) was helpful
to populate triplet excited state upon visible light excitation;
which was further used to generate singlet oxygen with 58%
quantum yield (Guo et al., 2014). Liu et al. (2013) carried out
theoretical calculations for better understanding of the electronic
structures and linear absorption of the series of aza-BODIPYs.
DFT studies were also performed to investigate the two-photon
absorption (TPA) properties of the aza-BODIPYs having various
substituents viz. thiophene, phenyl, N-alkylcarbazole, fluorine,
and pyrene, etc. Among the series of molecules investigated,
the aza-BODIPY 127 (Chart 21) with elongated π-conjugated
system was predicted to show lower HOMO-LUMO energy
gap. Another interesting report by Huang’s group discussed the
synthesis of color tunable NIR aza-BODIPY 128 (Chart 21)
and its application for sensing mercury ions (Liu et al., 2014).
The introduction of aromatic carbazole ring induced red-
shifts in the absorption and emission spectra; aza-BODIPY
128 (Chart 21) exhibited strong absorption peaks at 720 and

736 nm along with intense fluorescence at 848 nm. The two
thienyl groups in the aza-BODIPY 128 served as binding
pocket for mercury ion and its fluorescence was quenched after
Hg+ binding making it a “turn-off” type fluorescent probe
(Liu et al., 2014).

Ziessel et al. prepared BODIPYs 129–131 (Chart 22)
substituted with triazatruxene (TAT) moiety at alpha-styryl or
meso-phenyl positions of the BODIPY skeleton (Bura et al.,
2011). TAT is a star shaped molecule consisting of three fused
carbazole rings with flat aromatic structure; its derivatives have
shown good two-photon absorption (TPA) properties and high
hole mobility. The TAT substituted BODIPYs 129–131 exhibited
large absorption coefficients and strong emission around 655–
675 nm. The interesting electrochemical properties of molecules
129–131 (Chart 22) were examined, these blue dyes exhibited
photovoltaic efficiencies in the range of 0.08–0.9% in bulk
heterojunction solar cells (Bura et al., 2011).

Carbazole is an electron rich aromatic heterocycle and
its derivatives are known for their good electronic and hole
transport properties; therefore, carbazole conjugated systems
have found application in DSSCs and OLEDs. Carbazole
based dendrimers can be linked to other chromophores to
enhance the absorption and emission properties of such dyes;
D-π-A (Donor-π-Acceptor) type BODIPY core dendrimers
132–134 (Chart 23) were synthesized by Babu et al. (2018).
The carbazole based dendrimers having BODIPY at the
center, displayed rise in their absorption coefficients and red
shifted emission upon moving from G0 to G2 generations
(Chart 24). Compound 134 (G3 dendrimer) showed 2.7%
light to energy conversion as sensitizer in DSSC, which was
higher than the G0 and G1 dendrimers. Such carbazole
based dendrimers are attractive alternatives for solar light
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CHART 23 | Carbazole based BODIPY core dendrimers (G0, G1 series).

harvesting materials, as compared to small organic molecules
(Babu et al., 2018).

Typically, BODIPY dyes have short lifetimes for singlet excited
states and small Stokes shifts, which restrict their application
in solar light harvesting systems. The linking of BODIPY
chromophore to another metal complex can overcome such
limitation; Chart 25 shows interesting dual emission systems
135 and 136 comprising of carbazole substituted BODIPY unit
and Ru(II) polypyridyl unit (Swavey et al., 2019). Compound
135 acted as precursor for the BODIPY and Ru(II)polypyridyl
conjugate 136; the major absorption band was significantly
red shifted in the later (Chart 25). Also, the luminescence of
the BODIPY unit in 136 was quenched due to the presence
of Ru(II) polypyridyl unit; which could be attributed to the
increased ISC and other non-radiative decay processes in such

conjugates. Compound 136 generated significant singlet oxygen
in acetonitrile solution, upon irradiation with long wavelength
light; indicating its potential use in PDT (Swavey et al., 2019).

Sekar et al. have reported coumarin-carbazole conjugates
and their BF2 complexes 137 and 138 (Chart 26); such D-
π-A systems displayed intramolcular charge-transfer process
from donor carbazole ring to the coumarin acceptor unit
(Rajeshirke et al., 2018). For conjugates 137 and 138, the
emission maxima were observed at 592 and 627 nm, respectively.
The strong fluorescence of the BF2 complexed coumarin
unit in the red region was attributed to the attachment of
carbazole donor group; these dyes can be potentially useful
for biological applications (Rajeshirke et al., 2018). The BF2
complexes of carbazole-benzimidazole conjugates 139 and 140

(Chart 26) were synthesized by Dutta et al. (2017). Both the
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CHART 24 | Carbazole based BODIPY core dendrimer, G2 series.

CHART 25 | Carbazole -BODIPY bridged Ru(II)polypyridyl complexes.

compounds 139 and 140 displayed relatively large Stokes shifts
(34–51 nm) as compared to the typical BODIPY dyes; such
molecular scaffolds can be used to develop fluorescence probes
in future.

Zhu et al. (2015) have prepared very interesting BF2 complexes
141 and 142 (Chart 27); where the aza-dipyrromethene skeleton
was replaced by the aza-boron-diquinomethene. The aza-boron-
diquinomethene scaffold was substituted with N-carbazolyl
and/or 3,6-di-tert-butyl-N-carbazolyl moieties (Chart 27); the
photoluminescence spectra of 141 and 142 showed green-
yellow emission due to intramolecular charge transfer. The

fluorescence quantum yields were reasonably high between
0.73 and 0.78; such BF2 complexes may be suitable for
developing pH-sensors and bioimaging probes in future
(Zhu et al., 2015). Ema et al. have reported a series of
exciting BF2 complexes based on carbazole scaffold (Maeda
et al., 2016); where carbazole ring was substituted with
thiazole, benzothiazole, imidazole, indolone, and benzimidazole
(Chart 28). The carbazole-based BF2 complexes 143–148

(Chart 28) displayed strong absorption (382–663 nm range)
and fluorescence (427–796 nm range) in dichloromethane
solution; the emission quantum yield were in the range of
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CHART 26 | BF2 complexes of coumarin-carbazole conjugates (above); BF2 complexes of carbazole-benzimidazole conjugates (below).

CHART 27 | Aza-boron-diquinomethene complexes.

0.074–0.547, except for molecule 145. The molecules 143–148
(Chart 28) exhibited large Stokes shifts of about 76–130 nm in
the solutions.

These dyes also showed color tunable solid state emission
with emission maxima between 424 and 542 nm range;
with the quantum yields around 0.13–0.21. The solid
state emission maxima were slightly red shifted relative
to those in solution, which was attributed to the J-type
packing in the solid state (Maeda et al., 2016). Same

group had prepared BF2 complexes using organometallic
approach, where carbazole was incorporated into the BODIPY
framework (Maeda et al., 2015). The substitution of electron
withdrawing or electron-donating groups on the carbazole
skeleton altered the absorption and emission properties
of 149 and 150 (Chart 29). The derivatives of 149 and
150 (Chart 29) showed absorption in the 292–493 nm
range and fluorescence maxima between 508 and 650 nm.
Also, the derivatives of 149 and 150 showed negligible
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CHART 28 | Carbazole based hybrid BODIPYs.

CHART 29 | Carbazole based hybrid BODIPYs.
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CHART 30 | Carbazole based hybrid BODIPYs; data in 1,4-dioxane.

fluorescence quantum yield with large Stokes shift of 46–142 nm
(Maeda et al., 2015).

Ema et al. have also reported BF2 complexes of carbazole-
benzobisthiazole 151 and biscarbazole-benzobisthiazole 152

(Chart 29), these dyes displayed solid state emission in red
region (Maeda et al., 2017). The compound 151 exhibited
absorption and fluorescence at 474 and 541 nm, respectively;
with 40 nm Stokes shift. The derivatives of dimer 152 showed
absorption maxima between 516 and 523 nm range and red
shifted emission in the range of 547–573 nm, with 31–47 nm
Stokes shifts. Interestingly, 151 and the derivatives of 152

(Chart 29) exhibited solid state fluorescence around 564–
639 nm, such dyes may have potential application in organic
photovoltaics due to strong fluorescence in red-NIR region.

Recently, same group has synthesized BF2 complexes of
carbazole-benzoxazole/carbazole-benzothiazole hybrids 153 and
154; which were further reacted with binapthyl derivative in
the Al-mediated reaction to produce 155 and 156 (Chart 30,
Maeda et al., 2019). These chiral dyes 155–160 showed circularly
polarize luminescence in solution and in solid state. The
major absorption band was centered around 438–468 nm and
fluorescence maxima were in between 496 and 538 nm; the
emission quantum yields were in between 0.22 and 0.44 with
considerable Stokes shifts of around 72–75 nm. For compounds
155–160 (Chart 30), the solid state emission bands appeared
between 524 and 581 nm; which were red shifted as compared
to those in solution. Such chiral BF2 complexes of carbazole-
benzoxoazole/carbazole-benzothiazole hybrids have potential
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applications as circularly polarized luminescence materials in the
chiral fields (Maeda et al., 2017).

SUMMARY

Carbazole-containing BODIPYs, carbazole-fused BODIPYs
have become quite popular in the recent past; owing to their
applications in live cell imaging, light harvesting systems,
photovoltaics, and electroluminescent materials. The excellent
hole-transport, photorefractive properties, and fluorescent
nature of carbazole ring was exploited to design the BODIPY-
carbazole conjugates with improved electronic and photovoltaic
properties for DSSC and OLED applications. Various synthetic
strategies were employed to substitute the three available
positions (alpha, beta and meso) of the BODIPY skeleton;
this resulted in the spurt of reports on carbazole substituted
BODIPYs. The substitution of electron rich carbazole ring and

its derivative on the BODIPY skeleton affected the spectral
properties of the parent dye; which reflected in the red shifted
absorption and emission maxima of the carbazole-BODIPY
conjugates. Typically, direct linkage of carbazole ring on the
alpha- and meso-positions of the BODIPY skeleton caused
decent to large Stoke’s shifts with fluorescence in the NIR region.
Overall, the optical, photophysical, photoluminescent properties
of the BODIPY dye can be fine- tuned for the desired application
by substituting the carbazole derivatives on the BODIPY core;
this knowledge can lead to the development of better more
efficient BODIPY dyes in the near future.
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Recently varieties of Bodipy derivatives showing intersystem crossing (ISC) have

been reported as triplet photosensitizers, and the application of these compounds in

photocatalysis, photodynamic therapy (PDT), and photon upconversion are promising. In

this review we summarized the recent development in the area of Bodipy-derived triplet

photosensitizers and discussed the molecular structural factors that enhance the ISC

ability. The compounds are introduced based on their ISC mechanisms, which include

the heavy atom effect, exciton coupling, charge recombination (CR)-induced ISC, using

a spin converter and radical enhanced ISC. Some transition metal complexes containing

Bodipy chromophores are also discussed. The applications of these new triplet

photosensitizers in photodynamic therapy, photocatalysis, and photon upconversion are

briefly commented on. We believe the study of new triplet photosensitizers and the

application of these novel materials in the abovementioned areas will be blooming.

Keywords: Bodipy, intersystem crossing, photocatalysis, triplet photosensitizers, upconversion

INTRODUCTION

Triplet Photosensitizers (PSs) are compounds showing strong absorption of UV or visible light,
efficient intersystem crossing (ISC), appropriate excited state redox potential, and long triplet-state
lifetimes. These compounds are widely used for photo-driven energy transfer or electron transfer
processes, which are the fundamental photophysical processes in photocatalysis, such as catalytic
H2 evolution by water splitting (DiSalle and Bernhard, 2011; Gärtner et al., 2011, 2012),
photocatalytic redox synthetic organic reactions (Shi and Xia, 2012; Xuan and Xiao, 2012; Hari and
König, 2013), photoreduction of CO2 (Sato et al., 2013), photodynamic therapy (PDT) (Awuah
and You, 2012; Kamkaew et al., 2013; Stacey and Pope, 2013; Jiang et al., 2016; Li et al., 2017),
photon upconversion (triplet-triplet annihilation upconversion) (Singh-Rachford and Castellano,
2010; Ceroni, 2011; Zhao et al., 2011; Monguzzi et al., 2012; Simon and Weder, 2012; Zhou et al.,
2015), photovoltaics (Guo et al., 2006; Dai et al., 2012; Bittner et al., 2014; Cheema et al., 2014;
Etzold et al., 2015), and photo-initiated polymerizations (Goessl et al., 2001; Ho et al., 2010; Rivard,
2012; Cengiz et al., 2017). It is highly desired to find a chromophore to develop a series of triplet
PSs to meet these requirements. Concerning this aspect, Boron dipyrromethene (Bodipy) is of
particular interest due to its robust photostability and feasible derivatization (Ulrich et al., 2008;
Ziessel and Harriman, 2011; Lu et al., 2014; Miao et al., 2019).
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The ISC process is electron spin forbidden, and a mechanism
is thus required to enhance the electron spin flipping, which
requires a magnetic torque. Recently, a variety of Bodipy-based
triplet PSs have been reported, and the application of these
novel triplet PSs in the abovementioned areas is promising. In
this review, we have summarized the recent development of the
Bodipy-derived triplet PSs, ranging from the molecular structure
design to the applications of these materials.

Sn → Tm ISC is a non-radiative transition, during which
the electron spin flips or rephrases. A magnetic torque acting
on the electron spin is therefore required. The most commonly
encountered mechanisms are the spin-orbital coupling (SOC)
and hyperfine interaction. For the SOC, the orbital angular
momentum interacts with the spin angular momentum (also
known as the magnetic angular momentum interaction), and the
typical examples are the heavy atom effect, the El Syed’s rule
(nπ∗

↔ ππ∗ transition), the spin orbital charge transfer, etc.
Hyperfine interaction refers to the magnetic coupling between
the electron and the magnetic nucleus, which is responsible
for the radical pair ISC (RP ISC) in electron donor/acceptor
dyads. Other ISC mechanisms do exist; for instance, the exciton
coupling and singlet fission. In the following sections we have
introduced the exemplars of application of Bodipy derivatives
as triplet photosensitizers (Lakshmi et al., 2015). The challenge
in the designing of heavy atom-free triplet photosensitizers were
also introduced.

HEAVY ATOM EFFECT IN BODIPY

DERIVATIVES

Nagano et al. reported that the 2,6-diiodoBodipy
(Supplementary Figure 1) showed the ISC ability (Yogo
et al., 2005). The ISC was confirmed with the photosensitizing
of singlet oxygen (confirmed with the near IR luminescence

FIGURE 1 | Mono- and DiiodoBodipy derivatives showing variable absorption wavelengths and efficient ISC.

of 1O2), and the relative efficiency of 1O2 generation is up to
6-fold of that of Rose Bengle under the same conditions. The
photostability of the diiodoBodipy is better than the Rose Bengle.
Intracellular phototoxicity was also confirmed. However, the
triplet-state lifetime of the diiodoBodipy was not reported.

Based on the feasible derivatization of the Bodipy framework,

we prepared a library of iodinated Bodipy derivatives (Figure 1);
the absorption wavelength ranged from 510 to 629 nm, and the

T1 state energy level of the derivatives varied from 1.5 to 1.15 eV

(based on TDDFT computations) (Wu et al., 2011). The visible
light absorbing of these derivatives was strong (59,400–180,000

M−1 cm−1). With nanosecond transient absorption spectra of

the diiodoBodipy derivatives, the triplet-state lifetimes of the
compounds were determined to be in the range of 26–66 µs.

It is worth mentioning that these apparent triplet-state lifetimes
were shorter than the intrinsic triplet-state lifetimes as a result of
the triplet-triplet-annihilation (TTA) self-quenching effect. Later,
Zhao and Dick reported a kinetic model with the TTA effect that
was considered to determine the intrinsic triplet-state lifetimes,
and the triplet-state lifetime of the diiodoBodipy was up to 276
µs (Lou et al., 2018; Wang et al., 2019b). To the best of our

knowledge, this was the first report of the intrinsic triplet-state
lifetime of Bodipy derivatives.

Since these diiodoBodipy derivatives showed strong

absorption of visible light, an efficient ISC, and a long-lived triplet
state, we used these triplet PSs for TTA upconversion (Wu et al.,

2011). For instance, upon 532 nm cw-laser excitation, strong
upconverted blue emission of ca. 450 nm was observed with
perylene as the triplet acceptor/emitter, and the upconversion
quantum yields were up to 6% (Wu et al., 2011). Other excitation
wavelengths can be also used for TTA upconversion with
these compounds.

In Figure 1, the methyl groups at the 1,7-position of the
Bodipy core restrict the rotation of the phenyl ring at the
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FIGURE 2 | DiiodoBodipy derivatives (8, 9), which are devoid of free rotor effect on the triplet states and dibromoAzaBodipy (10a-c), showing absorption at

650–690 nm.

FIGURE 3 | Di- and tetraiodoAzaBodipy showing absorption at 650–690 nm.

meso-position. Without the iodination and the methyl groups
at the 1,7-positions, the rotation of the phenyl ring will induce
the free rotor effect, and the fluorescence of the Bodipy core is
significantly quenched. A fluorescence sensor for detection of
the viscosity of the microenvironment has been developed based
on this property because the rotation of the phenyl ring will
be inhibited in a viscous solvent (Kuimova et al., 2008). With
theoretical computation, it was proposed that the quenching of
the fluorescence of the Bodipy core was not due to rotation of
the phenyl ring at the meso-positions, but rather that it was the
bending of the Bodipy core at the excited state that quenched the
fluorescence (Suhina et al., 2017).

With the initial intention to develop a viscosity-sensitive
triplet photosensitizer, we studied the triplet-state property of
the diiodoBodipy without methyl groups at 1,7-position (8, 9 in
Figure 2). Interestingly, we found that the triplet state in 8 was
not quenched, as compared to that of 9, in both aspects of triplet-
state lifetimes (126 µs for 8, 241 µs for 9) and ISC quantum
yields (approximated with the O.D. values of the nanosecond
transient absorption) (Lou et al., 2018). The non-quenched
triplet state of 8 was also confirmed with the TTA upconversion
with this triplet PS (upconversion quantum yield was up
to 6.3%).

With theoretical computation, we found that, with torsion
of the molecule at excited state, there is a crossing for S1/S0
at the energy minimum on the S1 state energy curve. For T1

state, however, there is not such crossing point for the potential
energy curves (Lou et al., 2018), which can be used to rationalize
the un-quenched T1 state of 8 and the quenched S1 state of
the same molecule. The electron spin-forbidden feature of the
T1 → S0 may also play a role in the observation of the non-
quenched T1 state of 8. These results indicated the triplet-state
property was different from the singlet excited state property for
the same molecule.

While the normal Bodipy showed absorption in the green
range (ca. 500 nm), the azaBodipy showed much red-shifted
absorption in the range of 680 nm. O’shea et al. prepared
dibromoazaBodipy (10 in Figure 2), and the compounds showed
strong absorption in the near IR spectral region (the molar
absorption coefficients were up to 80,000 M−1 cm−1) (Gorman
et al., 2004; Palma et al., 2009). The fluorescence quantum
yields of the dibromoazaBodipy were low (1–10%). The ISC
ability of the compounds were confirmed by singlet oxygen
photosensitizing, and the PDT effect was studied with cancer cells
(Gorman et al., 2004). However, the triplet-state lifetimes of the
compounds were not reported.

Ramaiah et al. prepared a series of iodinated analogs
(Figure 3; Adarsh et al., 2012), and the absorption wavelength
and the absorptivity were similar to the brominated analogs.
With nanosecond transient absorption spectra, the triplet-state
lifetimes of the diiodoazaBodipys were determined as ca. 2 µs,
and triplet-state quantum yields were determined as 70–80%
(Adarsh et al., 2012). Besides the azaBodipy derivatives, the styryl
Bodipy also showed absorption in the red spectral region (Deniz
et al., 2008; Lu et al., 2014). We studied the triplet-state property
of the 2,6-diiodobisstyrylBodipy; the triplet-state lifetime was
determined as 1.8 µs, and the singlet oxygen quantum yield was
determined as 69% (Huang et al., 2013b). Notably, the triplet-
state lifetime was much shorter than the normal diiodoBodipy
(ca. 270 µs). We proposed that the energy gap law alone is not
the reason for the short triplet-state lifetimes (Liu and Zhao,
2012; Sun et al., 2013b; Yang et al., 2016). To the best of our
knowledge, this was the first time that the triplet-state property
of the styryl substituted Bodipy was studied. We also used the
2,6-diiodoBodipy as a novel photocatalyst for an Aza Henry
reaction (oxidative coupling of benzylamine); the reaction was
more efficient than the conventional photocatalysts, such as the
Ru(bpy)3 or Ir(ppy)3 (Huang et al., 2013b). We attributed the
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FIGURE 4 | Ru(II) complex containing Bodipy appendants.

FIGURE 5 | N∧C∧N Pt(II)–acetylide complex and Ir(III)(ppy)(bpy) complex contains Bodipy chromophore.

efficient photocatalysis to the strong absorption of visible light
by the diiodostyrylBodipy.

The heavy atom effect for enhancing spin–orbit coupling is a
common mechanism to facilitate the ISC of Bodipy compounds
(Supplementary Figure 2; Wu et al., 2011; Chen et al., 2012;
Nakashima et al., 2018). Furthermore, Eisenberg and MaCamant
studied the ISC kinetics of the 2,6-dibromoBodipy and the 2,6-
diiodoBodipy (Sabatini et al., 2011). Based on the decay of the
stimulated emission (SE) band, the ISC time constants of the
2,6-dibromoBodipy and the 2,6-diiodoBodipy were determined
as 1.3 ns and 127 ps, respectively. This result indicated that
the iodine atom was more efficient in inducing ISC. It is worth
mentioning that the heavy atoms should be attached to the π-
conjugation framework of the Bodipy, not to the peripheral
moieties, as otherwise the heavy atom effect-induced ISC would
not be efficient (Singh-Rachford et al., 2008).

TRANSITION METAL COMPLEXES

CONTAINING BODIPY MOIETIES

Transient metal complexes normally show partially forbidden
S0 →

1MLCT transition; as a result, the absorption in the visible
range is normally weak. Moreover, because of the significant
involvement of the transitionmetal in the transitions, the T1 state
is actually strongly quenched, manifested by its short triplet-state
lifetime (Williams, 2007; Wong and Yam, 2007). Incorporation
of a visible light-harvesting chromophore in the transition metal
complex will have at least two possible benefits: to strengthen the

visible light harvesting and to prolong the triplet-state lifetimes.
The achievement of these goals, however, is dependent on the
molecular structure design.

Campagna and Ziessel et al. reported Ru(II) terpyridine
complexes containing a Bodipy chromophore (Figure 4; Galletta
et al., 2005). A population of the Bodipy-localized triplet
state (lifetimes are 8 and 30 µs, respectively) were observed
for both complexes. Phosphorescence of the 3∗Bodipy was
observed at 77K. However, we hypothesized that the ISC, upon
excitation of the Bodipy unit, was probably not efficient due
to the large distance between the Ru(II) center and the Bodipy
moiety. It should be noted that the triplet-state lifetime of the
parent Ru(II) (terpyridine)2 was short (250 ps), and the long
triplet-state lifetimes of 13 and 14 were due to the energy
transfer and the localization of triplet state on the Bodipy part.
This is a typical example for manipulation of the triplet-state
property of transition metal complexes with ligand modification
(McClenaghan et al., 2005; Campagna et al., 2007).

Inspired by the molecular structures in the literature (Nastasi
et al., 2008), we theorized that directly linking the π-conjugation
framework to a metal center may greatly enhance the ISC of the
chromophore as this will ensure the excitation energy harvested
by the complexes will be efficiently transformed into triplet-
state energy (15 in Figure 5; Wu et al., 2012a). Complex 15 was
based on a N∧C∧N Pt(II)–acetylide coordination profile, which
showed high phosphorescence quantum yields (19%) (Tam
et al., 2011). The absorption of 15 was redshifted (absorption
maximum was at 574 nm), as compared to the free Bodipy
ligands (absorption band was centered at 543 nm), indicating
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FIGURE 6 | Ir(III)(ppy)(bpy) complex (17, 18) contains Bodipy chromophores via conjugated and non-conjugated linkers and σ-Pt-BODIPY complexes (19–23) with the

Bodipy carbon directly metalated.

strong electronic interaction between the Pt(II) coordination
center and the Bodipy chromophore. Room temperature near
IR phosphorescence band centered at 770 nm was observed,
and the phosphorescence quantum yield was up to 3.5%. The
triplet-state lifetime was determined as 128 µs by nanosecond
transient absorption spectroscopy (Wu et al., 2012a). To the best
of our knowledge, this was the first report of the strong near-IR
phosphorescence of Bodipy at room temperature. This property
indicated the efficiency of the ISC. The complex was used as a
triplet photosensitizer for TTA upconversion, and upconversion
of the quantum yield up to 5.2% was observed.

Bodipy chromophores were also attached to Ir(III)
coordination frameworks. Castellano and Ziessel prepared
complex 16, in which the Bodipy chromophore was attached
to the Ir(III) coordination center via an ethynyl linker at the
meso-phenyl moiety (16 in Figure 5; Rachford et al., 2010). The
complex showed a strong absorption band centered at 501 nm,
and it showed the same for the Bodipy ligand, indicating limited
electronic interaction between the Ir(III) coordination center
and the Bodipy chromophore at the ground state. This is also
supported by the redox potentials of the complex and the free
ligands. Nanosecond transient absorption spectroscopy showed
the Bodipy-localized triplet state with a lifetime of 25 µs. The
residual fluorescence of the Bodipy ligand was observed for the
complex, and a phosphorescence band centered at 730 nm was
observed at 77 K.

We studied the effect of π-conjugated and non-conjugated
linkers on the photophysical properties of the Ir(III) complexes
(17, 18 in Figure 6; Sun et al., 2013a). The molecular structure
of 17 was similar to complex 16. In complex 18, however,
the π-conjugated framework of the Bodipy chromophore was
connected to the Ir(III) coordination center, which was different
from that in 17. Although 18 showed the same absorption
wavelength as compared to the free ligand, room temperature

phosphorescence at 742 nm was observed (phosphorescence
quantum yield: 0.03%), although with the residual fluorescence
of the Bodipy unit at 553 nm (yield 0.3%). We noted the residual
fluorescence of the Bodipy unit in 17 was higher (1.8%), and no
phosphorescence was observed for 17. These results indicated
the ISC in 18 was more efficient than 17. This conclusion was
supported by the singlet oxygen photosensitizing studies; for 18,
the singlet oxygen quantum yield (81) was 97%, whereas, for 17,
the 81 was 52%. These results demonstrated that the structure
of the linker must be taken into account in order to ensure an
efficient ISC.

The triplet-state lifetimes of 17 and 18 were determined as
23.7 and 87.2 µs, respectively. We used the photosensitizer
for photocatalytic oxidation of 1,5-dihydroxylnaphthalene, and
results showed that the Ir(III) complexes containing the
Bodipy units were much more efficient than the conventional
Ir(ppy)2bpy complex. The complexes were also used as triplet
photosensitizers for TTA upconversion, with perylene as the
triplet acceptor/emitter. The TTA upconversion efficiency with
18 was 2.8%, whereas it was 1.2% for 17. The parent complex
Ir(ppy)2bpy showed an upconversion quantum yield of 0.3%.
We expect that the transition metal complexes showing strong
absorption of visible light and a long-lived triplet state will be
promising for applications in photocatalysis (Sun et al., 2012,
2013b; Guo et al., 2018; Wang et al., 2019a).

Winter et al. directly attached the Bodipy chromophore to
the Pt (19-23 in Figure 6) without the ethyne linker, and thus
the ISC was supposed to be maximized for these so-called σ-
Pt-BODIPY complexes (Irmler and Winter, 2016, 2018; Irmler
et al., 2019a,b). The photophysical properties, as well as the
electrochemical properties, are substitution position dependent.
Dual emission bands centered at 588 and 797 nm were observed
for the complexes, with the phosphorescence quantum yield up
to 0.364%. The singlet oxygen quantum yields were ca. 50%
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for the complexes with metalation at the 2- or 3-positions,
and it reached 95% for the complex with metalation at the
8-position (Irmler and Winter, 2018). Complexes containing
both Bodipy and pyrene ligands (23) were prepared (Irmler
and Winter, 2016; Irmler et al., 2019a,b), and charge separation
(CS) and energy transfer were observed with the complexes.
The CT phosphorescence emission band was at 724 nm, and
the singlet and triplet emissions of the Bodipy-localized excited
state were at 470 and 635 nm, respectively. The phosphorescence
lifetimes were up to 500 µs. Interestingly, the complexes with
8-metalation show blueshifted emission as compared to the
complexes with metalation at 2-positions (Leen et al., 2012).
The ISC mechanism of σ-Pt-BODIPY complexes is presented in
Supplementary Figure 3.

ORTHOGONAL BODIPY DIMERS: THE ISC

MECHANISM

Previously, some Bodipy dimers were reported to show the
exciton coupling effect (Supplementary Figure 4; Bröring et al.,
2008; Ventura et al., 2009), which requires specific orientation
of the two chromophores (Kasha et al., 1965). These compounds
have been revised recently, and readers are suggested to refer
those review articles (Zhao et al., 2013, 2015). The manifestation
of the exciton coupling is normally a significant splitting of the
absorption band of the monomer chromophore in the dimers or
dyads (Bröring et al., 2008; Ventura et al., 2009). In this case, one
singlet state may share similar energy levels with a triplet state,
and thus the ISC will be enhanced.

Recently, orthogonal Bodipy dimers were reported (dimers
24, 25, and 26 in Figure 7; Cakmak et al., 2011). In this case,
there is no splitting of the absorption band, which is different
from the exciton coupling effect. The absorption maxima of the
compounds are close to the absorption of the monomer. The
fluorescence quantum yields of dimers 24, 25, and 26 were 3, 31,
and 49%, respectively. The singlet oxygen quantum yields of the
compounds were 51, 46, and 21%, respectively. Phototoxicity was
confirmed with cancer cells. However, the triplet-state property,
such as the triplet-state lifetimes, were not studied. Later, Akkya
and Dede et al. proposed that the ISC was due to a doubly excited
state mechanism (Duman et al., 2012).

We prepared an orthogonal Bodipy dimer 27, and two
hetero-Bodipy dimers, 28 and 29. The aim was to extend
the absorption wavelength (Figure 8; Wu et al., 2013). Dimer
27 showed one major absorption band centered at 506 nm,
indicating that the two subunits in 27 were identical. For 28

and 29, however, two absorption bands centered at 509 and
541 nm were observed, which indicated that the two parts were
not identical. The fluorescence quantum yields of 27, 28, and
29 were determined as 2.2, 17.6, and 2.3%, respectively (in
DCM). The 81 values were 64 and 42% for 27 and 28; no
singlet oxygen production was observed for 29. With nanosecond
transient absorption spectroscopy, we determined the triplet-
state lifetime of 27 and 28 as 115.6 and 140.9 µs, respectively.
Note these apparent triplet-state lifetimes were shorter than the
intrinsic triplet-state lifetimes as a result of TTA quenching
effect. To the best of our knowledge, this is the first time

FIGURE 7 | Orthogonal Bodipy dimers showing efficient ISC.

that the triplet excited state of Bodipy dimers was reported.
We proposed that the heavy atom-free triplet photosensitizers
were superior, and that the triplet-state lifetime was long, which
made it beneficial for intermolecular electron transfer or the
charge transfer processes. Thus, we used the dimers as triplet
photosensitizers for TTA upconversion, and perylene was used
as triplet acceptor/emitter. The upconversion quantum yield was
determined as 3.7%. This example demonstrated that the heavy
atom-free triplet photosensitizer based on the Bodipy dimers
were applicable to intermolecular triplet energy transfers like
TTA upconversion.

The ISC mechanisms of these orthogonal Bodipy dimers
are controversial. Initially, it was proposed the doubly excited
state was responsible for the ISC (Duman et al., 2012). Later, it
was proposed that charge transfers between the two units are
involved, and that the charge recombination induced the ISC.
This was based on an observation of the charge transfer state
with the femtosecond transient absorption spectroscopy (Epelde-
Elezcano et al., 2017; Liu et al., 2018). It was proposed that the
spin–orbital charge-transfer ISC (SOCT-ISC) was responsible for
the ISC. Recently, it was proposed the ISC of these orthogonal
Bodipy dimers was due to singlet fission (Montero et al., 2018).
However, the time-resolved electron paramagnetic resonance
(TREPR) spectroscopy study of the dimers does not support
this postulation because no quartet state was observed (the
spin–spin interaction was as a result of the triplet–triplet pair)
(Kandrashkin et al., 2019).

Moreover, the donor/acceptor dyads with large separation
distances between the electron donor and acceptor have been
studied for a long time. The radical pair ISC (RP ISC) was
found to be responsible for the ISC (Wiederrecht et al., 2000;
Dance et al., 2006; Kc et al., 2014). However, the synthesis
of these electron donor/acceptor dyads is difficult because of
the rigid and long linkers in these compounds. Interestingly,
some electron donor/acceptor dyads with simple molecular
structures were reported recently to show ISC ability; these
compounds are promising candidates for heavy atom-free
triplet photosensitizers.

Harriman and Ziessel reported a Bodipy derivative with
pyridium moiety at the meso position (Figure 9). For the analog
containing a neutral pyridyl moiety, the fluorescence quantum
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FIGURE 8 | Orthogonal Bodipy dimer 27 and heteroBodipy dimers 28 and 29 showing efficient ISC.

FIGURE 9 | Bodipy derivative with pyridium electron acceptor unit.

yield was high (78%) and the formation of triplet state was
negligible (Harriman et al., 2007).

For compound 30, however, the fluorescence quantum yield
decreased to 0.5%, triplet-state formation upon photoexcitation
was conformed with nanosecond transient absorption
spectroscopy, the ISC quantum yield was determined as
75%, and the triplet-state lifetime was determined as 2.0 ± 0.5
µs. Based on picosecond transient absorption spectroscopy,
the charge separation process had a time constant of 5 ps,
and the charge recombination (CR)-induced ISC had a time
constant of 0.7 ns (Harriman et al., 2007). The ISC should
belong to the SOCT-ISC mechanism (Supplementary Figure 5)
of the compact electron donor/acceptor dyads; the electron
donor and acceptor should adopt orthogonal geometry, and the
angular momentum conservation would thus be satisfied for
the ISC (van Willigen et al., 1996; Dance et al., 2008). Energy
levels of the Bodipy dimers do not support the singlet fission
mechanism (excitation energy is 2.44 eV, whereas the T1 state
energy of the Bodipy chromophore is ca. 1.70 eV) (Rachford
et al., 2010). It should be pointed out that some Bodipy dimers
do not show any ISC (Liu et al., 2018), although the so-called
symmetry-breaking charge transfer (SBCT) still occurs (Whited
et al., 2012).

CHARGE RECOMBINATION-INDUCED ISC

IN BODIPY DERIVATIVES

Charge recombination (CR)-induced ISC in electron
donor/acceptor dyads with large separation distance between the

FIGURE 10 | Bodipy derivative with anthryl moiety as electron donor.

electron donor and acceptor has been studied for a long time.
Radical pair ISC (RP ISC) has been found to be responsible for
the ISC (Wiederrecht et al., 2000; Dance et al., 2006; Kc et al.,
2014). However, the synthesis of these electron donor/acceptor
dyads is difficult because of the rigid and long linkers in these
compounds. Interestingly, some electron donor/acceptor dyads
with simple molecular structures were reported recently to show
ISC ability; these compounds are promising candidates for heavy
atom-free triplet photosensitizers (Filatov et al., 2017; Hou et al.,
2019).

Filatov and Senge reported feasibly prepared Bodipy–anthryl
electron donor/acceptor dyads, in which the anthryl was used
as an electron donor (Figure 10; Filatov et al., 2017). The
fluorescence of the Bodipy moiety in the dyads was quenched
to a large extent, and the CS in both dyads was confirmed
with femtosecond transient absorption spectroscopy. The singlet
oxygen quantum yields of the two dyads were determined as
67 and 38%, respectively. Among other factors, the orthogonal
geometry in the dyad was beneficial for the higher singlet oxygen
quantum yields. For 31, the triplet-state lifetime was determined
as 41 µs with nanosecond transient absorption spectroscopy.
The same researchers prepared a series of analog Bodipy-derived
electron donor/acceptor dyads. The dyads generally showed
satisfactory SOCT-ISC (Filatov et al., 2018). Zhang also prepared
Bodipy-based electron donor/acceptor dyads, and the SOCT-ISC
was observed (Zhang and Feng, 2017; Zhang et al., 2017; Hu et al.,
2019).

We prepared a series of Bodipy–anthryl dyads, in which the
anthryl and the Bodipy units adopted orthogonal geometry, but
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FIGURE 11 | Bodipy derivative with anthryl moiety as electron donor and the

dipole moments of the subunits are with parallel or perpendicular.

the dipole moments of the two subunits were either in parallel
or perpendicular (Figure 10; Wang and Zhao, 2017; Wang et al.,
2019b), which was different from the previous reports of the
anthryl–Bodipy dyads (Filatov et al., 2017).

We found that, although the fluorescence of the Bodipy unit
was all quenched in the dyads, the singlet oxygen quantum yield
varied drastically. For 33 and 34, the singlet oxygen quantum
yield can be up to 90%, whereas for 35 and 36, the singlet
oxygen quantum yields were much lower (at most ca. 20%
Figure 11). Delayed fluorescence was observed for the dyads (P-
type, i.e., TTA mechanism). We observed a long triplet-state
lifetime for the dyads (up to 82 µs). These dyads were used for
TTA upconversion, and an upconversion quantum yield up to
15.8% was observed (Wang and Zhao, 2017). To the best of our
knowledge, this was the first time that electron donor/acceptor
dyads showing SOCT-ISC and strong absorption of visible light
were used for TTA upconversion.

Moreover, we used TREPR spectroscopy to study the electron
spin polarization (ESP) of the triplet state of the dyads. The
purpose of this kind of study was to study the ISC mechanisms,
e.g., to discriminate the radical pair ISC and the SOCT-ISC
mechanisms. We observed an ESP of (e, e, e, a, a, a) for 33

and 34, which was similar to that of 2,6-diiodoBodipy (Wang
et al., 2019b). This finding was different from the previous
reports that the ESP of the triplet state accessed with SOCT-
ISC should be always different from the SO ISC (Dance et al.,
2008). Interestingly, 35 and 36 showed an ESP of (a, e, a, e,
a, e), which was different from that of 33 and 34. The ESP
ruled out the RP ISC mechanism. Interestingly, for 34, three
triplet states were simultaneously observed, i.e., the 3CT state,
3An state, and 3Bodipy states. It was proposed that the CR was
inhibited to some extent at low temperatures. We have proposed

FIGURE 12 | Bodipy derivative with phenothiazine (PTZ) moiety as electron

donor.

that it is more convincing to use the potential energy curve of
the torsion to study the molecular conformation rather than the
single point optimization.

We also used phenothiazine as a strong electron donor
to construct SOCT-ISC dyads based on Bodipy (37 and 38,
Figure 12; Chen et al., 2017). PTZ had an oxidation potential of
+0.3V (vs. Fc/Fc+), which was more negative than anthryl (ca.
+1.0V, vs. Fc/Fc+). One of the effects of using a stronger electron
donor was the decreasing of the CT state energy levels, whichmay
lead to changes of the energy level match profile between the CT
state and the LE triplet state.

In other words, the solvent polarity dependency of the ISC
quantum yields may change for 37 and 38, as compared to
that fluorescence. This was observed for the Bodipy–anthryl
dyads (Filatov et al., 2017). The fluorescence of the Bodipy
moiety in 37 (2.7%) was weaker than 38 (7.2%). Efficient
singlet oxygen photosensitizing was observed for 37 (67% in
toluene, much weaker in other solvents). The singlet oxygen
photosensitizing of 38 was weaker (24.6%). Note for the Bodipy–
anthryl dyads, high singlet oxygen photosensitizing was observed
in acetonitrile (Wang et al., 2019b). An apparent triplet-state
lifetime of 116 µs was observed with nanosecond transient
absorption spectroscopy. We used 38 as triplet photosensitizer
for TTA upconversion, and an upconversion quantum yield of
3.2% was observed.

ISC OF THE C60-BODIPY DYADS: C60 AS

THE ELECTRON SPIN CONVERTER FOR

ACHIEVING ISC

Fullerene C60 has been widely used as an electron acceptor in
organic photovoltaics materials (Yamazaki et al., 2004; Chen
et al., 2011; Izawa et al., 2011; Tamura et al., 2014). It was also used
in electron transfer because of its small reorganization energy
(Turro et al., 2009). However, we believe one of its photophysical
properties has not been fully exploited, i.e., the efficient ISC
(Arbogast et al., 1991). The ISC efficiency is close to a unit;
however, C60 itself is not an ideal triplet photosensitizer because
the absorption in the visible spectral region is very weak. We
proposed that this drawback could be addressed by attaching a
visible light-harvesting chromophore to C60. The energy transfer
from the organic chromophore to the C60 would thus produce
the S1 state of C60, then, via the ISC of the C60 unit, the triplet
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FIGURE 13 | Bodipy–C60 dyad derivative with Bodipy moiety as electron

donor.

state would be populated. The final localization of the triplet
state would be dependent on the relative triplet energy levels of
the chromophore and the C60 unit. Moreover, charge separation
cannot be excluded for the C60-Bodipy dyads, especially in highly
polar solvents.

Ziessel and Harriman prepared a C60-Bodipy dyad (39 in
Figure 13; Ziessel et al., 2009). The fluorescence of the Bodipy
unit was strongly quenched in the dyad. Based on picosecond
transient absorption as well as electrochemical studies, it
was found the singlet energy transfer was dominant upon
photoexcitation of the C60 unit in non-polar solvents. Finally,
the triplet state on the C60 unit was populated. In polar solvent
benzonitrile, the CT state contained lower energy than the 3∗C60

state. The CT state had a lifetime of 430 ps. In DCM, the
formation of the CT state was observed; the lifetime was 160
ps, the CR lead to the formation of the 3∗C60 state and not the
3∗Bodipy state (Ziessel et al., 2009). The triplet-state quantum
yields of the dyad were not studied. The main photophysical
processes is presented in Supplementary Figure 6.

D’Souza and Ng et al. prepared a PTZ–AzaBodip—C60 triad
(Shi et al., 2013; Bandi et al., 2015; Collini et al., 2017).
Photoexcitation of the Bodipy unit lead to the formation of
PTZ+•

−azaBodipy−•-C60 and PTZ+•

−azaBODIPY−C−•

60 CT
states. The CR lead to the formation of the 3∗AzaBodipy state.
The ISC quantum yield was not reported.

Inspired by these studies, we prepared a Bodipy–C60 dyad
(Figure 14), and the photophysical property was studied (Wu
et al., 2012b). The absorption wavelength of the dyads can be
easily changed by using different organic chromophores; 40

showed an absorption band at 515 nm, whereas 41 showed
absorption at 590 nm. Note that the S1 state energy level of C60

moiety was 1.77 eV. Thus, singlet energy transfer from the Bodipy
unit to the C60 unit is possible, although this is not a typical
scenario for Förest resonance energy transfer (FRET), since the
S0 → S1 transition of the C60 unit is very weak (Lakowicz, 1999).

The fluorescence of the Bodipy units in the dyads was
strongly quenched, indicating either singlet energy transfer or
electron transfer from the Bodipy units to the C60 unit. With
nanosecond transient absorption spectroscopy, an excited state
absorption band centered at 720 nm was observed, which was
the characteristic absorption of the 3C∗

60 state. The triplet-state
lifetime was determined as 33.3 µs (Wu et al., 2012b). Since the
dyads showed strong absorption in the visible spectral region
and long-lived triplet excited states, we used the dyads for TTA

FIGURE 14 | Bodipy–C60 dyads 40 and 41 as triplet photosensitizers.

upconversion. The upconversion quantum yields were up to
2.9% (40) and 7.0% (41). We determined the singlet oxygen
quantum yield of an analog of 40 as 81%, thus indicating the
ISC of the C60-Bodipy dyads was efficient (Huang et al., 2013a).
To the best of our knowledge, this was the first application
of C60-organic chromophore dyads for TTA upconversion.
Following this line, we prepared a C60-Bodipy–styrylBodipy
triad, which showed broadband absorption in the visible spectral
region, to enhance the photocatalytic efficiency with a white
light source (Huang et al., 2013a). We also prepared C60-
dyads containing the chromophore of perylenebisimide (Liu
and Zhao, 2012), styrylBodipy (Huang et al., 2012b), and
ethyne-linked Bodipy (Huang et al., 2012a; Yang et al., 2012);
an efficient ISC was observed for the dyads. We proposed
that these C60-organic chromophore dyads that showed strong
absorption of visible light and a long-lived triplet state are
promising triplet photosensitizers for PDT, photocatalysis, and
photon upconversion.

RADICAL ENHANCED ISC

It has been known that the fluorescence of organic chromophores
can be quenched by stable radicals (Likhtenstein et al., 2007; Li
et al., 2010; Yapici et al., 2012). With TREPR spectroscopy, it
was shown that there existed a spin–spin interaction between
the persistent radical and the chromophore (Corvaja et al., 1995;
Ishii et al., 1996, 1999, 2001; Likhtenstein et al., 2007; Dyar et al.,
2015). The overall spin of the dyad may facilitate the ISC of
the chromophore (Dyar et al., 2015). However, this property
was rarely used for designing visible light-harvesting triplet
photosensitizers. One critical issue was to fine-tune the spin–spin
interaction magnitude between the radical and the chromophore
in order to attain efficient ISC and a long-lived triplet state at the
same time. Strong spin–spin interactions will quench the triplet
state of the chromophore (Dyar et al., 2015).

We prepared two Bodipy–TEMPO dyads (Figure 15), which
contain different linkers (Wang et al., 2017). The purpose of
varying the linker was to tune the electron spin–spin interaction
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FIGURE 15 | Bodipy-TEMPO dyads showing radical enhanced ISC.

in the dyads to achieve the goal to have efficient ISC and also a
long-lived triplet state. The results showed that the fluorescence
of the Bodipy unit was quenched in the dyads; the fluorescence
quantum yield of 42 was 29%, and the fluorescence of 43 was
5%. With nanosecond transient absorption spectroscopy, we
confirmed the ISC and the formation of the 3∗Bodipy state
upon photoexcitation. The triplet-state lifetimes of the dyads
were 190 and 62 µs, respectively. The singlet oxygen quantum
yields of the dyads were determined as 14 and 56% for 42

and 43, respectively. These results show that the linker length
in 43 is optimal to achieve both efficient ISC and a long-
lived triplet state. With TREPR spectroscopy, we observed the
quartet state in a frozen solution at 80K, indicating that the
spin–spin interaction between the radical and the chromophore.
In a fluid solution at 185K, we observed the electron spin
polarization of the TEMPO changed from absorption to emission
with a longer delay time after the laser flash. The initial
absorptive signal was due to the radical-triplet pair mechanism
having a doublet precursor, and the later emissive signal was
due to RTPM having a triplet precursor. The Bodipy–TEMPO
dyads were used for TTA upconversion, and the upconversion
quantum yield for 43 was 6.7%, but it was much lower for
42 (0.2%). The radical enhanced ISC mechanism is presented
in Supplementary Figure 7.

CONCLUSION

In summary, in recent years, varieties of Bodipy derivatives have
been reported as having an intersystem crossing (ISC) ability,
and the applications of these compounds in photocatalysis,
photodynamic therapy, and photon upconversion are promising.
One of the critical photophysical properties of the triplet

photosensitizers is the efficient ISC ability. In this review
article, we summarized the recent development in the area of
Bodipy-derived triplet photosensitizers. The compounds have
been introduced based on their ISC mechanisms, which include
the heavy atom effect, exciton coupling, charge recombination
induced ISC, using a spin converter, and radical enhanced
ISC. Some transition metal complexes containing Bodipy
chromophores are also introduced. The designing rationales
of the molecular structures are discussed. We believe the
research on the designing of new triplet photosensitizers and the
application of these novel materials in the abovementioned areas
will flourish.
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