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The cognitive psychology of perception and 
decision-making is at a cross-road. Most 
studies still employ categorical designs, 
a priori classified stimuli and perform 
statistical evaluations across subjects. 
However, a shift has been observed in 
recent years towards parametric designs in 
which the information content of stimuli 
is systematically manipulated to study 
the single-trial dynamics of behaviour 
(reaction times, eye movements) and 
brain activity (EEG, MEG, fMRI). By 
using the information contained in the 
variance of individual trials, the single-trial 
approach goes beyond the activity of the 
average brain: it reveals the specificity of 

information processing in individual subjects, across tasks and stimulus space, revealing both 
inter-individual commonalties and differences. This Research Topic provides theoretical and 
empirical support for the study of single-trial data. 

Topics of particular interest include: 

1.  description of the richness of information in single-trials and how it can be successfully 
extracted; 

2.  statistical issues related to measures of central tendency, control for multiple comparisons, 
multivariate approaches, hierarchical modelling and characterization of individual 
differences; 

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Perception%20Science/researchtopics/Single_trial_analyses_of_behav/98


Frontiers in Psychology April 2012 | Single-trial analyses of behavioural and neuroimaging data in perception and decision-making | 3

3.  how manipulation of the stimulus space can allow for a direct mapping of stimulus 
properties onto brain activity to infer dynamics of information processing and 
information content of brain states; 

4.  how results from different brain imaging techniques can be integrated at the single-trial 
level. 

Image Caption: Example of a design matrix for an ANCOVA used to study how single-trial 
ERP amplitude is modulated by image characteristics and task constraints.

Image Credits: Rousselet, G. A., Gaspar, C. M., Wieczorek, K. P., and Pernet, C. R. (2011). 
Modeling single-trial ERP reveals modulation of bottom-up face visual processing by top-
down task constraints (in some subjects). Front. Psychol. 2:137.
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et al. (2011) found that pre-stimulus alpha power is correlated 
with subjects’ judgment of attentional state (see also VanRullen 
et al., 2011 for a review of evidence linking alpha oscillations to 
perception and attention).

Multivariate methods are often used to characterize the 
 spatial–temporal variance in each trial in order to derive pattern 
classifiers (see however Friston et al., 1996 for a more traditional 
use). For instance, Touryan et al. (2011) used the variance in 
space and time to train a discriminant function to classify, in 
real time, brain activity related to familiar and unfamiliar faces. 
In their experiment, although the group ERPs differed between 
familiar and unfamiliar faces over frontal and parietal electrodes, 
the classification revealed that only the parietal response allowed 
the discrimination of the stimulus category on a single-trial basis. 
This result illustrates that group averaging may be misleading, 
presenting an abstract signal that cannot be found in individual 
subjects (see also Gaspar et al., 2011). Wutte et al. (2011) also used 
a pattern classification technique (support vector machine) to 
read-out motion direction from areas V1 and MT+ using fMRI. 
Although the spatial variance reflected the direction of perceived 
stimuli, individual perceptual thresholds were predicted by the 
relative variance in amplitude between activation and rest trials, 
thus illustrating the complementarity of univariate and multi-
variate methods.

In addition to a unique window on brain mechanisms, single-
trial analyses also allow researchers to interpret individual differ-
ences by quantifying effects within and between subjects, providing 
a richer data description mandatory to build efficient models of 
perception and decision-making. It is often said that single-trial 
analyses require either too many trials, or dense coverage (dense 
arrays in MEEG or fast TR in fMRI), or both. It is true that in order 
to obtain good signal-to-noise ratio (regression over trials) many 
trials are necessary and, in order to obtain good patterns (“weight-
ing” across electrodes/voxels, time intervals, frequency intervals), 
dense coverage is mandatory. Many trials are nevertheless also 
mandatory for an average to be a meaningful measure (Rousselet 
et al., 2008), just as dense coverage is necessary to ensure that min-
ima or maxima located between sampled time points in fMRI or 
between channels in MEEG are not overlooked. There are a growing 
number of user friendly toolboxes available to perform single-trial 
analyses (e.g., Parra et al., 2005; Hanke et al., 2009; Delorme et al., 
2011; Hartmann et al., 2011; Oostenveld et al., 2011; Pernet et al., 
2011). We encourage everyone interested in understanding how the 
stimulus space and behavioral response map onto brain activity 
to use these tools rather than merely amass binary results showing 
group differences in brain activity among conditions (Rousselet 
and Pernet, 2011).

Neuroimaging techniques have been traditionally used to dem-
onstrate differences between means calculated across conditions 
or groups of subjects. However, as illustrated by the articles in 
this research topic, by studying the variability across trials, single-
trial analyses can in some situations allow us to go beyond this 
kind of imaging to the mean. Indeed, single-trial analyses can 
provide additional information that is unobservable if we collapse 
the data to a mean. For example, single-trial analyses can help 
us provide a systematic mapping between (i) brain activity and 
stimulus information space (Schyns, 2010; Rousselet et al., 2011), 
(ii) brain activity and subject’s behavioral variability (Ratcliff 
et al., 2009), and (iii) brain activity measured using different 
imaging techniques, e.g., fMRI and EEG (Goldman et al., 2009; 
deBettencourt et al., 2011). Importantly, using certain paramet-
ric experimental designs, single-trial analyses can give us access 
to brain mechanisms, by allowing us to specify the information 
content of brain activity and its transformation (Schyns, 2010; 
Rousselet and Pernet, 2011).

Single-trial analyses refer to methods that consider the vari-
ance within subjects. Two broad families of methods can be dis-
tinguished: univariate methods extract information among trials 
in space, time, or both; multivariate methods extract information 
across space, time, or both, in individual trials. Single-trial analyses 
may thus be used for behavioral experiments (e.g., Etchells et al., 
2011) and neuroimaging experiments (e.g., Cohen and Cavanagh, 
2011; Macdonald et al., 2011; Milne, 2011; Rousselet et al., 2011; 
Touryan et al., 2011; Wutte et al., 2011). Single-trial analyses of 
neuroimaging data have seen their use increase since the late 1960s, 
starting with Donchin (1969). Despite this long tradition and sev-
eral advantages over group analyses, single-trial analyses remain 
nevertheless marginal.

The simplest form of univariate single-trial analysis is a regres-
sion over all of the trials in single subjects, to measure the rela-
tionship between, e.g., the signal amplitude and a parameterized 
stimulus space. This approach is often referred to as parametric 
design in fMRI. In this Research Topic, Rousselet et al. (2011) 
showed that a similar approach can be used in EEG to quantify 
brain responses to stimulus information in individual subjects, 
and characterize the probability of observing a mapping between 
stimulus information and EEG amplitude, thus going beyond the 
study of the average brain. Cohen and Cavanagh (2011) also dem-
onstrated that the single-trial parametric approach can be extended 
to time–frequency decompositions of power and phase. Variance 
among trials also contains information about subjects or cognitive 
states. For instance, Milne (2011) established that children with 
autism have significantly more variance in the latency of their P1 
response to Gabor patches than control participants. Macdonald 
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Indeed, these authors showed that only a remarkably short por-
tion of the overall latency period was used to integrate the sensory 
evidence (see also Ludwig, 2009).

Recently, we have developed a related method to assess over 
what time interval object velocity information is extracted in order 
to accurately intercept a moving object with a saccade (Etchells 
et al., 2010). Targeting a moving object poses a challenging deci-
sion problem: sensory input and motor output delays, as well as 
the eye movement duration itself, will result in a delay between the 
decision being made to generate an eye movement and the actual 
completion of that movement (Kerzel and Gegenfurtner, 2003). 
Consequently, some decision has to be made regarding how far 
ahead of the “currently seen” object position a saccade is to land, 
given the continued object motion during movement programming 
and execution. Clearly, having an estimate of the object velocity is 
desirable for this purpose.

Our method to identify the epoch over which this informa-
tion is extracted, follows the same logic as presented above (and is 
closely related to the double-step method used to infer over what 
epoch position information is extracted; Becker and Jürgens, 1979). 
Observers are presented with two targets moving at a particular 
velocity. A “go” signal indicates which object observers have to sac-
cade to. At some point after the go signal, target velocity is per-
turbed: the objects abruptly speed up or slow down. The random 
variation from trial-to-trial in the timing of the speed step, coupled 
with the natural variability in saccade latency, can be used to build 
up a picture of how much time the saccadic system needs to be 
able to incorporate information about the second speed into the 
saccade program.

IntroductIon
Saccadic eye movements serve to orient the fovea onto an object 
or region of interest within the visual environment. These move-
ments are the result of a decision process that is typically based 
on the analysis of sensory information, and so offer an ideal route 
through which to assess how decision-making mechanisms may 
be implemented by sensorimotor circuits in the brain (Gold and 
Shadlen, 2001, 2007; Glimcher, 2001; Schall, 2003). In recent years, 
there has been growing interest in the development of methods 
with which to assess how perceptual signals inform eye movement 
decisions (Beutter et al., 2003; de Brouwer et al., 2002; Caspi et al., 
2004; Ludwig et al., 2005, 2007; Bennett et al., 2007; Eckstein et al., 
2007; Spering et al., 2007; Nummela et al., 2008; Tavassoli and 
Ringach, 2009; Etchells et al., 2010).

Although the questions under investigation in these various 
studies differed, as did the precise methods used, there is a com-
mon theme. In general, a visual stimulus is perturbed in some way 
or another (e.g., adding random luminance noise over time in Caspi 
et al., 2004 and Ludwig et al., 2005). Careful analysis of how this 
perturbation influences behavior on single trials then enables esti-
mation of the spatial and/or temporal portions of the stimulus that 
preferentially drive decisions, through a variety of techniques (e.g., 
reverse correlation or logistic regression approaches). Important 
new insights have been obtained with these methodologies. For 
instance, Caspi et al. (2004) were able to show that the uptake of 
visual information in a single fixation drove not only the immedi-
ately following eye movement decision, but also the one after that. 
Ludwig et al. (2005) showed that decisions were driven by visual 
information time-locked to display onset, rather than saccade onset. 

Testing a simplified method for measuring velocity integration 
in saccades using a manipulation of target contrast

Peter J. Etchells*, Christopher P. Benton, Casimir J. H. Ludwig and Iain D. Gilchrist

School of Experimental Psychology, University of Bristol, Bristol, UK

A growing number of studies in vision research employ analyses of how perturbations in visual 
stimuli influence behavior on single trials. Recently, we have developed a method along such 
lines to assess the time course over which object velocity information is extracted on a trial-
by-trial basis in order to produce an accurate intercepting saccade to a moving target. Here, 
we present a simplified version of this methodology, and use it to investigate how changes 
in stimulus contrast affect the temporal velocity integration window used when generating 
saccades to moving targets. Observers generated saccades to one of two moving targets which 
were presented at high (80%) or low (7.5%) contrast. In 50% of trials, target velocity stepped 
up or down after a variable interval after the saccadic go signal. The extent to which the saccade 
endpoint can be accounted for as a weighted combination of the pre- or post-step velocities 
allows for identification of the temporal velocity integration window. Our results show that the 
temporal integration window takes longer to peak in the low when compared to high contrast 
condition. By enabling the assessment of how information such as changes in velocity can be 
used in the programming of a saccadic eye movement on single trials, this study describes 
and tests a novel methodology with which to look at the internal processing mechanisms that 
transform sensory visual inputs into oculomotor outputs.
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 user-friendly. The model presented by Etchells et al. (2010) included 
specification and estimation of a multitude of noise sources that, 
together, produced variability in the velocity weights (e.g., vari-
ability in saccade duration, which is correlated with variability in 
saccade amplitude). In this article we describe and test a significant 
simplification, which essentially combines all noise sources together 
and eases the estimation of the critical parameters of interest: those 
that describe the velocity weighting function.

In the model presented in Etchells et al. (2010), observers were 
presented with targets that did not differ in contrast from trial-to-
trial. In the current study, in order to test and demonstrate our sim-
plified model, we examine the effects of changing stimulus contrast 
on velocity integration. The work in the current paper therefore 
presents (1) a methodological advance in the form of a simple tech-
nique for characterizing the incorporation of velocity information 
into saccadic planning, and (2) an empirical advance in the form 
of a quantification of the effects of changing contrast on velocity 
integration during saccade planning. A wealth of research over the 
past 50 years has given us detailed knowledge of how contrast affects 
the visual system (e.g., Mansfield, 1973; Breitmeyer, 1975; Harwerth 
and Levy, 1978; Plainis and Murray, 2000; Weiss et al., 2002; Murray 
and Plainis, 2003; Carpenter, 2004; Ludwig et al., 2004; Taylor et al., 
2006; White et al., 2006) and its underlying neurophysiology (e.g., 
Enroth-Cugell and Robson, 1966; Pack et al., 2005; Krekelberg et al., 
2006; Livingstone and Conway, 2006). Consequently, we can make 
some informed predictions about the effect that contrast will have 
on the generation of saccades to moving targets.

Weiss et al. (2002) suggest that at low-contrast, there is less pre-
cise information about the actual speed of a given stimulus. The 
greater level of uncertainty is represented by an increase in the 
spread of the likelihood function of target velocity estimates. In 
other words, reducing stimulus contrast corresponds to a decrease 
in the signal-to-noise ratio (SNR) of the velocity measurement. If 
the velocity weighting function we measure with our method maps 
onto the underlying temporal filter used to estimate velocity, we 
might reasonably expect the width of the filter to increase when 
the target contrast is low. By extending the amount of time during 
which the velocity signal is sampled and averaged, SNR is increased 
to obtain a more precise estimate of target velocity.

The landing position on each trial may be used to estimate the 
relative weights attributed to the pre- and post-step velocities, by 
comparing the observed endpoint with the predicted endpoints 
based on the two velocities. We then assess how these weights 
change as a function of time from saccade onset. For instance, if 
the velocity step occurs long before movement onset the observer 
will have had more time to base their decision on the post-step, 
veridical velocity. As will be explained in detail below, fitting these 
weights over time with a model provides an estimate of the time 
interval over which object velocity was extracted.

Our previous work suggests that the system used a temporal win-
dow with a duration of ∼100 ms to estimate target velocity (Etchells, 
et al., 2010). The end of the window is positioned ∼80 ms before the 
onset of the saccade. The latter period may be considered the sac-
cadic dead-time, which is functionally defined as the period during 
which new visual information can no longer affect the saccade end-
point (Becker and Jürgens, 1979; Findlay and Harris, 1984; Aslin and 
Shea, 1987; Ludwig et al., 2007). The observed endpoint from each 
trial is converted into a relative weight associated with the post-step 
velocity. These weights are then fitted with some functional form.

Our model is not a process model that specifies the visual mecha-
nisms involved in velocity estimation. However, there is a process 
interpretation of the model, which is illustrated in Figure 1. We 
assume that during the latency period object velocity is estimated by 
convolving the input velocities with some temporal filter (Benton 
and Curran, 2009) such as that seen in Figure 1. This operation is 
analogous to computing a running, weighted average of the input. 
The temporal integration performed by the filter necessarily results 
in a certain amount of blurring of the velocity information when 
the velocity is variable. As a result, the observed endpoints may not 
simply reflect either the pre-step velocity or the post-step velocity, 
but may be driven by intermediate velocity estimates. The predic-
tion period shown in the figure is assumed to consist of the dead-
time and the saccade duration itself.

In the present study, our aims were twofold. First, we sought to 
validate this process interpretation of the model using a straight-
forward manipulation of the input which is known to profoundly 
affect the visual system: a variation in contrast. Second, we aimed 
to simplify the method of fitting the model to make it more 
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were collected over the course of four sessions, performed 
on different days. The study was approved by the local ethics 
committee.

EyE MovEMEnt rEcordIng
Stimuli were displayed on a 21-inch, gamma-corrected CRT moni-
tor (LaCie Electron Blue) running at 75 Hz. The monitor resolu-
tion was 1152 × 864 pixels, and the screen subtended 36° × 24° of 
visual angle. An Eyelink 1000 system (SR Research, Mississauga, 
ON, Canada) was used to record and monitor eye movements. This 
is an infrared tracking system that uses the pupil center in conjunc-
tion with corneal reflection to sample eye position at 1000 Hz. 
For each data sample, a dedicated parser algorithm (SR Research, 
Mississauga, ON, Canada) computes the instantaneous velocity 
and acceleration of the eye. These are then compared to threshold 
criteria for velocity (30°/s) and acceleration (8000°/s2). If either 
is above threshold, the eye movement is classified as a saccade. 
Visual inspection of a random selection of saccades confirmed that 
the automatic algorithm placed the on and offsets of the saccades 
appropriately, without including any apparent contributions from 
the potential pursuit component that may have followed the sac-
cade. Head position was stabilized at a viewing distance of 57 cm via 
the use of the Eyelink 1000 built-in chin rest. Observers viewed the 
display monocularly using their dominant eye, and eye dominance 
was measured using the hole-in-the-card technique (Seijas et al., 
2007). The experimental software was programmed in MATLAB 
using the Psychophysics Toolbox (Brainard, 1997) and Eyelink 
Toolbox extensions (Cornelissen et al., 2002).

dEsIgn and ProcEdurE
Observers performed 28 experimental blocks, each containing 128 
trials. Prior to each block, a nine-point calibration procedure was 
performed in which observers were asked to fixate a black cross that 
appeared randomly on a 3 × 3 grid. The fixation stimulus measured 
0.3° × 0.3°, and the calibration grid subtended 31° × 19° of visual 
angle. On a given trial, observers were instructed to fixate a central 
stimulus which took the form of a black diamond containing a cross 
(see Walker et al., 2000, Experiment 2). Observers were instructed 
which patch to make a saccade to by the removal of either the top 
two or bottom two diagonal segments, respectively forming either 
a downwards or upwards arrow (see Figure 2B).

In 50% of the trials within each block, the Gaussian patches 
would start moving at a constant speed of 18°/s and remain at 
this speed for the duration of the trial. In 25% of the trials, the 
patches would step up from 18 to 30°/s at a variable time after the 
change in fixation stimulus. In the remaining 25% of the trials, the 
patches would step down to 6°/s. The patches were shown for at least 
445 ms before the change in fixation stimulus would occur. After 
this time, an exponential, i.e., “non-aging,” foreperiod (Nickerson 
and Burnham, 1969; Oswal et al., 2007) was used to determine 
the time of the fixation change. A non-aging foreperiod can be 
described as one in which the probability of a target appearing 
in the next time interval decreases exponentially over time. This 
results in an observer’s expectation remaining constant over the 
course of a trial, which avoids portions of the observer’s response 
being attributable to something other than the visual information 
in the stimulus. The mean of this exponential distribution was 

Alternatively, a reduction in contrast may result in an increase 
in the time it takes for the incoming velocity information to reach 
the integration mechanism, as a result of increasing neuronal con-
duction latencies (e.g., Kaplan and Shapley, 1982). For example, 
Maunsell et al. (1999) showed that, depending on the number of 
inputs summed, latency differences in the magnocellular pathway 
through the lateral geniculate nucleus (LGN) are likely to be on 
the order of 5–15 ms between high and low intensity stimuli, with 
high intensity stimuli producing faster responses. A change in the 
velocity of the lower contrast stimulus will therefore take a longer 
time to register, which would result in a delay in the velocity signal 
reaching the integration mechanism. In our methodology, the time-
to-peak of the velocity weighting function reflects the time at which 
emphasis is shifted onto more recent velocity inputs. Therefore, 
when contrast is reduced, we might expect to see a delay in the 
point at which a velocity change is detected and incorporated into 
the final velocity estimate.

ExPErIMEntal ovErvIEw
Observers were required to fixate a central diamond-shaped fixa-
tion stimulus on a computer screen whilst two Gaussian patches 
(SD = 0.32°) traversed horizontally across the screen, 6° above 
and below the midline. During the trial, the fixation point would 
change into either an upwards- or downwards-pointing arrow, 
indicating which patch the observers had to make a saccade to 
(see Figure 2A). On some trials, after a variable delay the speed of 
the patches would change. By looking at the relationship between 
saccade landing positions and the time of the speed changes, we can 
determine how the saccadic system weighs the two velocities over 
time. We examine the nature of this velocity integration function 
in two conditions: high and low-contrast.

obsErvErs
Six observers were recruited from the students of the University 
of Bristol, UK (3 females, age range 24–30, mean age 26.0). All 
had self-reported normal or corrected-to-normal vision. Data 

BA

tim
e

Figure 2 | (A) Outline of the time course for a rightwards, step up trial. 
Gaussian patches start moving rightward. After some interval of time the 
fixation stimulus changes to an arrow, signaling that a saccade to the top patch 
should be made. After this, the patches step up in speed (illustrated by the 
double arrows). Note that patches and fixation point are not to scale, for 
illustration purposes. (B) The fixation stimulus. Removal of either the bottom 
two or top two diagonal line segments results in an arrow indicating which 
patch to saccade to.

Etchells et al. Measuring velocity integration in saccades

www.frontiersin.org May 2011 | Volume 2 | Article 115 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/perception_science/archive


εn
old  is the difference between the saccade landing position and the 

point where the target would have been had it not changed speed. 
The error that would result from completely following the pre-step 
velocity is shown by the dashed lines in Figure 3. Note that these 
predictions depend on the saccade duration and will therefore vary 
slightly from trial-to-trial. The dashed lines are drawn on the basis 
of the average saccade duration, just for the purpose of illustration.

With these two error terms in place, we determine a relative 
weighting that the saccadic system places on the post-step veloc-
ity, r

n
, given by:

r
e

e e
n

n

n n

=
−

old

old new

 
(1)

Values of r
n
 range between 0 and 1, with r

n
 = 0 equivalent to 

the saccadic system solely basing its response on the pre-step speed, 
and r

n
 = 1 equivalent to the system solely utilizing the post-step 

speed. Figure 4 illustrates (in 15 roughly equal bins) how these 
weights vary as a function of D. As expected, just before saccade 

128 ms. A second non-aging foreperiod, with a mean of 100 ms, 
was used to determine the time of the speed step. In both cases, a 
maximum cumulative probability of 95% was used to truncate the 
distribution, in order to prevent the generation of extremely long 
foreperiods that would take the patterns off the screen.

Within each block the contrast of the patches remained the 
same, with contrasts being randomized between blocks. Half of the 
blocks were presented at a high contrast and half at low-contrast. 
Contrast was defined as L

max
 − L

o
/L

o
 where L

o
 indicates background 

luminance. This gives contrast values of 80% in the high condition 
(L

max
 = 65.4 cd/m2, L

o
 = 36.4 cd/m2) and 7.5% in the low condition 

(L
max

 = 39.1 cd/m2, L
o
 = 36.4 cd/m2).

data analysIs
Only data describing the first saccade in each trial were considered. 
As the minimum distance between the fixation point and target was 
6° (when the target was located directly above or below fixation), 
trials in which the amplitude of the first saccade was less than 4° 
were rejected, as were trials in which no saccade was generated. 
Saccade endpoints were recorded, along with the target location at 
saccade termination and saccade amplitude. The primary analysis 
concerned the horizontal component of each saccade.

rEsults
For each contrast condition, we first want to determine the extent 
to which the first orienting saccade is influenced by the pre- and 
post-step velocities. We do this by measuring, for each trial, the 
horizontal error between where the saccade landed, and where the 
target was at the end of the saccade. This saccade endpoint error 
is then plotted as a function of the time between the velocity step 
and saccade onset, which we term D. This is aligned on saccade 
onset, such that D = 0 ms corresponds to the start of the saccade, 
and D = 500 ms corresponds to the velocity step occurring 500 ms 
before saccade onset.

Figure 3 shows, for a single observer, this landing position error 
as a function of D for both high and low-contrast conditions.

As values of D increase from zero (saccade onset), the general 
pattern of data in the high contrast condition indicates a gradual 
increase in the amount of error between the saccade endpoint 
and the target location at saccade end, up until a time of around 
160–170 ms prior to saccade onset. After this time, landing position 
error decreases back to zero at D = 200–300 ms in the majority of 
trials. The initial increase in error reflects an over-reliance on the 
pre-step speed. As D increases, the observers will have seen the target 
traveling for a longer time at the post-step speed, and therefore will 
begin to rely more heavily on the veridical velocity. This pattern, 
whilst similar in the low-contrast condition, shows relatively fewer 
trials in which the landing position error returns to zero. In those 
cases where it does, there is an increase in the time it takes for the 
error to do so, coupled with much greater variability. We now turn 
to a description of how we estimate the relative weighting of the 
two velocities, and how these weights can be used to identify the 
period over which velocity is integrated.

For a given observer, we first calculate two errors for each saccade 
n. εn

new is the difference between saccade landing position and the 
actual position of the target at the end of the saccade. This error 
is simply the distance from the zero-error abscissa in Figure 3. 
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Figure 3 | D (time between velocity change and saccade onset) versus 
the x-component error in saccade landing positions for a single observer 
(observer 1). Data are separated out by contrast condition. Green triangles 
denote speed step up trials; blue circles denote speed step down trials. 
Predicted behavior based solely on the post-step speed corresponds to 
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speed is shown by the red dashed lines.
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requires specification of the probability distribution from which 
the data points are drawn. This is not straightforward, because it is 
difficult to know (a) what sources of noise contribute to the vari-
ability in the post-step velocity weights and (b) how these noise 
sources are distributed at any given value for D.

In our previous work (Etchells et al., 2010) we assumed that the 
two types of endpoint error, εold and εnew, were both Gaussian dis-
tributed variables. With the weights defined as a ratio, their prob-
ability distribution was described as a ratio of Gaussian densities 
(Marsaglia, 2006). The parameters of the individual Gaussian 
components depended on a number of variables that were of 
minor theoretical interest, such as the mean saccade duration, 
variability in saccade duration, and variability in saccade landing 
position. An added complication was that these three quantities 
could, and to some extent did, vary as a function of D. To limit 
the number of free parameters we used a kernel estimator for 
the values of these quantities across the entire range of D and 
incorporated these estimates in the full expression of the prob-
ability distribution of r.

We appreciate that this procedure is rather cumbersome, for 
what appears to be a relatively straightforward and lawful pattern 
of data. We were therefore keen to develop a simplified method 
and assess to what extent the estimated velocity weights would be 
affected by the simplification. In the simplified model, we assume 
that r

n
 is Gaussian distributed, with a mean that varies as a func-

tion of D according to some functional form (see below). This is 
the variation that is of primary theoretical interest.

In standard maximum likelihood regression, the SD describes 
the residuals around the (predicted) mean. It is generally assumed 
to remain constant and left a free parameter. However, in our case 
the variability around the (mean) weights clearly varies as a func-
tion of D, which can be seen in the size of the error bars in Figure 4. 
It is important to include this variation: the fit should be most 
heavily constrained by those data points that were estimated with 
greater accuracy (i.e., for larger values of D). To make the depend-
ence on D explicit, we write:

r rn D DN[ ]( ), ( )σ  (2)

We were reluctant to introduce additional free parameters to 
describe the relation between the SD and time from saccade onset. 
After all, it is not immediately obvious what function best describes 
this relation and, more importantly, this relation is not of primary 
theoretical interest. For this reason, we estimated the SD from the 
observed values of r

n
 using a Gaussian kernel, for values of D rang-

ing from 1 to 500 ms. The bandwidth of this smoothing window 
was set for each observer separately, to whatever bandwidth best 
captured the distribution of D sampled for that observer. We rea-
soned that as the variable of interest is sampled as a function of 
D, a bandwidth for the optimal sampling of D would provide a 
reasonable window for smoothing the variability in the weights. 
Specifically, we computed a weighted SD, for every value of D in 
1-ms increments:

r
v r m

v
( )=

( ( ))2

D
Di ii

N

ii

N

−
=

=

∑
∑

1

1  

(3)

onset, the system has not had time to include the new velocity in its 
movement program, corresponding to a post-step velocity weight 
of 0. As time to saccade onset increases, more emphasis is placed 
on the post-step velocity, eventually reaching values close to 1. It is 
clear that the transition is gradual, which may be attributed to the 
varying portions of the pre- and post-step velocities falling under 
the temporal filter.

More formally, if we think of the velocity change as a step func-
tion falling within some temporal filter f(t), then r

n
 corresponds 

to the area under f(t) that falls after the velocity change. Therefore, 
the plot of r

n
 at a range of values of D gives us the integral of the 

temporal filter. In order to obtain an estimate of the filter, we fit a 
reasonable function to these data, and then take its derivative. Note 
that our actual model fits are based on the data from individual 
trials, not the binned data which are shown in Figure 4 for illustra-
tion purposes only.

We opted for maximum likelihood parameter estimation, 
because this allows us to perform likelihood-based hypothesis 
testing of the effects of our experimental manipulation on the 
various properties of the estimated filter (see below; Burnham 
and Anderson, 2002; Wagenmakers, 2007). Maximum likelihood 
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weighted equally. Note that while the data are presented here in 
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calculation, as indicated by the more gradual rise to r
n
 = 1 in the 

low-contrast condition. For clarity, the dash–dot line in Figure 4 
illustrates the point at which the two velocities are being weighed 
equally (i.e., when r

n
 = 0.5), showing a shift from ∼190 to ∼230 ms 

between the high and low-contrast conditions.
Figure 5 shows, for each observer, the derivatives of the weight 

versus D functions for both contrast conditions. The solid black 
line shows the filter plot for the high contrast data, and the dashed 
line shows the filter plot for the low-contrast data. The corre-
sponding shaded regions denote the 95% confidence intervals. 
These were calculated by producing 1000 bootstrap replications 
of the fit parameters, using the percentile method (Efron and 
Tibshirani, 1993).

The data show that the filter peaks shift toward larger values 
of D for the low-contrast condition (M = 207 ms, SEM = 1.5 ms) 
as compared to the high contrast condition (M = 188 ms, 
SEM = 2.5 ms), for every single observer. There also appears to 
be a slight increase in the width of the filter as contrast is reduced 
(M = 79 ms, SEM = 6.7 ms in the high contrast condition, 
M = 88 ms, SEM = 7.7 ms in the low-contrast condition). These 
effects are not concomitant with an increase in saccade latency 
in the step conditions – in the high contrast condition, the mean 
saccade latency across all observers was 271 ms (SEM = 8.3 ms), 
compared to a mean saccade latency of 274 ms (SEM = 6.5 ms) 
in the low-contrast condition – an increase of only 3 ms. The 

Here the vector of weights, ω, is the Gaussian smoothing func-
tion sampled at 1-ms intervals and μ is the Gaussian-weighted 
mean.

To capture r( )D  we initially chose a scaled cumulative Gamma 
function. The Gamma function was chosen to accommodate both 
symmetric and asymmetrical filters, and has frequently been used to 
describe temporal filters (Watson, 1986; Smith, 1995). The smooth 
curves in Figure 4 show the fits of the simplified model. These 
curves are characterized by three free parameters, namely a (the 
upper asymptote – the lower bound was set to zero), k (shape), and 
θ (scale). The Nelder–Mead Simplex method (Nelder and Mead, 
1965) was used in order to find the set of best-fitting parameters.

It is clear that these functions describe the data well. For each of 
the 12 data sets reported in the paper (six observers and two contrast 
levels), we computed the correlation between the predicted weights 
estimated using the original and simplified fitting methods, for the 
observed values of D. In all cases the correlation was greater than 
0.99. As such, the drastically simplified model results in very similar 
velocity weighting functions as the more complete (and complex) 
model developed in our previous work.

Having established the viability of the simplified model, we now 
turn to the empirical question of interest: what is the effect of 
contrast on the velocity weighting function? For the data shown 
in Figure 4, it appears that it takes the system much longer to 
incorporate the post-step speed into the saccade landing position 
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the observed data and best-fitting parameters, according to the 
number of free parameters (Schwarz, 1978; Wagenmakers, 2007). 
In particular:

BIC= − +2L k Nln( ) (4)

where L is the maximum log-likelihood, k is the number of free 
parameters of a model, and N is the number of observed data points. 
As is readily apparent from Eq. 4, the BIC balances goodness-of-fit 
with parsimony. Models with smaller BICs are more competitive, 
as those with a greater number of free parameters (which should 
produce a better fit) are penalized.

Table 1 shows the values of the BICs for all four models and 
observers, the summed totals across the sample, as well as the BICs 
for the fits of the saturated Gamma functions for each observer. 
The Gamma function is the clear overall winner with the lowest 
BIC – the BIC difference with the saturated Gaussian model is 41, 
which corresponds to a corrected likelihood-ratio, or Bayes factor, 
of greater than 1000 (Wagenmakers, 2007). Thus it is clear that fit-
ting the data with a Gaussian function results in a less desirable fit of 
the data; however, the Gaussian still offers a considerable advantage 
in terms of the interpretability of the parameters. Moreover, inspec-
tion of a plot of the weightings based on the best-fitting Gaussian 
and Gamma (both full and simplified versions) models shows that 
all three functions fit the data reasonably well (see Figure 6).

With respect to the Gaussian model comparisons then, the five-
parameter location model is the winning model by a clear margin. 
In other words, allowing a peak shift, but not a width shift, provides 
the best description of the data. The BIC difference with the near-
est competitor – the saturated Gaussian model – is ∼37, which 
again corresponds to a Bayes factor, of greater than 1000. The direct 
comparison between the width and location models also came out 
strongly in favor of the location model (a combined BIC differ-
ence of almost 100). In both circumstances, the size of the Bayes 
factor corresponds to an effective p value of <0.01 (Wagenmakers, 
2007). In conclusion, it seems unlikely that allowing the width of the 
integration filters to vary with contrast improves our model fits in 
any meaningful way – it is the location of the peak of the filter that 
is important. Across all six observers, this shift in μ corresponded 
to a peak shift of 18 ms as contrast is reduced, comparable to the 
shift found for the Gamma fits.

 saccade latency should correspond to any changes in the saccadic 
go signal (i.e., the fixation stimulus change). However, if as a result 
of the reduction in contrast, it is harder to localize the target (for 
example, for the purposes of the final position grab), then we 
might reasonably expect that the saccade latency would increase. 
The fact that we do not see this is important, as it shows that peak 
shifts that we see are not simply a result of “stretching” that occurs 
due to a general increase in the time it takes to detect or generate 
a saccade to a lower contrast target.

To assess the effects of contrast more formally, we adopted 
a model selection approach (Burnham and Anderson, 2002; 
Wagenmakers, 2007). Indeed, this was the motivation for estimating 
the model parameters using maximum likelihood. For this purpose, 
we defined a number of competing models that represent different 
hypotheses about the effect(s) of contrast. The likelihoods of these 
models constitute an index of the amount of evidence provided by 
the data for the different hypotheses.

The following four competing models were defined. If contrast 
had no effect on the width or peak location of the filter, we would 
expect a set of four parameters to suffice – a single peak location 
parameters, a width parameter, and two separate asymptotes (this 
is hereafter known as the baseline model). At the other extreme, 
contrast could affect every possible aspect of the filter, necessitating 
two separate sets of three parameters to account for the data. We 
refer to this model as the saturated model. In between these two 
extremes fall two reduced models of critical interest: (1) a five-
parameter peak location model accommodates the data from both 
contrast conditions with a common width, but allows the location 
and asymptote to vary with contrast; (2) a five-parameter width 
model which assumes different widths and asymptotes for the low 
and high contrasts. In other words, we force the location and/or 
widths to be the same.

One problem with the Gamma function is that its parameters 
do not correspond to experimentally interesting parameters such 
as filter width and peak position. This makes it very difficult to, for 
example, test the competing models that we have outlined above. 
Therefore, for the purpose of this test, we chose to fit our data with 
scaled cumulative Gaussian curves, instead of the Gamma functions 
used earlier. As can be seen in Figure 5, the identified temporal fil-
ters are relatively symmetrical. Seeing as this is the case, a Gaussian 
function is attractive because its two parameters are independent 
and correspond directly to the location and width parameters of 
the filter. In comparison, the shape and scale parameters of the 
Gamma interact to jointly determine its location and width. The 
inability of the Gaussian to accommodate the slight asymmetries 
in the filters, did result in a decreased goodness-of-fit, as we will 
show below. However, the critical components of the filter, the 
width and location, were numerically very close under both models. 
Moreover, the effect(s) of contrast on these two components was 
also very similar when estimated with Gaussian or Gamma func-
tions. For this reason, we see the reduction in goodness-of-fit as a 
price worth paying for the greater utility of the Gaussian function 
in terms of parameter interpretation.

Finally, the four models defined above differ in the number of 
free parameters. In evaluating their likelihoods, it is desirable to 
take this variation in complexity into account. A Bayesian informa-
tion criterion (BIC) adjusts the log-likelihood of a model, given 

Table 1 | Bayesian information Criterions (and summed BiCs) for all six 

observers for each of the four gaussian comparison models.

 Baseline Location Width Saturated gamma

OBSerVer

1 1256.1 1221.9 1262.9 1224.2 1220.4

2 3717.0 3723.2 3724.3 3730.6 3703.6

3 1343.7 1333.9 1350.2 1340.2 1339.2

4 1230.8 1234.2 1238.1 1241.1 1239.7

5 1137.9 1116.1 1144.5 1123.4 1114.7

6 1438.3 1438.4 1445.1 1445.2 1444.9

Σ 10123.8 10067.7 10165.1 10104.7 10062.5

The model with the lowest BIC is considered the most preferable. Note that 
for the Gamma model, a saturated model is used, in which parameters are fit 
separately for the high and low-contrast data.
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Taylor et al., 2006; White et al., 2006). Generally speaking, reduc-
tions in contrast diminish the behavioral responsiveness to 
changes in the stimulus.

However, to get from the brain and responses of single cells to 
general behavior requires postulating internal information pro-
cessing mechanisms. For the case of intercepting moving targets, 
any reduced behavioral responsiveness to velocity changes at low-
contrast could come about either through a widening of the tem-
poral filter used to estimate instantaneous velocity, and/or through 
a delay in the input to the integration mechanism. It was by no 
means obvious a priori which mechanism(s) would be responsible 
for diminished visual–saccadic performance. Our analysis method 
allowed us to distinguish between these possibilities. We obtained 
strong evidence in favor of a shift of the filter toward longer laten-
cies, most likely produced by the longer input delays reviewed 
above. We found no evidence in favor of a consistent increase in 
the width of the filters at the lower contrast level.

Whilst our method cannot tell us where velocity integration for 
saccadic planning resides in the brain, it would not be unreason-
able to suggest area MT as a likely candidate. Area MT is important 
for motion integration (Born and Bradley, 2005), and is known to 
project to eye movement related structures such as the superior 
colliculus (Ungerleider et al., 1984) and frontal eye fields (Tian 
and Lynch, 1996; Leigh and Zee, 2006). As noted above, lowering 
the contrast of moving visual stimuli results in an increase in the 
time that it takes for signals to reach MT (e.g., Kubova et al., 1995; 
Bach and Ullrich, 1997). It would be a matter for future research, 
perhaps using imaging techniques, in order to determine the likely 
cortical location of this mechanism.

Using a closely related approach, Tavassoli and Ringach (2009) 
identified the temporal filter driving eye velocity during smooth 
pursuit. Their pursuit stimulus was perturbed with Gaussian veloc-
ity noise. By correlating the velocity of the noisy stimulus with 
the eye velocity at different lags, they were able to estimate the 
latency with which the system responds to a perturbation, as well 
as the interval over which velocity information was integrated. 
For a large reduction in target contrast comparable to that of the 
current study (although note that their lowest contrast level was 
lower than ours), the filters showed a shift in the time-to-peak 
on the order of ∼30 ms. In addition, they also found a moderate 
increase in the width of the filters of ∼20. Given the evidence for 
shared visual processing between the pursuit and saccadic systems 
(Liston and Krauzlis, 2005; Orban de Xivry and Lefèvre, 2007), it 
would be reasonable to suggest that any neuronal effects of target 
speed estimation on smooth pursuit might also be reflected in the 
saccadic system. Indeed, one of the major inputs shared between 
the two systems appears to be target velocity (e.g., Newsome et al., 
1985; Gellman and Carl, 1991; de Brouwer et al., 2002).

Given that lowering the contrast of a stimulus results in a 
decrease in the SNR (e.g., Weiss et al., 2002), we expected that a 
widening of the temporal filters might be a useful way in which 
to counteract this decrease. One reason that we did not see this 
decrease is that the contrast level we used in the low-contrast con-
dition was simply not close enough to threshold for it to cause 
real issues with the SNR. Additionally, widening the integration 
epoch in order to boost the SNR of the internal velocity estimate 
may only be adaptive in situations where the velocity remains 

dIscussIon
Sensorimotor decisions in a dynamic world necessarily involve an 
element of prediction. Behavior needs to be adapted to the future 
characteristics of the targeted object (e.g., its position). Careful 
analysis of variable single-trial behavior in response to a pertur-
bation of the sensory input affords insight over what interval the 
relevant object characteristics are estimated. In the present study, 
we simplified and adjusted our method (Etchells et al., 2010) for 
identifying the temporal filter that is used by observers to esti-
mate the velocity of a moving object. This estimate then guides 
the observers’ prediction about the future location of the object, 
taking into account the interval between the decision to move and 
the completion of that movement.

Single cell recording in the primate brain and VEP studies 
in humans generally suggest an increase in conduction latency 
with lower contrast (e.g., Shapley and Victor, 1978; Kuba and 
Kubova, 1992; Kubova et al., 1995; Bach and Ullrich, 1997). 
Moreover, neuronal conduction latencies generally increase in 
higher cortical areas (for example, in MT and beyond) as suc-
cessive stages of processing are added (Raiguel et al., 1999), 
and this effect will be amplified by a reduction in contrast. 
Behavioral studies have often measured reaction times, either of 
manual button presses (e.g., Mansfield, 1973; Breitmeyer, 1975; 
Harwerth and Levy, 1978; Plainis and Murray, 2000; Murray and 
Plainis, 2003)or saccades (Carpenter, 2004; Ludwig et al., 2004; 
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the fidelity with which the observer could track changes in velocity, 
and ultimately result in less accurate estimates of how fast a target 
is moving. In our present study, observers are presented with a mix 
of constant velocity and changing velocity trials. Importantly, the 
velocity change was relatively large (e.g., compared to the zero-
mean noise used in Tavassoli and Ringach, 2009). It may be that 
the cost of widening the filter under these conditions was simply 
too large. The necessity for rapidity of response might well have 
outweighed any need for increasing the SNR. Note that if this 
explanation is correct, it suggests a degree of flexibility in the sys-
tem so that adaptation of the integration period depends on the 
wider context in which the system operates.

The methodology that we present here sits well within the 
broader context of research assessing perceptual and decision- 
making behavior on single trials. Using a relatively simple experi-
mental paradigm (i.e., tracking primary orienting eye movements 
to a moving target), quite complex and temporally precise knowl-
edge about how visual information is used within the saccadic 
latency period can be gathered. By varying target contrast and the 
timing of the saccadic go signal from trial-to-trial, we are able to 
show not only that the integration of visual (in this case, velocity) 
information can be modified during the latency period, but we are 
also able to show how it is modified. By assessing these results within 
the context of similar studies (e.g., Caspi et al., 2004; Ludwig et al., 
2005), we can build up a coherent picture about the time course 

of how eye movement decisions are made using simple behavioral 
paradigms. This allows for a great deal of flexibility in the methods 
and models that are implemented, and allows for simple modifi-
cations in order to answer further questions about what exactly 
occurs during the saccadic latency period. For example, the use of 
non-constant velocities in the present experiment would aid in the 
assessment of how the integration filters deal with acceleration. In 
turn, this may provide an understanding as to how acceleration 
is represented within areas such as MT (e.g., Schlack et al., 2007, 
2008), and also how sampling mechanisms are used in the predict 
drive for ocular pursuit (see Bennett et al., 2007). Along more gen-
eral lines, such approaches may help to further our understand-
ing of how the smooth pursuit and saccadic systems interact and 
coordinate with each other.

conclusIon
The simplified methodology presented in this paper provides a 
novel addition to a growing toolbox for the behavioral study of 
how information on single trials may be integrated and used in eye 
movement programming. Our approach allows for maximum like-
lihood estimates of the parameters of the temporal filter that best 
accounts for the interval over which the saccadic system samples 
the velocity of a moving target. The likelihoods provide a solid basis 
upon which to assess the significance of experimentally targeted 
variables, such as contrast in this study. More generally, we believe 
this methodology more uniquely constrains internal processing 
mechanisms that transform sensory inputs into motor outputs, 
linking brain and behavior.
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In most cognitive neuroscience experiments there are many behavioral and experimental 
dynamics, and many indices of brain activity, that vary from trial to trial. For example, in studies 
of response conflict, conflict is usually treated as a binary variable (i.e., response conflict exists 
or does not in any given trial), whereas some evidence and intuition suggests that conflict may 
vary in intensity from trial to trial. Here we demonstrate that single-trial multiple regression of 
time–frequency electrophysiological activity reveals neural mechanisms of cognitive control 
that are not apparent in cross-trial averages. We also introduce a novel extension to oscillation 
phase coherence and synchronization analyses, based on “weighted” phase modulation, that 
has advantages over standard coherence measures in terms of linking electrophysiological 
dynamics to trial-varying behavior and experimental variables. After replicating previous response 
conflict findings using trial-averaged data, we extend these findings using single-trial analytic 
methods to provide novel evidence for the role of medial frontal–lateral prefrontal theta-band 
synchronization in conflict-induced response time dynamics, including a role for lateral prefrontal 
theta-band activity in biasing response times according to perceptual conflict. Given that these 
methods shed new light on the prefrontal mechanisms of response conflict, they are also likely 
to be useful for investigating other neurocognitive processes.
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et al., 2008; Scholte et al., 2009), decision-making (Philiastides and 
Sajda, 2007; Ratcliff et al., 2009), or other parameters that vary 
from trial to trial.

Correlating single-trial brain and behavior 
dynamiCs
Although most cognitive neuroscience studies use cross-trial 
averaging, there are many examples of how single-trial analyses 
have yielded important insights into neurocognitive function. 
Single-trial analyses have the obvious advantage of finding linear 
relationships between brain activity and trial-varying behavior 
or experimental manipulations. Within the field of cognitive 
control, for example, single-trial analyses have linked online and 
reactive behavior adaptations to medial frontal EEG and fMRI 
responses (Debener et al., 2005; Mars et al., 2008; Boehler et al., 
2010; Cavanagh et al., 2010). One limitation, however, is that with 
simple correlations, only one variable should be tested. Multiple 
simple correlations may be suboptimal because shared variance 
among variables can bias correlation coefficients.

a dynamiC solution: single-trial multiple 
regression
The approach we advocate here is an extension of the single-trial 
correlation approach. Multiple regression has several important 
advantages over correlation. First, many independent variables 
can be entered into the regression, and variance due to different 
variables can be parceled out. Second, interaction terms between 

the “many-to-many mapping” problem of Cognitive 
neurosCienCe
In this report, we demonstrate how single-trial multiple regression 
analyses can help elucidate brain-behavior relationships, specifi-
cally linking cortical electrophysiological oscillatory dynamics to 
cognitive control processes. The heart of the issue is attempting to 
resolve the “many-to-many” mapping problem: in many cognitive 
neuroscience experiments, there are many behavioral and many 
experimental dynamics, and many indices of electrophysiological 
brain activity (e.g., over time, space, frequency), that vary from trial 
to trial. Determining which measurements of behavioral dynamics 
correspond to which measurements of brain activity is difficult but 
of central importance to cognitive neuroscience.

Experimental or behavioral variables that vary from trial to trial 
are often ignored or amalgamated, thereby reducing “many” to 
“few.” The logic behind trial averaging is that, at the single-trial level, 
brain measurement tools (EEG, MEG, fMRI) and the neurocogni-
tive systems they measure contain more noise than signal; thus, by 
averaging data over many trials of the same or similar experiment 
condition, signal-to-noise ratio increases and randomly distributed 
variance averages out. This reasoning is irrefutable – the influence 
of noise decreases as a function of the number of trials noise

trails( ), and 

some cross-trial variance is unrelated to the hypotheses under inves-
tigation. In other situations, however, hypotheses must or should 
be tested using data from single trials within subjects, for example 
when linking neural dynamics to response time (Weissman et al., 
2006; Yarkoni et al., 2009), visual stimulus parameters (Rousselet 
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negative performance feedback) increases theta-band oscillatory 
activity over medial frontal cortex (Luu and Tucker, 2001; Cohen 
et al., 2008; Hanslmayr et al., 2008; Cavanagh et al., 2009; Cohen 
et al., 2009). This medial frontal theta has been proposed to reflect 
an electrophysiological mechanism for coordinating neural net-
works involved in monitoring behavior and the environment as 
well as facilitating task-specific adaptive changes in performance in 
conjunction with lateral prefrontal cortex and sensory-motor areas.

In typical cognitive control experiments, response conflict is 
induced either at the response, the perceptual, or the semantic level. 
Conflict at the response level is elicited by priming two competing 
responses when only one is correct. At the stimulus-level, conflict 
can be induced by making the stimuli ambiguous (Szmalec et al., 
2008) or low in luminance (Yeung et al., 2007). These examples 
reflect the common treatment of conflict as a discrete variable, 
such that conflict is assumed to be present or absent on any given 
trial. For example, these stimulus-level conflict studies used dim 
vs. bright stimuli, or high vs. low ambiguous stimuli (Yeung et al., 
2007; Szmalec et al., 2008). Although these experimental manipu-
lations are categorical (i.e., trials either contain or do not contain 
response conflict), the effects of these manipulations on internally 
experienced conflict may not be discrete, but rather may vary from 
trial to trial (e.g., the Gratton effect).

It is clear that response conflict is not an all-or-none phenom-
enon in the brain. Given that the strength of conflict elicited by 
exogenous (i.e., parametric experimental manipulations not under 
subjects’ control) and endogenous (i.e., fluctuations in internal cog-
nitive processes) factors may vary from trial to trial, it is apparent 
that trial averaging provides a limited characterization of the neu-
ral mechanisms underlying cognitive control processes. Therefore, 
alternative analytical techniques are needed to link trial-varying 
behavioral dynamics to corresponding trial-varying neural dynam-
ics. Thus, the purposes of this experiment were to use single-trial 
regression to isolate spatial–temporal–frequency characteristics 
predicted by (1) exogenously induced conflict via continuous 
(trial-varying luminance) and discrete (trial type) manipulations, 
and (2) endogenously experienced conflict, as measured through 
reaction time. Reaction times are often used as a dependent meas-
ure to quantify the behavioral effects of conflict (Gratton et al., 
1992; Egner, 2007), but to the extent that they reflect internally 
experience conflict, reaction times can be used as an independent 
variable (Weissman et al., 2006; Forstmann et al., 2008). Here, EEG 
data were transformed into their time–frequency representation, 
and these estimates of time-, space-, and frequency-specific power 
were regressed against reaction time, stimulus luminance, and the 
interaction between the two. We also introduce a method to link 
these single-trial experimental dynamics to oscillation phase angle 
(“weighted” phase modulation), which has advantages over stand-
ard inter-trial phase coherence measures.

methods
subjeCts
Seventeen subjects from the University of Amsterdam community 
(aged: 18–31, two male) participated in exchange for course credit 
or 14 Euros. Subjects were self-reported free of neurological diseases 
and signed informed consent documents that were approved by 
the local ethics committee. Data from two subjects were removed 

variables can be constructed to estimate possible non-linear effects 
of combinations of experimental and behavior variables. Third, 
with multiple regression one can examine not only the slopes (i.e., 
linear relationship between two variables) but also the intercept of 
the model (“DC” or mean-offset of the relationship), which may 
be useful for dissociating random (i.e., idiosyncratic relationships 
with an independent variable) versus fixed (i.e., all subjects show a 
general increase in brain activity as a function of condition) effects. 
Forth, related extensions to multiple regression such as hierarchi-
cal linear modeling are amenable for more in-depth analyses into 
differences across groups of subjects.

Single-trial multiple regression has been applied to EEG data. 
For example, multiple regression of visual stimulus properties dem-
onstrated early responses to noise and feature processing during 
face viewing (Rousselet et al., 2008), which is affected by aging 
(Rousselet et al., 2009). Eichele et al. (2010) recently used single-
trial multiple regression to remove variance due to factors less 
relevant to the hypotheses (e.g., P300 modulation). Regression is 
also one method for removing blink and other artifacts (Schwind 
and Dormann, 1986). In these studies, regressions were per-
formed on time-domain EEG data. However, because EEG data 
are driven largely by oscillatory cortical processes, considerable 
information in EEG may be contained in the frequency domain 
and therefore lost in the time domain (Cohen, 2011b). Therefore, 
in this study we conducted single-trial multiple regression over 
time–frequency estimates of power, and we introduce a method 
to link non-linear phase distributions to trial-varying behavioral 
and experimental variables.

response ConfliCt: a trial-varying phenomena that 
is often averaged over in experiments
Response conflict occurs when multiple response options are acti-
vated, but only one should be selected according to task demands. 
Response conflict activates the cognitive control system, a set of 
high-level neurocognitive processes that monitor behavior and the 
environment for errors, potential errors, and negative perform-
ance feedback, and facilitate flexible and adaptive adjustments in 
behavior to improve future performance. It is thought that struc-
tures in the medial frontal cortex are a fulcrum for the cognitive 
control system, and work with other prefrontal and task-specific 
sensory and motor regions to support flexible behavior adapta-
tion (Ridderinkhof et al., 2004). The cognitive control system is 
thought to wane when no response conflict is detected, and to 
wax when response conflict is detected. Consequently, a trial con-
taining response conflict elicits a reactive activation of the cogni-
tive control system only when the preceding trial contained no 
response conflict. This phenomenon is termed the “Gratton effect” 
(Gratton et al., 1992), has been observed in a variety of empirical 
studies (Egner, 2007), and can be captured by mathematical models 
(Botvinick et al., 2001). For this reason, researchers often separate 
trials according to the response conflict on the previous as well as 
on the current trial.

Activation of the cognitive control system (e.g., during response 
conflict) can be measured through a variety of dependent variables, 
including behavioral (reaction time and accuracy), hemodynamic, 
and electrophysiological. Relevant for the present study, response 
conflict (and other cognitive control situations such as errors or 
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oculomotor artifacts or other artifacts that could be clearly dis-
tinguished from brain-driven EEG signals were subtracted from 
the data.

eeg analyses: time–frequenCy deComposition
All analyses were performed in matlab. Single-trial data were 
first decomposed into their time–frequency representation by 
multiplying the power spectrum of the EEG (obtained from 
the fast-Fourier-transform) by the power spectrum of complex 
Morlet wavelets [e ei tf t2 2 2π σ− /( ),2  where t is time, f is frequency, which 
increased from 1 to 40 Hz in 30 logarithmically spaced steps, and σ 
defines the width of each frequency band, set according to 4/(2πf)], 
and then taking the inverse fast-Fourier-transform. From the 
resulting complex signal, an estimate of frequency band-specific 
power at each time point was defined as the squared magnitude of 
the result of the convolution Z (real[z(t)]2 + imag[z(t)]2), and an 
estimate of frequency band-specific phase at each time point was 
taken as the angle of the convolution result. Relatively long epochs 
were cut from the continuous EEG data (−1.5 to 2 s) to allow edge 
artifacts due to sudden transitions in signal values between trials 
to subside outside the window of interest. Taking long epochs 
and trimming edge artifacts is preferred over windowing, because 
the latter method attenuates real signal whereas the former does 
not. Power was normalized using a decibel (dB) transform (dB 
power = 10 × log 10[power/baseline]), where the baseline activity 
was taken as the average power at each frequency band, averaged 
across conditions, from −300 to −100 ms pre-stimulus. Conversion 
to a dB scale ensures that data across all frequencies, time points, 
electrodes, conditions, and subjects are in the same scale and thus 
comparable. Inter-trial phase coherence (the consistency of fre-
quency band-specific phase angles over trials time-locked to the 
response) was computed according to | |,

[ ]1
1n t

n i
e jt× ∑ =

φ  where n is the 
number of trials, and φ

j
 are the phase angles of electrode j. Phase 

coherence varies from 0 (no phase consistency across trials) to 1 
(oscillations take on identical phase values across trials; Lachaux 
et al., 1999; Delorme and Makeig, 2004). Frequency band-specific 
phase synchronization (functional connectivity) was computed 
according to | |,

[ ]1
1n t

n i
e jt kt× ∑ =

−φ φ  where n is the number of trials, and 
φ

j
 and φ

k
 are the phase angles of electrodes j and k. In all analyses 

and plots, data are time-locked to the response; thus time 0 in the 
figures corresponds to the button press.

eeg analyses: single-trial regression
Single-trial analyses were conducted separately for power and 
phase. For power analyses, a robust regression was computed 
that estimated parameters at each time–frequency–space point 
for the following linear equation: Y = INT + b

1
RT + b

2
LUM + b

3

RT × LUM + E. Y is the data vector (power values at each time–
frequency point across trials), INT is the intercept, b

1–3
 are regres-

sion coefficients, E is unexplained variance, and RT and LUM 
are trial vectors of the subject’s reaction time and the stimulus 
luminance on each trial. Reaction time and luminance data were 
z-scored so that the interaction term was not dominated by reac-
tion time, which has values an order of magnitude larger than 
luminance (note that this means the intercept simply accounts 
for Power Law scaling across frequencies and therefore is not 
of interest here). Robust regression was used to minimize the 

because one subject had excessive noise and EMG artifacts (over 
30% of trials were rejected) and one subject did not complete the 
experiment because he felt ill. Thus, data from 15 subjects were 
included in the final analyses.

task
A modified flankers task was used, in which subjects responded to 
a central target letter while ignoring flanking letters. There were 
1200 trials in three blocks. Each block contained two letters (M 
and N, E and F, and X and Y, counter-balanced across subjects); 
one letter required a left-hand response and the other required 
a right-hand response. “Congruent” trials contained the same 
flanking and target letter (e.g., XXXXX); “incongruent” trials con-
tained different target and flanking letters (e.g., XXYXX). Thus, 
conflict was induced when the flanking letters were associated 
with a different response compared to the target letter. Subjects’ 
eyes were approximately 90 cm from the monitor, making the 
letters 0.382° high and 0.2546° wide, with a 0.2546° blank space 
separating each letter. The target and flankers were presented for 
100 ms on a white background. A 1200-ms inter-trial-interval 
separated trials. Luminance was randomly selected on each trial to 
be between 0 and 200 (RGB values that vary between 0 and 255). 
Thus, higher luminance values mean the stimuli were closer to the 
background color and therefore more difficult to see. Luminance 
was applied equally to target and flankers. This was done, rather 
than, e.g., manipulating luminance only of the flankers, for two 
reasons: (1) This manipulation is experimentally orthogonal to 
the conflict conditions and therefore is appropriate for multiple 
regression with interaction terms; (2) manipulating the luminance 
of all stimuli is more experimentally tractable because differen-
tial luminance might produce non-linear net luminance effects 
on striate cortex at the level measured by EEG. There are many 
ways to modulate stimulus-level conflict in such tasks, including 
luminance, size, eccentricity, onset times, etc.; we would expect 
to find overall similar patterns of results when using different 
stimulus-level manipulations.

As discussed in the Section “Introduction,” response conflict 
effects depend on whether conflict was present in the previous 
trial. Therefore, trials were discretized into four conditions: cC, 
cI, iC, and iI (“cI” means that the previous trial was congruent 
and the current trial was incongruent). Trials containing errors, 
and the trials thereafter, were removed prior to analyses, as were 
the first trials following each rest break. After EEG trial rejection 
(described below), there were on average, respectively, 213, 307, 307, 
and 177 trials per condition (minimum/maximum across subjects, 
respectively: 185/244, 241/358, 240/357, 84/206).

eeg data ColleCtion
EEG data were acquired at 512 Hz from 64 channels placed accord-
ing to the international 10–20 system and from both earlobes 
(used as reference). Offline, EEG data were high-pass filtered at 
0.5 Hz and then epoched from −1.5 to +2 s surrounding each trial 
(to avoid edge artifacts resulting from wavelet filtering). All trials 
were visually inspected and those containing EMG or other arti-
facts not related to blinks were manually removed. Independent 
components analysis was computed using EEGLAB software 
(Delorme and Makeig, 2004), and components  containing blink/

19

http://www.frontiersin.org/
http://www.frontiersin.org/perception_science/archive


Frontiers in Psychology | Perception Science  February 2011 | Volume 2 | Article 30 | 

Cohen and Cavanagh Single-trial regression links theta to conflict

(electrodes) × condition matrix of z values for each subject, which, 
like the b values described for the power regression, can be tested 
using parametric statistics. This entire procedure was then redone 
for luminance and the reaction time–luminance interaction. Note 
that this method, like robust regression, minimizes the impact of 
outliers because the results are based on within-subject permuta-
tion testing of observed data.

independent Components analyses
In order to compare our results (using data recorded from the 
electrodes) with another approach often used for single-trial 
analyses (independent components that estimate temporally 
dissociable sources of variance), independent components were 
selected and their time courses were subjected to the same analyses 
described above. We selected three components for each subject, 
one representing medial frontal dynamics and two representing 
lateral prefrontal dynamics (centered on FCz, F5, and F6, which 
were previously used in cognitive control studies; Cavanagh et al., 
2009, 2010). Component selection was done automatically based 
on maximal spatial correlation between the components and tem-
plates. The templates were Gaussians surrounding electrodes of 
interest. For two subjects, right prefrontal components were manu-
ally re-selected because the time course of the automatically selected 
component resembled blinks.

eeg statistiCs
Group-level statistics were performed using ANOVAs. Data from 
each subject were taken from a 100-ms, 4-Hz window surrounding 
the condition-averaged peak time–frequency point. This provides 
a compromise between a subject-specific data-driven approach 
(each subject retains his or her unique time–frequency maxima) 
while addressing the large multiple comparison problem (there are 
155,520 time–frequency–space pixels that could possibly be tested). 
In order to facilitate visualization of spatial topographies, t-tests at 
each electrode were performed and electrodes with non-significant 
results at an uncorrected two-tailed p < 0.01 were set to zero (green 
color). Similarly, black contour lines on the time–frequency plots 
indicate continuous significance at two-tailed p < 0.01, with a mini-
mum of 300 ms and three frequency bands.

results
behavior
As expected based on the Gratton effect, there was a signifi-
cant previous × current conflict interaction (repeated-measures 
ANOVA, F

1,14
 = 14.29, p = 0.002). Reaction times were longest on 

cI trials, shortest on cC trials, and in between during iI and iC 
trials (Figure 1A). To examine the effects of stimulus luminance 
on reaction times, we correlated, for each subject, luminance and 
reaction time separately for each condition (Figure 1B), and then 
tested those correlation coefficients across subjects. Correlation 
coefficients were significantly greater than zero in all conditions 
except for cC (p-values: 0.53, <0.001, 0.002, 0.033 for cC, cI, iC, 
and iI conditions), although the interaction term in a previ-
ous × current conflict repeated-measures ANOVA was not signifi-
cant (F

1,14
 = 0.59). These results indicate that stimulus luminance 

affected subjects’ performance only when the current or previous 
trial contained conflict.

contribution of potential outliers via iterative reweighted least 
squares that minimizes the impact of outliers with large leverage 
(O’Leary, 1990). In this regard, robust regression has a significant 
advantage over trial averaging. Specifically, during standard trial-
averaging, outliers may affect the averaged data. However, with 
robust regression, outliers are de-weighted and therefore have 
minimal effect on the overall result. Ultimately, this procedure 
resulted in a time × frequency × space (electrodes) × condition 
matrix of b values for each subject. The regression was conducted 
separately for each condition rather than including condition as 
a covariate because the four conditions are categorical. Because 
these b values are normally distributed under the null hypothesis, 
they can be entered into standard parametric statistics such as 
t-tests and repeated-measures ANOVA. Before averaging across 
subjects, b values were standardized by scaling the coefficients by 
their SDs; this ensured that the coefficients were in the same scale 
and thus directly comparable across time, frequency, electrodes, 
and subjects.

Single-trial phase values, however, cannot be entered into 
regression because the data are circular (e.g., radian phase values 
of −3.1 and 3.1 are closer to each other than are 0.1 and 1.0). 
Therefore, we used an alternative approach, based on the idea that 
under the null hypothesis of no relationship between, e.g., reac-
tion time and phase values, reaction times across trials should be 
uniformly distributed across phase. The less uniform this distribu-
tion, the more evidence accumulates to reject the null hypothesis. 
Taking each reaction time–phase pair as a vector with the phase 
as the angle and reaction time as the length, the magnitude of 
the average vector can be taken as a modulation of reaction time 
by phase angle (under the null hypothesis of no relationship, the 
average vector length would be close to zero). Here, reaction time 
and luminance data were rank-transformed because this method 
cannot be used with negative-valued data. Two issues inherent in 
magnitude scaling and phase distribution require a non-paramet-
ric intervention prior to group-level statistical analyses. The first 
issue is that non-transformed magnitudes are difficult to interpret 
because they scale with the data (reaction time or luminance val-
ues), which was different across subjects (this can be contrasted 
with inter-trial phase coherence, described above, for which the 
average vector magnitudes have a maximum of 1.0 and are inher-
ently interpretable). The second issue is that if phase values are 
non-uniformly distributed across trials (as would be expected if 
there is, e.g., stimulus-induced phase reset), the distribution of 
reaction time would be artificially non-uniformly distributed. 
To counteract both of these issues, we applied permutation test-
ing, in which the observed reaction time and phase values were 
shuffled with respect to each other. This provides a data-driven 
test of the null hypothesis that there is no consistent relationship 
between reaction time and phase angle. Five hundred iterations 
with shuffled reaction time–phase pairings were performed at each 
point in time–frequency–electrode–condition space, thus creat-
ing a distribution of reaction time–phase modulations under the 
null hypothesis. Finally, the standardized distance between the 
observed modulation and the null distribution was taken as a z 
value corresponding to the probability of finding the observed 
reaction time–phase modulation by chance, given the measured 
data. These processing steps resulted in a time × frequency × space 
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(F
1,14

 = 11.67, p = 0.004), which was driven by significantly larger 
coefficients in cI compared to cC trials (t

14
 = 3.48, p = 0.0037), 

and no significant difference between iI and iC trials (t
14

 = 1.19, 
p = 0.187). The relationship between brain activity and RT may 
reflect conflict and also other response-related processes; however, 
because basic motoric response-related processes are present during 
all responses, the difference between regression coefficients in cC 
and cI trials reflects conflict processing.

There was a main effect of luminance in low frequen-
cies (delta range, ∼1–3 Hz) at central electrodes, mainly in cC 
trials (Figure 3B).

There was an interaction between reaction time and luminance 
in the theta band over lateral prefrontal sites, mainly in cI trials 
(interaction at electrode F6: F

1,14
 = 6.76, p = 0.021; Figure 3C). 

Consistent with the lack of behavior effect of luminance on reac-
tion time during cC trials, there was no corresponding reaction 
time × luminance interaction on theta-band activity.

To illustrate the theta-RT relationship at the individual subject 
level, Figure 4 shows scatterplots from each individual subject. 
In these plots, the time–frequency point with the maximum pre-
stimulus theta power-RT slope (averaged across all four conditions) 
was selected.

single-trial phase-behavior Coupling
In the next set of analyses, we examined how frequency band-spe-
cific phases might be modulated by reaction time, luminance, and 
their interaction. This is different from cross-trial phase coherence 
(plotted in Figures 2B,D) because this analysis tests the reliability 
of the relationship between phase angles and reaction time across 
trials, rather than the consistency of phase angles across trials. As 
seen in Figure 5, there was a robust main effect of reaction time in 
the pre-response theta range in all conditions. Similar to the effects 
observed in the power regressions, there was an interaction between 
current and previous conflict (at FCz: F

1,14
 = 6.56, p = 0.023) which 

was driven by significantly larger coefficients in cI compared to cC 
trials (t

14
 = 5.36, p < 0.001), and no significant difference between iI 

and iC trials (t
14

 = 0.66, p = 0.516). There were no significant effects 
of luminance or reaction time–luminance interaction.

trial-averaged eeg results
The trial-averaged time–frequency–space characteristics of the 
data provide a useful comparison for the results from the single-
trial analyses. In general, the task elicited increased theta-band 
activity over medial frontal electrodes, centered around FCz, and 
maximal just prior to the response (Figure 2A). Although theta 
and delta power were significantly increased during all trials 
compared to baseline (Figure 2C), there was no significant main 
effect of current trial conflict, nor was there a significant previ-
ous × current trial conflict interaction (2 × 2 repeated-measures 
ANOVA: all p’s > 0.05). Inter-trial phase coherence (the consist-
ency of frequency band-specific phase angles across trials) showed 
low-frequency phase coherence and no clear medial frontal spatial 
focus (Figures 2B,D).

single-trial regressions
Figure 3 shows standardized regression coefficients from the single-
trial multiple regression of reaction time (Figure 3A), luminance 
(Figure 3B), and their interaction (Figure 3C). A robust main 
effect of reaction time can be seen in the theta range prior to the 
response, centered around frontal sites. These coefficients were sig-
nificantly greater than zero in all conditions (Figure 3A), and there 
was a significant interaction between previous and current conflict 
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between MFC and lateral prefrontal cortex may be a substrate 
of communication that supports cognitive control processes. 
Although inter-site synchronization increases most strongly dur-
ing errors, synchronization is also observed immediately prior to 

single-trial phase synChronization (funCtional 
ConneCtivity)-behavior Coupling
We (Cavanagh et al., 2009) and others (Hanslmayr et al., 2008) have 
suggested that electrophysiological oscillatory  synchronization 
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(FCz) and target (F6 or other) electrode pairs and reaction time. 
The right three columns in Figure 6A show time–frequency plots 
of modulated phase synchronization between FCz (MFC) and F6 
(lateral prefrontal cortex). This “response-modulated” functional 
connectivity increased prior to the response, and was strongest dur-
ing cI trials (interaction term: F

1,14
 = 5.48, p = 0.035). This indicates 

that on a trial-by-trial basis, longer reaction times during high 
conflict situations were preceded by enhanced electrophysiological 

correct responses. Consistent with previous results, here we found 
increased theta-band synchronization between FCz and lateral 
frontal sites including F6 (this is the electrode pair analyzed in 
Cavanagh et al., 2009, 2010) prior to the response. The left-most 
column of Figure 6A shows that pre-response synchronization 
was significantly greater than that during the inter-trial interval 
(used here as a baseline), but was not different among conditions 
(all p’s > 0.175).

This standard measure of functional connectivity, however, may 
be difficult to link to precise cognitive dynamics, because the con-
nectivity may reflect a combination of several processes including 
response preparation, stimulus evaluation, attention, orientation, 
etc. Thus, we extend this connectivity measure to examine whether 
synchronization is modulated by an experimental variable (e.g., 
reaction time). The idea is that process-specific connectivity should 
be modulated by reaction time, whereas more general inducers of 
connectivity (e.g., orienting attention, general response prepara-
tion) should not be. Similar to the phase analysis above, this method 
tests the relationship between relative phase angles between seed 
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Single-trial power regression analyses revealed similar effects as 
with data from FCz for reaction time (Figure 9), though generally 
less robust (compare to Figure 3A). A more striking difference 
was the lack of luminance × reaction time interaction at the right 
frontal component.

disCussion
the medial frontal Cortex, theta osCillations, and Cognitive 
Control
The trial-average results presented in Figure 2 add to a growing 
body of work linking theta-band oscillatory dynamics recorded 
over medial frontal sites to action monitoring, cognitive control, 
and reinforcement learning (Trujillo and Allen, 2007; Hanslmayr 
et al., 2008; Marco-Pallares et al., 2008; Cavanagh et al., 2009; 
Christie and Tata, 2009; Mazaheri et al., 2009). Together, these 
findings suggest that medial frontal theta is a candidate mecha-
nism for information processing and transfer during conflict, error, 
and negative performance feedback. Spatial filtering methods such 
as current source density, independent components analysis, and 
dipole modeling suggest that these theta dynamics originate in 
the pre-supplementary motor area or anterior cingulate cortex 
(Miltner et al., 2003; Debener et al., 2005; Vocat et al., 2008). This 
is confirmed by direct recordings in humans (Wang et al., 2005; 
Cohen et al., 2008) and functional MRI studies (van Veen et al., 
2001; Mathalon et al., 2003).

Although results of these cross-trial averaging analyses generally 
link medial frontal theta to response conflict, the single-trial regres-
sion analyses provide more behaviorally relevant insights into the 
theta dynamics that may support cognitive control. Indeed, several 

connectivity between medial frontal and lateral prefrontal regions. 
Topographical maps in Figure 6B show that this effect was localized 
primarily to anterior and lateral prefrontal sites.

single-trial analyses based on independent Components 
analysis
Previous reports suggest advantages to conducting single-trial analy-
ses using data from independent components (Debener et al., 2005, 
2007; Eichele et al., 2009). In some cases, independent components 
and other methods (e.g., stable topographical maps based on clus-
tering) provide converging results (De Lucia et al., 2010). Because 
independent components analysis results in a set of electrode weights 
that maximize temporally independent processes, this analysis might 
improve signal-to-noise. However, because each component is a 
weighting of all electrodes, specific maps must be selected for each 
subject. For example, in cognitive control experiments, maps are 
often selected based on a medial frontal topographical distribution 
(Debener et al., 2005; Eichele et al., 2010; Wessel and Ullsperger, 
2010), although more sophisticated approaches are available based on 
higher-dimensional clustering (Onton et al., 2005). Therefore, in the 
interest of comparison with other approaches for analyzing single-
trial data, we performed robust regression on the time– frequency 
representation of independent components. As described in the 
methods, components for each subject were selected according to a 
medial frontal and left/right lateral frontal topography (Figure 7).

The trial-averaged time–frequency representation of the compo-
nents time courses are shown in Figure 8. The medial frontal com-
ponent showed an increase in theta power that peaked just prior 
to the response, similar to results from electrode FCz (Figure 2).

Template Average maps Individual subjects

FiGurE 7 | Selection of independent components for all subjects. Components were selected based on spatial correlation with a priori specified templates (left 
column). The average component across subjects was similar to the templates (middle column). Individual maps from all 15 subjects are shown in the right-most column.
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reaction time in situations of high response conflict, whereas trial-
averaged phase synchronization suggested that connectivity was 
unrelated to conflict.

single-trial multiple regression over time and frequenCy
The dissociation in timing between trial-averaged theta – which 
had a narrow peak 100 ms (power) and 122 ms (cross-trial phase 
coherence) prior to the response – and the single-trial theta 
response time regression coefficients – which started earlier and 
peaked 176 ms before the response (see Figure 9), suggests two 

findings emerged only in the single-trial analyses (discussed in more 
detail below): (1) single-trial regression demonstrated that pre-
response theta is involved in conflict-modulated response selection 
over a longer time period than is apparent in trial-averaged theta; 
(2) single-trial “weighted” phase modulation demonstrated that 
pre-response theta phase predicted endogenous conflict as reflected 
by reaction time, whereas trial-averaged phase coherence showed 
only a low-frequency general phase alignment; (3) single-trial phase 
synchrony modulation demonstrated that medial–lateral prefrontal 
phase synchronization was significantly modulated by upcoming 
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distinct but nearly temporally overlapping roles of medial frontal 
theta dynamics. On the one hand, peri-response theta is involved 
in general response-locked dynamics; on the other hand, it is the 
pre-response theta that is tightly coupled to response time. Indeed, 
medial frontal activity correlating with trial-to-trial RT has been 
reported previously with EEG independent components analysis 
(Delorme et al., 2007), and with a re-analysis of five fMRI data-
sets (Yarkoni et al., 2009). Further, the dissociation between the 
extended pre-response time course of the theta power regression 
and the theta phase modulation analysis (compare red and black 
lines in Figure 10), in combination with the weak pre-response 
phase coherence (Figure 2D), suggests that reaction time dynam-
ics are more closely associated with non-phase-locked oscillatory 
activity compared to phase-locked transients. In other words, the 
neural processes within the medial frontal cortex that influence 
reaction time during conflict might reflect amplitude modulations 
of ongoing oscillations, rather than a sudden resetting of activity.

The interaction of luminance and reaction time predicting theta 
dynamics over lateral prefrontal cortex implicates this region in 
mediating stimulus-induced conflict. This is consistent with previ-
ous findings linking top–down control over visual information to 
lateral prefrontal functioning (Zanto et al., 2010), and in perceptual 
conflict (van Veen et al., 2001). Further, right lateral prefrontal 
cortex has been suggested to play a particularly prominent role in 
top–down control (Aron et al., 2004). More generally, this high-
lights two strengths of the single-trial multiple regression approach: 
(1) Trial-varying stimulus luminance drawn from a random distri-
bution would normally be considered an experimental confound; 
here, this confound becomes an asset that reveals the involvement of 
the lateral prefrontal cortex in regulating decision time according to 
stimulus difficulty. (2) Theta activity is not often localized over lat-
eral prefrontal sites in trial averages (Figure 2A, and also Cavanagh 
et al., 2009; Cohen, 2011a; Nigbur et al., under review), but shows 

robust trial-by-trial modulations with experiment dynamics. This 
finding, together with increased conflict-related synchronization 
with medial frontal sites, demonstrates that lateral prefrontal theta 
is indeed involved in cognitive control processes, but this is difficult 
to infer because trial-averaged theta may not increase significantly 
compared to pre-stimulus baseline activity.

It is not clear why stimulus luminance had a main effect on 
low-frequency oscillations only during cC trials. We speculate that 
because these were the easiest trials, subjects may have had more 
cognitive resources to devote to low-level stimulus properties. 
However, this was not explicitly tested, nor did subjects spontane-
ously mention this.

single-trial phase and phase synChrony modulation
“Standard” inter-trial phase coherence (also called cross-trial phase-
locking) assumes that oscillation phase is relevant when the oscilla-
tion has a similar phase value across trials at each time–frequency 
point. Therefore, this approach mixes a number of potential causes 
of phase coherence, including stimulus-evoked responses, general 
orienting or attention responses, and task-specific dynamics. This 
approach precludes discovery of phase dynamics that are related 
to the task but are not consistent across trials. In contrast, the 
single-trial “weighted” phase modulation analysis performed here 
does not require phase values to be similar across trials; rather, this 
analysis is sensitive to modulations of phase values even if those 
phases are randomly distributed across trials. Indeed, an absence 
of pre-response cross-trial phase coherence would be expected if 
pre-response theta phase were modulated by reaction time (which 
differs from trial to trial).

Similarly, phase synchronization modulation has advantages 
over standard phase synchronization because, as described above, 
inter-site phase synchronization may result from a combination of 
specific task-related parameters and also more general cognitive/
orienting processes. In contrast, the specific modulation of phase 
synchronization by reaction time provides a more focal interpre-
tation of synchronization vis-à-vis conflict dynamics: phase angle 
differences do not need to be consistent over trials at each time–
frequency point; rather, they need only to be consistently related 
to behavioral or experimental variables.

These two analytic approaches are complementary. Inter-trial 
phase coherence provides insights into the overall stimulus- or 
response-related phase consistencies, whereas phase modulation 
is process-specific. Note, however, that this specificity should be 
taken into consideration when interpreting results. For example, 
the phase modulation analyses in Figure 6 do not indicate that 
delta-band phase is irrelevant for the task; rather, they show that 
only theta-band phase is modulated by reaction time, whereas 
delta-band phase coherence may support a more general cognitive 
function that is time-locked to the response but unrelated to vari-
ations in response time. Similarly, comparing the inter-electrode 
phase synchronization with the phase synchronization modula-
tion (Figure 6) suggests that the MFC-lateral prefrontal theta-band 
synchronization reflects both general response initiation processes, 
and, particularly during conflict, reaction time-specific processes.

Based on these findings, it seems that (1) medial frontal cortex 
has both a general role in generating responses, as well as a spe-
cific role in conflict-modulated decision time; (2) lateral prefrontal 
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 cortex is recruited by the medial frontal cortex during situations of 
conflict, and synchronized theta-band activity may be the substrate 
of their communication; (3) lateral prefrontal cortex is additionally 
involved in influencing reaction time according to modulations of 
conflict (stimulus luminance).

Results from the independent components analyses were gener-
ally less robust compared to those based on electrode time courses. 
It is possible that more sophisticated component clustering tech-
niques would reveal the findings to a similar magnitude as with 
the electrode-based analyses. However, in this case, it seems that 
independent components analysis may not necessarily be an opti-
mal approach for single-trial analyses.

Another significant advantage of the methods used here is 
that they are robust to potential outliers at the single-trial level. 
During standard trial averaging, trials are not typically inspected 
for outliers, and it is thus possible that a minority of trials with 
large oscillation power values bias the average activity levels. In 
contrast, robust regression minimizes the contribution of outliers, 
and the phase modulation analyses are based on permutation test-
ing, therefore minimizing the danger of outliers biasing estimates 
of trial-averaged results.

possible extensions to the single-trial multiple regression 
approaCh
One could extend this framework to apply hierarchical regression 
models in which the variance from the single-subject trial-level 
data is used to inform group-level results. This might be particu-
larly useful when comparing groups, e.g., if patients and control 
subjects have similar average effects but patients have more vari-
able responses. This approach could also be applied to fMRI data, 
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Over the last decade a wealth of research into alpha activity 
has shown that it is intimately linked to attention and it is now 
considered by many to reflect cortical excitability, with low alpha 
indicating active neuronal processing and high alpha denoting 
inhibition or disengagement of brain areas uninvolved in task 
performance (e.g., Klimesch et al., 1998; Worden et al., 2000; 
Pfurtscheller, 2001; Sauseng et al., 2005b; Kelly et al., 2006; 
Romei et al., 2008a,b; Snyder and Foxe, 2010; for a review see 
Klimesch et al., 2007). It has frequently been reported that when 
participants are spatially cued to anticipate a visual stimulus 
appearing on one side of space, alpha decreases contralaterally 
and increases ipsilaterally (Worden et al., 2000; Yamagishi et al., 
2003; Sauseng et al., 2005b; Kelly et al., 2006, 2009; Thut et al., 
2006; Rihs et al., 2007; Wyart and Tallon-Baudry, 2009). A simi-
lar finding has been reported for the allocation of attentional 
focus in the upper and lower visual fields (Worden et al., 2000; 
Rihs et al., 2007). Furthermore, some studies have reported this 
effect in tandem with an association of alpha power and task 
performance: Faster response latencies (Thut et al., 2006; Kelly 
et al., 2009) and increased accuracy of detection or discrimina-
tion (Kelly et al., 2009; Wyart and Tallon-Baudry, 2009) have 
been shown to coincide with lower alpha power contralaterally 
and higher alpha power ipsilaterally.

IntroductIon
Attention waxes and wanes during the undertaking of a task, 
as our minds wander and subsequently refocus and as our lev-
els of vigilance vary (e.g., Robertson et al., 1997; Gilden, 2001; 
Wagenmakers et al., 2004; Monto et al., 2008), particularly dur-
ing relatively straightforward tasks for which processing becomes 
automated after initial orientation (Smallwood and Schooler, 2006). 
We refer to such fluctuations in task engagement as “attentional 
state.” Here, we assess two very different measures of attentional 
state: participants’ own introspective judgments, and spontane-
ous prestimulus electroencephalogram (EEG) alpha activity. On 
a trial-by-trial basis, we investigate the relationship between these 
disparate measures of attentional state, the timescales over which 
they fluctuate, and their interplay with performance in a rapid serial 
visual presentation (RSVP) detection task.

Alpha is EEG oscillatory activity between approximately 8 and 
12 cycles per second that can occur over the entire scalp but is 
typically highest in amplitude in parieto-occipital areas. It increases 
in amplitude when the eyes are closed and is attenuated by visual 
stimulation (Berger, 1929); it has long been considered to reflect 
general arousal in that low alpha is associated with a state of alert-
ness and high alpha is associated with relaxation or drowsiness 
(Pollen and Trachtenberg, 1972; Ray and Cole, 1985).

Trial-by-trial variations in subjective attentional state are 
reflected in ongoing prestimulus EEG alpha oscillations
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Recently, the causal nature of alpha oscillations in selective 
 attention has been demonstrated: Romei et al. (2010) have shown 
that alpha frequency (10 Hz) repetitive transcranial magnetic stimu-
lation (r-TMS) enhances visual detection when applied to ipsilateral 
visual cortex and impairs visual detection when applied to contral-
ateral visual cortex. Doesburg et al. (2009) have reported that the 
phase-locking of alpha activity between low-level visual cortex and 
parietal cortex during the interval between an informative spatial 
cue and target stimulus onset increases contralaterally and decreases 
ipsilaterally. In a similar vein, Capotosto et al. (2009) have demon-
strated that r-TMS to the right intra-parietal sulcus and right frontal 
eye fields disrupts attentional modulation of alpha power in visual 
cortex and impairs identification accuracy and response latency to a 
target stimulus presented approximately 2 s later. Collectively, these 
results implicate the parietal cortex in the control of attention by 
alpha suppression and enhancement in visual cortex.

There is a good deal of evidence, therefore, that relative alpha 
power within occipital cortex reflects the spatial focus of visual 
attention. In addition, the overall level of alpha power in visual cor-
tex has been shown to be indicative of disengagement with external 
visual input and a focus on other senses or internal thoughts. For 
example, focusing attention on auditory (Foxe et al., 1998; Fu et al., 
2001) or somatosensory input (Linkenkaer-Hansen et al., 2004) 
results in increased alpha power in parieto-occipital cortex. Alpha 
power in parieto-occipital cortex is also greater during internal 
cognitive tasks such as mental arithmetic (Ray and Cole, 1985; Palva 
et al., 2005) and imagery (Ray and Cole, 1985; Hari et al., 1997; 
Cooper et al., 2006, 2003), and during short-term and working 
memory retention (Jensen et al., 2002; Busch and Herrmann, 2003; 
Sauseng et al., 2005a). In a recent study, alpha power was found to 
be greater while participants were focused on an internal counting 
task (Braboszcz and Delorme, 2011). Conversely, when attention is 
redirected to visual input, alpha power is attenuated. For example, 
alpha power decreases in response to a warning cue that the appear-
ance of a task-related stimulus is imminent (Klimesch et al., 1998), 
and is reduced following errors relative to correct trials in the Stroop 
task (Carp and Compton, 2009) and in digit discrimination tasks 
(Mazaheri et al., 2009). Since many models of cognitive control 
propose that detection of an error is a sign that task approach needs 
to be improved (Holroyd and Coles, 2002; Ridderinkhof et al., 2004; 
Yeung et al., 2004), this finding implies that after a lapse in atten-
tion, participants refocus on the task at hand.

These observations of elevated levels of alpha activity in visual 
cortex in association with disengagement from visual input have 
recently led researchers to investigate whether visual awareness 
is negatively correlated with spontaneous alpha power. However, 
whereas there have been many demonstrations of alpha power 
changes due to directed attention in a variety of paradigms, as 
discussed above, effects of alpha power on visual awareness are 
seemingly more difficult to obtain. Some authors have reported 
such an association in simple threshold contrast detection tasks 
with precisely controlled stimulus conditions, with greater pres-
timulus alpha preceding trials in which a target was not detected 
than trials in which a target was detected (Ergenoglu et al., 2004; 
van Dijk et al., 2008; Busch et al., 2009); during a visual stimulus 
duration monitoring task (O’Connell et al., 2009), alpha power was 
found to steadily increase starting up to 20 s before a task error 

occurred. Others, however, with similar paradigms have found no 
such association (e.g., Thut et al., 2006). Therefore it seems that 
whereas the link between alpha power in parieto-occipital cortex 
and directed attention is strong, subsequent effects on visual aware-
ness are less consistently observed.

To summarize, prestimulus alpha power is a good candidate for 
use as an index of attentional state on a trial-by-trial basis since 
it has repeatedly been demonstrated to reflect the spatial locus of 
visual attention and the extent to which attention is focused on 
visual input. In this study, we sought to investigate the relationship 
between alpha power and participants’ subjective ratings of their 
attentional state.

There is a growing literature demonstrating that participants’ 
introspective judgments of attentional state are reliable and mean-
ingful. Typically, such judgments are recorded via direct question-
ing at random intervals. The type of measure used has varied from 
a simple binary response in which participants indicate whether 
they were focused on the task or not immediately preceding the 
question (e.g., Smallwood et al., 2004, 2008; Mason et al., 2007; 
Christoff et al., 2009; Forster and Lavie, 2009; Kam et al., 2011), 
to asking participants to comment on what they were thinking 
about just prior to the question (for a review see Smallwood and 
Schooler, 2006). It has been proposed that during periods in which 
participants report that they are not focused on the task, attention 
has switched to thoughts unrelated to the task, i.e., mind-wandering 
(Smallwood and Schooler, 2006). This interpretation is supported 
by studies that asked participants to report what they were thinking 
about rather than simply report whether they were focused on the 
task or not (Teasdale et al., 1993, 1995).

During periods of reportedly low attentional state, sensory 
awareness of the external world may be reduced (Smallwood and 
Schooler, 2006). For example, in a task in which a response must 
be withheld upon presentation of a target digit, errors are more 
likely preceding reports of being unfocused on the task, assessed 
via probes occurring at random intervals (Smallwood et al., 2004, 
2008; McVay and Kane, 2009). Furthermore, in EEG studies, early 
event-related potential (ERP) components related to perception 
(the P1 for visual stimuli and the N1 for auditory stimuli) have been 
shown to be attenuated in trials preceding reports of being unfo-
cused on the task (Kam et al., 2011), as have later decision-related 
components, such as the P300, in response to targets (Smallwood 
et al., 2008). Episodes of low attentional state have also been associ-
ated with increases in neural activity in the default mode network 
as measured with fMRI (Mason et al., 2007; Christoff et al., 2009), 
and such neural changes in this network have in turn been associ-
ated with task errors (Eichele et al., 2008; Christoff et al., 2009).

One aspect of attentional state that has not yet been investigated 
is its temporal properties, i.e., how frequently do fluctuations in 
attentional state occur? Typically, attentional state probes are inter-
spersed at random intervals of 30–90 s and all trials occurring 
during the 15 s prior to each mind probe are assigned with the 
subsequent response (e.g., Smallwood et al., 2008), as a compro-
mise between the temporal resolution of reported attentional state 
and trial economy. Given that studies of this kind have found an 
association between subjective reports of attentional state and task 
performance (Smallwood et al., 2004, 2008; McVay and Kane, 2009), 
we might assume that fluctuations of attentional state occur with 
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cycle durations in the order of at least tens of seconds. In support 
of this notion, a recent study (Monto et al., 2008) has demonstrated 
that somatosensory detection performance is correlated with the 
phase of infraslow fluctuations (0.1–0.01 Hz, i.e., 10–100 s cycles) 
of EEG. Furthermore, power in all frequency bands was similarly 
correlated, suggesting that the infraslow fluctuations reflect the 
excitability dynamics of cortical networks. Both of these findings 
could be interpreted as reflecting slow variations in attentional state.

Here, we attempt to bring together the research into EEG alpha 
activity and attention, and studies of subjective attentional state, 
by exploring the robustness of the relationship between spontane-
ous prestimulus EEG alpha activity and participants’ introspective 
ratings of attentional state on a continuous scale, with a focus on 
trial-by-trial variability. If these measures both relate to attentional 
state, they should be negatively correlated. However, it is an open 
question as to whether they would be associated in this way. On 
the one hand they operate on disparate levels: Parieto-occipital 
alpha power has been suggested to reflect the excitability of visual 
cortex (e.g., Klimesch et al., 2007), implying that it reflects relatively 
low-level physiological factors, whereas reporting on one’s own 
mind-state is clearly a high-level process. On the other hand, both 
have been shown to be associated with hallmark attentional effects, 
as reviewed above. We also anticipated that high attentional state 
ratings and low prestimulus alpha power would be associated with 
better detection performance – as the results of previous studies’ 
that we have reviewed above would suggest. To test these predic-
tions, and to explore the timescales over which these measures co-
varied during the course of the experiment, we correlated the time 
series of attentional state ratings, prestimulus alpha power, and task 
performance after smoothing them with increasingly large sliding 
windows. Finally, we considered that attentional state ratings might 
be positively associated with the amplitude of ERPs, for example, 
early perceptual components (e.g., the N1 and P1) in response to 
stimulus onset warning cues, steady-state visually evoked potentials 
(SSVEPs) generated by the RSVP stream, and post-stimulus P300 
amplitude in response to detected targets.

We also asked participants to rate the confidence of their 
 perceptual decision. We predicted that, like attentional state rat-
ings, this measure would correlate positively with detection per-
formance and perhaps P300 amplitude, but we did not expect it 
to be associated with prestimulus alpha power. We also anticipated 
that confidence ratings could potentially be somewhat positively 
correlated with attentional state ratings, because a high attentional 
state could improve perceptual representation of the target lead-
ing to higher decision confidence, and conversely, that decision 
confidence might retroactively bias judgments of attentional state.

This study is part of a wider project looking at the use of EEG 
to improve image triage efficiency in an operational context (e.g., 
Gerson et al., 2006; Mathan et al., 2006, 2008; Mathan, 2008; Parra 
et al., 2008; Poolman et al., 2008). As such, the task we employ here 
is intended to be an experimental analog of the work performed 
by intelligence analysts searching satellite imagery. Previous work 
on this project has shown that efficiency is improved if images are 
subdivided into smaller images and presented in an RSVP stream 
(Gerson et al., 2006; Mathan et al., 2006). Hence, our task was 
a simple detection task with complex stimuli: An RSVP stream 
of noise images lasting 1 s during which a target geometric pat-
tern was sometimes presented, embedded in the noise of one of 
the images (see Figure 1 for a schematic illustration of the trial 
procedure). The stimuli we used were synthetic to allow precise 
control over stimulus visibility, but were designed to mimic satellite 
imagery used by other groups in the project. At the end of each 
trial participants reported whether they had seen the target or not, 
and rated both their confidence of this decision and their atten-
tional state with respect to the task during that trial. To minimize 
the time taken to collect responses, and to provide participants 
with an intuitive response method, all three of these judgments 
were reported via a single click of a mouse within a large square 
(see Figure 1 for an illustration). The vertical axis of the square 
reflected their attentional state, and the horizontal axis reflected 
both their target present or absent response and their confidence 
of this decision: Clicks within the right half of the square  indicated 

Figure 1 | Trial procedure and stimuli. (A) A schematic illustration of the sequence of events in each trial. (B) Example target image. (C) Example non-target image.
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you see the target?”, “How confident are you of that?”, and “How 
focused were you?” in black at the top of the screen, the number of 
the current trial and block, as well as the number of trials per block 
and total number of blocks, in blue at the bottom of the screen. 
The words “Sure Present” appeared on the right hand side of the 
square, “Sure Absent” on the left, “More Focused” above, and “Less 
Focused” below, in black. Participants were instructed to click once 
with a mouse within the square to indicate their response to all three 
task questions. The vertical axis of the square reflected their atten-
tional state, whereas the horizontal axis reflected both their target 
present or absent response and their confidence of this decision: 
Clicks within the right half of the square indicated target present and 
clicks within the left half indicated target absent; distance from the 
vertical midline to either edge of the square indicated confidence. 
The square was 201 by 201 pixels so attentional state ratings were 
measured on a 201-point scale and confidence was measured on a 
101-point scale (since confidence increased from 0 up to 100 for 
target present responses and decreased from 0 to −100 for target 
absent responses). Participants were asked to rate their attentional 
state with respect to the current trial only in terms of the extent to 
which they were focused on performing the detection task. They 
were asked to incorporate their levels of vigilance and distraction 
(whether from internal sources, i.e., mind-wandering, or external 
sources, e.g., sounds outside the testing room) into this one response.

EEG rEcordInG and procEssInG
A Neuroscan Synamps2 system (10 GΩ input impedance; 29.8 nV 
resolution) was used to record EEG data from 32 Ag/AgCl elec-
trodes mounted in an elastic cap at locations FP1, FPZ, FP2, F7, 
F3, FZ, F4, F8, FT7, FC3, FCZ, FC4, FT8, T7, C3, CZ, C4, T8, TP7, 
CP3, CPZ, CP4, TP8, P7, P3, PZ, P4, P8, POZ, O1, OZ, and O2. An 
additional six external electrodes were attached to the left and right 
mastoids, of which the left acted as a reference, the outer canthi 
of the left and right eyes, and above and below the right eye to 
measure electro-oculograms (EOGs). All electrode impedances were 
kept below 50 kΩ. EEG data were recorded at a sampling rate of 
1000 Hz and were high-pass filtered online above 0.1 Hz. Data were 
downsampled off-line at 100 Hz, then low-pass filtered at 48 Hz, 
and subsequently epoched from 1.5 s before RSVP onset to 1 s after 
offset. For the alpha power analyses, the continuous data were addi-
tionally high-pass filtered at 0.5 Hz to reduce noise before the epochs 
were extracted. EEG epochs were baseline-corrected by subtracting 
the average of the data points between 1.1 and 1 s before RSVP 
onset. Eye blink correction was conducted using an independent 
components analysis approach via the EEGLab toolbox for Matlab 
(Delorme and Makeig, 2004). All EEG processing was conducted 
with custom-written scripts using native Matlab commands and 
commands from the EEGLab toolbox. Filtering was conducted with 
the “eegfilt” command from the EEGLab toolbox, which utilizes a 
two-way least-squares FIR filter. The order of the filter was equal to 
the sampling rate (100 Hz) divided by the lower edge of the band, 
rounded down and multiplied by three, with a minimum value of 15.

analysIs
Our analysis was intended to uncover neural correlates of detec-
tion performance and continuous ratings of subjective attentional 
state and decision confidence. We therefore compared ERPs and 

target present and clicks within the left half indicated target absent; 
distance from the vertical midline to either edge of the square indi-
cated confidence. Participants’ EEG in 32 channels was recorded 
throughout the experiment.

MatErIals and MEthods
partIcIpants
Twelve participants were recruited at the University of Oxford and 
were paid for their participation. One participant was excluded and 
replaced due to consistent reporting of target present responses 
as high attentional state and target absent responses as low atten-
tional state with very little other variability. The age range of those 
included was 18–29 years (M = 22.33 years, SD = 4.36 years), and 
there were five males. All of the participants had normal or cor-
rected-to-normal vision. The research was conducted in accordance 
with the American Psychological Association’s standards for ethical 
treatment of participants and with the approval of the University 
of Oxford’s institutional review board.

stIMulI and procEdurE
The experiments were created and run with the Psychophysics 
Toolbox version 3 (Brainard, 1997) in Matlab 2009b (The 
Mathworks, Inc., 2009) on a Windows PC attached to a 20′′ moni-
tor at a resolution of 1024 × 768 and a refresh rate of 60 Hz. The 
participants’ task was to monitor an RSVP stream of images for the 
presence of a target image. The sequence of events on each trial is 
illustrated schematically in Figure 1.

In each trial a set of 10 images was presented serially over the 
course of 1 s (i.e., at 10 Hz). Each image was centered at fixation, 
subtended 18.5° by 18.5° of visual angle at a viewing distance of 
57 cm, and was presented for 50 ms, followed by a blank gray 
screen for another 50 ms. The images were gray-scale white noise 
patterns that were randomly selected from a pre-generated set of 
60 used for all participants. In target images, a set of six concen-
tric circle patterns (each subtending 0.4° radius and consisting of 
two concentric circles) arranged in a randomly oriented hexagon 
of 3.3° radius, was embedded in the background noise. Targets 
were presented in 50% of trials, and their position in the RSVP 
stream was counterbalanced, although they were never presented 
in the first or last two positions. The contrast of the target pattern 
was determined for each participant during a brief pre-experi-
mental session consisting of three blocks of 24 trials, in which a 
staircase procedure (QUEST from the Psychophysics Toolbox 3, 
Brainard, 1997) was used to titrate detection rate at 75%. This 
pre- experimental session also served as a practice session for the 
participants. Feedback was provided at the end of each trial during 
the first practice block only. The experimental session consisted 
of three blocks of 312 trials each.

The RSVP image stream was preceded by a red fixation point of 
0.1° radius at the center of the gray screen for a period of 2 s that was 
interrupted after 1 s by the presentation of the words “Get Ready!” in 
black, centered at fixation, for 0.3 s. The letters of the words subtended 
0.6° by 0.7°. After the offset of these words the screen remained blank, 
except for the red fixation point, for 700 ms before the RSVP stream 
began. It was followed by a response screen (see Figure 1) consisting 
of a white square (8.0° by 8.0°) with a black border subdivided into 
four quadrants by a faint gray line, with the response questions, “Did 
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method was to average over trials within a sliding window. At the 
beginnings and ends of the time series, the number of available 
trials was used instead of the specified sliding window size. Since 
smoothing also resulted in edge effects, we discarded an additional 
36 trials at the start and end of each time series, leaving 720 trials. 
We then repeated the smooth and correlate procedure, leaving the 
previously smoothed time series unsmoothed and smoothing the 
other time series.

Due to the novelty of our approach, we repeated the analysis on 
simulated time series data to verify that it could reveal correlated 
fluctuations in pairs of time series and would not generate spurious 
correlations. Thus, the simulated time series could be uncorrelated 
or could be correlated over fast timescales, slow timescales, or both 
fast and slow timescales. Of interest was the effectiveness with which 
the smoothing analysis, applied exactly as it was to our empirical 
EEG data, would identify the presence or absence of these correla-
tions in the time series data. Specifically, we generated four sets 
of simulated time series: The first set contained no oscillations; 
the second consisted of sine waves of 1–9 cycles per experiment 
(i.e., slow oscillations); the third, sine waves of 46–90 cycles per 
experiment (i.e., fast oscillations); the fourth, sine waves of 1–9 
and 46–90 cycles per experiment (i.e., both slow and fast oscilla-
tions). We subsequently inverted the values of each signal to form 
a complementary signal that was perfectly negatively correlated 
with the first. We then added independently generated white noise 
to each simulated time series, and finally performed our smoothed 
time series correlation analysis on 12 time series pairs (to match 
the number of participants).

We subsequently used a single-trial classification analysis to 
appraise the robustness of the association between attentional 
state ratings and prestimulus alpha power. Specifically, we classi-
fied upper vs. lower attentional state rating quartiles on the basis 
of prestimulus alpha power. We used a logistic regression classifier 
(Parra et al., 2002) that identifies the spatial distribution of scalp 
EEG activity in a given time window that maximally distinguishes 
two conditions to deliver a scalar estimate of component amplitude 
on each trial. The derived estimates are robust (i.e., have high signal-
to-noise) because the discriminating components act as a spatial 
filter that estimates component amplitude as a spatially weighted 
average across electrodes for each trial, in much the same way that 
conventional ERP analysis averages across trials to reduce noise 
(Parra et al., 2002).

For the classification analyses, alpha amplitude was quantified 
as Fourier spectral power in a 4-Hz band centered on each partici-
pant’s modal alpha frequency (typically 10 Hz). We used the 1 s 
of EEG data between the onset of the words “Get Ready!” and the 
onset of the of the RSVP stream to compute a Fourier spectrum 
for each trial. Since we had downsampled the data to 100 Hz, an 
array of five values – one for each integer frequency within the 4-Hz 
band – was obtained per electrode, per trial. The classifier identified 
an optimal weighting of electrodes for each of these five frequen-
cies as a predictor of upper vs. lower attentional state quartile. We 
averaged the classifier output for the five frequencies to obtain a 
scalar value for each trial from 0 to 1, which can be conceptualized 
as the estimated probability that attentional state rating was in the 
upper quartile on that trial. By comparing these values with the 
objective truth label of the trial (i.e., 0 = lower attentional state 

prestimulus alpha power as a function of each type of rating, and 
correlated increasingly smoothed time series of attentional state 
ratings, alpha power, and task performance to investigate the times-
cales over which they co-varied. Finally, we used single-trial clas-
sification to appraise the robustness of the association between 
attentional state ratings and prestimulus alpha power. Details of 
these analyses are given in the following sections.

To quantify the P300 for each trial, we re-epoched the EEG 
data time-locked to target image onset, and baseline-corrected by 
subtracting the average of data points between 0.1 s before and 
after target image onset. We then low-pass filtered the EEG epochs 
below 8 Hz to remove the strong 10 Hz SSVEP signal generated 
by the RSVP stream, averaged them across central, parietal, and 
occipital midline electrodes CZ, CPZ, PZ, POZ, and OZ, and took 
the maximum voltage between 350 and 450 ms post-target image 
onset as the amplitude of the P300 for each trial.

To quantify prestimulus alpha power for each trial, we first 
band-pass filtered the EEG epochs from parieto-occipital chan-
nels P7, P3, PZ, P4, P8, POZ, O1, OZ, and O2, using a 4-Hz band 
centered on each participant’s modal alpha frequency (typically 
10 Hz, Klimesch et al., 2007). We subsequently computed the enve-
lope of the amplitude-modulated signal via the Hilbert transform 
(“hilbert” function in Matlab), which discards phase information 
and reveals oscillatory power fluctuations over time, and averaged 
this signal within the 1-s time period between the onset of the words 
“Get Ready!” and the onset of the RSVP stream. Hence, data from 
the first 0.5 s and last 2 s of the epochs were discarded, avoiding 
contamination from edge effects after filtering. We then divided 
by the average Fourier spectrum power for all frequencies except 
those in the alpha band, from the same time interval, to normal-
ize alpha power to that of the rest of the EEG frequency spectrum. 
We performed this step because we were concerned that a simple 
measure of alpha power might be unduly affected by changes in 
broadband EEG power (i.e., recording noise) during the session, 
which might mask the activity of interest. By dividing alpha power 
by the average broadband power from the same time interval, we 
eliminate this source of extraneous variance in our alpha quantifi-
cations. Without this step the results were slightly less clear in some 
participants, but the overall pattern was not materially affected. 
Therefore while the normalization procedure does have an effect, 
it only served to reduce noise.

The aim of the timescales analyses was to investigate the pair-
wise associations between prestimulus alpha power, attentional 
state ratings and task performance (trial accuracy), at different 
timescales within the experimental session. Our novel approach 
was to hold the trial-by-trial time series of one variable constant 
and increasingly smooth the corresponding time series of the 
other variable, calculating Pearson’s Product Moment Correlation 
Coefficient after each increase in the sliding window size. Prior to 
smoothing, we high-pass filtered the time series of each variable 
at two cycles per experimental session and subsequently discarded 
the first and last 72 trials to avoid contamination from edge effects. 
The purpose of this pre-processing step was to remove the gradual 
downward drift that dominated the time series of attentional state 
ratings of 4 of the 12 participants, while having minimal effects 
for the other eight participants. Hence, the analysis focused on 
fluctuations within the experimental session. Our smoothing 
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and confidence ratings. Having observed an overall  relationship 
between these measures, our next analyses focus on the timescales 
of variation of attentional state ratings, prestimulus EEG alpha 
power, and task performance. Finally, to assess the robustness of 
EEG alpha power as a measure of attentional state, we investigate 
whether this measure can be used to predict participants’ subjec-
tive attentional state ratings as they vary from trial-to-trial using 
multivariate classification.

task pErforMancE and attEntIonal statE and confIdEncE 
ratInG dIstrIbutIons
Target contrast corresponding to a detection rate of 75% was 
determined for each participant with a staircase procedure dur-
ing a pre-experimental session. The mean contrast value was 0.15 
(SD = 0.02). The mean detection rate across participants was 71% 
(SD = 8%) and the mean false alarm rate (target present responses 
when no target was presented) was 9% (SD = 5%). Mean d′ was 
1.98 (SD = 0.49).

Figure 2A shows the locations within the response square of 
all clicks by all participants for target present trials (in black) and 
target absent trials (in red), and the grand average distributions 
of attentional state and confidence ratings for target present and 
absent trials separately (also in black and red). Since clicks within 
the right half of the square denoted target present responses and 
clicks within the left half denoted target absent responses, black 
dots on the right indicate trials in which a target was presented and 
detected (hits), whereas those on the left indicate trials in which a 
target was presented but not detected (misses). Correspondingly, 

rating quartile and 1 = upper), we computed the Az score (the 
area under the receiver operating characteristic curve, Stanislaw 
and Todorov, 1999) for each participant.

We employed a 2-fold cross validation approach, such that we 
trained the classifier on half of the data and tested it on the other 
half, then repeated this procedure after switching training and vali-
dation data. We employed a random-fold assignment procedure, in 
which data samples are randomly assigned to training and valida-
tion sets, rather than a sequential-fold assignment procedure, in 
which data from each class are split into training and validation sets 
based on their temporal order. Whereas sequential folds provide 
a better indication of cross-session generalization, the advantage 
of random folds is that non-stationary aspects of the EEG sig-
nal are factored out and the invariant correlates of the conditions 
being classified become more prominent. Another advantage of a 
random-fold assignment procedure is that it introduces a source 
of variability into the computation, such that classifications can be 
repeated a number of times and Az score confidence intervals can 
be computed. We repeated all classifications 1000 times and give 
the mean and 95% confidence interval for individual participants’ 
Az scores.

rEsults
We first present analyses of the continuous trial-by-trial ratings of 
attentional state and perceptual decision confidence, and their rela-
tion to task performance. We then relate these measures to key EEG 
indices of attention and task performance: ERPs and ongoing pres-
timulus alpha power as a function of quantile-split attentional state 

Figure 2 | Behavioral results from the visual detection task. (A) The locations of 
all responses (mouse clicks) from all participants. Responses in target trials are 
shown as black dots; responses in non-target trials are shown as red dots. The 
frequency distributions of attentional state ratings for target trials (black line) and 
non-target trials (red line) are shown on the left hand side, and the frequency 
distributions of decision confidence ratings are shown below. (B,C) Grand average 

percentages of hits and false alarms as a function of attentional state rating decile and 
confidence rating decile, respectively. Error bars show the SE of the mean across 
participants. (D) The normalized time series of attentional state ratings (red line) and 
detection task accuracy (black line) for one participant. (e) The normalized time series 
of attentional state ratings (red line) and detection task accuracy (black line) for one 
participant after smoothing each time series with a sliding window size of 101 trials.
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increases, F(1, 99) = 63.43, MSE = 5203.05, p < 0.001, ηp
2 0 39= . . 

There was also a significant linear trend for d′, F(1, 99) = 53.42, 
MSE = 9.29, p < 0.001, ηp

2 0 35= . .
As noted above, we observed a retroactive bias to rate attentional 

state as higher in target present trials. To rule out the possibility that 
this bias produced an artifactual association between attentional 
state ratings and task performance, we repeated the analysis using 
the rating from the following trial, thus eliminating any bias arising 
from the presence or absence of a target on the current trial. The 
association persisted in hit rates, F(9, 99) = 2.21, MSE = 152.65, 
p = 0.027, ηp

2 0 17= . , as did the linear trend, F(1, 99) = 9.53, 
MSE = 657.92, p = 0.003, ηp

2 0 09= . . Additionally, we repeated the 
analysis after excluding any participant for whom the distributions 
of attentional state ratings for target present and absent trials did 
not overlap (N = 7). Again, the association remained for hit rates, 
F(9, 36) = 4.74, MSE = 471.80, p < 0.001, ηp

2 0 54= . , as did the linear 
trend, F(1, 36) = 31.52, MSE = 3138.03, p < 0.001, ηp

2 0 47= . . Effect 
sizes for both the ANOVA and the test of trend increased rather 
than decreased after removing participants who exhibited a retro-
active bias, so if anything the association between attentional state 
ratings and task performance was weakened by these participants 
rather than enhanced.

These analyses demonstrate that subjective attentional state rat-
ings were meaningful: Detection performance was superior during 
periods of higher reported attentional state.

task pErforMancE and confIdEncE ratInGs
To investigate the association between confidence ratings and task 
performance, we performed a corresponding analysis to that above: 
We binned trials on the basis of confidence rating decile, then per-
formed one-way ANOVAs on hit rate, false alarm rate and d′ by 
bin. Note that our confidence scale increases from 0 up to 100 for 
target present responses and decreases from 0 to −100 for target 
absent responses, hence we took the absolute value of confidence 
ratings for this analysis. Grand average hit rate and false alarm 
rate as a function of confidence rating bin are shown in Figure 2C. 
Higher confidence ratings were associated with better perform-
ance in terms of false alarm rate, F(9, 99) = 34.99, MSE = 3409.16, 
p < 0.001, ηp

2 0 76= . , and d′, F(9, 99) = 14.76, MSE = 4.69, p < 0.001, 
ηp

2 0 57= . ,  but not hit rate, F(9, 99) = 1.76, MSE = 532.91, p = 0.086. 
A clear linear trend is evident with false alarm rate decreasing as 
confidence rating increases and a test of linear trend revealed this 
to be significant, F(1, 99) = 189.19, MSE = 18,435.18, p < 0.001, 
ηp

2 0 66= . . There was also a significant linear trend for d′, F(1, 
99) = 104.70, MSE = 33.24, p < 0.001, ηp

2 0 51= . . Hence, higher 
confidence ratings were associated with better detection perform-
ance, as expected; however, it is surprising that the effect was not 
found for hit rate. This finding seems to be related to the bimodal-
ity seen in the distribution of hit trial confidence ratings, in that a 
large proportion of hits were rated as very low confidence. It could 
reflect a strong tendency to guess target present rather than absent, 
or alternatively indicates implicit target detection.

task pErforMancE and attEntIonal statE ratInGs tIME sErIEs
One of the main aims of this study was to look at fluctuations of 
attentional state over the course of the experiment. As an exam-
ple, Figure 2D presents the normalized time series of attentional 

red dots on the right indicate trials in which no target was  presented 
but one was reported (false alarms), and those on the left indicate 
trials in which it was correctly reported that no target had been 
presented (correct rejections). An association between attentional 
state and confidence rating can be observed for both target present 
and absent responses: A dense diagonal cloud of dots is evident 
from the center to the top right corner for target present responses 
(black dots) and from the center to the top left corner for target 
absent responses (red dots), indicating that participants were more 
confident about their judgments of both target presence and target 
absence on trials in which they felt they had paid greater attention 
to the task.

The grand average distribution of confidence ratings (lower 
panel of Figure 2A) for target present trials (black line) shows that 
confidence ratings on hit trials were bimodally distributed with a 
peak at the maximum confidence rating (100), and another close 
to the minimum confidence rating (0). Confidence ratings on miss 
trials were more distributed, with no peak at the maximum (−100), 
but a small one at the minimum confidence rating (0). Hence, when 
confidence was low, participants tended to opt for target present 
rather than absent. In addition, these low confidence target present 
responses were very frequently correct since there is no correspond-
ing peak in the distribution of confidence ratings for target absent 
trials (red line). Instead, this distribution is biased toward higher 
confidence ratings, so there seems to have been a tendency to rate 
correct rejections as high confidence. False alarms on the other 
hand were very rarely rated as high confidence and tend to cluster 
close to 0, suggesting that they were guesses.

The grand average distributions of attentional state ratings 
(Figure 2A, left panel) are negatively skewed for both target present 
and absent trials (black and red lines, respectively), indicating that 
participants tended to rate their attentional state as high rather 
than low, with modes of 150 (out of 200) for target present trials, 
and 118 (out of 200) for target absent trials. The mean attentional 
state rating for target present trials was 130.71 (SD = 20.46) and for 
target absent trials was 126.36 (SD = 19.95), a small but significant 
reduction, F(1, 11) = 17.01, MSE = 113.75, p = 0.002, ηp

2 0 61= . . 
This result reveals a slight but consistent bias in attentional state 
ratings, since whether a target was presented in a trial or not was 
randomly determined and could not be related to fluctuations in 
attentional state. We interpret this effect as a small retroactive bias 
of attentional state ratings in hit trials: Noticing a target may lead 
to increased alertness and hence a higher attentional state rating, or 
might lead participants to assume their attention must have been 
high given that they detected a target.

task pErforMancE and attEntIonal statE ratInGs
To investigate the relationship between attentional state ratings and 
task performance, we binned trials by attentional state rating and 
subsequently performed one-way ANOVAs on hit rate, false alarm 
rate and d′ (Stanislaw and Todorov, 1999) by bin. Higher attentional 
state ratings were associated with better performance in terms of 
hit rate, F(9, 99) = 8.65, MSE = 709.47, p < 0.001, ηp

2 0 44= . , and d′, 
F(9, 99) = 6.84, MSE = 1.19, p < 0.001, ηp

2 0 38= . , but not false alarm 
rate, F < 1. Grand average hit rate and false alarm rate as a function 
of attentional state rating bin are shown in Figure 2B. A clear linear 
trend is evident with hit rate increasing as attentional state rating 
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larger in trials with higher attentional state ratings, F(3, 33) = 7.82, 
MSE = 24.02, p < 0.001, ηp

2 0 42= . ,  and in trials with higher confi-
dence ratings, F(3, 33) = 25.95, MSE = 43.64, p < 0.001, ηp

2 0 70= . . 
Both effects followed a linear trend: For attentional state ratings, 
F(1, 33) = 20.57, MSE = 63.20, p < 0.001, ηp

2 0 38= . , and for confi-
dence ratings, F(1, 33) = 75.83, MSE = 127.53, p < 0.001, ηp

2 0 70= . . 
These effects were not driven by differential hit rates because only 
hit trials were included in the analyses.

EEG alpha powEr and attEntIonal statE and confIdEncE 
ratInGs
To assess changes in alpha power as a function of attentional state 
and confidence rating, we band-pass filtered EEG epochs at alpha 
frequencies (see Materials and Methods for details), and subse-
quently computed the envelope of the amplitude-modulated signal, 
thereby discarding phase information and revealing fluctuations 
in oscillatory power over time. Figure 4 shows the grand average 
amplitude-modulated signal as a function of attentional state rating 
quartile (Figure 4A) and confidence rating quartile (Figure 4B), 
time-locked to the onset of the words “Get Ready!”. Alpha power 
can be seen to steadily increase after the initial response to the 
words, and peaks at the start of the SSVEP in response to the RSVP 
stream. Subsequently, alpha power declines sharply up to 0.4 s after 
RSVP offset.

Inspection of Figure 4A reveals that alpha power was lower 
throughout the epoch in trials rated as high attentional state, as 
predicted. There was no association of alpha power and confi-
dence rating, except during the second half of the RSVP stream and 
beyond, perhaps as a result of greater P300 amplitudes in trials with 
decisions rated as higher confidence. The relationships between 

state ratings and detection task accuracy for one participant, and 
Figure 2E presents the same time series after smoothing by aver-
aging with a sliding window size of 101 trials. There is a positive 
correlation between attentional state rating and detection accuracy 
for this participant. We will return to this issue later with a timescale 
analysis for all participants on attentional state rating, prestimulus 
alpha power, and detection performance.

EvEnt-rElatEd potEntIals and attEntIonal statE and 
confIdEncE ratInGs
Figure 3A presents grand averaged ERPs at central and posterior 
midline scalp electrodes as a function of attentional state rating 
quartile. Figure 3B presents grand averaged ERPs as a function 
of confidence rating quartile for hit trials only, with miss trials 
represented by an additional line. The waveforms are time-locked 
to the onset of the words “Get Ready!” that signified that the RSVP 
stream would begin in 1 s.

A clear P1–N1 complex followed by an N400 is visible in 
response to the presentation of the words “Get Ready!”, and a 
SSVEP is generated by the RSVP stream (onset at 1 s). We might 
have expected these responses to be of greater amplitude in higher 
rated attentional state trials; however, this was not the case – ERP 
and SSVEP amplitudes varied little, if at all, as a function of atten-
tional state rating. The P300 in response to targets is evident in the 
latter half of the SSVEP for the two upper quartiles of attentional 
state and confidence ratings. For a clearer view, Figure 3 presents 
grand averaged ERPs time-locked to target onset, for hit trials only 
as a function of attentional state rating quartile (Figure 3C), and 
confidence rating quartile (Figure 3D), with miss trials presented 
in a separate line. P300 amplitude in hit trials was significantly 

Figure 3 | event-related potentials during preparation and stimulus 
presentation. (A,B) Grand average ERPs time-locked to the onset of the words 
“Get Ready!” by attentional state rating quartile and confidence rating quartile, 
respectively. (C,D) Grand average ERPs time-locked to target onset by 

attentional state rating quartile and confidence rating quartile, respectively. In 
(B–D), miss trials are shown separately as a blue line. For (C,D) EEG epochs 
were low-pass filtered at 8 Hz. Scalp plot in (A) shows the locations of the 
electrodes included in the analyses in (A–D).
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For comparison, we performed a  corresponding analysis of the 
relationship between prestimulus alpha power and task perform-
ance (detection task accuracy). The grand average power spectra 
of the time series of attentional state ratings, prestimulus alpha 
power, and task accuracy are shown in Figures 5B–D, respectively, 
for reference.

Figures 5E,F present the resulting grand average correlations 
between alpha power and attentional state ratings (black lines), and 
between alpha power and detection task accuracy (blue lines). The 
time series of attentional state ratings and alpha power were nega-
tively correlated, replicating the basic relationship described above. 
Crucially, this association increased in strength when we smoothed 
either the time series of attentional state ratings (Figure 5E) or 
alpha power (Figure 5F), with the peak correlation occurring at 
a sliding window size of 75 trials (approximately 7 min) in both 
analyses. The correlations between alpha power and task perform-
ance were much weaker.

We tested the correlations for significance with a series of two-
tailed paired-samples t-tests between individual participants’ r 
values and zero, one for each sliding window size, controlling for 
multiple comparisons via the Benjamini and Hochberg (1995) 
procedure, which optimally balances statistical power and the 
control of false discovery rate for ERP analyses (Lage-Castellanos 
et al., 2010). Significant correlations are shown in Figure 5 in red. 
Whereas none of the correlations between task performance and 
alpha power were significant, the correlations between attentional 
state rating and alpha power were significantly different from 
zero between sliding window sizes of 3 and 133 trials, inclusive, 
in both analyses.

prestimulus alpha power and attentional state and confidence 
 ratings can be clearly seen in Figures 4C,D, respectively, in which 
grand average normalized prestimulus alpha power is plotted as a 
function of attentional state and confidence rating decile. Higher 
prestimulus alpha power was associated with lower attentional state 
ratings, F(9, 99) = 4.27, MSE = 0.000549, p < 0.001, ηp

2 0 28= . ,  with a 
significant linear trend, F(1, 99) = 32.57, MSE = 0.00419, p < 0.001, 
ηp

2 0 25= . ,  but was not reliably associated with confidence rating, 
F(9, 99) = 1.25, MSE = 0.000103, p = 0.273.

This basic analysis illustrates clearly the relationship between 
attentional state ratings and prestimulus alpha power that we 
anticipated: Trials in which attentional state was rated as high 
featured lower prestimulus alpha power. Combined with the 
finding that attentional state rating was associated with detec-
tion performance, this result suggests that both measures reflect 
attentional state.

prEstIMulus EEG alpha powEr, attEntIonal statE ratInG, and 
task pErforMancE tIMEscalEs
The above analyses reveal a strong relationship between attentional 
state rating and prestimulus alpha power. To assess whether the 
strength of this association varies across different timescales, we 
performed a series of correlations between individual participants’ 
time series of attentional state ratings and normalized prestimulus 
alpha power, after smoothing the time series of attentional state 
ratings with increasingly large sliding windows. We then repeated 
this procedure, leaving the time series of attentional state ratings 
unsmoothed and instead smoothing the time series of prestimulus 
alpha power. This analysis is illustrated in a flow chart in Figure 5A. 
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Figure 4 | Alpha power during preparation and stimulus presentation. 
(A,B) Grand average amplitude-modulated EEG signal after band-pass filtering at 
alpha frequencies, time-locked to the onset of the words “Get Ready!”, by attentional 
state rating quartile and confidence rating quartile, respectively. In (B), miss trials are 

shown separately as a blue line. (C,D) Grand average normalized prestimulus alpha 
power as a function of attentional state rating decile and confidence rating decile, 
respectively. Error bars show the SE of the mean across participants. Scalp plot in  
(A) shows the locations of the electrodes included in the analyses in (A–D).
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except one, with fluctuations in attentional state ratings (red lines) 
varying in the opposite direction to fluctuations in alpha power 
(black lines).

Overall, this analysis of the timescales of covariation between 
attentional state ratings and prestimulus alpha power reveals that 
the association between the two measures was even stronger at 
longer timescales: The negative correlation between the two meas-
ures peaked when we smoothed either of the time series with a 
sliding window size of approximately 7 min worth of trials.

sInGlE-trIal classIfIcatIon of attEntIonal statE ratInG by 
prEstIMulus EEG alpha powEr
To explore the reliability of the association between attentional 
state ratings and prestimulus EEG alpha power on single trials, we 
conducted single-trial logistic regression classification of upper 
vs. lower subjective attentional state rating quartile on the basis 
of prestimulus EEG alpha power for each participant individually. 
Fourier spectral power values within a 4-Hz band centered on each 
participant’s modal alpha frequency (typically 10 Hz), across 32 
electrodes, were used as the input features with which the classifier 
estimated attentional state rating quartile.

To explore classification performance at longer timescales, we 
smoothed the time series of attentional state ratings with increasingly 
large sliding windows, and repeated our classification procedure after 
each increase in sliding window size. Figure 8A presents grand average 
classification performance (Az score) as a function of the sliding win-
dow size. The performance of the classifier improved dramatically as we 
increased the extent of smoothing. The point of inflection on the curve 
occurs at a sliding window size of  approximately 80 trials, indicating 
where further smoothing ceases to improve classification performance.

At first glance, the results of this analysis indicate that  attentional 
state ratings and alpha power co-vary maximally over periods of 
minutes. However, increasing smoothing window size may be con-
founded with increasing signal-to-noise ratio (because trial-varying 
noise should increasingly average to zero with increasing smooth-
ing). To investigate the extent of this issue, and to illustrate further 
the properties of our novel smoothing analysis, we repeated the 
analysis on four sets of simulated data. We simulated time series 
of attentional state ratings and alpha power that were negatively 
correlated at short timescales, long timescales, both short and long 
timescales, or at neither timescale. The results, shown in Figure 6, 
indicate that the analysis was effective in identifying whichever 
correlations were present in the simulated time series, with peaks 
apparent at corresponding smoothing window sizes, and did not 
create artifactual correlations where none were present. These sim-
ple simulations demonstrate that our smoothed time series correla-
tion analysis was effective in revealing the timescales of covariation 
between attentional state ratings and prestimulus alpha power. This 
point is further supported by the fact that there were no significant 
correlations in the alpha power and task performance analysis. It 
should be noted, however, that it is still theoretically possible that 
the associations at short timescales were stronger than our analysis 
suggests, if there had been increased noise at these timescales.

The peak negative correlation between the time series of atten-
tional state ratings and alpha power occurred at a sliding window 
size of 75 trials (approximately 7 min). Figure 7 plots the time series 
of attentional state ratings and alpha power both smoothed with 
a sliding window size of 75 trials for each participant individually, 
together with the correlation coefficient (r) between these time 
series. Strong negative correlations are evident for all participants 
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of the trial-by-trial time series of attentional state ratings, prestimulus EEG alpha 
power, and detection task accuracy, respectively. The SE of the mean is shown 
in gray. (e,F) Grand average correlations (r) as a function of the degree of 
smoothing (sliding window size). The correlations between the time series of 

attentional state ratings and prestimulus EEG alpha power are shown in black. 
The correlations between the time series of detection task accuracy and 
prestimulus EEG alpha power are shown in blue. Significant correlations are 
highlighted in red. Thin lines show the SE of the mean. In (e), smoothing is 
applied to the time series of attentional state ratings and detection task 
accuracy; in (F), smoothing is applied to the time series of prestimulus EEG 
alpha power.
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Figure 6 | Smoothed time series correlation analysis performed on 
simulated time series. (A) Uncorrelated time series. (B–D) Time series 
negatively correlated at long timescales, short timescales, and both long and 
short timescales, respectively. Thin lines show the SE of the mean across the 
12 pairs of simulated time series.
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Figure 7 | individual participants’ smoothed time series of attentional 
state ratings and prestimulus eeg alpha power. Normalized time series 
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individually (P1–P12). The correlation coefficient (r) between the two time series 
for each participant is shown at the top of each plot. Significant correlations are 
indicated by a star. Triple starred correlations are significant at p < 0.001.

Figure 8B presents the average Az score and 95% confidence 
interval over 1000 repetitions with unsmoothed attentional state 
ratings (in black) and with attentional state ratings smoothed with 
a sliding window size of 75 trials (in red), for each participant, 
ordered from the left by descending classification performance with 
smoothed data. As a bootstrap test of significance, we repeated the 
classification procedure a further 1000 times for each participant, 
shuffling attentional state rating trial labels each time. The result-
ing average Az score and 95% confidence intervals are shown in 
Figure 8B (in gray). Eight of the 12 participants’ average Az scores 
for unsmoothed attentional state ratings were greater than their 
bootstrap significance values (the upper end of the 95% confidence 
interval for Az scores from classification with shuffled attentional 
state rating trial labels), meaning that classification performance 
without smoothing was significantly better than chance for those 
participants. For the smoothed attentional state ratings, all 12 par-
ticipants’ average Az scores were greater than their bootstrap sig-
nificance values, and nine of them had average Az scores greater 
than the upper end of the 95% confidence interval for Az scores 
from classification with unsmoothed attentional state ratings. The 
three participants whose classification performance did not improve 
with smoothing, however, may have already been at ceiling – their 
average Az scores with unsmoothed attentional state ratings were 
already above 0.85. Smoothing attentional state ratings therefore 
improved classification performance significantly for all participants 
with average Az scores below 0.85.
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 discrete scale via probes occurring at random intervals (e.g., Smallwood 
et al., 2004, 2008; McVay and Kane, 2009). We queried participants’ 
attentional state on a continuous scale and after every trial, and yet 
ratings were strongly associated with performance, hence our study 
demonstrates that attentional state can be indexed efficiently on a con-
tinuous scale and in individual trials. These aspects of our design are 
advantageous because they capture more of the variability in attentional 
state, both of the construct itself and of its temporal characteristics.

One disadvantage of our design, however, is that in the interests 
of speed, we did not ask participants to report what they were think-
ing about when they rated their attentional state, as some previous 
studies have done (Teasdale et al., 1993, 1995). We therefore do not 
know whether reports of low attentional state were accompanied 
by task-unrelated thoughts (i.e., mind-wandering) or would be 
better characterized as periods of low vigilance. This issue could 
be addressed in a future study.

Studies of subjective attentional state have typically employed 
tasks that are optimized to find an association between task errors 
and reports of low attentional state, such as response inhibition 
tasks, in which a response that is required for most trials must 
be withheld on infrequently occurring target trials (Smallwood 
et al., 2004, 2008; McVay and Kane, 2009). Since our task required a 
response to both targets and non-targets, and targets were presented 
frequently (in 50% of trials), we extend previous demonstrations 
that subjective judgments of attentional state are associated with 
task performance (Smallwood et al., 2004, 2008; McVay and Kane, 
2009) to a standard type of perceptual decision task. Hence, our 
results lend wider support to the proposition that sensory awareness 
of the external world is reduced during periods of low attentional 
state (Smallwood and Schooler, 2006).

attEntIonal statE ratInGs wErE not assocIatEd wIth Erp or 
ssvEp aMplItudE
From the proposal that sensory perception is attenuated during 
periods of low attentional state (Smallwood and Schooler, 2006), 
we might have expected to find that EEG responses related to the 
perception of visual events in our task – such as the ERP in response 

In summary, trial-by-trial variations in prestimulus EEG alpha 
power reflected subjective attentional state for most participants, 
and smoothing attentional state ratings with a sliding window 
size of approximately 7 min improved classification performance 
considerably.

dIscussIon
In this study, participants’ subjective ratings of attentional state and 
perceptual decision confidence were collected on continuous scales 
at the end of each trial of an RSVP target detection task while record-
ing EEG. We found that attentional state and confidence ratings 
were both strongly positively associated with task performance and 
P300 amplitude, and that attentional state ratings were also associ-
ated negatively with spontaneous prestimulus EEG alpha activity. 
Furthermore, we could reliably classify single trials as upper or lower 
quartile reported attentional state on the basis of prestimulus EEG 
alpha power for most participants. We also investigated at what 
timescale these associations were strongest, and found that smooth-
ing with a sliding window size of around 7 min worth of trials 
yielded the maximum correlation values. In addition, classification 
performance improved when we smoothed attentional state ratings 
to the same extent beforehand. Our results suggest that participants’ 
subjective ratings of their attentional state are informative in behav-
ioral terms and reflect the excitability of visual cortex.

attEntIonal statE ratInGs prEdIctEd pErforMancE
Higher attentional state ratings were associated with better task per-
formance. This association persisted – in fact, became stronger – when 
participants with a bias for reporting attentional state as higher on tar-
get present trials were excluded from the analysis, and persisted when 
we repeated the analysis using the attentional state rating from the next 
trial. This finding supports the proposal that perceptual awareness of 
external events is attenuated during periods of low attentional state 
(Smallwood and Schooler, 2006).

Previous studies have demonstrated that perceptual task errors 
are more likely preceding reports of being unfocused on the task, 
in paradigms in which subjective attentional state was assessed on a 
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that attentional state ratings were positively associated with task 
performance, and secondly in neurophysiological terms by the find-
ing that attentional state ratings were negatively associated on a 
trial-by-trial basis with spontaneous prestimulus parieto-occipital 
EEG alpha power. It has been widely reported that alpha power in 
these regions of cortex tracks the spatial focus of visual attention 
(e.g., Worden et al., 2000; Sauseng et al., 2005b), and there is some 
evidence that overall parieto-occipital alpha power is indicative of 
disengagement with external visual input, since it increases when 
attention is focused on other modalities (Foxe et al., 1998; Fu et al., 
2001; Linkenkaer-Hansen et al., 2004), or during internal cognitive 
tasks (e.g., Ray and Cole, 1985; Cooper et al., 2003, 2006; Sauseng 
et al., 2005a), and decreases when attention is redirected toward 
visual input (Klimesch et al., 1998) or is refocused following visual 
task errors (Carp and Compton, 2009; Mazaheri et al., 2009). We 
have now demonstrated that parieto-occipital alpha power reflects 
attentional state. Importantly, our results imply that alpha power 
changes related to attentional state are accessible to consciousness.

We found that the association between attentional state ratings 
and prestimulus EEG alpha power increased in strength when we 
smoothed either or both of them in time, with the peak negative 
correlation occurring at a sliding window size of approximately 
7 min worth of trials. In addition, the performance of our clas-
sifier reached an asymptote when attentional state ratings were 
smoothed to the same extent. Although participants did report 
fluctuations in attentional state at shorter timescales than this – 
indeed, with significant variability from trial to trial – these faster 
fluctuations were not as strongly associated with prestimulus alpha 
power in our analysis. This finding does not definitively indicate 
that fluctuations at shorter timescales were more weakly associ-
ated, however, because these faster fluctuations could have been 
subject to increased noise, thereby curtailing the ability of our 
analysis to reveal them. Nevertheless, smoothing did more than 
merely boost the signal-to-noise characteristics of the data: The 
correlation between attentional state ratings and alpha power did 
not continue to improve with larger sliding windows, in fact, it 
returned to baseline well before the maximum sliding window size 
was reached. Furthermore, we did not see any significant correla-
tions in the timescale analysis of alpha power and task performance.

Previous EEG alpha and attention studies, as well as inves-
tigations of subjective attentional state, have not systematically 
analyzed the timescales of variability, but previous research has 
shown that behavioral performance (e.g., Verplanck et al., 1952; 
Gilden et al., 1995, see Gilden, 2001, for a review) and neural 
activity (e.g., Linkenkaer-Hansen et al., 2001; Leopold et al., 2003; 
Nikulin and Brismar, 2005) both exhibit 1/f frequency spectra. 
This type of distribution implies that the largest fluctuations in 
behavioral and neural responses over extended periods are at the 
longer timescales, i.e., minutes rather than seconds. Hence, our 
finding that attentional state ratings and prestimulus alpha power 
co-vary strongly when smoothed with a sliding window size of 
several minutes’ worth of trials is in agreement with this literature. 
In addition, many studies investigating periodicities in reaction 
times and error rates in detection tasks have reported cycle times 
in the range of 2–10 min (e.g., Wertheimer, 1953; Elliott, 1960; 
Makeig and Inlow, 1993; Conte et al., 1995; Smith et al., 2003; 
Arruda et al., 2009; Aue et al., 2009). In particular, Monto et al. 

to the words “Get Ready!”, or the SSVEP generated by the RSVP 
stream – would be reduced in trials in which attentional state had 
been rated as low. Previous studies have produced discrepant results 
in this regard. Kam et al. (2011) reported a smaller P1 in response to 
visual stimuli in trials preceding reports of low task focus, whereas 
Smallwood et al. (2008) found no such effects in a similar paradigm, 
and O’Connell et al. (2009) also reported no such effects preced-
ing stimulus duration judgment errors in a study showing steady 
increases in parieto-occipital alpha power in the 20 s leading up 
to errors. Kam et al. (2011) suggest that these two studies, both of 
which featured visual task stimuli presented foveally, failed to find 
variations in visually evoked EEG responses because the effect is 
limited to peripherally presented stimuli and does not occur, or 
is far weaker, for foveally presented stimuli, as has been suggested 
to be generally true of attentional effects on foveated stimuli (e.g., 
Handy and Khoe, 2005). Our RSVP stream images, although larger 
in retinal representation than the fovea, were centered at fixation, 
and target patterns were not much larger than foveal area, which 
might explain our lack of such an effect.

attEntIonal statE ratInGs and confIdEncE ratInGs prEdIctEd 
p300 aMplItudE
P300 amplitude in hit trials was strongly associated with both 
perceptual decision confidence rating and attentional state rating. 
Binary subjective judgments of attentional state recorded at random 
intervals have previously been shown to be associated with P300 
amplitude (Smallwood et al., 2008), as has the allocation of spa-
tial attention (e.g., Duncan-Johnson and Donchin, 1977; Johnson, 
1993), and stimulus intensity (Roth et al., 1984; Covington and 
Polich, 1996). The effects of attentional state and spatial attention 
might therefore operate via a common mechanism: The enhance-
ment of perceptual representations of task stimuli.

P300 amplitude was also predicted by confidence rating. If we 
assume that confidence ratings are primarily determined by target 
visibility (in our task images the background noise generated vari-
ance in target visibility), then this result could reflect the influence 
of stimulus intensity on P300 amplitude as has been reported previ-
ously (Roth et al., 1984; Covington and Polich, 1996). On the other 
hand, since neural representations are themselves noisy, it could 
alternatively suggest that P300 amplitude reflects the perceptual 
evidence available for a decision, with variability in attention and 
confidence reflecting the variability in perceptual representation 
of the target.

In combination with the fact that we found no differences in 
perceptual EEG responses as a function of attentional state rating, 
these strong associations of perceptual confidence and attentional 
state ratings with P300 amplitude suggest that the effects of atten-
tional state occur at the decision level rather than the perceptual 
level, and hence further along the neural processing stream.

prEstIMulus EEG alpha powEr prEdIctEd attEntIonal statE 
ratInG
We propose that participants’ subjective attentional state ratings 
reflect both vigilance and the balance of attentional focus between 
external task-relevant information (in our case visual information) 
and internal task-unrelated thoughts (i.e., mind-wandering). This 
assertion is supported firstly in behavioral terms by the finding 
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alpha power, thereby attenuating any effect of alpha power on 
task performance. However, because attentional state ratings 
were associated with detection accuracy as well as prestimulus 
alpha power, this explanation implies that detection accuracy 
and prestimulus alpha power are associated with distinct por-
tions of trial-to-trial variance in attentional state ratings. This 
idea could be addressed in a future study using a visual detection 
paradigm optimized to find an association between prestimulus 
alpha power and detection accuracy (e.g., Busch et al., 2009), 
in which attentional state ratings are collected on every trial, 
as we did. Such a study might find that attentional state ratings 
correlate with detection performance at shorter timescales than 
they do with alpha power, supporting the notion that attentional 
state is multi-faceted, featuring dissociable relationships with 
behavioral and neural measures.

conclusIon
We have demonstrated a strong association between subjective 
ratings of attentional state and prestimulus EEG alpha power. 
This association implies that the level of alpha activity in parieto-
occipital cortex not only reflects cortical excitability (e.g., Klimesch 
et al., 2007), but is also indicative of attentional state with respect 
to a visual task. Furthermore, it suggests that fluctuations of alpha 
activity are accessible to consciousness. We propose that partici-
pants’ subjective attentional state ratings reflect both vigilance and 
the balance of attentional focus between external task-relevant 
information and internal task-unrelated thoughts (i.e., mind-
wandering). Because these ratings were associated with objective 
measures of both behavior and neural activity, we suggest that they 
are a simple and effective means of estimating task engagement. 
As such, they could provide valuable information in operational 
settings in which monitoring users’ attentional state might permit 
the optimization of task parameters such as stimulus presentation 
rate or the weight assigned to their decisions as their attentional 
state waxes and wanes.
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(2008) have demonstrated that somatosensory detection perform-
ance and power in all frequency bands are correlated with the phase 
of infraslow fluctuations (0.1–0.01 Hz, i.e., 10–100 s cycles) of EEG, 
a finding that could be interpreted as reflecting slow variations in 
attentional state. Collectively, these findings suggest that changes 
in attentional state over time are not solely characterized by sim-
ple monotonic declines, since fluctuations occur over periods of 
minutes. Our study provides a link between this literature and 
research into subjective attentional state, spontaneous EEG alpha, 
and attention. Our findings are also informative with respect to 
online monitoring of user attention in contexts in which the users’ 
attentional state could be a critical determinant of task perform-
ance. In particular, our results suggest that measures of attentional 
state might be optimally assessed with a frequency in the region of 
minutes, and that periods of low attentional state can be relatively 
long lasting.

prEstIMulus EEG alpha powEr was not prEdIctIvE of dEtEctIon 
pErforMancE
Previous studies featuring simple visual detection tasks have dem-
onstrated that prestimulus alpha power is greater preceding failures 
to detect the target than successes (Ergenoglu et al., 2004; van Dijk 
et al., 2008; Busch et al., 2009). We found no such association in 
our data, which is surprising given the pairwise associations we 
found between prestimulus alpha power and attentional state rat-
ings, and between attentional state ratings and detection accuracy. 
However, previous studies featured paradigms that were optimized 
for detecting associations between alpha power and visual aware-
ness by precisely controlling stimulus conditions, such that target 
stimuli were identical from trial-to-trial. In contrast, our design was 
motivated by the desire to enable the extrapolation of our results to 
real-world tasks, for example, the detection of landmarks in satellite 
photographs (e.g., Poolman et al., 2008). In particular, our target 
stimuli were intended to vary in visibility considerably due to being 
embedded in white noise. Hence, an effect of prestimulus EEG alpha 
power on detection accuracy may have simply been lost in the inher-
ent noise of EEG recordings coupled with the noise in the visibility 
of our target stimuli. Indeed, several other previous studies featur-
ing much more controlled stimuli, akin to those aforementioned, 
have also failed to find an association between prestimulus alpha 
power and detection accuracy (e.g., Thut et al., 2006).

One other feature of our paradigm is potentially relevant 
in this context: Targets were never presented in the first two 
images of the RSVP stream, so there was always a delay of at 
least 200 ms between the start of the RSVP stream and target 
presentation. It is possible that this delay gave participants time 
to re-engage with the task following prestimulus periods of high 
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than in the control group. In addition, although many cognitive 
functions appear to be impaired in those with ASD, the literature 
is littered with examples of non-replication, suggesting that there is 
no specific cognitive impairment that is consistent and universal in 
ASD (see also Happé et al., 2006). The data on impairments in cog-
nitive task performance in ASD may therefore be better interpreted 
as arising from a pervasive and generalized impairment rather than 
a collection of several, different, modality, or task specific impair-
ments. A promising candidate for such a generalized impairment 
is increased levels of intra-participant variability, as this would 
lead to increased variability between participants, and represents 
a parsimonious explanation for the many areas of cognition that 
appear to be impaired in those with ASD. Furthermore, increased 
intra-participant variability would lead to reduced test re-test reli-
ability and could therefore explain the high level of inconsistency 
within the literature.

Variability and fluctuation in behavior and task performance are 
commonly observed in individuals with developmental disorders 
(Castellanos et al., 2005). Although most typically associated with 
ADHD, recent empirical work has demonstrated that individuals 
with ASD show significantly greater intra-individual response time 
variability during a simple 2AFC task compared not only to a group 
of typically developing (TD) matched control participants, but also 
compared to a group of matched participants with ADHD (Geurts 
et al., 2008). Intra-individual variability appears to be an  important 

IntroductIon
Autism spectrum disorder (ASD) is a complex neurodevelopmental 
disorder that has been estimated to occur in 1.16% of children 
in the UK (Baird et al., 2006). It is characterized by substantial 
difficulties in social cognition, interaction, and communication 
(APA, 1994). In addition to these core deficits, ASD is associated 
with a wide range of more general impairments in many cogni-
tive domains including, executive function (Hill, 2004), memory 
(Bennetto et al., 1996), attention (Allen and Courchesne, 2001), 
and perception (Simmons et al., 2009). An underlying etiology 
that links impairments across such an array of domains has not yet 
been identified. The literature on perceptual function is particularly 
puzzling, as while those with ASD show impaired performance of 
some tasks, e.g., detecting coherent motion within local motion 
noise (Milne et al., 2002), they show superior performance on tasks 
that involve detecting a target within a static array (Plaisted et al., 
1998). Furthermore, enhanced and diminished perceptual sensitiv-
ity appear to co-occur, as Bertone et al. (2005) have demonstrated 
enhanced first-order contrast perception and decreased second-
order contrast perception within the same group of participants.

A persistent difficulty in identifying the etiology of ASD arises 
from a high level of inter-participant variability. This is evidenced 
by the number of studies that discuss participant sub-groups within 
the ASD sample, and the number of studies in which estimates of 
variation around the mean/median are larger in the ASD group 
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indicator of pathophysiological processing therefore, and its poten-
tial to explain a number of task-related behaviors in those with 
ASD should not be over-looked. However, there are many potential 
routes to response time variability, including: variability in higher-
order cognitive functions such as initiating or generating motor 
responses (Deutsch and Newell, 2005); transient lapses of attention; 
and/or variability in early sensory encoding (e.g., Croner et al., 
1993; Arieli et al., 1996). The source of intra-participant variability 
in ASD is therefore unclear.

A number of authors have suggested that neural noise may be 
increased in individuals with ASD or that increased levels of noise 
may contribute to reduced cognitive task performance in those 
with ASD (e.g., Rubenstein and Merzenich, 2003; Baron-Cohen and 
Belmonte, 2005; Dakin and Frith, 2005; Simmons et al., 2009). In 
particular some have suggested cortical hyper-excitation especially 
in primary sensory cortices, which would lead to increased cortical 
noise in ASD (Rubenstein and Merzenich, 2003). However, as yet, 
there is no direct evidence for greater neural noise in those with 
ASD. Increased neural noise would be evidenced by increased vari-
ability across individual trials of EEG, therefore the aim of this study 
is to compare variability in single-trial EEG in a group of children / 
adolescents with ASD with a group of TD matched controls.

Unfortunately, single-trial analysis of EEG is seldom performed. 
The main reason for this is that EEG recorded at the scalp consti-
tutes a mixture of a number of sources signals, therefore, activity 
associated with a single process, being mixed with signals arising 
from other processes as well as on-going “background” oscilla-
tions, is difficult to identify within each trial. Here, EEG data are 
decomposed with independent component analysis (ICA), which, 
as described below, un-mixes the different source signals recorded 
at the scalp, enabling activity from independent processes to be 
identified in single-trials (Makeig et al., 1997, 2004; Onton et al., 
2006) and variability within individuals to be measured.

Whole-brain dynamic processes are underpinned by the forma-
tion of cell assemblies, i.e., groups of cells that oscillate in synchrony, 
or precisely timed succession, for transient periods (Nunez and 
Srinivasan, 2006). As numerous cell assemblies may be active at 
any given time, oscillation synchronicity within specific frequency 
bands is thought to be the mechanism by which the output of single 
units is identified as being part of a coherent network (Singer et al., 
1997). Performing even a simple experimental task will excite a 
number of different cell assemblies which will be active alongside 
numerous other task-unrelated assemblies. A difficulty faced by 
EEG researchers is the fact that electrical activity generated by these 
separate assemblies becomes mixed, and, via volume conduction, 
smeared, across the scalp. That is, each EEG electrode records a 
mixture of signals arising from multiple cognitive processes and 
from on-going “background” oscillatory activity. Furthermore, 
scalp electrodes also record activity from non-brain sources includ-
ing muscle (eye-movements, blinking, heartbeat) and in some 
cases from non-physiological electrical sources (e.g., line-noise). 
Filtering and artifact rejection reduces the influence of some of 
these unwanted contributions to EEG, however, the spatial mixing 
of numerous brain-based processes means that the signal of inter-
est, i.e., the signal associated with the cognitive task, is mixed with 
signals from task-unrelated processes and is therefore difficult to 
observe and measure on a trial-by-trial basis.

This spatial mixing of EEG has shaped the way that EEG data 
are analyzed, most notably by leading to a dominance in single-
trial averaging to calculate the event-related potential (ERP). The 
theory behind the ERP technique is that by calculating an aver-
age of several time-locked trials, event unrelated activity, being 
phase- and time-random with respect to the time-locking event, 
cancels to near zero amplitude, whereas the part of the EEG that 
is time-locked to the relevant event remains visible in the signal. 
Single-trial analysis is therefore rejected in favor of “average” 
event-related analyses. However, given the value of understand-
ing variability across single-trials, just as the SD provides vital 
information regarding the distribution of values around a mean 
response time, a number of alternate methods have been put for-
ward for facilitating single-trial analysis of EEG data. These include 
complex filtering (Salajegheh et al., 2004), maximum likelihood 
estimation (Jaskowski and Verleger, 1999), parametric modeling 
(von Spreckelsen and Bromm, 1988), multivariate matching pursuit 
algorithms (Sieluzycki et al., 2009), general linear model analyses 
(Pernet et al., 2011), and decomposing data using ICA (Jung et al., 
2001). ICA provides an elegant solution to the problems associated 
with spatial mixing of EEG, and facilitates analysis of single-trials by 
decomposing EEG data into separate informational components of 
brain dynamics that closely reflect activity associated with specific 
cognitive or sensory processes, thus removing the need for time-
locked averaging (e.g., see Jung et al., 2001).

Independent component analysis is a method of blind source 
separation that separates N linear mixtures into N independent 
informational components (Makeig et al., 1997). It is based on 
the assumption that source signals are statistically independent 
whereas signal mixtures are not. Maximizing the joint entropy of 
the extracted signals gives rise to the “un-mixing matrix” W that, 
when multiplied by EEG data X, produces the original source sig-
nals U, i.e., U = WX. The columns of the un-mixing matrix, W, 
hold coefficients of spatial filters that pass the activity of only one 
independent source process and suppress all the others. Each IC 
is represented by the time-course of activation (given by each row 
of U), and the weights with which the component projects to the 
electrodes which are given in the inverse of the un-mixing matrix 
W−1. Plotting these weights onto a schematic head model allows one 
to visualize the scalp topography of each independent component.

A number of papers have demonstrated the usefulness of 
decomposing EEG data into ICs, not only for isolating artifactual 
contributions to scalp EEG, but also for studying on-going oscil-
latory activity, and event-related activity that contribute to ERP 
deflections recorded at the scalp (for examples see Debener et al., 
2005; Onton et al., 2005; Eichele et al., 2010). Here, ICA is used to 
identify independent components that represent early (<200 ms) 
activity evoked by presentation of a simple visual stimulus, in order 
to compare single-trial EEG variability in those with and with-
out ASD. In addition to decomposing the data with ICA, the EEG 
epochs were converted to current source density (CSD) models 
(e.g., Kayser and Tenke, 2006). CSD transforms compute the second 
spatial derivative of voltage between nearby electrode sites, which 
enhances local electrical activity while attenuating distal activity. 
By emphasizing local contributions to the surface map, some of the 
variability associated with spatial smearing via volume conduction 
may be reduced. Comparing measures of variability obtained from 
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an independent component that fulfilled the selection criteria (see 
below) was identified. The two samples of data were therefore well 
matched both in terms of participant characteristics and data qual-
ity. Participant details are provided in Table 1.

The participants with ASD were recruited from a local clinic for 
children with pervasive developmental disorders. Only participants 
with a clinically defined diagnosis of autism (N = 5), Asperger’s syn-
drome (N = 5), or ASD (N = 3) were recruited2, no participant had 
a co-morbid diagnosis, or a known specific neurological or genetic 
condition (e.g., Fragile X, Rett Syndrome) that could account for their 
diagnosis of ASD. The TD children were recruited from an e-mail list 
of volunteers and were screened for any history of developmental, 
neurological, or genetic disorder. No participant had taken medica-
tion within 24 h of participation. Written informed consent was 
obtained from the parents of all participants and verbal assent was 
obtained by the participants prior to testing. The procedures followed 
were in accordance with the ethical standards of the South Sheffield 
NHS ethics committee and the Declaration of Helsinki.

PsychometrIc assessment
Degree of ASD symptoms were assessed in all participants by 
way of an observational measure (the Childhood Autism Rating 
Scale, CARS, Schopler et al., 1988) and a parental questionnaire 

the raw channel EEG with measures of variability obtained from 
two different methods of spatially filtering will illustrate which 
method produces the least variable data, thus ensuring that the 
most appropriate source of data is used when comparing variability 
between the participants with and without ASD.

The result in this paper present a re-analysis of data collected 
for a previous study (Milne et al., 2009), in which the visual evoked 
response in children/adolescents with and without ASD was inves-
tigated. Previously, we compared amplitude and latency indices of 
the visual evoked potential (VEP, e.g., the C1 and P1 deflections), 
and changes in α- and γ-band power associated with presentation of 
Gabor patches at a range of different spatial frequencies. We found 
that the time at which spectral power increase following stimulus 
onset was reduced in the participants with ASD (see also Isler et al., 
2010), and that the extent to which the spatial frequency content of 
the stimuli modulated α- and γ-band power was less in the partici-
pants with ASD (see also Jemel et al., 2010). Here, I now investigate 
intra-participant EEG variability: single-trial variability across the 
time-course is analyzed by comparing point-by-point amplitude 
variability across trials, and also by computing the degree of inter-
trial phase consistency across the time-course. In addition, vari-
ability of P1 amplitude, i.e., the consistency of P1 magnitude, and 
variability of P1 latency, i.e., the consistency of the time at which 
the peak occurs will be investigated. The P1 deflection is a positive 
going deflection within the VEP. It peaks between 100 and 160 ms 
after stimulus onset, is maximal over posterior leads and is generated 
within the extra-striate cortex. The P1 was selected for analysis as 
it is time-locked and phase-locked to stimulus onset. Therefore a 
“P1-like” increase in amplitude should be visible across single-trials, 
enabling variability between the two groups to be compared1.

materIals and method
PartIcIPants
Data were collected from 20 children/adolescents with ASD. Data 
from two participants were not analyzed as these participants had 
co-morbid diagnoses of ADHD. Data from another participant 
were excluded as despite having a clinical diagnosis of ASD, she 
failed to reach cut-off for ASD on the two screening measures that 
we used to ensure the homogeneity of our sample (further details 
are given below). From the remaining 17 participants, data from 
four participants were excluded as these participants did not show 
an independent component in their data decomposition that ful-
filled the criteria imposed for IC selection (further details are given 
below). Data are therefore presented from a total of 13 participants 
with ASD.

Participants in the TD control group were selected from a sample 
of 37 participants (19 male) who performed this task either as part 
of another study investigating developmental change of the VEP, or 
as part of the previously published study (Milne et al., 2009). Data 
from 12 of these participants is presented here; their inclusion was 
based on being a suitable match to one of the participants with ASD 
in terms of gender, age, and IQ and generating data from which 

1Note, that an index of earlier cortical response to visual stimuli is expressed by the 
C1 component, which peaks at around 100 ms and is generated in the striate cortex 
(Di Russo et al., 2001). However, C1 was not analyzed here as not all participants 
with ASD demonstrated a clear C1 deflection.

Table 1 | Participant demographics.

 ASD (N = 13) TD (N = 12) t- and

   p-Values

Gender 1 Female 1 Female 

ChronoloGiCAl AGE

Mean 11 years 8 months 12 years 4 months t(23) < 1, 

   p = 0.63

SD 2 years 6 months 2 years 11 months 

Range 8 years 4 months–15 7 years 11 months–16  

 years 5 months years 0 months

Full SCAlE iQ

Mean 105.9 111.1 t(23) < 1, 

   p = 0.37

SD 16.3 16.9 

Range 65–134 70–131 

CArS SCorE†

Mean 31.7  

SD 3.9  

Range 25–39.5  

SCQ SCorE‡

Mean 23.9  

SD 7.3  

Range 9–34

CARS, Childhood Autism Rating Scale, SCQ, Social Communication 
Questionnaire.
†Cut-off for autism is 30.
‡Cut-off for autism is 15.

2In the rest of this manuscript this sample will be collectively referred to as 
“ participants with ASD.”
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(the Social Communication Questionnaire, SCQ – lifetime ver-
sion Berument et al., 1999). The CARS requires the experimenter 
to rate the participant from a scale of 1–4 on 15 item behavio-
ral rating scale, for example “emotional response” and “fear and 
nervousness.” Scores range from 15 to 60 and the cut-off for ASD 
is 30. The SCQ consists of 40 “Yes/No” questions asking parents 
if their child currently displays specific autism-related behav-
iors or whether those behaviors were present between the ages 
of 4–5 years. Scores range from 0 to 40 and the cut-off score for 
ASD is 15. Intellectual ability was measured using the Wechsler 
Abbreviated Scale of Intelligence (WASI, Wechsler, 1999). This is 
comprised of four standardized sub-tests that assess expressive 
language, perceptual organization, abstract verbal reasoning, and 
non-verbal fluid reasoning abilities. The four sub-tests when con-
sidered together yield a “full scale IQ” that provides a composite 
measure of the participant’s general intelligence. All participants 
had normal, or corrected-to-normal, visual acuity.

stImulI and Procedure
Gabor patches were created using Matlab (The Mathworks, 
Inc.) and the psychophysics toolbox (Brainard, 1997). They 
were presented on a 17-inch monitor, which refreshed at 75 Hz. 
Stimuli were centrally presented on a gray background (average 
luminance = 14.4 cd/m2). The space-average luminance of each 
grating was 16.3 cd/m2, and the Michelson contrast, defined by 
(Lmax − Lmin)/(Lmax + Lmin) was 68%. The slight difference 
between the average luminance of the background and the stimuli 
was not visibly apparent and did not lead to any visible edges 
around the stimuli. At a viewing distance of 114 cm the patches 
subtended 6.78° by 6.78° of visual angle. All patches were pre-
sented in diagonal (45°), orientation, had a gaussian envelope 
with SD of 0.68°, and with spatial frequency modulation of 0.5, 
1, 4, or 8 cycles/degree. An additional stimulus, a gray-scaled 
image of a zebra was presented. Participants were instructed to 
respond by pressing a response button with the index finger of 
their dominant hand as quickly as possible whenever they saw 
the zebra.

Each of the four Gabor patches was shown 72 times, the zebra 
was shown 36 times. The order of stimulus presentation was ran-
domized. Each stimulus remained on screen for 39 refresh cycles 
(507 ms), with an additional variable inter-stimulus interval of 
either 24 (312 ms), 39 (507 ms), or 54 (702 ms) refresh cycles. A 
white fixation cross measuring 0.2° by 0.2° remained in the center 
of the screen for the duration of the task. Participants were asked 
to maintain fixation and to limit their blink frequency during the 
experiment.

data recordIng
EEG was continuously recorded using a high-density array of 
128 Ag/AgCl electrodes (Electrical Geodesics Inc., Tucker, 1993). 
Impedance was kept below 50 kΩ. The signal was amplified (×1000), 
filtered on line with a band-pass of 0.01–80 Hz, then digitized 
at a sampling rate of 1 kHz. The electro-oculogram (EOG) was 
recorded from bipolar electrode pairs located at the outer canthi 
and above and below the left and right eyes. Data were referenced 
to the vertex electrode, and were stored on the hard drive of a G4 
Macintosh power PC.

data Pre-ProcessIng
Data were analyzed off-line using EEGLAB (Delorme and Makeig, 
2004, http://www.sccn.ucsd.edu/eeglab), and the CSD toolbox (Kayser 
and Tenke, 2006; Kayser, 2009) running under Matlab 7.4 (The 
Mathworks, Inc.). A number of pre-processing steps were performed 
on the data before applying either ICA or CSD interpolation. First, 
the data were high-pass filtered (1 Hz) to minimize drift. Then the 
number of channels was pruned from 128 to 64. Pruning was neces-
sary in order to improve the quality of ICA decomposition, given the 
relatively small amount of data recorded (∼5 min). Initially channels 
that showed noise artifacts due to poor connection to the scalp were 
deleted, then channels were removed if they showed high kurtosis, 
finally, additional channels that showed the smallest inter-electrode 
distance were removed until 64 relatively evenly spaced electrodes 
remained. In some cases a small number of additional channels were 
deleted by the experimenter if any noise artifacts on any particular 
channel were still visible. (Given the small amount of data recorded 
there was a bias toward rejecting channels rather than portions of data 
in order to facilitate ICA.)

After channel pruning, noisy segments of data, i.e., segments 
that contained gross artifacts such as muscle twitching or swal-
lowing were removed from the data. At this stage, the data were (i) 
decomposed by extended infomax ICA using the function runica, as 
implemented in EEGLAB, and then segmented into epochs associ-
ated with presentation of the high spatial frequency Gabor patch 
(8 cycles/degree); epochs were 800 ms long (−100 ms pre-stimulus), 
and baseline corrected by subtracting the mean of the 100 ms pre-
stimulus interval, and (ii) segmented into epochs as described above 
and then transformed into CSD estimates (measured in μV/cm2) 
using a spherical spline surface Laplacian (Perrin et al., 1989) as 
implemented by Kayser and Tenke (2006), Kayser (2009), with a 
spline-smoothing coefficient (λ) of 1.0−5. Both sets of data were 
then low-pass filtered (<30 Hz).

Independent component source locations were estimated by 
creating an equivalent current dipole model for each component 
using the dipfit function from EEGLAB, this function estimates 
dipole location by applying inverse source modeling methods to 
a standard boundary element head model. The coordinate system 
used to specify electrode locations of both sets of data is publicly 
available as a look-up table [“10-5-System Mastoids EGI129.csd”] 
via the CSD toolbox. Three types of data were analyzed: (i) the back-
projected independent time-course of the selected component (see 
below), (ii) the time-course of the CSD interpolated data from the 
selected channel (see below), and (iii) the time-course of the raw, 
spatially un-filtered data from the selected channel.

data selectIon
IC selection
Only components whose scalp maps had <15% residual variance 
from the best-fitting forward model scalp projection were consid-
ered for further analysis. Any remaining components that reflected 
muscle activity, electrocardiogram, or eye-movements, on the basis 
of their dipole location, spectra, and scalp maps, were considered 
artifacts and excluded from further analysis. From the remaining 
components, selection of the component that represented activity 
associated with visual perception was based on two criteria: (i) 
the back-projected time-course was required to show time-locked 
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in the signal following stimulus presentation, therefore inter-trial 
α phase coherence, specifically at 11.7 Hz, was calculated using 
the newtimef function in EEGLAB. The highest ITPC value within 
the 100–170 ms post stimulus onset time-window was extracted 
for each participant to give an indication of the maximum level 
of ITPC, a high level (up to 1) indicates strong phase coherence, 
i.e., low variability; a low level (down to 0) indicates weak phase 
coherence, i.e., high variability. In addition, ITPC was calculated 
across the time-series.

increase in amplitude between 100 and 170 ms after stimulus onset; 
and (ii) the estimated equivalent current dipole was required to 
be located in posterior cortex. In all cases the selected component 
accounted for a larger percentage of the variance of the total EEG 
than any other component between 100 and 170 ms. The mean per-
centage variance accounted for by the selected components in this 
time-window was 70%, indicating that the selected  components 
contributed substantially to the VEP. The mean residual variance 
of the dipole fit for the selected independent components was rea-
sonably low (6.5%), suggesting that the selected ICs reflect the 
activity of a compact region in the cortex. The estimated Talairach 
coordinates of the equivalent current dipole of each component 
suggested that the neural generators of the component activations 
were located in extra-striate cortex.

Channel selection
Channel selection was based on an optimized electrode approach 
(e.g., Foxe and Simpson, 2002), whereby the channel that showed 
the highest P1 amplitude, from the CSD interpolated data, was 
selected for analysis. The CSD scalp maps at the latency at which 
the P1 peak was maximal, with the selected electrode marked by 
a black dot are presented in Figure 1 (left column); scalp maps 
from the IC selected for each participant are presented in Figure 1 
(right column). Despite not being used in the IC selection criteria, 
the similarity between the weight with which the ICs project to the 
scalp electrodes and the topography of the CSD maps at the time-
point when P1 was maximal, confirms that the selected component 
represent activity associated with the P1 deflection.

defInIng the varIables of Interest
P1 amplitude and latency
A number of variables were calculated from the three sources of 
data. In line with conventional ERP analyses, P1 amplitude was 
given by the highest (peak) amplitude between 100 and 170 ms; 
P1 latency was given by the time of this peak from stimulus onset. 
For the single-trial analyses, the highest amplitude between 100 and 
170 ms was identified in each trial; P1 amplitude was calculated 
as the median amplitude value, P1 latency was calculated as the 
median time at which these single-trial peaks occurred.

Variability
Variability in the expression of the P1 amplitude was estimated by 
calculating the median absolute deviation (MAD) of the P1 ampli-
tude and latency values, normalized by dividing by the median. In 
addition, across-trial amplitude variability was calculated at each 
time-point in the epoch. Due to the inherent difficulty of calculating 
co-efficients of variation when the central tendency is close to 0, 
amplitude values were normalized prior to computing the MAD 
estimate by converting all of the data to a z-score.

The degree to which each participant showed phase coherence 
over trials was calculated by computing an inter-trial phase coher-
ence (ITPC) measure. ITPC is a frequency domain measure that 
indicates the degree to which EEG activity is phase-locked, across 
trials, to specific experimental events – in this case presentation 
of the 8 cycles/degree Gabor patch. The power spectrum of each 
trial was calculated using a hanning tapered fast Fourier trans-
form with a window size of 128 ms. α-Band power was dominant 
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FiGurE 1 | Current source density (CSD) and iC scalp maps. CSD maps 
(left panel) are plotted at the time when P1 amplitude was highest. The 
electrode selected for analysis is indicated by the black dot. IC scalp maps 
(right panel) are stationary, and therefore constant across the time-course. 
[(A) = TD, (B) = ASD].
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source (all F > 3.4, all p < 0.05) and were therefore followed-up with 
paired-samples t-tests. These analyses indicated that there was no 
difference in variability when measured from the CSD interpolated 
data and the back-projected IC data (all t < 1, all p > 0.1), but the 
variables computed from the raw channels were significantly more 
variable than the variables computed from the spatially filtered 
sources. The data are presented in Table 2. Based on these results, 
the following analyses of group differences in variability were per-
formed using the spatially filtered data rather than the raw EEG.

grouP comParIson: Intra-PartIcIPant varIabIlIty
The extent to which the participants with ASD showed increased 
variability when compared with the neuro-typical participants was 
investigated with three 2 × 2 repeated measures ANOVAs with a 
within-subject factor of data source (CSD or ICA) and a between 
subjects factor of group (ASD or TD). The results of these  analyses 

In sum, three single variables were extracted for analysis – 
 variability of P1 amplitude, variability of P1 latency and maximum 
ITPC. The amplitude and ITPC time-courses were also compared 
on a point-by-point basis.

results
A positive going deflection was seen in the single-trials from all 
three sources of data. This is illustrated in Figure 2, which shows 
the single-trial amplitude across the epoch from a TD participant 
and a participant with ASD as measured from each source of data.

WhIch source of data shoWs the hIghest varIabIlIty?
The three measures of peak variability (see above), from all subjects, 
were entered into separate one-way ANOVAs with a within-subject 
factor of data source (raw EEG, CSD interpolated data, and back-
projected IC). All three ANOVAs showed a significant effect of data 
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FiGurE 2 | Single-trial amplitude from the raw EEG, CSD interpolated data, and back-projected iC data. Each colored trace on the y-axis indicates amplitude 
across the time-course of a single-trial (red = +ve, blue = −ve as shown on colormap). The blue trace below each figure is the average of the single-trials.

Table 2 | Mean measures of variability as calculated from the three sources of data.

 Mean value per data source Statistical comparison Statistical comparison

 EEG CSD iCA EEG vs CSD EEG vs iCA

P1 amplitude variability 0.38 [0.34 0.42] 0.34 [0.30 0.37] 0.34 [0.29 0.39] t = 3.85, p = 0.001 [0.022 0.072] t = 1.89, p = 0.072 [0.004 0.083]

P1 latency variability 0.07 [0.05 0.08] 0.06 [0.04 0.07] 0.06 [0.04 0.07] t = 2.98, p = 0.007 [0.004 0.020] t = 2.58, p = 0.016 [0.002 0.022]

Max. α-band ITPC 0.77 [0.70 0.84] 0.81 [0.74 0.87] 0.81 [0.74 0.87] t = 4.4, p < 0.001 [0.019 0.053] t = 2.1, p = 0. 046 [0.001 0.072]

95% confidence for the variable mean and for the difference between the two variables are given in square brackets.
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Table 3 | results of statistical tests comparing measures of variability in the two groups of participants.

 Data source Group interaction 95% Ci of the 

    group difference

P1 amplitude variability F < 1, p = 0.792 F = 5.37, p = 0.030 F = 3.83, p = 0.063 [0.008 0.148]

P1 latency variability F < 1, p = 0.975 F = 5.40, p = 0.029 F < 1, p = 0.747 [0.003 0.047]

Max. α-band ITPC F < 1, p = 0.977 F = 4.67, p = 0.041 F < 1, p = 0.418 [0.006 0.256]

are shown in Table 3, and the data are plotted in Figure 3A. The 
participants with ASD showed, on average, greater variance than the 
neuro-typical participants. This was the case for both measures of 
P1 variability: amplitude variability, ASD mean = 0.38 [0.33 0.43], 
TD mean = 0.30 [0.25 0.35]; latency variability, ASD mean = 0.07 
[0.05 0.08], TD mean = 0.04 [0.03 0.06]; and also for the maxi-
mum α-band ITPC, ASD mean = 0.74 [0.66 0.83], TD mean = 0.87 
[0.78 0.96].

Figure 3B illustrates amplitude variability in the two groups of 
participants at each time-point. Figure 3C illustrates α-band ITPC 
in the two groups of participants at each time-point. In order to 
compare these group time-courses, independent-samples t-tests 
were computed at each time-point. ITPC was significantly reduced 
(p < 0.05) in the participants with ASD between 160 and 271 ms 
after stimulus onset. Amplitude variability was significantly greater 
(p < 0.05) in the participants with ASD between 97 and 114 ms, 
between 185 and 194 ms, and between 283 and 300 ms after stimu-
lus onset.

grouP comParIson – P1 amPlItude and latency
Although not the main area of interest in this article, P1 latency 
and amplitude were compared between groups as this is the first 
study to report P1 amplitude calculated from single-trials rather 
than the average ERP in individuals with ASD. It has been suggested 
that individuals with ASD may show hyper-sensitivity in poste-
rior cortical areas associated with early visual perception (Mottron 
et al., 2006). As such, significantly greater P1 amplitude could be 
 predicted3. Given that individuals with ASD show increased latency 
jitter compared to TD participants (see above), the amplitude of the 
ERP could be artificially reduced in this population, masking any 
such effect. By contrast, computing P1 from the single-trials creates 
a variable that is immune to the effects of latency jitter. However, 
there was no group difference in P1 amplitude from any data source 
when calculated from either the ERP peak or the median of single-
trials (all t < 1. all p > 0.4). Figures 3D,E illustrate P1 amplitude 
when calculated as the peak of the ERP (Figure 3D) and the median 
amplitude of the single-trial peaks (Figure 3E). In addition these 
figures show variability as the SD of the single-trial peaks (3D) 
and the MAD of the single-trial peaks (3E). For comparison with 
previously published data, data from the raw EEG is presented in 
order to illustrate the difference in amplitude when calculated from 
the ERP and from the median of the single-trials.

Latency to peak was compared in the two groups using a repeated 
measures ANOVA with three levels: data source (EEG, CSD, or 
ICA), data type (ERP or median of single-trials) and group (ASD 

or TD). The only significant effect was the main effect of group, 
F(1,23) = 9.4, p < 0.01 which reflected the fact that latency to peak 
was faster, on average 18 ms faster, in the ASD group than the 
TD group, regardless of the data source or the data type. Table 4 
presents P1 amplitude and latency values in each group as calcu-
lated from the different sources of data. The table illustrates that, as 
expected, when calculated from the median of single-trials rather 
than the peak of the ERP, P1 amplitude is larger, whereas the latency 
of the peak does not differ.

Under some circumstances, ERP amplitude has been shown to 
decrease over multiple trials (e.g., Maurer et al., 2008). Therefore, 
in order to evaluate whether increased variability in the participants 
with ASD may reflect a larger habituation-effect, linear regressions 
of trial number against (IC) peak amplitude were computed for 
each participant. Mean slope size did not differ between groups 
however, indicating that this was not the case (TD mean β = −0.04 
[−0.13 0.05], ASD mean β = −0.06 [−0.15.03], t(23) < 1, p > 0.1.

data IntegrIty
Differences in data integrity between the two groups could conflate 
estimates of variability, therefore a number of analyses were carried 
out to ensure that data from both groups were of similar quality. 
The mean number of epochs analyzed did not differ between the 
two groups, TD = 58.6 [52 65], ASD = 53.3 [47 60], t(23) = −1.2, 
p = 0.241, suggesting that any differences in variability between the 
two groups are unlikely to arise from unequal number of epochs 
being submitted to analysis. There was no significant difference in 
the percentage variance accounted for by the selected ICs within the 
P1 time-window, TD = 70.7% [59.8 81.6], ASD group = 69% [58.6 
79.5], t(23) < 1, p = 0.822. Furthermore, there was no significant 
group difference in residual variability of the dipole fit, TD = 7.1% 
[5.7 8.6], ASD = 5.9% [4.5 7.3], t(23) = −1.28, p = 0.213), suggest-
ing that the quality of the ICA decomposition was similar between 
the two groups.

correlatIon WIth reactIon tIme
The experiment from which these data are taken required par-
ticipants to press a response key whenever they saw an oddball 
stimulus – a zebra. The groups did not differ in the number of 
responses made, TD = 34.3 [33.0 36.9], ASD = 34.5 [32.2 36.3], 
t(20) < 1, p = 0.657, in mean reaction time TD = 393.3 [363 413], 
ASD = 412.4 [378 431], t(20) = 1.37, p = 0.307, nor in the mean 
MAD estimate of reaction time variability, TD = 45.1 [34.4 52.5], 
ASD = 38.2 [28.2 48.1], t(20) < 1, p = 0.423. However, there was 
a significant relationship between reaction time variability and 
peak amplitude variability, r

s
(22) = 0.479, p = 0.024. (Behavioral 

data from three participants with ASD was unavailable due to a 
technical fault.)

3Although, as discussed in the introduction, the late P1 complex analyzed here most 
likely reflects activity in extra-striate cortex rather than the primary visual cortex. 
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data than from the scalp EEG data, highlighting the benefits of 
applying spatial filtering techniques to EEG. Having validated the 
use of CSD and ICA in this study, measures of single-trial variability 
were compared between the participants with and without ASD, 
with the finding that intra-participant variability was significantly 
greater in the participants with ASD than in the control group.

These data suggest that previous reports of increased response time 
variability in those with ASD (Geurts et al., 2008) may be underpinned 
by variability within cortical dynamics associated with the ability to 

dIscussIon
The aim of this work was to establish whether those with ASD show 
greater variability across single-trial evoked EEG compared with 
neuro-typical individuals. A second aim was to compare single-trial 
EEG variability when extracted from spatially filtered data and 
from raw-scalp EEG data in order to select the most appropriate 
variables for group comparison. All three measures of peak vari-
ability – P1 amplitude, P1 latency, and maximum α-band phase 
coherence – were smaller when analyzed from the spatially filtered 
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FiGurE 3 | Estimates of variability averaged across group. [(A) (normalized)] 
measures of peak variability. The left graph shows mean variation in the 
amplitude of the P1 peak, the middle graph shows mean variation in the latency 
of the P1 peak, and the right graph shows the mean maximum ITPC between 
100 and 170 ms. [(B) (normalized)] median absolute deviation in amplitude 
across trials at each time-point, averaged across participant groups. (C) ITPC at 

each time-point, averaged across participant groups. The black lines on the x-axis 
of plots (B) and (C) indicate time-points of group difference (p < 0.05). P1 
amplitude is shown in plots (D) and (E). (D) P1 amplitude calculated from the 
ERP peak, and the SD of the single-trial P1 peaks. (E) P1 amplitude calculated as 
the median of the single-trial P1 peaks, and the median absolute deviation of the 
single-trial P1 peaks. Bars represent ±1 SE.
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it is perturbed by the stimulus, but neither time- nor phase-locked 
to it (induced activity). However, as the data presented above, and 
numerous other estimations of ITPC (e.g., Tallon-Baudry and 
Bertrand, 1999) illustrate, complete phase-locking across trials (i.e., 
ITPC = 1) is physiologically unrealistic. Therefore the boundary 
for defining whether stimulus-related activity should be consid-
ered to be evoked or induced is unclear. Rojas et al. (2008) point 
out that their data fit a model in which total (evoked + induced) 
stimulus-related γ-band power is equivalent in the participants with 
and without ASD, and that reduced inter-trial phase consistency, 
computationally, leads to a reduction of what is classed as evoked 
activity and an increase in what is classed as induced activity. Thus 
these authors conclude that the production of γ-band oscillations 
in response to external stimulation is no different in those with and 
without ASD, rather their data point toward dysfunction in the tim-
ing of γ-band oscillations in the participants with ASD.

The data reported here provide evidence of reduced ITPC in 
the α-band in ASD. Together with the result of Rojas et al. (2008), 
these data indicate widespread dysfunction of neural timing in ASD, 
rather than a specific deficit of high-frequency γ-band oscillations 
as some authors have predicted. Reduced ITPC in ASD indicates 
that those with ASD are less able to synchronize the activity of 
stimulus-related cell assembly(ies) consistently across trials, and 
provide evidence for temporal disruptions in the organization and 
recruitment of cell assemblies. It is not clear whether this temporal 
disruption underpins, is caused by, or is unrelated to, postulated 
neural de-synchrony in ASD.

A number of possible etiologies of atypical neural oscillations in 
ASD have been suggested, including: a surfeit in local connectivity – 
especially in primary sensory areas (Belmonte et al., 2004); smaller 
and more dispersed cortical mini-columns leading to a reduction 
in inhibitory inter-neuronal activity (Casanova et al., 2002); an 
imbalance of cortical excitation and inhibition due to increased 
glutamergic/reduced GABAergic signaling (Rubenstein and 
Merzenich, 2003); and impairment in the inferior olive – a struc-
ture that that mediates electrical synapses and that drives neural 
synchrony, and has been found to be structurally atypical in some 
individuals with ASD (Welsh et al., 2005). No theory has yet linked 
any of these putative impairments with increased intra-participant 
variability in those with ASD. However within the literature on 
ADHD, intra-participant variability has been theoretically linked 
with inconsistent and inefficient neuronal transmission, which may 
arise from impairment in astrocytes, a type of glial cell that plays 
a critical role in fueling neuronal oscillations (Russell et al., 2006). 
Astrocyte impairment in ASD could therefore account for a range 
of features of ASD including neural de-synchrony, EEG single-
trial variability, and behavioral (response time) variability. Given 
the important role of glia in synapse formation and maintenance 
(Bolton and Eroglu, 2009) the suggestion that astrocyte impairment 
may be a critical factor in ASD is a tantalizing one. It is important 
to note however that, in addition to the theoretically formulated 
suggestions described above, a variety of neuronal characteristics 
(e.g., synaptic transmission, channel gating, fluctuation in trans-
mitter release, postsynaptic receptor activation, ion concentrations, 
membrane conductance) may contribute to variability of evoked 
EEG response (Sannita, 2006), therefore it is not currently possible 
to identify the precise source(s) of EEG variability.

synchronize the activity of stimulus-related cell assembly(ies) consist-
ently across trials. The experimental paradigm used here did not elicit 
a significant difference between response time variability in those with 
and without ASD. This may be because only a small number of trials 
(36) were available to ascertain variability, in contrast to Geurts et al. 
(2008) who used nearly twice as many (64 trials), or it may be because 
of the small group sizes and consequently reduced power of the analy-
ses performed here. Nevertheless, there was a significant relationship 
between response time variability and P1 amplitude variability. Note 
that P1 and the behavioral data were extracted from separate trials 
(the P1 was extracted from trials in which the eliciting stimulus was 
a Gabor patch with a spatial frequency content of 8 cycles/degree and 
the behavioral data were derived from trials in which the eliciting 
stimulus was a zebra), therefore it is not the case that specific trial-
by-trial variations in ERP amplitude are driving the variability in 
response time, rather it appears as though a common mechanism may 
underpin both behavioral variability and ERP amplitude variability.

As described in the Introduction, neurocortical dynamics result 
from the activation of partially distinct and interacting cell assem-
blies; the mechanism of communication within these cell assemblies 
is synchronous oscillations. A number of authors have suggested that 
ASD may be characterized by reduced neural synchrony, especially 
of high-frequency (γ-band) oscillations (e.g., see Brock et al., 2002), 
although evidence to support this position is mixed. While some 
studies have shown lower levels of evoked γ-band power in those 
with ASD (Wilson et al., 2007), more recent data indicates that while 
evoked γ-band power may be reduced in those with ASD, induced 
γ-band power is increased, and inter-trial γ-band phase coherence 
(ITPC) is reduced (Rojas et al., 2008). The concept of “evoked” or 
“induced” EEG is defined by whether or not single-trial activity is 
time- and phase-locked to a stimulus (evoked activity),or whether 

Table 4 | Mean P1 amplitude and latency in the two groups of 

participants.

 ASD TD

P1 AMPliTuDE

Back-projected IC data (μV)

 ERP Peak 3.17 [2.4 3.9] 3.06 [2.3 3.8]

 Median of single-trial peak 3.86 [3.1 4.7] 3.62 [2.8 4.5]

CSD interpolated data (μV/cm2)

 ERP Peak 7.34 [5.3 9.4] 7.62 [5.5 9.8]

 Median of single-trial peak 8.97 [6.7 11.2] 8.92 [6.5 11.3]

Raw EEG data (μV)

 ERP Peak 11.79 [8.9 14.8] 11.49 [8.4 14.6]

 Median of single-trial peak 15.17 [11.6 18.7] 13.89 [10.2 17.6]

P1 lATEnCy

Back-projected IC data (ms)

 ERP Peak 134 [124 144] 154 [143 163] 

 Median of single-trial peak 134 [125 142] 152 [142 161]

CSD interpolated data (ms)

 ERP Peak 132 [122 141] 153 [142 162]

 Median of single-trial peak 133 [124 141] 152 [143 161]

Raw EEG data (ms)

 ERP Peak 135 [126 144] 154 [144 162]

 Median of single-trial peak 136 [127 143] 153 [144 161]
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extra-striate cortex rather than primary visual cortex. As noted in the 
Introduction the earlier C1 deflection would be a more appropriate 
deflection with which to investigate variability in primary visual 
cortex, however this was not analyzed here as a number of partici-
pants with ASD failed to show a clear C1 deflection, either in the 
(averaged) ERP or in the single-trials. The specific reason for this is 
unclear, but is being addressed by on-going studies by our research 
group. Therefore, although the P1 deflection reported here does 
not tap the earliest stage visual processing, it was the most robust 
early deflection in the data, making it the best available candidate 
to investigate increased noise in the visual cortex in ASD. Future 
studies are required to establish whether areas of primary sensory 
cortex, generating earlier ERP deflections, show similar, or possibly 
greater, levels of variability in participants with ASD.

In addition to increased variability, the P1 peak in the participants 
with ASD occurred significantly sooner than in the control group. 
This finding, from these data, was reported previously (Milne et al., 
2009), so will not be dwelt on here. Nevertheless, reduced latency to 
peak is commensurate with the suggestion of local hyper-connec-
tivity in ASD which has been predicted by some to lead to increased 
cortical noise (see for example, Belmonte et al., 2004).

There are a number of implications from this work for existing 
EEG studies in those with ASD. Consistent with previous reports, 
these data provide no evidence for difference in P1 amplitude in 
participants with ASD. Although there is one report of reduced P1 
amplitude in children/adolescents with pervasive developmental 
disorder, including ASD (Hoeksma et al., 2004), this may have been 
due to latency jitter, as ERP amplitude (when calculated from the 
peak of the averaged single-trials) is intrinsically related to latency 
variability. Conversely, the suggestion that individuals with ASD may 
have hyper-responsive visual cortices would predict increased P1 
amplitude in those with ASD, and increased latency jitter may mask 
this potential outcome. However, the data did not support this pre-
diction, as when P1 amplitude was calculated as the median of the 
single-trial peaks, there was still no group difference in P1 amplitude. 
The data reported here indicate that establishing degree of latency 
jitter within each participant is possible, and should be an essential 
part of ERP analysis if conclusions are to be drawn to regarding 
the origin of observed group differences. Before leaving this point, 
it is important to point out that a number of physiological factors 
contribute to ERP amplitude. Although ICA was able to isolate the 
signal associated with perceptual encoding from the total EEG, and 
therefore facilitate comparison of within-participant variables such 
as variability, it cannot address the potentially confounding factors of 
individual differences that may lead to differences in ERP amplitude 
between groups including differences in cortical convolution, posi-
tion of the calcarine sulcus, and/or conductivity of underlying tissue, 
etc. Given that there is some evidence of cortical folding abnormali-
ties in children with ASD (Nordahl et al., 2007), direct comparison of 
EEG amplitude or EEG power between experimental groups, without 
first normalizing the data, may not be a reliable technique.

When analyzing the data presented here, significant attempts 
were made to minimize potential confounds that could artificially 
inflate the estimates of variability in one group or another. Note 
that the within-subject estimates of variability reported here are 
normalized, thus validating group comparisons; note also that 
the two groups of participants were well matched as regards to 

Regardless of the precise source, increased EEG variability in those 
with ASD is evidence of increased intrinsic neural “noise” (Sannita, 
2006). Increased neural noise in ASD has been predicted by a number 
of authors (see Simmons et al., 2009), however, the data reported here 
represent the first empirical demonstration of increased neural noise 
in ASD. Increased neural noise has the potential to influence behavior 
in a variety of ways, and its impact on different levels of function, e.g., 
perception, cognition, and behavior, may not be consistent. Whilst an 
increased noise-to-signal ratio leads to reduced perceptual sensitivity 
in many cases, one type of noise – stochastic resonance – can amplify 
a signal, leading to increased sensitivity. Increased levels of neural 
noise have therefore been discussed in relation to atypical perception 
in ASD, and offered as a parsimonious explanation of data in which 
those with ASD show both hyper- and hypo-reactivity to perceptual 
stimuli and enhanced and impaired perceptual sensitivity measured 
with psychophysical tasks (Simmons et al., 2009).

Increased neural noise is less likely to have an advantageous 
effect on cognitive task performance however, as it may lead to a 
number of sub-optimal outcomes including a general decrease in 
response times and greater response time variability, more errors 
in tasks with more than one possible response, and the need for 
increased repetitions of a task to achieve the same outcome as those 
with lower levels of noise. Furthermore, noise-related reduction 
in task performance would be evidenced by impairments across 
many domains and tasks, rather than in isolated tasks, and it would 
also lead to increased inter-participant variability. This descrip-
tion of data is very similar to that represented by the literature 
on cognitive function in ASD. Increased neural noise is therefore 
a plausible, and parsimonious, explanation both for the array of 
cognitive tasks in which participants with ASD have been shown 
to perform more poorly than those without ASD, and for the sig-
nificant inter-individual variability present in those with ASD. In 
support of this position are two demonstrations where reduced 
task performance can be accounted for by what may be termed 
“noise.” For example, thresholds for detecting coherent motion can 
be artificially inflated by transient lapses of attention (McAnally 
et al., 2001), and intra-individual response variability is a strong 
predictor of success in the Go No-Go task (Bellgrove et al., 2004), 
suggesting that lower sensitivity to coherent motion and failure 
to inhibit prepotent responses, both of which have been reported 
in those with ASD (see Ozonoff et al., 1994; Milne et al., 2002 
respectively), may arise due to increased neural noise rather than 
reflecting a specific impairment in either motion perception or in 
response inhibition, as is the current interpretation of these data 
(see also Baron-Cohen and Belmonte, 2005 for a similar argument).

Some authors have suggested that cortical hyper-excitability in 
ASD may be restricted to/more pronounced in, primary sensory 
areas (e.g., Rubenstein and Merzenich, 2003; Mottron et al., 2006). 
Therefore in order to evaluate these results in light of current theo-
ries it is necessary to consider where the neural generators of the P1 
deflection analyzed here might be. The location of the electrodes 
selected from the CSD data, and the estimated location of the equiva-
lent current dipole of the ICs suggests that the P1 analyzed here 
is generated in extra-striate cortex. This is commensurate with a 
number of papers that have localized the neural generators of the P1 
deflection to the extra-striate cortex (e.g., Di Russo et al., 2001; Ales 
et al., 2010). Therefore, these data provide evidence for variability in 
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the MAD estimate of the P1 peak amplitude from the raw EEG data 
in the TD group, was 0.37. This broadly concurs with existing data 
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100 healthy adults from electrodes positioned above the occipital 
cortex was reported to be 0.41 (Klistorner and Graham, 2001). 
However, given that the MAD estimator is less influenced by outly-
ing data points than the coefficient of variation, estimates of vari-
ability from this statistic tend to be lower than from the coefficient 
of variation, so a direct comparison between these two statistics 
cannot be made. For comparison, the co-efficient of variation of P1 
amplitude in the TD group, based on the SD of these data was 0.58, 
i.e., higher than that reported by Klistorner and Graham (2001) – 
possibly reflecting developmental change in amplitude variability.

conclusIon
In conclusion, these data illustrate that analysis of single-trial EEG 
activity is less variable when the data are spatially filtered, either 
using ICA or CSD, prior to analysis. Therefore, when comparing data 
between different groups of participants, more accurate results are 
likely to be obtained if indices obtained from ICs of CSD interpolated 
EEG rather than raw channel indices are compared. Further to this, 
EEG variability across single-trials was significantly greater in the 
participants with ASD as compared to the TD control group. These 
data provide the first empirical demonstration of increased neural 
noise in those with ASD. Increased variability in neural activity may 
result in a number of negative consequences for individuals with ASD 
and may contribute to the substantial inter-individual variability that 
characterizes the literature on cognitive function in those with ASD.
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age, IQ, and gender, and that the data from the two groups was 
matched in terms of quality. It is therefore unlikely that methodo-
logical factors contributed to the group differences reported here. 
However, as is outlined in the methodology, data is not reported 
from all participants who participated in the study. This was 
driven primarily by the goal of ensuring well matched samples, 
but was also a consequence of the fact that not all participants 
generated an IC that was considered reliable enough to be ana-
lyzed. The most likely reason for this is that only a small amount 
of data (approximately 51/2 min of data per participant) were 
recorded and available for ICA decomposition. The experiment 
was necessarily short given the age of the participants, but the 
quality of ICA decomposition would be greatly improved with 
longer recordings, therefore future work should aim to replicate 
the findings reported here with larger groups of participants and 
with longer data recordings.

Behavioral variability is not unique to those with ASD 
(Castellanos et al., 2005), therefore future research is required to 
establish the universality of increased EEG variability in ASD and 
in other developmental disorders (such as ADHD), and to establish 
whether increased variability is a general characteristic of brain 
pathology, or whether distinctive features of variability occur in 
different developmental disorders. Furthermore it is necessary to 
establish the extent to which increased EEG variability is an endur-
ing endophenotype of ASD, or whether it related either to external 
factors such as context or particular task requirements, or to inter-
nal factors such as cognitive state (e.g., awake, asleep, tired, alert). 
The presence of a significant correlation between EEG variability 
and response time variability provides preliminary evidence that 
response time variability and EEG variability are related, albeit in 
a small sample of participants. This relationship should be tested 
more rigorously in future studies in which larger groups of par-
ticipants are tested and different types of behavioral response tasks 
(such as simple reaction time, choice reaction time, response inhi-
bition, etc.) are performed. In addition, more detailed single-trial 
analyses should be performed in order to examine the temporally 
dynamic patterns of EEG fluctuations, and the relationship between 
EEG variability and cognitive task performance and both inter- and 
intra-participant variability needs to be clarified.
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subjects show reliable ERPs to faces and noise, which differ reli-
ably across subjects, for reasons yet to be discovered (Rousselet 
et al., 2010; Gaspar et al., in press Reliability of ERP and single-trial 
analyses).

Individual differences in early visual processing have been 
largely ignored in the face literature, and implicitly treated as 
measurement errors that can be filtered out by averaging data 
across subjects. Although understanding the average brain is a 
worthy goal, only the single-trial approach, in conjunction with 
parametric designs, will allow us to understand brain mecha-
nisms and the information content of brain states (Schyns et al., 
2009; Schyns, 2010). In the single-trial framework, timing is 
essential. Indeed, how fast the visual system can discriminate 
among object categories provides strong constraints on possi-
ble computational implementations (Thorpe and Fabre-Thorpe, 
2001; Rousselet et al., 2004; Thorpe, 2009). In particular, the 
timing of task modulations might help us tease apart periods of 
mostly bottom-up, stimulus driven activity, from time-windows 
engaging flexible neuronal populations that might be tuned to 
certain tasks. Thus, task modulations are key to understand 
brain mechanisms (Schyns, 1998; Pernet et al., 2007; Schyns 
et al., 2009).

IntroductIon
Following the first reports of larger scalp responses to faces com-
pared to objects (Bötzel and Grüsser, 1989; Jeffreys, 1989; Jeffreys 
and Tukmachi, 1992; Jeffreys et al., 1992; Seeck and Grüsser, 1992), 
there have been hundreds of studies on the early event-related 
potentials (ERPs) to faces and objects. The vast majority of these 
studies used (i) averaged ERP, (ii) group statistics, and (iii) categori-
cal designs. Their findings can be summarized shortly: sometime 
between 100 and 200 ms after stimulus onset, ERPs to different 
object categories tend to differ from each other, and faces are most 
of the time associated with larger N170 peaks than other object 
categories (Rossion and Jacques, 2008).

Recently, several research groups have started to study these 
early preferential responses to faces in individual subjects (Schyns 
et al., 2003, 2007; Philiastides and Sajda, 2006; Philiastides et al., 
2006; Rousselet et al., 2007a, 2008a,b, 2009, 2010; Smith et al., 2007; 
Liu et al., 2009; Ratcliff et al., 2009; van Rijsbergen and Schyns, 
2009). Individual subjects’ ERPs, show, not surprisingly, system-
atic differences between faces and objects consistent with group 
effects reported so far (Rousselet et al., 2008a). These studies have 
also revealed inter-subject differences: despite coarse agreement 
between group and individual subject statistical analyses, individual 
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to 300 ms post-stimulus onset. However, statistical analyses in every subject revealed different 
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single-trial activity discriminated between face and car trials. In the 
same task, ERPs to faces and cars were sensitive to the level of image 
phase noise roughly in the time period 100–300 ms after stimulus 
onset. Among several important results in this paper, the authors 
show that in the color task, in which the noise dimension becomes 
task irrelevant, noise sensitivity was strongly reduced shortly after 
200 ms. This is an important result because it suggests a timing 
for task effects in situations in which subjects discriminate stimuli 
presented at fixation: the first 200 ms of brain activity is mostly 
bottom-up, not modulated by task constraints, followed by a sec-
ond period of brain activity which is modulated by top-down, task 
related influences.

In previous studies, similarly to Philiastides et al. (2006) we 
described phase noise sensitivity of face ERPs in the time-window 
100–300 ms (Rousselet et al., 2008b, 2009, 2010). Although in their 
second experiment (Philiastides et al., 2006) used only two noise 
levels, 30 and 45% phase coherence, their results suggest that when 
we use a larger range of noise levels, as in our previous experiments, 
noise sensitivity should be strongly reduced after 200 ms when it is 
made task irrelevant. We tested this hypothesis by asking subjects to 
perform two tasks: the same face identity discrimination task (face 
1 vs. face 2) we used in previous studies (Rousselet et al., 2008b, 
2009, 2010) and the same color discrimination task (red vs. green) 
used by Philiastides et al. (2006). We performed both group level 
and single-subject analyses to reveal the detailed time-course of 
the task effects.

MaterIals and Methods
Square brackets indicate the boundaries of 95% confidence inter-
vals (CIs) constructed using a percentile bootstrap with 1000 sam-
ples (Wilcox, 2005).

subjects
We recruited 13 subjects, including the second and third authors, 
and 11 subjects from the Glasgow Psychology subject pool. Subjects’ 
mean age was 24 years old (min = 20, max = 32); eight were females, 
11 were right handed. Their mean high-contrast 63 cm decimal acu-
ity was 104 (min = 99, max = 110); their low-contrast 63 cm decimal 
acuity was 96 (min = 89, max = 103). All subjects had a Pelli-Robson 
contrast sensitivity of 1.95 and successfully passed the Ishihara color 
blindness test for red-green color deficiencies. On average subjects 
had 19 years of education (min = 15, max = 23). All subjects except 
the two authors received £6/hour for their participation and all 
subjects gave written informed consent. The research ethics board 
from the University of Glasgow approved the research protocol.

stIMulI
We used two front-view male face photographs cropped within a 
common 4.3° × 6.3° oval frame and pasted on a uniform 9° × 9° 
gray background (Figure 1). These faces were selected from a set 
of 10 faces, which are described in detail in previous publications 
(Gold et al., 1999; Husk et al., 2007). All stimuli had the same 
global amplitude spectrum. We added noise to their phase spectra 
so that their percentage of global phase coherence ranged from 10 
to 80%, with 10% increments. Noise was random on each trial, 
which means that subjects never saw the exact same image twice. We 
also colorized the faces with red and green tones by  manipulating 

For over 10 years, the ERP face literature has been debating 
the existence of task modulations of the N170 face preferential 
response. Several studies used targets vs. non-targets manipula-
tions, in which faces at fixation are attended or ignored, and found 
no evidence of task modulations on the N170 (Séverac-Cauquil 
et al., 2000; Carmel and Bentin, 2002; Rousselet et al., 2007b), and 
its magnetic analog, the M170 (Lueschow et al., 2004; Furey et al., 
2006; Okazaki et al., 2008). Similarly, intracranial recordings failed 
to reveal top-down modulation of the N200 to faces (Puce et al., 
1999). One exception is found in a recent study, which reported an 
effect of category expectation on the N170 (Aranda et al., 2010). 
However, the effect seems to be weak and in a direction opposite to 
the one expected, so it might be a type I error. In contrast to target 
vs. non-target task manipulations, the N170 can be modulated by 
spatial attention (Jacques and Rossion, 2008; Crist et al., 2008) or 
by directing attention away from faces, in conditions in which let-
ters superimposed on faces have to be discriminated (Eimer, 2000; 
Mohamed et al., 2009). Effects of language interference (Landau 
et al., 2010) and working memory (Sreenivasan et al., 2007) have 
also been suggested.

Hence, at least in some conditions, early face processing seems 
to be modulated by spatial attention and other factors. However, 
the modulations of face ERPs reported so far tend to be ill defined 
because it is unclear what aspect of face processing is modulated 
by the task. It remains also unclear how and when task demands 
affect the processing of a face presented at fixation. Very few studies 
have tackled this fundamental question by using a design in which 
the same stimulus is presented but processed differently because 
task requirements change the diagnosticity of input information 
(Pernet et al., 2007; Schyns, 1998). Schyns and his colleagues used 
reverse correlation techniques and large number of trials to reveal 
changes in single-trial information sensitivity (Schyns et al., 2007; 
Smith et al., 2007; van Rijsbergen and Schyns, 2009). However, 
although these studies show that ERPs are sensitive to different 
information from the same stimuli in different tasks, they do not 
provide a quantification of how task requirements affect the brain 
sensitivity to the same information.

One earlier study aimed at answering this question and reported 
larger N170 amplitude in a gender task compared to an identifica-
tion task, but only for coarse, not fine scale information (Goffaux 
et al., 2003). This result suggests the use of certain face spatial scale 
information when it is relevant for the task at hand, an interac-
tion between task demands and available information essential to 
reveal the information content of brain activity (Pernet et al., 2007; 
Schyns et al., 2009). However, the effects reported by Goffaux et al. 
(2003) seem very small and there was no report of task effects in 
individual subjects. It is also unclear if the effects might not be due 
to task modulations of the ERP sensitivity to the structured noise 
added to filtered images.

A more recent study reported one of the most striking and inter-
pretable task effects on ERP face sensitivity. In Philiastides et al. 
(2006), experiment 2, a cue indicated on each trial how subjects 
were to process a subsequent stimulus: either discriminate its color 
(red vs. green) or its category (face vs. car). Colored pictures of faces 
and cars had two noise levels, created by altering the Fourier phase 
spectrum, which contains most of the information about object 
identity (Gaspar and Rousselet, 2009). In the categorization task, 
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hood that task effects are due to a change in the task relevance of 
one stimulus dimension while subjects attempt to discriminate 
the same stimulus. A Dell Precision 390 workstation with Nvidia 
Quadro FX 3450/4000 graphics card and MATLAB Psychophysics 
Toolbox controlled the stimulus display. Images were displayed on 
a SAMSUNG SyncMaster 1100MB CRT monitor with a resolu-
tion of 800 × 600 pixels and a 85-Hz refresh rate. The screen was 
28° × 21°of visual angle.

the hue (H), saturation (S), and value (V) of the original images 
(red: H = 0.04, S = 0.17, V = unchanged; green: H = 0.34, S = 0.23, 
V = unchanged). The value (V) was normalized so that, on aver-
age, each face regardless of color or phase coherence had the same 
average luminance (about 33 cd/m2) and RMS contrast (0.1). We 
colorized only the face itself and not the background, and used 
relatively small images to ensure that subjects paid attention to 
the face in the two tasks. This manipulation increases the likeli-

FiGuRE 1 | Stimuli. (A) All observers saw the same two faces presented in red 
or green at eight levels of global phase coherence. Rows 1 and 2: face identity 1; 
rows 3 and 4: face identity 2; rows 1 and 3: red tones; rows 2 and 4: green tones. 
(B) Gray lines show edges identified using Kovesi’s local phase coherence 
algorithm in eight face examples ranging from 10% phase coherence (left) to 
80% phase coherence (right). Superimposed on each edge map, local phase 

coherence is color coded at the 10 pixels with the highest local phase coherence. 
These 10 pixels were identified in the two original faces at 100% global phase 
coherence. Local phase coherence was maximal (red) at 80% global phase 
coherence, and approached zero (blue) at 10%. (C) Boxplots of local phase 
coherence at each level of global phase coherence for all the images seen by one 
subject. There is a non-linear relationship between the two variables.
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Each block was preceded by 10 practice trials that allowed subjects 
to learn the stimulus-key association. Practice trials were used to 
ensure a high level of performance in older subjects, whose data 
are not reported here. In a regular trial, a small fixation cross – a 
0.3° “ + ” in the middle of the screen – appeared for 500 ms, after 
which a blank screen was presented for a random duration ranging 
from 500 to 700 ms (Figure 2A). Then a test stimulus was presented 
for 36 ms, followed by a blank screen that stayed on until subjects 
provided their response. Practice trials were very similar, except that 
immediately after stimulus presentation, a choice screen appeared 
that showed each face in grayscale (identity task) or red and green 
noise textures (color task) simultaneously, one above each other 
with a corresponding label below each item. Auditory feedback 
was provided after the subject pressed a response key, with low- 
and high-pitched tones indicating incorrect and correct responses. 
Feedback was provided only during practice trials.

eeG recordInG and preprocessInG
We acquired EEG data with a 128-channel Biosemi Active Two EEG 
system (BioSemi, Amsterdam, Netherlands). We recorded from four 
additional electrodes – UltraFlat Active BioSemi electrodes – below 
and at the outer canthi of both eyes. Analog signal was digitized 
at 512 Hz and band-pass filtered online between 0.1 and 200 Hz. 
Electrode offsets were kept between ±20 μV.

Offline, data were average-referenced. Then, we removed bad 
channels without interpolation, applied a 40-Hz low-pass filter and 
epoched the data between −300 and 1,200 ms. An ICA (Makeig et al., 

experIMental desIGn
Testing was conducted in a sound-attenuated booth in which the 
monitor was the only source of light. An 80-cm viewing distance 
was maintained with a chinrest. We tested subjects in two experi-
mental sessions. The first day was a practice behavioral session; the 
second day consisted of both behavioral tasks and simultaneous EEG 
recordings. Each day, subjects performed two interleaved tasks. On 
half of the blocks they performed a one-interval, two-alternative 
forced choice task discriminating between two faces. On the other 
half of the blocks, they discriminated between two colors. Identity 
and color tasks were blocked so subjects could focus on one task for 
an entire block of trials, without having to prepare to switch task on 
each trial (Johnson and Olshausen, 2003), in an attempt to increase 
the likelihood of finding strong task effects. The same stimuli were 
presented in the two tasks. In both tasks, on each trial, one face 
appeared briefly (36 ms), and subjects had to indicate which of two 
possible faces or two possible colors was presented by pressing 1 or 
2 on the numerical pad of the keyboard. The association between 
button and identity/color was assigned randomly for all subjects. 
Subjects were given unlimited time to respond, and were told to 
emphasize response accuracy, not speed. All subjects performed the 
task with the same single pair of male faces throughout the experi-
ment. Subjects saw eight conditions along a noise-signal continuum, 
from 10 to 80% phase coherence, with increments of 10% (Figure 1).

There were 10 blocks of 96 trials: 960 trials in total, with 120 trials 
per level of phase coherence. Within each block, there were equal 
repetitions of each face, each color and each phase coherence level. 

FiGuRE 2 | Tasks and design matrix. (A) Organization of practice trials and 
regular trials in the two tasks. A trial started with the presentation of a fixation 
point for 500 ms. Then, after a random delay ranging from 500 to 700 ms, a 
stimulus was presented for about 36 ms. During practice trials (top row), a choice 
screen appeared immediately after the stimulus, showing the two targets of the 
task and their associated response keys. The screen stayed on until the subject’s 
response, which was followed by auditory feedback, before the trial sequence 
resumed. During regular trials (bottom row), a blank screen appeared 

immediately after the stimulus, and remained on until the subject’s response. No 
feedback was provided during regular trials. Stimuli are not drawn to scale. (B) 
Example of a design matrix in one subject (color scale: green = 0; red = 1). The 
first eight predictors were categorical: they indicate the stimulus type (i.e., red or 
green, face 1 or 2) and the task. The next four predictors were continuous: global 
phase coherence (GPC) and local phase coherence (LPC) in the identity and color 
tasks. Each continuous predictor was z-scored independently before insertion in 
the design matrix. The last column was a constant term (cst = 1s).
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because  subjects might be less attentive in the easier color task 
compared to the more challenging identity task. These confound-
ing mean ERP differences were accounted for in the design matrix, 
thus allowing us to measure how single-trial ERPs were modulated 
by image noise in the two tasks. We used linear contrasts to com-
bine the beta weights associated with the global and local phase 
coherence predictors in the identity task (column 9 + column 11 in 
Figure 2B) and in the color task (column 10 + column 12) to study 
the time-course of the overall ERP noise sensitivity:

didentity = +β β9 11  
(2)

dcolor = +β β10 12  
(3)

We did not look at task modulations separately for global phase 
coherence and local phase coherence because these two predictors 
were strongly correlated (identity: mean angle = 17.4 [17.3, 17.6], 
mean correlation = 95.4 [95.3, 95.5]; color: mean angle = 17.6 [17.3, 
17.9], mean correlation = 95.3 [95.1, 95.5]; mean angle differences 
between the two tasks = −0.1727 [−0.5705, 0.2544]). High correla-
tion between regressors may lead to unstable beta parameter esti-
mates, whereas their linear combination remains stable, hence our 
analysis of the combination of global and local phase coherences. 
We refer to this summary statistics as noise sensitivity in the rest of 
the paper and explored task effects by contrasting d

identity
 and d

color
.

Group level analyses
Group analyses of noise sensitivity task modulations were com-
puted using a bootstrap-t technique for paired samples with 1000 
resamples (Wilcox, 2005). Although full scalp analyses are possible 
in LIMO EEG, we performed the analyses at only one electrode 
for two reasons: first because we observed in previous studies that 
noise sensitivity is localized at few posterior electrodes that display 
redundant information (Rousselet et al., 2008b, 2009, 2010); second 
because we wanted to compare different group analyses to single-
subject analyses. We analyzed group results using four different 
ways to pull data together.

A popular way to do group analyses is to average the data across 
subjects, find the best electrode in this group average, and make a 
measurement at that same electrode in all subjects –group defined 
best electrode. Here, we averaged across subjects the R2 maps of the 
ANCOVA model fit to the data, and selected the electrode showing 
the largest mean R2. Bootstrap paired t-tests were then computed 
between noise sensitivity contrasts in the identity and color tasks 
at all time points at this electrode.

A potentially more fruitful way to do group statistics is to opti-
mize the electrode by selecting the best electrode independently in 
each subject (Foxe and Simpson, 2002; Liu et al., 2002; Rousselet 
et al., 2010). We thus took the electrode at which the model pro-
vided the best fit independently in each subject, i.e., where R2 was 
the largest for each subject –R2 optimized electrode. Then we com-
puted paired t-tests between noise sensitivity contrasts from these 
potentially spatially different electrodes. The signal at R2 optimized 
electrodes was the most sensitive to image and task parameters 
as described by the design matrix and therefore constitutes the 
most likely candidate for reflecting the activity of cortical sources 
sensitive to image information. Hence, this kind of optimized 

2004), as implemented in the runica EEGLAB function (Delorme 
and Makeig, 2004; Delorme et al., 2007) was then computed and 
we removed components corresponding to blink activity, identi-
fied by visual inspection of their scalp topographies, time-courses 
and activity spectra. Subsequently, we re-epoched the data between 
−300 and 500 ms, and subtracted the average baseline activity from 
each time point. Trials with abnormal activities were excluded based 
on a ±100-μV threshold for extreme values. An epoch was rejected 
for abnormal trend if it had a slope larger than 75 μV/epoch and a 
regression R2 larger than 0.3. All remaining trials were included in 
the analyses, whether they were associated with correct or incorrect 
behavioral responses. After epoch rejection, the average number of 
trials per subject was 904 (min = 849, max = 958).

General lInear ModelInG of eeG data
Subjects’ epoched data were modeled using LIMO EEG, an open 
source Matlab toolbox for hierarchical GLM, compatible with 
EEGLAB: https://gforge.dcn.ed.ac.uk/gf/project/limo_eeg/ (Pernet 
et al., 2011). The general linear model was used to express single-
trial ERP amplitudes, in microvolt, independently at each time 
point and each electrode, using the model:

ERP XB

ERP cat G-ID G-C

t e

t e

,

, ...

= +
= + + + + + +

ε
β β β β φ β φ0 1 1 2 2 8 8 9cat cat OO

L-ID L-CO

β
φ β φ β ε

10

11 12+ + +
 (1)

In Eq. 1, all trials for each time frame t and electrode e (ERP
t,e 

dimension 1 × n) were modeled as the sum of a constant term ß
0
, 

the eight experimental conditions (each combination of stimulus 
identity, color and task – 2 × 2 × 2 = 8, Cat

1–8
 – corresponding to the 

first 8 columns of the design matrix), the global phase coherence in 
the identity and the color tasks (ϕ

G-ID
,
 
ϕ

G-CO
), the local phase coher-

ence in the identity and the color tasks (ϕ
L-ID

,
 
ϕ

L-CO
), and an error 

term ε. All predictors formed the design matrix X of dimension 
n × p (Figure 2B, p = 13). The beta parameters (dimension p × 1) 
were found using an ordinary least square solution.

Global phase coherence was our image noise manipulation. 
Kovesi’s (1999, 2003) local phase coherence is a measure of wavelet 
phase alignment across spatial frequencies, which is independent 
of image contrast and luminance. Local phase coherence may 
predict subjects’ behavior in a natural scene classification task 
(Gaspar and Rousselet, 2009) and seems to provide a good repre-
sentation of non-linear changes in local image structure imposed 
by the linear global phase coherence manipulation (Rousselet 
et al., 2008b, 2009, 2010). In our stimuli, pixels with high local 
phase coherence corresponded to local edges around the eyes, 
nose, and mouth (Figure 1).

The design matrix represents a typical ANCOVA model with 
categorical and continuous predictors. However, whereas in 
ANCOVA one is usually interested in the categorical effects whilst 
controlling for covariates, here we were interested in the covariate 
effects: we looked at the relationship between image phase coher-
ence and single-trial ERP amplitude in the identity and the color 
tasks whilst accounting for the main effects of identity, color, and 
task. For instance, the average ERP in one condition (e.g., identity 
discrimination of green face 1) could differ from the average ERP 
in another condition (e.g., color discrimination of green face 1) 
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of contiguous significant F values (univariate p < 0.05), separately for 
each predictor, each linear contrast, and in the case of the ANCOVA, 
for the global fit of the entire model (R2). Second, we saved the maxima 
across these cluster sums – one maximum for each F test (familywise 
correction). After performing these steps 1000 times for group statis-
tics and 600 times for single-subject analyses (as recommended for 
various linear models, Wilcox, 2005), we used the 95th percentiles of 
the bootstrapped maximum F cluster sums to threshold the original 
F cluster sums. For each test, the significant original F values (uni-
variate p < 0.05) were clustered and if their sum were larger than the 
corresponding bootstrapped maximum cluster sum threshold, the 
cluster was significant.

noIse sensItIvIty cluster statIstIcs
For each subject, we used a percentile bootstrap rather than 
using an F test of noise sensitivity (sum of beta coefficients 
for global and local phase coherence). Bootstrap distributions 
were used to compute 95% CIs under H0, during the same 
simulation that was used to estimate the F distributions of the 
ANCOVA parameters. These thresholds were then applied to 
each bootstrap to mark significant noise sensitivity. Significant 
effects were then clustered and a maximum sum of absolute 
noise sensitivity was saved for each bootstrap. The bootstrap 
distributions of maximum sum of absolute noise sensitivity 
computed under H0 were used to cluster the observed noise 
sensitivity in each task.

shIft functIon analyses of the decIles of sInGle-trIal erp 
dIstrIbutIons
We also used the shift function to measure how single-trial ERP dis-
tributions changed from the identity task to the color task. The shift 
function compares entire distributions instead of relying exclusively 
on one point estimate such as the mean or the median. In our 
application of the shift function, the x-axis is the Harrell–Davis 
(hd) estimator of quantiles one to nine of the single-trial ERPs 
in the identity task (see Wilcox, 2005, pp. 71–73 and 139–141). 
The y-axis is the difference, Delta, between the hd estimators of 
the quantiles of the identity and color ERP distributions. Hence, 
the shift function represents how much the data from one task 
must be shifted to be comparable to the data from another task 
at each quantile. Task differences were estimated by a bootstrap 
procedure, and corrected for multiple comparisons such that the 
simultaneous probability coverage of the 9 CIs remained close to 
the nominal 0.05 alpha level (see Wilcox, 2005, pp. 151–155). The 
analyses were performed on modeled single-trial ERP data at the 
max R2 electrode (i.e., the electrode at which the model explained 
best the data); they included all the significant time points that 
contained the maximum noise sensitivity task difference. Modeled 
ERP are more meaningful to analyze because they are reconstructed 
after removing the error term, the part of variance that the model 
cannot explain.

results
We consider first the group analyses, second the single-trial analy-
ses, third the comparison of group and single-trial analyses and 
fourth the shift function analyses of the deciles of the single-trial 
ERP distributions.

averaging tends to average signals that reflect common processing 
across  subjects, whereas using the same spatial electrode may lead 
to averaging signals reflecting different processes.

Yet another way to optimize electrodes across subjects consists 
in selecting for each subject the electrode with the largest noise 
sensitivity task difference –task effect optimized electrode. In this 
case, instead of taking the electrode where the ANCOVA model 
provided the best fit, we selected for each subject the electrode 
showing the strongest noise sensitivity task effect. The paired t-test 
was then computed between noise sensitivity contrasts from these 
potentially spatially different electrodes.

Finally, we used the maximum absolute beta coefficients across 
electrodes computed at each time point (the envelope), to ensure 
our analyses did not miss local maxima at electrodes other than 
the one showing the largest R2. For every subject, we computed a 
paired t-test between noise sensitivity contrasts from the envelopes.

For both group and single-subject analyses, task modulations at 
one electrode were quantified by normalizing the maximum abso-
lute task difference in noise sensitivity by the maximum absolute 
noise sensitivity in the identity task –the maxima were defined 
across time frames:

Task modulation d d didentity color identity= −( ) ( )100× max max
 
(4)

control for MultIple coMparIsons
We controlled for multiple comparisons using bootstrap and the 
clustering technique as implemented in the Matlab Fieldtrip tool-
box, with a minimum of two neighboring channels per cluster 
(Maris and Oostenveld, 2007). As described in (Pernet et al., 2011), 
the clustering technique in LIMO EEG works for analyses both 
at single electrodes (temporal clustering) and at multiple elec-
trodes (spatial–temporal clustering). For group analyses, because 
only one electrode or equivalent electrode was considered, we 
employed temporal clustering to control for multiple compari-
sons. For single-subject analyses, because the whole scalp was 
analyzed, we employed spatial–temporal clustering (familywise 
error rate = 0.05).

For t-tests and ANOVAs the validated bootstrap technique 
includes centering the empirical distributions of each between-
subject and within-subject levels so that the null-hypothesis of no 
difference in means is true (Berkovits et al., 2000; Wilcox, 2005; 
Seco et al., 2006). Thus, for the group paired t-tests, noise sensitivity 
contrasts across subjects were centered for each condition separately 
and paired t-tests were computed 1000 times by sampling subjects 
with replacement (Wilcox, 2005). However, this technique is not 
appropriate to our ANCOVA single-subject analyses because the 
continuous covariates can potentially have as many levels as trials. 
We used therefore a different strategy to derive an estimate of the 
sampling distribution of our F statistics under the null-hypothesis. 
For each subject, epoched single-trials were sampled with replace-
ment and fitted to the original design matrix, thus breaking the 
link between the data and the design –an estimation of the data 
distribution under the null-hypothesis H0.

For both the bootstrap paired t-test (group analyses) and the boot-
strap ANCOVA (single-subject analyses), in each bootstrap loop we 
first computed the sum of each temporal or spatial–temporal cluster 
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Group analyses
Group defined best electrode
If the best electrode is defined as the electrode showing the largest 
mean R2 across subjects, we obtain the results in Figure 3A. This 
best electrode was right posterior–lateral (B8 in the Biosemi system, 
between PO8 and PO10) and had a maximum mean R2 of 0.23 [0.17, 
0.32] that peaked at 141 ms. The mean ERPs at the eight global phase 
noise levels started to diverge shortly after 100 ms in the identity and 
the color tasks. The parametric ERP modulation by image noise can 
be better appreciated by looking at the time-course of the group-
averaged noise sensitivity, which peaked at the same electrode and 
time point as R2 did. Noise sensitivity was reduced in the color task 
compared to the identity task in a single cluster, between 139 and 
277 ms after stimulus onset (Table 1). At the latency of the maxi-
mum task effect, 242 ms, there was 20.7% noise sensitivity reduction 
compared to the maximum sensitivity in the identity task.

R 2 optimized electrode
The electrode with the largest R2 was also the electrode with maxi-
mum noise sensitivity or was part of the same cluster as the elec-
trode with maximum noise sensitivity and behaved similarly to it. 
Across subjects, max R2 electrodes were all located in a cluster of 
lateral posterior electrodes, as reported in previous experiments and 
as expected from the face literature. R2 averaged across subjects was 
stronger over the right hemisphere. This pattern was also found in 
individual subjects (Figures 5–8): eight subjects had a maximum 
R2 at right hemisphere electrodes; two subjects at left hemisphere 
electrodes; three subjects at midline electrodes. The right hemi-
sphere electrodes of maximum model fit included B8 (one subject) 
or one of its neighbors (seven subjects). The maximum mean R2 at 
the optimized electrode was 0.27 [0.2, 0.35], and peaked at 139 ms 
(Figure 3B; Table 1). As expected if R2 results were sufficiently 
consistent across subjects, this optimized maximum average R2 
was larger than at the group defined best electrode. There was a 
significant task effect in a single cluster between 172 to 275 ms 
post-stimulus onset, with 18.7% noise sensitivity reduction at the 
latency of the maximum task difference, 213 ms.

Task effect optimized electrode
Results of this analysis are presented in Figure 3C. Although we 
selected for each subject the electrode showing the largest task dif-
ference in noise sensitivity, no differences could be observed at 
the group level. Indeed, taking the largest effect can be mislead-
ing because certain predictors can be significant at electrodes and 
time frames at which the overall model does not explain the data 
significantly. This is indeed what we found: except for 3 subjects for 
whom maximum task effects occurred at electrodes that were part 
of the cluster of electrodes with the maximum R2, for the other 10 
subjects R2 was lower and early noise sensitivity (<200 ms) was weak 
at the electrodes of maximum task differences (Figure 3C). Hence, 
across subjects, noise sensitivity and task effects were not significant 
at the electrode optimized based on maximum task differences.

Maximum absolute betas
Analyses on the beta coefficient envelopes gave results similar to 
those obtained on the group defined best electrode and the R2 
optimized electrode (Figure 3D; Table 1). Two significant clusters 

were observed: a first task effect occurred between 154 to 254 ms 
post-stimulus onset, with 18.2% noise sensitivity reduction at the 
latency of the maximum task difference, 197 ms; a second effect 
of similar size occurred after 400 ms. This analysis suggests that 
we did not miss the big picture by defining the electrode to ana-
lyze based on the group-averaged R2 or the single-subject max 
R2. The statistical tests might suggest that the group defined best 
electrode did a better job because it showed a significant task effect 
earlier than the one observed in the R2 optimized test. However, 
picking the best group electrode to show group effects is circu-
lar because what the result ought to be is unknown. By contrast, 
selecting the best electrode separately in each subject takes into 
account inter-subject variability and leads to group results more 
sensitive to individual differences.

In addition to group analyses at all time points, we compared 
noise sensitivity across subjects at the latency of the P1, N170, 
and P2 peaks, for the sake of comparisons with previous studies 
(Figure 4). For each subject, the latency of the peaks was measured 
at the max R2 electrode in the 80% coherence condition (face ERP). 
Measurements at electrode B8 gave similar results. Then, the mean 
sensitivity was measured in time-windows encompassing five time 
points on either side of the peak latency, hence about 21.5 ms. 
This analysis revealed, across subjects, weak to no noise sensitivity 
around the P1 (∼96 ms), and stronger noise sensitivity around the 
N170 (∼146 ms) and the P2 (∼207 ms). Importantly, only the P2 
showed task modulations of noise sensitivity. Similar P2 results 
were obtained at the latency of the P2 defined at the group level.

sInGle-subject analyses
Figures 5–8 provide, for each subject, a detailed description of 
their R2, noise sensitivity, task effects and behavioral results. The 
time-course of the R2 functions and of the beta coefficients for 
noise sensitivity are similar to those reported previously in young 
subjects (Rousselet et al., 2008b, 2009, 2010). Because the main 
purpose of our study was to quantify task modulations of early ERP 
noise sensitivity, we focus the report of the single-trial analyses on 
the electrode showing the maximum R2 for each subject. All these 
electrodes were found at posterior–lateral locations. No comparable 
fits were observed at frontal electrodes. Thus, our analyses seem 
to capture task modulations of evoked noise sensitivity from the 
visual system, rather than electrophysiological correlates of the top-
down modulation signal itself. Figures at the electrodes showing 
the maximum noise sensitivity in the identity task or the color task 
were almost identical to those presented here (max R2) because 
these electrodes were either the same electrodes or part of the same 
cluster of electrodes.

Single-trial analyses revealed an inter-subject variability hid-
den behind the seemingly simple group averages and statistics. 
Individual subjects differed widely in the shape of their ERPs, R2 
functions, scalp topographies, nature and time-course of the task 
effects (Figures 5–8). The mean of the maximum R2 measured 
in each subject was 0.31 [0.24, 0.38], min = 0.17, max = 0.57; it 
peaked at 141 ms [136, 149], min = 133, max = 186. Image noise 
sensitivity started at about 100 ms in both tasks. In the identity 
task, the median onset was 100 ms [98, 105], min = 92, max = 115; 
in the color task it was 100 ms [96, 111], min = 86, max = 133. 
The median difference between the two tasks was 0 ms [−7.8, 4], 

Rousselet et al. Single-trial modeling of visual processing

www.frontiersin.org June 2011 | Volume 2 | Article 137 | 63

http://www.frontiersin.org/
http://www.frontiersin.org/perception_science/archive


FiGuRE 3 | Event-related potentials group results. The left and middle 
columns contain the results for the identity and the color tasks. The right 
column shows the R2 and the noise sensitivity task differences. (A) Group 
defined best electrode. Mean ERPs are shown color coded at each level of 
global phase coherence in the two tasks. In the R2 plot, the inset shows the 
topographic map of the interpolated R2 values at the latency of the maximum 
R 2. Noise sensitivity is the sum of the global and local phase coherence beta 
weights in μV/std of the predictor. Thick lines represent averaged data, 
surrounded by thin lines for the 95% percentile bootstrap CI. The red 
horizontal bar under the zero line indicates time points of significant effects, 
based on bootstrap t-test with temporal cluster correction for multiple 
comparisons. The task difference in red is identity (black continuous line) 
minus color (green dashed line). At the latency of the maximum task 

difference observed within the first 300 ms after stimulus onset, noise 
sensitivity in the identity task was −4 μV/std, color = −2.8 μV/std, 
difference = −1.2 μV/std. (B) R 2 optimized electrode. The topographic map 
was obtained by averaging the maps from individual subjects. At the latency 
of the maximum task difference, noise sensitivity in the identity task was 
−2.8 μV/std, color = −1.8 μV/std, difference = −1 μV/std. (C) Task effect 
optimized electrode. The R2 bump between 100 and 200 ms was mostly due 
to three subjects (S9–S11) who had maximum task effects at electrodes that 
were part of the cluster of electrodes with the maximum R 2. (D) Noise 
sensitivity envelope. The maximum across electrodes of the absolute noise 
sensitivity was used for each subject. At the latency of the maximum task 
difference, noise sensitivity in the identity task was 3.9 μV/std, color = 2.8 μV/
std, difference = 1 μV/std.
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who did show a reduction in the color task (difference = −0.02 [−0.07; 
0.04]), and 0.37 global phase coherence for S

2
, who showed opposite 

ERP results. Analyses with the median gave similar results.
The max R2 electrodes almost never showed significant dif-

ferences between the two faces (identity task) or the two colors 
(color task), in keeping with previous reports on faces, cars, and 
words (Nobre et al., 1998; Philiastides et al., 2006; Rousselet et al., 
2008b, 2010). One subject showed both significant identity sen-
sitivity in the identity task and a significant task modulation of 
identity sensitivity at few time points around 450 ms after stimulus 
onset. Five subjects showed either identity or color sensitivity in 
one or the other task, but without significant task modulation, or 
significant task modulations but without significant identity or 
color sensitivity.

Group vs. sInGle-trIal analyses
Group analyses suggest a decrease in noise sensitivity in the color 
task compared to the identity task around 140–300 ms post-stimulus 
onset. This task modulation was observed at the group defined best 
electrode and the R2 optimized electrode (Figure 9). In the spatial–
temporal clusters containing these electrodes, single-trial analyses 
revealed a different picture: 8 subjects out of 13 had a significant 
task modulation of noise sensitivity; 1 had an increased sensitivity 
in the color task and 7 had a decreased sensitivity. In the time-
window of the group effect, only six subjects showed a significant 
effect; a maximum of five subjects showed an effect simultaneously, 
including the subject who had an effect in the opposite direction. 
Thus, in our sample, at any time point showing a significant group 
effect, there were at most 5 subjects out of 13 showing a significant 
effect, 4 of which in the same direction as the group effect (31%).

Onsets and durations of task effects also revealed discrepancies 
between group and single-trial analyses (Table 1). At the R2 opti-
mized electrode, the group task effects started at 172 ms and lasted 
103 ms. In contrast, for the eight subjects that showed significant 
effects, the average task effect onset was 214 ms [155, 271] min = 86, 
max = 332; the average task effect duration was the 186 ms [142, 
234], min = 92, max = 320.

Table 1 | Task effects.

 Group analyses Single-trial 

  analyses

Best 

group 

electrode 

(B8)

R2 

optimized 

electrode

Beta 

envelope

Mean of eight 

subjects with 

significant 

task effects

Onset 139 ms 172 ms 154 ms 214 ms [155, 

271]

Peak latency 242 ms 213 ms 197 ms 297 ms [246, 

352]

Effect size 20.7% 18.7% 18.2% 34.6% [28.9, 

39.5]

Duration 139 ms 104 ms 101 ms 186 ms [142, 

234]

Peak latency is the latency of the maximum absolute task effect. Effect size is 
defined in Section “Group Level Analyses,” Eq. 4.

FiGuRE 4 | Task effects around peak time-windows. Noise sensitivity in the two tasks was normalized by dividing by the maximum absolute noise sensitivity in 
the identity task. The three first ERP peaks were measured at these latencies across subjects: P1 (median = 96, min = 82, max = 119), N170 (median = 146, 
min = 131, max = 184), P2 (median = 207, min = 180, max = 256). The P2 defined from the group-averaged data had a latency of 207 ms.

min = −21, max = 16. Results using the mean were similar and a 
shift function analyses failed to reveal significant differences at any 
deciles of the distribution of onset differences.

Only eight subjects showed a significant task modulation 
of noise sensitivity. Noise sensitivity decreased in the color 
task compared to the identity task in seven subjects: S

1
 = 29%, 

S
3
 = 46%, S

4
 = 35%, S

6
 = 19%, S

7
 = 39%, S

10
 = 29%, S

11
 = 39%, 

mean = 33.7%. Subject S
2
 showed an effect in the opposite direc-

tion (Figure 5), with significantly stronger noise sensitivity in the 
color task than in the identity task (40.7% sensitivity increase). 
All subjects but S

11
 (Figure 7) had a single cluster of significant 

task differences.
There was no significant link between task effects and behavioral 

thresholds: mean behavioral 75% correct threshold was 0.37 global 
phase coherence for the five subjects who did not show a significant 
ERP task modulation, it was 0.39 global phase coherence for  subjects 
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FiGuRE 5 | individual results for subjects S1 to S4. (A) Statistically significant 
model R2 at all the electrodes and time frames from −300 to 500 ms after stimulus 
onset. Electrodes are stacked up along the y-axis. The tick on the y-axis marks the 
electrode at which the maximum R2 was recorded. This electrode is plotted as a 
continuous black line in (B). R2 ranges from near zero in blue to the maximum for 
that subject in red. (B) Model R2 at all the electrodes and time frames. The electrode 
at which the maximum R2 was recorded is plotted in black. The other electrodes are 
plotted in gray. The inset shows the topographic distribution of the R2 at the latency 
of the maximum, indicated by a vertical black dotted line. This vertical line is also 
plotted in all the other panels for comparisons. For subject S1, R

2 had a bilateral 
occipital–lateral distribution, with a maximum over the left hemisphere (left bottom 
red cluster). The red vertical dashed line indicates the time frame of the earliest 
significant R2 across all electrodes. Near the top of the panel, the upper horizontal 
line (red) marks significant time frames at the maximum R2 electrode. The lower 
horizontal line (green) marks significant time frames of the spatial–temporal cluster 
to which the maximum R2 electrode belonged. For subject S1, this horizontal line 
starts at the latency of the earliest significant model fit (red vertical dashed line), 
indicating that the maximum R2 electrode is part of a spatial–temporal cluster that 
captures the earliest effects. The horizontal dashed line is the univariate one-sided 
95% CI of the R2 under H0, at the maximum R2 electrode. Although this is for 
illustration only, because the actual statistical test was based on spatial–temporal 
clusters, it gives a good indication of the R2 values expected by chance. (C) Mean 
ERPs in the identity task. The red vertical dashed line indicates the time frame of the 
earliest significant noise sensitivity in the identity task, across all electrodes. This line 
is also plotted in (E). The red continuous vertical line indicates the latency of the 

maximum task difference and is also plotted in (D,G). (D) Mean ERPs in the color 
task. The red vertical dashed line indicates the time frame of the earliest significant 
noise sensitivity in the color task, across all electrodes. This line is also plotted in (F). 
(E) Noise sensitivity beta coefficients in the identity task. Noise sensitivity at the 
maximum R2 electrode is plotted in black, the other electrodes in gray. Units are μV/
std of the predictor. Near the bottom of the panel, the upper horizontal line (red) 
marks significant noise sensitivity time frames at the maximum R2 electrode. The 
lower horizontal line (green) marks significant noise sensitivity time frames of the 
spatial–temporal cluster to which the maximum R2 electrode belonged. The black 
horizontal dashed lines show the univariate two-sided 95% confidence interval of 
noise sensitivity under H0, at the maximum R2 electrode. (F) Noise sensitivity beta 
coefficients in the color task. Noise sensitivity at the maximum R2 electrode is 
plotted as a green dashed line, the other electrodes in gray. (G) Noise sensitivity 
beta coefficient task differences. Noise sensitivity differences at the maximum R2 
electrode are plotted as a thick red line, the other electrodes in gray. The black 
continuous line and the green dashed line are the same as those in (E,F). The red 
continuous vertical line indicates the latency of the maximum task difference. At that 
latency, the title indicates the amplitude of the noise sensitivity in the identity task 
(ID), in the color task (CO), and the difference between the two tasks (diff). (H) 
Proportion correct as a function of global phase coherence, in red circles for the 
identity task, in green squares for the color task. Data from the identity task were 
fitted with a cumulative Weibull function. The vertical arrow points to the 75% 
correct threshold in the identity task. The threshold appears in bracket in the title. The 
red horizontal dashed line marks the maximum proportion correct in the identity task 
obtained from the fit.
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FiGuRE 6 | individual results for subjects S5–S8. See Figure 5 caption for details.

Single-trial results can be misleading too. The results at the 
group defined best electrode showed significant effects of longer 
duration than results at the R2 optimized electrode (Figure 9). 

However, results at the group defined best electrode mix together 
electrodes that do not necessarily provide the best fit in all sub-
jects. This means that some of the effects at this electrode are 
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FiGuRE 7 | individual results for subjects S9–S12. See Figure 5 caption for details.

not as meaningful as the results observed at the best fitting elec-
trodes. In particular, the late task modulations observed in the 
left column of Figure 9, correspond to clusters of electrodes 

and periods of time showing noise sensitivity much weaker 
than that observed in the 100- to 300-ms time-window at the 
R2 optimized electrodes.
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FiGuRE 8 | individual results for subject S13. See Figure 5 caption for 
details.

In addition to the analyses performed independently at each time 
point (Figures 5–8), we also provide a continuous measure of inte-
gration time in the two tasks. This was achieved by measuring the 
time it takes to integrate 50% of noise sensitivity during the first 
half-second following stimulus onset (Rousselet et al., 2010). Noise 
sensitivity in the two tasks was normalized by the maximum absolute 
noise sensitivity in the identity task, defined across time frames. Then 
the absolute noise sensitivity in each task was integrated over time 
(Figure 10). At the group level, noise sensitivity integration increased 
sharply after 100 ms and started to differ significantly between the two 
tasks at 227 ms after stimulus onset. The 50% integration threshold 
was reached 16 ms earlier in the identity task compared to the color 
task. About 14% less noise sensitivity was integrated in the color 
task relative to the identity task. Analyses performed in each subject 
individually provided a somewhat different picture. In keeping with 
group analyses, cumulated noise sensitivity started to rise at about 
100 ms in most subjects. However, onset of task effects, 50% integra-
tion times and total cumulated noise sensitivity differed markedly 
across subjects and from the group analyses (Figure 10).

Given the discrepancy between group and individual subject 
analyses, it is important to consider weak power as a potential 
explanation for the absence of task effect in some subjects. Indeed, 
lack of significant effects might be due to a real absence of effects or 
the presence of relatively weak effects that our statistical test might 
miss. Although lack of power cannot be completely ruled out, it 
appears that subjects with significant task effects at the R2 optimized 
electrode had substantial effect sizes, with maximum F cluster sums 
at least 1.6 times larger than the largest bootstrap F cluster sums 

obtained by chance (Figure 11: S
1
 = 2.7, S

2
 = 2.6, S

3
 = 3.2, S

6
 = 1.9, 

S
7
 = 2.1, S

10
 = 2.3, S

11
 = 2.4). One subject had lower effect size than 

the other subjects, with a cluster sum 0.8 larger than that obtained 
by chance (Figure 11: S

4
). Subjects with no significant task effects 

had no significant cluster whatsoever (S
5
), relatively low cluster 

sums (S
9
 and S

12
) or cluster sums so low that they fell at the bottom 

of the bootstrap cluster sum distributions (S
8
 and S

13
).

shIft functIon analyses of the decIles of the sInGle-trIal erp 
dIstrIbutIons
Changes in task constraints could affect noise sensitivity by modu-
lating preferentially single-trial ERPs to noise textures or to faces. 
Alternatively, these changes could be a uniform compression or 
expansion of the distribution. In our design, noise levels are arti-
ficial. Therefore, we studied the nature of the task effects using the 
shift function, a technique that assumes data follow a continuum. 
The shift function analyses revealed that the modulation in noise 
sensitivity in the color task could be attributed to a modulation of 
a particular type of stimuli. In five subjects (Figure 12: S

1
, S

3
, S

7
, S

10
, 

S
11

), noise sensitivity reduction in the color task was due primar-
ily to increased amplitudes of face ERPs, which became closer to 
that of noise trials. In two subjects (Figure 12: S

4
 and S

6
), noise 

sensitivity reduction was due mostly to an increase in amplitude of 
the noise trials. Finally, in the only subject who showed increased 
noise sensitivity in the color task (S

2
), the effect was also due to an 

amplitude increase of ERPs to noise trials. In addition, in S
2
, S

4
, S

6
, 

S
7
, and S

10
, there was an overall increase in ERP amplitude in the 

color task compared to the identity task. Thus, task constraints had 
non-uniform effects on ERP distributions, with most modulations 
being an increase in amplitude of face trials.

dIscussIon
Using identical colored face stimuli in two tasks, and a parametric 
noise manipulation, we observed a significant reduction in ERP 
noise sensitivity when noise level was task irrelevant. Overall, fol-
lowing (Philiastides et al., 2006) we conclude that task effects on 
noise sensitivity are weak before 200 ms, in the window of the 
N170, and mainly present around the P2. However, task effects 
were highly variable across subjects, with individual differences in 
onsets, durations and effect sizes. These idiosyncrasies will need 
to be addressed in future studies.

Based on the work of (Philiastides et al., 2006), we tested the 
hypothesis that there is a clear boundary, at about 200 ms after 
stimulus onset, between bottom-up face processing and brain 
activity that depends on task demand. Our group results were 
qualitatively similar to those of Philiastides et al. (2006) with weak 
task effects before 200 ms and stronger differences beyond 200 ms. 
Changing the task requirements did not abolish noise sensitivity 
altogether, but reduced it by about 19–46% in individual subjects. 
Results were also inconsistent across subjects, with a minority 
of subjects showing effects consistent with group analyses, and 
several subjects showing no significant effects whatsoever, despite 
similar behavioral performances. The nature of the task effects 
also differed among subjects, as revealed by analyses of single-
trial ERP distributions. These results points to the existence of 
idiosyncratic modulations of brain activity depending on task 
requirements.
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It remains unclear whether the task dependent noise sensitiv-
ity we observed is related to differences in task difficulty between 
the color and the identity tasks, or if it is due to changes in the 
diagnosticity of stimulus phase information (Banko et al., 2011; 
Philiastides et al., 2006; Philiastides and Sajda, 2007). More gen-
erally, noise sensitivity between 100 and 300 ms after stimulus 
onset probably reflects the activity of object and face processing 
areas that are sensitive to stimulus evidence (Philiastides and 
Sajda, 2007; Rousselet et al., 2008b; Tjan et al., 2006). Noise 
sensitivity however does not reflect activity from a general dis-
crimination mechanism because it is not present for color and 
identity. Similarly, Philiastides et al. (2006) found that early 
single-trial visual ERPs did not discriminate between red and 
green or between two motion directions. However, these other 

stimulus dimensions can be studied by using different tech-
niques, such as adaptation (Vizioli et al., 2010), ICA and filter-
ing (Snyder and Foxe, 2010), and frequency tagging (Quigley 
et al., 2010).

Contrary to several ERP studies described in the introduc-
tion, some of our subjects did show moderate task modulations 
in the time-window of the N170. The absence of task effects 
in previous face ERP studies is difficult to interpret because of 
the use of group statistics. One thing that most studies have in 
common is the use of relatively high-contrast stimuli. Because 
the effect of attention is contrast dependent (Reynolds and 
Heeger, 2009), attention effects on face ERPs might be more 
likely to be observed at low-contrast. A systematic study of atten-
tion modulations as a function of face contrast remains to be 

FiGuRE 9 | Significant task effects at the group level and in individual 
subjects. In the top graphs, significant group effects appear at the top of each 
column in black, above significant results in individual subjects in gray. Dark gray 
indicates significant effects at the group defined best electrode (left column) and 
at the R2 optimized electrode (right column). Light gray indicates significant 
effects at the spatial–temporal cluster to which an electrode belonged. The 
middle graphs show the number of subjects with a significant task modulation 
at each time point at one electrode (light gray) or in the cluster to which it 
belonged (dark gray). Remember that subject 2 was the only one with stronger 

noise sensitivity in the color task compared to the identity task. The bottom 
graphs show the percentage of subjects showing a significant task modulation 
at one electrode (thick black line) with a 95% binomial confidence interval 
around it (thin black lines). This percentage provides an indication of the 
probability of observing a group difference given the single-subject results. 
These binomial confidence intervals place an upper limit of about 61% 
probability of observing a group effect given the single-subject data. In 
comparison, the group results presented at the top of Figure 9 depend on the 
probability of the data under the null-hypothesis.
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c arried out. In our experiment, contrast and luminance were 
quite low, suggesting even weaker task modulations in more 
realistic circumstances. Another problem with previous reports 
of null effects in group statistics is the absence of statistical 
analyses in individual  subjects, as well as poor data description 
(Rousselet and Pernet, 2011). Group statistics pull out effects 
that are consistent across subjects, even when these effects are 
not significant in individual subjects. Although this might seem 
like a good property, given the number of face ERP experiments 
carried out each year and the common belief that it is satisfac-
tory to test more subjects to achieve significance, group statistics 
might be responsible for many false positives in the literature 
(Wagenmakers, 2007). By definition, group statistics are also 
insensitive to single-subject significant effects that are inconsist-
ent across subjects, for instance if timing and topographies differ. 
Thus, group statistics can be misleading because of increased 
chances of false positives and false negatives, at least in theory. 

Yet, it is at the moment difficult to evaluate if our results, show-
ing a large  discrepancy between group and single-trial analyses 
constitute a unique curiosity or if our results reveal a pervasive 
problem in the ERP literature. Indeed, typical face ERP studies 
are mostly concerned with group statistics of peak measure-
ments, with little concern for reliability and quantification of 
the effects. In fact, most studies are content with the discussion 
of any effect p < 0.05 (Rousselet and Pernet, 2011). Current 
practice in the ERP literature tends to hide the rich inter-subject 
variability that we ought to explain: we perform perceptual tasks 
as individuals, not as a collective brain. Moreover, many studies 
report weak effect sizes, unexpected results and do not control 
for multiple comparisons properly. One is left wondering what 
proportion of ERP results will ever be replicated (Miller, 2009). 
In many studies, beyond the recurrent fundamental flaws of null-
hypothesis significance testing (Wagenmakers, 2007), the lack 
of robustness of t-tests and ANOVAs, and the lack of proper 

FiGuRE 10 | Cumulated task effects. The subject number is indicated by S#. 
Each cell shows the cumulated normalized sensitivity in the identity task (black) 
and in the color task (green). The difference between the two tasks is shown with 
thick red lines, with a 95% confidence interval around it (thin red lines). Red dots 
along the zero horizontal line mark time points of significant task differences, with 
no correction for multiple comparisons. The vertical red dashed line that crosses 
the entire cell marks the onset of significant task effects. The horizontal black 

dashed line marks the value corresponding to 50% of the total cumulated 
sensitivity in the identity task. The two vertical lines that originate from the 50% 
line and terminate on the x-axis mark the time to reach that 50% value in the two 
tasks. The title of each cell contains the onset of the task effects; the 50% 
integration time difference (50% ITD) between the color and the identity tasks; 
the task cumulated difference (TCD) between the identity and the color tasks, 
expressed in proportion of the maximum cumulated sensitivity in the identity task.
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of the current dataset and previous datasets, the  electrode at 
which the model provides the best fit seems to capture most of 
the effects (Rousselet et al., 2008b, 2009, 2010). Because of spatial 
blurring, neighboring electrodes contain redundant information, 
so pooling results across electrodes as is often done in group 
analyses would be of no benefit for univariate single-subject 
analyses. Of course, there might be extra information available 
in a multivariate space containing a large number of electrodes 
(Philiastides and Sajda, 2006). Hence, it will be worth extend-
ing our univariate model to measure multivariate relationships 
between single-trial ERP amplitude, stimulus evidence, and task 
demand. Finally, as discussed by (Liu et al., 2009), a single-trial 
linear classifier has the advantage over a GLM approach to pro-
vide a measure of information. However, it is not clear how linear 
classifiers can be applied to more complicated designs such as 
our ANCOVA.

To conclude, all these considerations about group and single-
subject analyses are rather circular, because it is not clear what 
ought to be found. The ERP community relies mostly on group 
analyses, and therefore most readers might be biased to conclude 
that discrepancies between group and single-subject analyses reflect 
problems in single-subject analyses. This point of view is misguided 
because a significant group effect does not provide any guarantee 
that even 50% of the subjects will show the group effect (Figure 9). 

control for multiple  comparisons (Wilcox, 2005), readers are too 
often left with so little evidence that it is impossible to judge the 
importance of their results. Here we’ve tried to provide a richer 
set of descriptions than is usually available in face ERP papers.

Of course, the lack of significant task effects in some subjects, 
and the lack of consistency across subjects who did show signifi-
cant effects, might be attributable to different sources of variance, 
including differences in scalp thickness and electrode application, 
rather than individual differences in visual processing. These dif-
ferences could lead to differences in statistical power across sub-
jects. Although subjects who did show task effects had relatively 
large effect sizes, it is possible that more trials or better regression 
analyses, or both, would be necessary to reveal significant effects 
at different time points and in subjects showing null results. We 
are exploring the possibility of using smooth variance estimators, 
weighted models, and adjusting statistical thresholds based on 
empirical distributions to increase statistical power. However, our 
data driven estimates of effects expected by chance suggest that 
some subjects had indeed no task modulation of noise sensitivity 
whatsoever (Figure 11).

Finally, null or inconsistent effects might not reveal the 
absence of an effect but our failure to quantify changes in a multi-
dimensional space. For instance, we reported most of our single-
trial analyses at one electrode only. Based on extensive inspection 

FiGuRE 11 | Histograms of the bootstrap distributions of maximum F 
cluster sums for task effects on single-trial ERP noise sensitivity. The 
subject number is indicated by S# in bold font. These bootstrap distributions 
were calculated under the null-hypothesis H0, as described in Methods; hence 
they reflect the size of spatial–temporal task effects that can be expected by 
chance, due to random sampling, across the entire search space. For each 

subject, the vertical black dashed line marks the 95th percentile of the H0 
bootstrap distribution. The vertical red continuous line indicates the maximum 
sum of F values across the spatial–temporal clusters that contained the 
maximum R2 electrode. For subject S5, the cluster sum is equal to zero because 
no cluster passed the two-electrode threshold: they were present at this 
electrode only.
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FiGuRE 12 | Event-related potentials results from the eight subjects showing 
significant task effects. The subject number is indicated by S# in bold font. The first 
two columns show the modeled ERPs in the identity and the color tasks. The vertical 
dashed line marks the latency of the largest task difference. The vertical gray shaded 
area marks all the continuous time frames at which a significant effect was 
observed, and which contained the time frame of maximum effect. The third column 

shows boxplots of the single-trial modeled ERP(t,e) amplitudes in the identity and 
color tasks, summed across the time frames marked by gray areas in columns 1 and 
2. The fourth column shows the shift function between the distributions in column 
three. The x-axis shows the estimated deciles in the identity task. The y-axis shows 
the estimated difference deciles between the identity and the color task, marked as 
nine dots, with the ends of the confidence intervals marked by plus signs.
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(noise textures) in some subjects and an increase in ERP amplitude 
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designs to study information processing. Our results also suggest 
that, in some situations, group statistics can be so misleading that 
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questionable.
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flow of electrically charged ions in and out of the cell bodies. 
Altogether, these processes induce large variations in local and 
long-distance electrical voltages at different temporal scales that 
can be considered as signatures of neuronal communication. These 
signatures are picked up by experimenters, for example using depth 
electrodes recording the extra-cellular potential and the local field 
potential (LFP), or using surface electrodes recording the electro-
encephalogram (EEG).

The net effect of spikes and synaptic transmission at the 
level of neuronal populations often takes the form of an oscilla-
tion of the electric potential, in which the extra-cellular voltage 
increases and decreases at regular intervals. The responsiveness 
of single neurons to the same input intensity (i.e., the same 
number of spikes received) can vary greatly depending on the 
neurons’ present state (i.e., their membrane potential) as well as 
on whether the extra-cellular voltage oscillation is in its lower or 
higher stage. This influence of spontaneous oscillatory phase on 
neuronal processing has long been recognized in vitro (Calvin 
and Stevens, 1967; Levitan et al., 1968; Stern et al., 1997) but it is 
only recently that the potential effects of oscillatory phase on sen-
sory processing have started to be investigated in vivo. For exam-
ple, Fries et al. (2001) reported that the phase of pre- stimulus 
gamma (40–70 Hz) oscillations in cat visual cortex determined 
the latency of subsequent neuronal firing. Montemurro et al. 
(2008) found that the precise phase of an ongoing delta (1–4 Hz) 
oscillation at which neurons in primary visual cortex fired car-
ried information about the visual stimulus that could not be 
extracted based on firing rate alone. In fact, the firing phase 
within each gamma oscillatory cycle is a reliable indicator of 
neuronal activation (Vinck et al., 2010a). These results support 
previously published theories proposing that the phase of spike 

IntroductIon
Run a computer program twice with the same inputs: chances are, 
you should get the same output twice. As any experimenter knows, 
it is not so with the human brain. This unreliable device persistently 
fails to provide a consistent outcome: reaction times (RTs) vary by 
a factor of two or more, perception sometimes gets distorted and 
sometimes does not occur at all – even though the external world 
has been carefully controlled and equated, trial after trial. This 
variability gets in the way of any serious scientific measurement, 
and therefore scientists have dubbed it “noise” and found ways 
to discount it, generally by considering the mean response over 
several hundreds of trials as the true standard of brain function. 
Oftentimes, however, one comes across a signal in the brain that 
tells a lot about the subject’s perception on a given trial, or that 
can explain hitherto unexplained differences between individual 
trials. Such signals are the focus of the Special Topic to which this 
article belongs. More specifically, in this review we will consider 
situations in which the phase of ongoing brain oscillations (i.e., 
whether the oscillation is currently at its peak, its trough, or any 
particular point in between), even before any stimulus is actually 
presented to the subject, can inform us about their subsequent 
perception. Beyond the obvious implication that the brain has little 
to do with modern computers, these recent findings reveal much 
about its processing strategies.

oscIllatory phase Influences neural responses
Neurons in the brain communicate by sending electrical pulses or 
“spikes,” which create electric potential differences at synapses and 
cell bodies. In turn, these voltage differences are responsible for the 
opening and closing of membrane channels and the  subsequent 
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firing relative to an ongoing oscillatory signal could constitute 
a meaningful neural coding scheme (VanRullen et al., 2005a; 
Fries et al., 2007).

The same relation that exists between oscillatory phase at the 
moment a neuron receives its inputs, and this neuron’s responsive-
ness to those inputs, can also be observed over larger-scale neuro-
nal populations comprising entire brain areas. Indeed, past studies 
have also reported an influence of pre-stimulus EEG phase on the 
magnitude of various subsequent event-related potential (ERP) 
components – which represent a sensory system’s response to its 
visual or auditory inputs (Jansen and Brandt, 1991; Brandt, 1997; 
Kruglikov and Schiff, 2003). Because neuronal firing ultimately gen-
erates subjective perception, and because ERPs are often regarded 
as external markers of this perception, the literature reviewed so 
far seems to point, albeit indirectly, to a possible relation between 
ongoing oscillatory phase and sensory perception. The direct meas-
urement of this relation will be the topic of this review.

Our focusing on oscillatory phase does not imply, of course, that 
the amplitude of ongoing oscillations has no impact on perception. 
For one thing, the phase of an oscillatory signal can only be reli-
ably computed when this signal has significant power. This is not 
only true in a mathematical sense, but also at the biophysical level: 
if membrane potential fluctuations were not synchronous over a 
reasonably large population of neurons, any influence of phase 
existing for individual neurons would average out at the popula-
tion level. Furthermore, it is well accepted now that oscillatory 
power in various frequency bands bears significant relations to 
sensory perception and attention (Klimesch, 1999; Tallon-Baudry 
and Bertrand, 1999; Engel and Singer, 2001; Varela et al., 2001; 
Ergenoglu et al., 2004; Hanslmayr et al., 2005, 2007; Thut et al., 
2006; van Dijk et al., 2008). Our motivation for concentrating on 
ongoing oscillatory phase is, simply, that this variable has been 
largely overlooked, at least until recent years. Similarly, we will 
restrict this review to cases of truly spontaneous oscillatory activity, 
even though numerous recent studies in human and non-human 
primates have reported an entrainment of the phase of brain oscil-
lations to rhythmic stimulus presentation sequences, accompanied 
by periodic modulations of perception, attention, and RTs (Large 
and Jones, 1999; Lakatos et al., 2008; Schroeder and Lakatos, 2009; 
Mathewson et al., 2010).

Measuring the influence of ongoing oscillatory phase on per-
ception cannot be performed using conventional methods, but 
requires single-trial analyses, which – one way or another– relate the 
variability of spontaneous brain signals to the changes in response 
variables across trials – rather than discarding this variability by 
averaging across trials or computing correlations across subjects. 
Before surveying the recent experimental advances in this area, we 
shall detail a few of the data analysis methods that have been used 
to uncover this relation.

Methods for lInkIng ongoIng eeg phase to trIal-by-
trIal varIabIlIty
Our general problem can be defined in the following terms (see 
Figure 1). On each trial, an experimenter records both a tempo-
ral signal (e.g., an EEG waveform) and a behavioral response that 
can be graded (e.g., RT, perceived intensity on a continuous scale) 
or have only a few discrete labels (e.g., stimulus perceived vs. not 

 perceived, two- or multiple-alternative discrimination forced-
choice; see Figure 1A). In certain situations, the graded behavioral 
response can be turned into a discrete variable by binning neighbor-
ing values (for example, labeling each RT with the corresponding 
quintile value, from 1 to 5). For our purposes, the temporal signal 
will correspond to brain activity prior to the presentation of the 
stimulus that must be perceived or classified by the observer (of 
course, similar methods can also be used for analysis of stimulus-
evoked brain activity, but these will not be discussed here). In addi-
tion, we will assume that the experimental paradigm is designed 
using randomized inter-trial intervals, such that the moment of 
stimulus onset is unpredictable, and therefore the distribution 
of oscillatory phase values at or before stimulus onset is uniform 
across all trials. In technical terms, our main question is whether 
this phase distribution will significantly depart from uniformity, 
once the behavioral outcome is taken into account.

In practice, for a discrete behavioral variable, trials are grouped 
according to the behavioral response, and the uniformity of the 
distribution of phases is evaluated for each trial group. This last 
step can be done explicitly, by averaging across trials in the complex 
domain – with phase being represented by the angle of the complex 
vector (see Figure 1C); this was the approach used to compute 
results in Figures 2A,C. It can also be performed implicitly, in the 
temporal domain (see Figure 1B); for example, Fries et al. (2001) 
compared pre-stimulus LFP averages for groups of trials separated 
by short vs. long firing latencies; similarly, Mathewson et al. (2009) 
compared band-passed pre-stimulus EEG averages for perceived 
vs. unperceived visual stimuli. Finally, for a continuous behavioral 
variable, specific methods exist (Berens, 2009) that estimate the cor-
relation between the pre-stimulus EEG phase (a circular variable) 
and the behavioral response (generally given on a linear scale); this 
was the approach used for the analysis illustrated in Figure 2B. 
There are, of course, other alternatives to measure phase depend-
ency, but the methods listed here already cover most of those used 
in the existing literature.

Obviously, each of the approaches listed above also needs to 
be accompanied by appropriate statistics. Simple parametric tests 
are sometimes sufficient: for example, time-domain signals can be 
directly compared between two groups of trials corresponding to 
two distinct behavioral outcomes, using a Student’s t-test – the null 
hypothesis being that the pre-stimulus means for the two condi-
tions are equivalent at each point in time. Care must be taken, how-
ever, to correct for the increased likelihood of false positives due to 
the number of multiple comparisons (in the above example, each 
time point yields a distinct, but not necessarily independent, statis-
tical comparison). Such correction methods (Bonferroni’s, among 
others) are beyond the scope of this article. In addition, circular 
variables (e.g., phase angles expressed in the complex domain) 
are highly non-linear (for example, the mean of two angles of 
10° and 350° does not correspond to the arithmetic mean of 180; 
instead, the circular mean of these two vectors is 0° – or 360°). 
Therefore, it is often preferable to devise non-parametric statisti-
cal tests based on permutation or bootstrapping methods (Vinck 
et al., 2010a,b). For example, phase-locking values measured across 
trials grouped by behavioral outcome cannot be directly compared 
with a null hypothesis of zero phase locking, because the null 
hypothesis actually depends on the exact number of trials in each 
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ongoIng eeg phase predIcts perceptual varIabIlIty
Recent studies by our group and others have started exploring the 
impact of the phase of ongoing pre-stimulus EEG oscillations on the 
subsequent perception of a visual stimulus. In a first study (Busch 
et al., 2009), we presented brief (6 ms) and dim peripheral flashes 
of light to our observers (n = 12), with the luminance of the flash 
adjusted individually so that the exact same stimulus would be per-
ceived on approximately half of the trials, but go completely unno-
ticed on the other half. We computed pre-stimulus phase-locking 
separately for the two trial groups corresponding to perceived and 
unperceived flashes, and found for each group a significant increase 
(compared to phase-locking computed on the same number of 
trials but drawn randomly, irrespective of perceptual outcome). 
This increase occurred just before stimulus onset, at a frequency of 
∼7 Hz (Figure 2A), and the effect was maximal over fronto-central 
electrodes. In fact, by considering the phase of the 7-Hz band-pass 

group (even for a uniform phase distribution, the expected phase 
locking in any finite group of trials is significantly above zero; see 
Figure 1C). A solution is to randomly reassign each trial to one 
of the behavior-defined groups, keeping the respective number of 
trials constant, and then re-calculate phase locking for this sur-
rogate dataset; repeating this operation several times provides a 
distribution of phase-locking values under the null hypothesis, 
with which the real phase-locking value can be compared to esti-
mate its statistical significance. The same approach can be applied 
to a situation with a continuous behavioral variable, by shuffling 
the assignment of behavioral values (e.g., RTs) to the correspond-
ing EEG signals, each time re-calculating the circular test statistic 
under the null hypothesis (e.g., circular-to-linear correlation). In 
our experiments (Figure 2), we have favored such permutation 
methods because of their robustness and relative lack of assump-
tions about the data structure.

FiGurE 1 | Methods for linking pre-stimulus EEG phase to trial-by-trial 
variations of a discrete behavioral response. (A) On each trial, a time-varying 
signal (such as an EEG waveform) is recorded before stimulus onset. Here the 
signal is represented as oscillatory, but it could also correspond to a band-pass 
filtered version of a noisy, non-oscillatory signal. For each trial, the observer 
provides a behavioral response with discrete outcomes [here two possible 
outcomes (A,B)] corresponding, e.g., to distinct percepts (seen vs. unseen, 
category (A vs. B)], or to quantized reaction times (e.g., slow vs. fast), etc. On the 
right, the time-domain signal recorded on each trial is expressed as a vector in the 
complex plane (which can be calculated using Fourier or wavelet time–frequency 
decomposition methods). The direction of the vector and its length represent the 
phase and the amplitude (respectively) of the oscillatory signal recorded in a given 
time window of interest. (B) Since the moment of stimulus onset is unpredictable, 
the pre-stimulus mean over all trials is near-zero. However, if certain oscillatory 
phases systematically induce one or the other behavioral outcomes, then 
selectively averaging the signals for trials grouped according to the behavioral 
response should reveal oscillations with distinct phase angles. Here the 

magnitude of the resulting oscillation appears constant at all pre-stimulus times 
but in practice, due to external and measurement noise, the phase difference is 
more likely to be visible just before stimulus onset. This method essentially 
corresponds to an ERP computed before, rather than after the stimulus onset. (C) 
Another method consists in selectively averaging the vectors for each trial group in 
the complex domain; prior to averaging, each vector is normalized to a unit length, 
implying that its phase will always equally contribute to the average, regardless of 
its amplitude [without this normalizing step, the method would actually give 
equivalent results to the one described in (B)]. This step is important because 
amplitude modulations that would occur independently of phase effects would 
tend to obscure them. The length of the resulting vector after averaging is called 
“phase-locking value” (PLV) or “inter-trial coherence” (ITC; Lachaux et al., 1999). 
The phase locking is weak when the distribution of phase angles across trials is 
uniform (as should occur when all trials are pooled together regardless of 
behavioral outcome); if certain phase angles systematically induce one specific 
behavioral outcome, on the other hand, this phase locking should be significantly 
increased by considering only the trials with this outcome.
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illustrated in Figure 1A) which renders phase effects dependent on 
potential oscillatory amplitude differences between the perceptual 
conditions; such pre-stimulus amplitude differences between cor-
rectly and incorrectly perceived trials are known to exist, particu-
larly over occipital regions at alpha-band frequencies around 10 Hz 
(Ergenoglu et al., 2004; Hanslmayr et al., 2005, 2007; Thut et al., 2006; 
van Dijk et al., 2008). This may also contribute to explain why the 
principal phase effect was observed by Mathewson et al. (2009) at 
10 Hz on occipital electrodes, instead of 7 Hz on frontal electrodes 
in our study. Nonetheless, the fact that both studies point to a similar 
conclusion reinforces the general idea that pre-stimulus oscillatory 
phase at 7 and/or 10 Hz can determine to some extent the trial-by-
trial changes in our conscious perception of a repetitive event.

ongoIng eeg phase reflects perIodIc attentIonal 
saMplIng
In our next study, we asked whether the influence of ongoing phase 
on perception was mediated by top-down attentional factors (Busch 
and VanRullen, 2010). The previous results had been obtained 

filtered EEG recorded at those electrodes just before stimulus onset 
in each trial, we could predict the subsequent response of the subject 
well above chance. Up to 16% of the trial-by-trial differences in per-
ception were accounted for by comparing trials having the optimal 
phase angle with those at the opposite angle (Busch et al., 2009).

These findings were globally consistent with the conclusions of 
an independent study by Mathewson et al. (2009), who also reported 
that the phase of low-frequency oscillations (around 10 Hz) just 
before stimulus onset predicted trial-by-trial perception, in a situ-
ation where only half of the targets were consciously detected. 
However, important differences also exist between the two studies. 
The paradigm differed from ours, first, in that conscious visibility 
was regulated not by using dim stimuli, but by displaying a strong-
contrast stimulus (a “mask”) shortly after the target. In addition, 
the inter-trial interval duration was fixed in that experiment; the 
possibility that certain oscillatory rhythms could have been reset by 
the stimulus onset in the previous trial thus makes it difficult to draw 
strong conclusions in terms of ongoing or spontaneous oscillations. 
Finally, the analysis method relied on time-domain averaging (as 

FiGurE 2 | Examples of pre-stimulus EEG phase influences on behavioral 
response variability. Each image illustrates the significance of a relation 
between the phase of ongoing EEG oscillations and a subsequent behavioral 
response recorded on the same trials, for various frequency bands (y-axis) and at 
different pre-stimulus times (x-axis). Time zero marks the (unpredictable) onset 
of the stimulus. The colorbar represents p-values, with the significance threshold 
marked by a horizontal line (p < 0.05, corrected for multiple comparisons across 
time and frequency points using the FDR procedure). The insets illustrate the 
topography of the effect at the optimal time–frequency point. (A) The response 
specified whether or not the observer had perceived a peripheral flash of light. 
The influence of phase was measured by comparing the phase-locking 
computed for two groups of trials corresponding to perceived and unperceived 
stimuli to surrogate phase-locking values obtained under the null hypothesis 
(random permutation of behavioral responses). At ∼7 Hz and 100–200 ms before 
the stimulus appears, the phase of frontal EEG on each trial was strongly 
predictive of the perceptual outcome (Busch et al., 2009). (B) In a separate 
experiment, observers again reported their perception of a flash of light, but the 
focus of spatial attention was manipulated with a cueing procedure. A significant 
relation between ongoing EEG phase and trial-by-trial perception was recorded 

only when the target was flashed at the attended location. Here the image 
illustrates the significance of a circular-to-linear correlation between pre-stimulus 
phase (the circular variable) and post-stimulus global field power (GFP, a linear 
variable which we used as a marker of subjective perception; indeed, this GFP 
was virtually zero when the target was undetected). As in the previous case, the 
EEG phase at ∼7 Hz, recorded 100–400 ms prior to stimulus onset on frontal 
electrodes, was maximally predictive of target perception (Busch and VanRullen, 
2010). (C) In another study, pre-stimulus phase was linked to the subsequent 
saccadic reaction time (here for a choice discrimination task between two 
shapes presented left and right of fixation). Reaction times for each subject 
were binned in five quintiles, and phase locking for each quintile was compared 
statistically with surrogate phase-locking values obtained under the null 
hypothesis (i.e., using the same number of trials but randomly drawn, regardless 
of reaction time). A strongly significant phase-locking increase was again 
observed on frontal electrodes around 100 ms pre-stimulus, but this time at a 
frequency of ∼13 Hz. Note that in this experiment, time zero corresponds to the 
beginning of the first stimulus-locked event, a “gap” or disappearance of the 
fixation point, the choice display itself being presented only after 200 ms 
(Drewes and VanRullen, 2011).
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the difficulty of the choice varied. In the easiest case, subjects sim-
ply made alternating left and right saccades toward a target whose 
position was fully predictable, trial after trial. In the second task 
the position was unpredictable, but since only one target appeared 
on each trial the task could be performed using mostly reflexive 
responses. Finally, the third task required a discrimination between 
two shapes displayed simultaneously; the saccade was made toward 
the shape that presented an opening at the top. In all three tasks, the 
fixation point disappeared 200 ms before the appearance of the sac-
cade target display; this so-called “gap” procedure is normally used 
to maximize the occurrence of rapid “express” saccades (Fischer and 
Boch, 1983; Fischer and Ramsperger, 1984). The disappearance of 
the fixation point is itself a transient event that can modify or even 
reset ongoing oscillations; therefore, we considered the beginning 
of the gap as time zero, and concentrated only on spontaneous 
oscillations occurring before this time.

Behavioral results revealed that, as expected, the mean discrimi-
nation performance decreased while the average RT increased with 
task difficulty. This time, we focused on RT variability across trials, 
and how this variability would relate to ongoing EEG phase dif-
ferences. In order to apply the analysis methods described previ-
ously (see Figure 1C), we binned the RTs of each observer into five 
groups, corresponding to the five quintiles of the RT distribution 
(this was done separately for each of the three tasks). For each 
trial group, we calculated the pre-stimulus phase locking (at each 
frequency and each pre-stimulus time point) and compared it to 
surrogate phase-locking values calculated using the same number 
of trials which were randomly drawn, irrespective of RT. Again, a 
significant increase in pre-stimulus phase locking was found over 
frontal electrodes for all five quintiles; this time, however, the effect 
was maximal at a frequency around 13 Hz. This phase effect was 
stronger in the easy and in the medium difficulty tasks; in fact, dur-
ing the difficult task, the effect was only observed for subjects who 
provided very rapid (but often inaccurate) responses (Figure 2C). 
Thus the influence of pre-stimulus phase on RT variability seems to 
depend on cognitive load and subject strategy; for tasks involving 
a considerable cognitive effort, many other factors (discrimina-
tion and decision processes, motivation) may come into play and 
contribute their own variability, which would act to conceal the 
effects of pre-stimulus phase.

The eventuality of a trial-by-trial relationship between pre- 
stimulus oscillatory phase and subsequent RTs had already been 
investigated in the past, but these early studies provided only mixed 
results (Walsh, 1952; Lansing, 1957; Callaway and Yeager, 1960; 
Dustman and Beck, 1965). One specificity of our experiment that 
could explain its comparative success, is that our analysis did not 
assume a one-to-one relationship between phases and RTs –  contrary 
to previous studies that all searched for specific phase angles sys-
tematically inducing the fastest, or the slowest RTs. As we found out, 
the relation between ongoing EEG rhythms and subsequent RTs can 
actually span more than a single oscillatory cycle. Each range of RT 
values will be associated with a specific and unique phase angle (as 
our analysis revealed), but the reverse is not true, that is, a given 
range of phases might be linked to two, or even more distinct RT 
values. This sort of relation would be missed by an analysis that 
would first group the trials by phase, and then compare the RTs in 
each group (a strategy employed in most of the studies cited above). 

under conditions in which target location was always known in 
advance, and therefore subjects may have paid covert attention 
to that location in order to improve their detection performance. 
Would the same ongoing phase influence still occur for a target 
appearing at an unattended location?

Before each trial began, a central cue indicated to the observ-
ers (n = 13) the location on the screen where they should expect 
the target (left or right). When the flash of light did occur on 
this side, everything happened in fact exactly as in the previous 
experiment – and indeed we confirmed our previous results in 
this condition, with a strong impact of ∼7 Hz pre-stimulus EEG 
phase recorded at fronto-central electrodes on the probability of 
target perception (Figure 2B). However, the target also sometimes 
occurred on the opposite side of the screen. In this case the sub-
jects had more difficulty in perceiving the light (as indicated by 
the higher light intensity that proved necessary to achieve a 50% 
detection rate in this condition); this confirms that the observers 
were focusing on the cued side at the detriment of the rest of the 
screen. Critically, for those trials where the target appeared out-
side the focus of attention, no significant phase-locking effect was 
recorded for the perceived or unperceived trials. In other words, 
perception was related to ongoing EEG phase only via the action 
of attention. We thus hypothesized that attention samples visual 
information periodically, and that each ∼7 Hz ongoing EEG cycle 
is the reflection of a new attentional sample (Busch and VanRullen, 
2010). Stimuli occurring at around the optimal phase enjoy all the 
benefits of attention, while others are processed merely as if they 
were out of the attention focus. For some reason, likely related to 
its architecture and its neuronal substrates, the attention system 
could not apply the optimal strategy (optimal for such a detection 
task with unpredictable target onset) of steadily monitoring the 
expected location. These findings concur with conclusions from a 
previous psychophysical study in which we reported that attention 
samples information periodically at ∼7 Hz, even when only a single 
item needs to be attended (VanRullen et al., 2007). In this context, 
the topographic localization of the phase effects over fronto-cen-
tral electrodes may reveal the contribution of the frontal eye field 
(FEF), an area known, among other things, for its involvement in 
visual attention (Crowne, 1983; Kodaka et al., 1997; Corbetta and 
Shulman, 1998; Schall, 2004; Wardak et al., 2006). However, our 
EEG data would require independent corroboration using more 
accurate anatomical localization methods, before the implication 
of FEF can be definitely established.

ongoIng eeg phase predIcts reactIon tIMe 
varIabIlIty
Attention and saccade programming are heavily intertwined brain 
functions (Rizzolatti et al., 1987; Deubel and Schneider, 1996; Smith 
et al., 2004). In particular, the FEF is involved in both visual atten-
tion orienting and saccadic motor outputs (Moore and Fallah, 2001; 
Murthy et al., 2001; Juan et al., 2004; Schall, 2004; Wardak et al., 
2006). Our next experiment thus tested whether saccadic responses 
would also be affected by ongoing pre-stimulus phase (Drewes and 
VanRullen, 2011).

We used three different versions of a saccadic response task, per-
formed by the same 13 observers. All three tasks required speeded 
choice responses using leftward or rightward eye movements, but 
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•	 Does ongoing EEG phase predict threshold perception in other 
sensory modalities (e.g., audition)? It is easy to adjust auditory, 
or even somato-sensory stimuli so that they are consciously 
registered only half of the time. Would a pre-stimulus phase 
difference be observed between perceived and unperceived sti-
muli? If yes, are the same or different mechanisms involved as 
in the visual modality, in terms of oscillation frequency, and 
cortical origin? The results of this experiment may indicate 
whether the source of the periodic modulation is central, or 
more sensory-specific. Existing evidence in animals already 
hints at a supramodal coordination of theta-band oscillatory 
activities (Lakatos et al., 2009).

•	 Does ongoing EEG phase predict the latency of attentional shifts? 
Just like saccadic RTs are variable when you move your eyes, 
it also takes variable amounts of time to shift your attention 
covertly from one location to another. This variability can 
be measured using specific paradigms, e.g., using a running 
analog “clock” at the target location and asking the observer 
to report the first “time” they can read on the clock after an 
attention orienting event. This time is generally delayed with 
respect to the onset of the orienting cue, and the delay is taken 
to reflect the latency of shifting attention to the target loca-
tion (Carlson et al., 2006). Even for identical repetitions of an 
experimental trial, the latency is not fixed but varies by tens of 
milliseconds. Can the method employed to study the latency 
of saccadic responses (often taken to represent shifts of “overt” 
attention) also be used to reveal a relation between ongoing 
EEG phase and covert attentional shifts? In this case, would 
the relevant oscillation frequency be found at ∼7 Hz (like in 
our study of attentional sampling; Busch and VanRullen, 2010) 
or at ∼13 Hz (like in our study of saccadic latency; Drewes and 
VanRullen, 2011)? In any case, a positive outcome would lend 
credence to our proposal that ongoing ∼7 and/or ∼13 Hz oscil-
lations mirror the rhythm at which attention samples visual 
information (VanRullen et al., 2005b, 2006, 2007; Busch and 
VanRullen, 2010).

•	 Does ongoing EEG phase predict the capacity and/or ordering of 
items in visual short-term memory? Visual attention and visual 
working memory share several traits, such as their limited 
capacity (Luck and Vogel, 1997; Cowan, 2001; Alvarez and 
Cavanagh, 2004), and it has even been proposed that the two 
cognitive functions overlap in part (LaBar et al., 1999; Awh 
et al., 2000, 2006; Downing, 2000; Awh and Jonides, 2001; 
de Fockert et al., 2001), although this conclusion is debated 
(Woodman et al., 2001, 2007). An influential model of wor-
king memory organization posits that remembered items are 
maintained in memory as an ordered sequence (Sternberg, 
1966), each element being represented by one cycle of a high-
frequency oscillation (e.g., 30–80 Hz gamma activity) nested 
within a lower-frequency cycle (e.g., 4–8 Hz theta activity) 
supposed to encompass the entire list (Lisman and Idiart, 
1995). The limited capacity of working memory (about four to 
seven items) is explained in this model by the number of high-
frequency cycles that can be slotted in one period of the low-
frequency oscillation. A recent study of neural responses in 
monkey prefrontal cortex reported that spikes fired at distinct 
phases of an ongoing ∼32 Hz oscillatory rhythm carried 

It would also be missed by directly calculating the circular-to-linear 
correlation between phase angles and RTs. A proper analysis for 
such a situation is the one described in Figure 1, in which trials 
are first grouped according to RTs and phase values are then con-
sidered in each group – in other words, the very analysis that we 
used (Figure 2C). The existence of a phase–RT relationship span-
ning multiple oscillatory cycles suggests that the underlying ∼13 Hz 
ongoing oscillation creates multiple successive and regularly spaced 
“windows of opportunity” for saccade production.

What else does ongoIng eeg phase predIct?
The evidence reviewed so far unambiguously indicates that ongoing 
∼7 and ∼13 Hz EEG oscillations dynamically modulate information 
processing in the visual system, and in particular the sampling of 
visual information by attention. Therefore, the single-trial phase 
recorded just before stimulus onset can be used as a predictor for 
subsequent behavioral and perceptual variables. Aside from con-
scious visual detection and RTs, ongoing EEG phase could also 
contribute to the trial-by-trial variability of several other cogni-
tive functions. Some of the possible associations are listed below, 
together with a preview of the significance that their discovery could 
have for our understanding of brain function. Needless to say, our 
group is currently exploring several of these issues.

•	 Does ongoing EEG phase predict transcranial magnetic stimu-
lation (TMS) phosphene perception at threshold? The percep-
tion of a flash of light is the result of a complex sequence of 
neuronal processing events, from the retina to the cortex via 
the thalamus. It is unclear (and heavily debated) which cortical 
region, or which network of cortical areas is critical for con-
scious perception to occur. Within this context, our results of a 
rhythmic influence of ongoing oscillations onto the conscious 
detection of a flash are difficult to interpret. However, the con-
scious experience of light can also be induced by direct stimu-
lation of the occipital cortex (the seat of the visual system), 
for example using TMS pulses. Just as in our experiments, the 
intensity of the TMS pulse can be individually adjusted so that 
the perception of the induced “phosphene” only takes place in 
half of the trials, and it is possible to record EEG while applying 
TMS pulses (Thut et al., 2005; Taylor et al., 2008; Thut and 
Miniussi, 2009). Furthermore, focusing on pre-stimulation 
oscillations means that the study would be immune to the 
numerous artifacts generally evoked by the pulse in concur-
rent TMS/EEG studies (Ilmoniemi and Kicic, 2010; Thut and 
Pascual-Leone, 2010). Would the perceptual outcome in this 
experiment also depend on ongoing 7 Hz frontal EEG phase? 
If these oscillations are the reflection of attentional sampling, 
and assuming that visual attention enhances phosphene per-
ception (Bestmann et al., 2007), the answer is likely to be posi-
tive. In addition, would the perceptual outcome on each trial 
also be affected by the phase of locally generated oscillations 
within occipital cortex itself – and if so, at what frequency? 
The fact that TMS-induced perception bypasses many of the 
early visual processing stages should maximize the chances of 
directly observing the local interplay between ongoing activity 
and visual responses, which so far has eluded our previous 
experimental efforts.

VanRullen et al. Ongoing EEG phase predicts perception

Frontiers in Psychology | Perception Science  April 2011 | Volume 2 | Article 60 | 81

http://www.frontiersin.org/perception_science/
http://www.frontiersin.org/perception_science/archive


Trends Cogn. Sci. (Regul. Ed.) 5, 
119–126.

Awh, E., Vogel, E. K., and Oh, S. H. (2006). 
Interactions between attention and 
working memory. Neuroscience 139, 
201–208.

Berens, P. (2009). CircStat: a MATLAB 
Toolbox for circular statistics. J. Stat. 
Softw. 31, 1–21.

Awh, E., Anllo-Vento, L., and Hillyard, 
S. A. (2000). The role of spatial selec-
tive attention in working memory 
for locations: evidence from event-
related potentials. J. Cogn. Neurosci. 
12, 840–847.

Awh, E., and Jonides, J. (2001). 
Overlapping mechanisms of atten-
tion and spatial working memory. 

Andrews, T., and Purves, D. (2005). The 
wagon-wheel illusion in continuous 
light. Trends Cogn. Sci. (Regul. Ed.) 9, 
261–263.

Andrews, T., Purves, D., Simpson, W. A., 
and VanRullen, R. (2005). The wheel 
keeps turning: reply to Holcombe 
et al. Trends Cogn. Sci. (Regul. Ed.) 
9, 561.

references
Allport, D. A. (1968). Phenomenal simu-

taneity and the perceptual moment 
hypothesis. Br. J. Psychol. 59, 395–406.

Alvarez, G. A., and Cavanagh, P. (2004). 
The capacity of visual short-term 
memory is set both by visual infor-
mation load and by number of objects. 
Psychol. Sci. 15, 106–111.

do ongoIng oscIllatIons produce perceptual 
snapshots?
One critical test of the relation between ongoing rhythms and 
conscious perception has eluded the community for so long that 
it deserves a dedicated section in this review. In 1981, inspired by 
earlier theories claiming that our perceptual experience was built 
upon discrete processing events, similar to the discrete frames of a 
movie sequence (Pitts and McCulloch, 1947; Stroud, 1956; Harter, 
1967; Allport, 1968), Varela et al. (1981) reported apparently direct 
evidence for such perceptual “frames” or “snapshots.” By presenting 
identical stimuli (two successive flashes separated by a short delay) 
at different phases of the ongoing alpha (10 Hz) EEG, they induced 
drastic changes in the observers’ experience of temporal simultane-
ity: while at one alpha phase they judged the two flashes to have 
occurred at the same time, at the opposite phase they perceived 
the same two flashes as clearly separate events. The implication is 
that each alpha cycle slices the continuous temporal sequence of 
visual inputs into a new discrete chunk or snapshot – when the two 
flashes straddle the critical phase of the cycle, they are sliced into 
separate snapshots. Unfortunately, these promising first results did 
not prove as clear-cut in a follow-up study by the same author (Gho 
and Varela, 1988), and could simply not be replicated afterward, 
despite repeated efforts by our group and others (D. Eagleman, 
personal communication).

This failure is fateful: whereas the evidence reviewed so far of 
a relation between ongoing oscillatory phase and trial-by-trial 
variations in conscious detection, attention, or motor outputs 
implies the existence of periodic components in perception, it 
only indirectly alludes to the issue of discrete vs. continuous 
perception. A relation between ongoing phase and temporal 
framing, on the other hand, would directly, and unambigu-
ously demonstrate the discrete nature of perception (VanRullen 
and Koch, 2003). Until such a demonstration is provided, the 
ongoing debate must continue to rely on indirect experimental 
signatures of the postulated discreteness, such as the motion 
reversals occurring in continuous light during the “wagon 
wheel illusion” (Purves et al., 1996; Kline et al., 2004; Andrews 
and Purves, 2005; Andrews et al., 2005; Holcombe et al., 2005; 
VanRullen et al., 2005b, 2006; Kline and Eagleman, 2008). In 
the end, even if it turns out that discrete temporal framing does 
not occur after all, or that it is restricted to specific sensory 
domains or experimental situations, the studies reviewed in this 
article should hopefully convince the reader that the outcome of 
many important brain functions depends in a periodic manner 
on the ongoing state of the brain, as reflected by the phase of 
certain pre-stimulus oscillations; and further, that it is possible 
to reveal this dependence using careful analysis of single-trial 
EEG activity.

 information about distinct objects from a to-be-remembered 
list (Siegel et al., 2009). Although the study was presented as 
evidence for Lisman’s model, its findings depart significan-
tly from Lisman’s predictions (indeed, the phase dependence 
should occur at the lower rhythm frequency, not at the higher 
one). Nonetheless, the findings clearly suggest that pre- 
stimulus oscillations could relate to short-term memory per-
formance. Remaining questions include (i) whether the phase 
of ongoing lower-frequency oscillations (e.g., in the theta 
band) at which a test item is presented would predict the trial-
by-trial variability in response time for deciding whether or 
not the item belongs to the remembered list – this prediction 
follows naturally from Lisman’s model since the phase encodes 
the item’s rank in the list and the rank determines the time 
needed for retrieval; (ii) whether inter-individual or inter-trial 
differences in peak oscillation frequency would correlate with 
capacity and performance measures; (iii) whether interfering 
with ongoing oscillations at specific phases (for example, using 
TMS applied on frontal areas) would disrupt working memory 
maintenance only for specific items within the list.

•	 Does ongoing EEG phase predict long-term memory encoding 
and/or recall? Memory encoding over longer time scales 
(minutes, days, or even more) depends both on frontal struc-
tures and on the medial temporal lobe system, including the 
hippocampus (Poldrack and Gabrieli, 1997; Desgranges et al., 
1998; Kramer et al., 2005; Ramus et al., 2007). This latter area 
displays very large amplitude oscillations in the theta band 
(4–8 Hz) which are known to underlie spatial memory for-
mation in rodents (O’Keefe, 1993; Buzsaki, 2002, 2006). More 
precisely, the firing of certain hippocampal neurons signals a 
remembered location in the rat’s environment, and the spe-
cific phase of the ongoing theta rhythm at which this firing 
occurs reflects the relative position of the rat with respect to 
this location – a mechanism coined “theta phase precession” 
(O’Keefe and Recce, 1993; Skaggs et al., 1996). In fact, theta 
phase precession also coordinates the firing of prefrontal neu-
rons to the hippocampal theta rhythm (Jones and Wilson, 
2005; Siapas et al., 2005). A recent study using single-neuron 
recordings in humans revealed that trials in which long-
term memory formation was successful were characterized 
by stronger phase locking of hippocampal neurons to the 
ongoing theta rhythm, even before the onset of the stimulus 
to be recalled (Rutishauser et al., 2010). This neuronal result 
does not directly imply the existence of a relationship between 
the phase of ongoing theta oscillations at the moment of pre-
sentation of a visual stimulus and the subsequent recall of 
this stimulus, but it makes such a relationship worth testing 
in future experiments.
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Recent years have seen huge advancements in the methods available and used in neuroscience 
employing EEG or MEG. However, the standard approach is to average a large number of trials 
for experimentally defined conditions in order to reduce intertrial-variability, i.e., treating it as 
a source of “noise.” Yet it is now more and more accepted that trial-to-trial fluctuations bear 
functional significance, reflecting fluctuations of “brain states” that predispose perception and 
action. Such effects are often revealed in a pre-stimulus period, when comparing response 
variability to an invariant stimulus. However such offline analyses are disadvantageous as they are 
correlational by drawing conclusions in a post hoc-manner and stimulus presentation is random 
with respect to the feature of interest. A more direct test is to trigger stimulus presentation 
when the relevant feature is present. The current paper introduces Constance System for 
Online EEG (ConSole), a software package capable of analyzing ongoing EEG/MEG in real-time 
and presenting auditory and visual stimuli via internal routines. Stimulation via external devices 
(e.g., transcranial magnetic stimulation) or third-party software (e.g., PsyScope X) is possible 
by sending TTL-triggers. With ConSole it is thus possible to target the stimulation at specific 
brain states. In contrast to many available applications, ConSole is open-source. Its modular 
design enhances the power of the software as it can be easily adapted to new challenges 
and writing new experiments is an easy task. ConSole is already pre-equipped with modules 
performing standard signal processing steps. The software is also independent from the EEG/
MEG system, as long as a driver can be written (currently two EEG systems are supported). 
Besides a general introduction, we present benchmark data regarding performance and validity 
of the calculations used, as well as three example applications of ConSole in different settings. 
ConSole can be downloaded at: http://console-kn.sf.net.

Keywords: EEG, single-trial analysis, real-time analysis, oscillation, brain states, neurofeedback

whether or not a phosphene would be perceived intraindividu-
ally, when subjects were stimulated at threshold intensity (Romei 
et al., 2008a). Other studies have shown better performance in a 
visual detection task in trials preceded by low power in the alpha 
band prior to stimulus onset (Ergenoglu et al., 2004; Hanslmayr 
et al., 2007; van Dijk et al., 2008). This is also the case for visual 
discrimination tasks (Hanslmayr et al., 2005a) and the perform-
ance can even be modulated by neurofeedback (Hanslmayr et al., 
2005b). Although they are the most frequently reported phenom-
enon, pre-stimulus effects are not restricted to the alpha band. 
Similar results have been found for beta (Schubert et al., 2009) and 
gamma (Wyart and Tallon-Baudry, 2009). Taken together, these 
results suggest that the fluctuations of ongoing cortical oscillations 
represent certain brain states that determine the “fate” of how an 
incoming stimulus will be further processed. Of interest is that the 
patterns of these results found on a neurophysiological as well as 
behavioral level strongly resemble the patterns found in studies 
in which ongoing oscillatory activity is modulated in a top-down 
manner by differential experimental conditions. Prominent exam-
ples include attention (Klimesch et al., 1998; Worden et al., 2000; 
Bastiaansen et al., 2001; Romei et al., 2008a) as well as working 

IntroductIon
ratIonale
An increasing amount of electrophysiological (EEG/MEG) stud-
ies have recently shed new light on our understanding of how the 
brain processes and represents internally and externally gener-
ated input. The still-dominant approach of stimulus averaging 
across several trials implicitly or explicitly assumes an invari-
ance of a neuronal response toward a certain stimulus and treats 
trial-by-trial fluctuations as noise. This notion is particularly 
pronounced in ERP studies in which even temporally fluctuat-
ing neuronal responses (“induced activity”; Tallon-Baudry and 
Bertrand, 1999) are removed as a consequence of averaging. 
However, it is becoming increasingly obvious that trial-by-trial 
fluctuations bear functionally meaningful information and explain 
a significant amount of the trial-to-trial variability observed in 
overt behavior. Evidence for this view originates in a variety of 
different approaches that encompass different levels of neuronal 
activity. For example, Romei et al. (2008b) showed that the level 
of ongoing alpha power in visual areas interindividually predicts 
the intensity needed to elicit phosphenes at chance level. Trial-
by-trial fluctuations of pre-stimulus alpha power also predicted 
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requIrements of a real-tIme applIcatIon
In order to pursue the hypothesis-driven research approach out-
lined above, a system is needed that monitors in real-time the rel-
evant feature of ongoing oscillatory activity and controls the course 
of the experiment dependent on certain criteria (e.g., level of power 
in a particular frequency band, level of synchrony between distinct 
sources) defined in advance by the experimenter. Such an approach 
would ideally complement explorative ex post facto studies in order 
to allow for stronger inference regarding the functional relevance 
of certain brain states. In this paper, we present a user-friendly and 
open-source software environment called Constance System for 
Online EEG (ConSole), which allows EEG/MEG researchers to pur-
sue such a hypothesis-driven approach. Although some commercial 
and non-commercial (not necessarily open-source) programs exist 
that enable the implementation of some aspects of the described 
research approach, they are either targeted at clinical neurofeed-
back or brain–computer-interfaces (BCI). Even though this kind 
of research is also feasible within the ConSole environment, the 
main intention is its use as cognitive neuroscientific tool – that 
is, to test hypotheses regarding the functional relevance of brain 
oscillations in humans.

A few applications currently exist that make experimental setups 
like these possible. These, however, display shortcomings that can-
not be neglected. Many EEG system vendors ship real-time software 
along with their products; yet these applications are closely tied to a 
specific brand or even type of amplifier and most are designed for 
neurofeedback. Thus, they do not provide the features essential for 
controlling the course of the experiment (e.g., a TMS or experimen-
tal computer). Switching to a different hardware system is virtually 
impossible – a serious limitation in cases when laboratories with 
different hardware have decided to collaborate. Moreover, these sys-
tems are mostly proprietary, meaning that one has to rely on the 
features provided by the manufacturer with no possibility to alter 
or add functionality, let alone distribute these changes so that other 
scientists can profit from them. Another option would be to use one 
of the two available systems targeted at BCI development – BCI2000 
(Schalk et al., 2004) and OpenVIBE (Renard et al., 2010). While only 
the first system suffers from the licensing issues described above, 
both options are primarily designed for BCI and neurofeedback 
research and not for conducting real-time cognitive neuroscience 
experiments. The FieldTrip community has developed another 
promising approach by integrating their extensive Matlab routines 
with a real-time acquisition system (Oostenveld et al., 2011). As 

memory (Jensen and Jokisch, 2007; Tuladhar et al., 2007). Evidence 
for the  significance of these fluctuations is also provided by studies 
that show that ongoing brain activity produces highly structured 
patterns – similar to those evoked by an actual stimulus – on the 
level of single units (Kenet et al., 2003) as well as on the system level 
(Fox and Raichle, 2007). In functional terms, these findings sup-
port the aforementioned notion that fluctuations of ongoing brain 
activity represent fluctuations of brain states that are associated 
with differential predispositions for a certain cognitive perform-
ance. Instead of averaging variability away, a growing commu-
nity of neuroscientists is realizing that understanding trial-to-trial 
variability may hold one key to a deeper understanding of brain 
functions. However, this research path requires the challenging 
analysis of data on a single-trial level.

A common approach to analyzing the contributions of trial-by-
trial variability in MEG/EEG data involves first transforming the 
data from the time-domain to the time–frequency-domain. The 
resulting amplitude and phase values can then be averaged over 
trials (e.g., “seen” versus “not seen” comparison; Romei et al., 2008a) 
to increase the signal-to-noise ratio or analyzed on a single-trial 
level [e.g., correlation of EEG with motor-evoked potential (MEP) 
following transcranial magnetic stimulation (TMS); Sauseng et al., 
2009]. It is crucial to keep in mind that this approach assumes that 
oscillations are the lingua franca for establishing communication 
within and between neuronal assemblies. The simplest approach 
is to analyze the change in power of certain frequency bands while 
reacting to a stimulus. While the power of an oscillation repre-
sents the amount of local synchronization (e.g., a brain region 
or a fraction thereof), other methods can be employed to explore 
connectivity between distant brain regions (Friston, 2002). These 
methods either assess the statistical dependency between two time 
series of two sensors or sources on a single-trial level (functional 
connectivity; e.g., coherence or phase synchrony; for an overview 
see e.g., Varela et al., 2001) or measure the “causal” association 
between two signals that yield information about the directionality 
of the information flow (effective connectivity; e.g., Partial Directed 
Coherence; Baccalá and Sameshima, 2001).

All these studies nonetheless face a major limitation: although 
they aim to show a direct relationship between certain features of 
cortical oscillations and an assumed functional state on a trial-
by-trial basis, their conclusions are drawn ex post facto. Since the 
direct (real-time) control of cortical oscillations is difficult in vivo 
(an interesting avenue may be the recently reported “entrainment” 
paradigms; e.g., Mathewson et al., 2010; Romei et al., 2010), even 
though it is not resolved how “entrained” oscillations are really 
associated to genuinely spontaneously produced oscillations), the 
experimental setup that comes closest to allowing causal inferences 
is to temporally trigger events as close as possible to the hypotheti-
cally relevant brain activity feature, which fluctuates over the course 
of an experiment. A real-time framework even holds advantages for 
the more conventional offline analysis approach, including a clearer 
distinction between high and low alpha trials that enables a bet-
ter contrast between the hypothesized brain state and its assumed 
behavioral impact (e.g., on reaction time). Currently, the presenta-
tion of stimuli is entirely random with respect to features of ongoing 
brain oscillations and the conclusions that can be drawn from it 
are correlational (see Figure 1).

FiGurE 1 | Comparison between the classic offline and the proposed 
online approach. By targeting the presentation of events and/or stimuli to 
hypothesized brain states, the hypothesis can be more easily verified or falsified.
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the whole toolbox is released under an open-source license, it also 
offers great flexibility. It lacks however the modularity of ConSole 
(see below) and suffers from lower processing speed since it requires 
the Matlab environment. The modules of ConSole are compiled 
binaries written in C++, a programming language that can be greatly 
optimized for speed with modern compilers and also provides an 
interface to Matlab, thus offering the best of both worlds.

Another important aspect sometimes neglected in software 
designs in this area is the distinction between developer, scientist 
and investigator, who all have different requirements for such an 
application. The available FieldTrip/EEGLAB toolboxes, for exam-
ple, require a certain degree of proficiency in Matlab programming. 
However, the scientist who plans and sets up the experiment often 
has little or no programming experience. It is thus vital to provide 
an interface flexible enough to exploit all features of the program 
but still easy and intuitive enough to achieve this in a short time. 
Whenever the scientist needs a feature that is not yet available, the 
developer needs a clear and well documented framework for its 
rapid development. It is essential that this can be carried out without 
in-depth knowledge of the whole system as this makes the creation 
of new features easier, faster, and less error-prone. A modular sys-
tem consisting of independent components that use a standardized 
means of communication is the ideal solution to this problem. This 
approach leaves a consistent interface for the scientist, thus further 
facilitating the setup of experiments. The investigator’s (not neces-
sarily the scientist; frequently a Masters student, student intern, etc.) 
needs in such a program are different, as he or she is the one using the 
application in the actual experiments. The constrained availability 
of laboratory time and the need for a professional setting for the 
participant place further demands on the software. First and most 
importantly, the software must be simple, fast, and intuitive to use. 
All unnecessary aspects of the experiment should be hidden, as this 
reduces the demand on the investigator and thus minimizes errors. 
Secondly, the application must be mature enough to run stably and 
must provide a means of recovering a started session after a crash 
without intervention from the investigator.

Constance System for Online EEG is an innovative system for 
real-time experiments in cognitive neuroscience, designed to 
meet the aforementioned demands of the software architecture. 
Importantly, it can be downloaded for free1 and is released under the 
GPL (Free Software Foundation, 1991), making it possible to share 
modifications or amendments made to the code. Furthermore, 
ConSole clearly separates between the different tasks mentioned 
above by using independent modules that can be combined to build 
the actual experiment. These modules are written in C++, which we 
consider to be the best compromise between high-execution speed 
and the demand for high-level programming. C++ is also a standard 
programming language and is thereby familiar to most developers. 
ConSole provides a set of built-in modules for virtually any task 
related to conducting real-time EEG, including different ampli-
fiers, filters, FFT, source projection, and stimulation (see Methods 
section for further details). A Matlab interface allows for faster 
proof-of-principle checks in case a method is not available yet in 
C++ but can be found in one of the MEG/EEG Matlab toolboxes. 
Moreover, ConSole is able to control external devices via TTL pulses 

(e.g., TMS device, PsyScope X; Macwhinney et al., 1997). To set up 
an experiment, an XML file is written, specifying which modules 
to use, and how these are connected. The XML-dialect used for 
this purpose is easy to understand, well documented, and does not 
require prior knowledge of any programming language in order to 
prepare even moderately complex experiments. In order to make 
the actual runs of the experiment as easy as possible, ConSole pro-
vides the user with a simple and intuitive graphical user interface 
(GUI). No knowledge about the internal details of ConSole or the 
specific experiment is needed to run this.

In the current article, we present details on the techniques used 
with ConSole, including benchmark results. To further demonstrate 
the capabilities of ConSole, we provide three examples of possible 
applications. The first application was inspired by a recent paper by 
Romei et al. (2008a), which showed that phosphene detection not 
only depends on the correct site of stimulation and intensity but 
also on the current brain state represented by occipital alpha oscil-
lations. Using the possibilities opened up by ConSole, we directly 
tested online whether a phosphene was more or less likely to be 
perceived when alpha was respectively low or high. This example 
serves as a proof-of-principle that the idea of online EEG experi-
ments (see above) is feasible in practice.

The second example is based on findings of our workgroup 
(Dohrmann et al., 2007b) and illustrates how neurofeedback 
experiments can be implemented in ConSole. Patients suffering 
from chronic tinnitus (a sound lacking a physical source, usually 
described as a tone or a hissing) learned to normalize their alpha 
oscillations and thereby putatively increased inhibitory drive in 
auditory regions. While our first training approach was conducted 
using proprietary software supplied by the manufacturer, the train-
ing outlined in this article benefited to a great extent from the 
flexibility of ConSole.

To further emphasize the flexibility of ConSole and to dem-
onstrate the Matlab interface, we also present an application for 
measuring single-trial MEP elicited by a TMS pulse.

software descrIptIon
Constance System for Online EEG was designed with two main 
goals: ease of use and flexibility. As a monolithic architecture is 
unable to provide the flexibility needed for such an application, 
we decided to adopt a modular approach, dividing the application 
into three distinctive parts: the GUI, the framework, providing 
internal management functions, and the actual signal process-
ing routines. While the first two parts are included in the main 
application, the signal processing (as well as drivers for amplifiers, 
data visualization, etc.) is implemented using totally independent 
modules – so-called plug-ins. These plug-ins are developed inde-
pendent of ConSole, which only provides the framework and basic 
algorithms. This approach eases the development of new modules, 
as it is only necessary to understand the plug-in interface and not 
the whole structure of ConSole. The actual experiment is written 
in an XML-dialect, describing the modules used and the connec-
tions between these. This further abstraction from the internal 
structure of ConSole hides irrelevant details from the designer 
of the experiment, thus making it possible to design a paradigm 
without programming skills. For an overview of the structure of 
an experiment designed using ConSole, see Figure 2.1http://console-kn.sf.net
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The following example further clarifies the use of modules in 
a real-time ConSole experiment. For simplicity, only two mod-
ules are considered: the source of the EEG data (i.e., the mod-
ule acquiring the data from the amplifier and feeding it into the 
system) and a highpass filter. As the source is mandatory for an 
experimental paradigm, it must not be declared (unlike, e.g., the 
filter module). The filter module also takes settings defining the 
cutoff frequency and the order of the filter. In this example, we 
use a recursive Butterworth filter with a cutoff frequency of 2 Hz 
and an order of 3.

<module>
    <plugin>IIR BW Highpass</plugin>
    <name>Highpass Filter </name>
    <set cutoff = ”2”/>
    <set order = ”3”/>
</module>

Afterward, the source module is connected to the filter module. 
The source module provides an output port called “output,” while 
the filter module provides both an input port called “input” and 
an output port called “output.” In this fashion, data flows from the 
output port of the source to the input port of the filter. After the data 
is processed in the filter it is sent to the next module via the filter’s 
output port.

<connect>
    <input module = ”Source” port = ”output”/>
    <output module = ”Highpass Filter” port = ”input”/>
</connect>

On top of providing a plug-in framework that enables the imple-
mentation of any module, ConSole already ships with well-tested 
standard modules that use methods commonly employed in offline 
analysis tools. These include:

•	 Signal	acquisition	for	a	variety	of	devices
•	 Various	signal	processing	modules.	See	Table 1 for details.
•	 Acquisition,	processing,	and	output	of	triggers
•	 Graphic	and	sound	output
•	 Raw	data	displays
•	 Neurofeedback	display

addItIonal features of the console framework
Apart from providing modules for the most important signal 
processing tasks as well as an easy plug-in framework for extend-
ing the functionality of ConSole, the application further provides 
the experiment designer with important features that enable simple 
as well as complex paradigms.

Simulating a data source
As with non-real-time experiments, developing an experimental 
design with ConSole includes testing the code. ConSole provides 
a special input source that reads data from a file. It is thus possible 
to test an experiment as well as individual modules using real and 
simulated data. Two data formats are presently supported: Simple 
Binary Matrix, a format used for example by BESA and BDF, as 
used by BioSemi. Future releases will feature a variety of sup-
ported data formats for simulating as well as for saving acquired 
data to disk.

The description of an experiment for ConSole follows a hier-
archical approach: the highest element is the paradigm, which 
comprises the whole experiment. The definition of the paradigm 
includes general information about the experiment, such as the 
patient-specific information that needs to be acquired. A paradigm 
includes one or more Setups which define the signal processing and 
thus the logic of the experiment.

about modules
To achieve our goal of writing an easy-to-use and flexible applica-
tion for real-time EEG experiments, we decided to restrict each 
module to one specific task independent from other modules. In 
this regard, modules are the basic entity of ConSole. This approach 
is beneficial to both module developers and experiment designers. 
The experiment designer is provided with modules, each specialized 
in one specific task that mimics steps from offline analysis. These 
modules and their connections have to be specified in order to 
design an experiment (see Figure A1 in Appendix). As all modules 
function independent of one another and only serve one specific 
purpose, the module developer only needs to focus on the specific 
function that the module is supposed to provide. Furthermore, 
all modules run in separate threads, thus making the application 
highly scalable on the multi-core PCs that have become a standard 
in recent years.

The module is used as a simple concept in ConSole. Each module 
can have one or more input and/or output ports. Incoming data 
(EEG data or any kind of other information-like events) enter the 
module via one of the input ports (or through an external source, 
e.g., modules receiving data from amplifiers). The internal logic 
processes the data and sends the results to the next module via 
one of the output ports. It must be emphasized that the individual 
module is completely agnostic of the module it receives data from 
or sends data to. Moreover, each module can provide settings such 
as cutoff frequency and filter order for a module that implements 
frequency filters. To use a module in an experiment, the designer 
first declares which module will be used, then adjusts the relevant 
settings and finally connects the ports.

FiGurE 2 | Coarse overview over the structure of ConSole. The general 
purpose modules implemented in C++ are used in conjunction with the actual 
real-time paradigm. Both are joined by the framework that ConSole provides. 
ConSole then displays all necessary information on a computer screen via 
its GUI.

88

http://www.frontiersin.org/perception_science/
http://www.frontiersin.org/perception_science/archive


www.frontiersin.org March 2011 | Volume 2 | Article 36 | 

Hartmann et al. Introducing the ConSole environment

 subject’s dataset for incomplete sessions and is able to resume 
the program at the point of the crash, thus minimizing the loss 
of data and time.

Matlab interface
To facilitate the rapid implementation of innovative ideas, 
ConSole is equipped with an interface to Matlab. Module devel-
opment can therefore be carried out using a widely accepted 
 programming  language familiar to many neuroscientists and 
innovative ideas can be implemented and tested very quickly. 
This approach, however, also faces downsides. Transferring data 
to Matlab and back produces a considerable overhead. Moreover, 
calculations in Matlab tend to be much slower compared to calcu-
lations using C++, although this greatly depends on the amount 
of optimization in the Matlab code. On the other hand, modules 
written in Matlab have access to a vast amount of functions and 
toolboxes not available to C++, such as EEGLab, FieldTrip, and 
NutMEG. Although it is of course possible to port those functions 

Subject and session management
A very important feature of an integrated experimental frame-
work like ConSole is a proper and easy-to-use subject and session 
management. The purpose of such a system is to provide stand-
ardization in terms of where to store data acquired within the 
experiment (including events and externally generated informa-
tion such as, for instance, key presses), general subject data (e.g., 
subject-id, age, and other information related to the experiment), 
and log files.

Crash management
Most, if not all, real-time experiments feature several runs that 
must be completed in one experimental session. It is thus vital for 
an efficient and unobstructed work flow that potential applica-
tion and operating system crashes or technical issues like power 
failure cause the least possible impact on the current session. 
ConSole is therefore equipped with an efficient crash manage-
ment system. The system automatically analyzes the chosen 

Table 1 | Signal processing modules implemented in ConSole including details and references where applicable.

Module Details references

Average reference Re-reference data to average reference. Subtract the mean over all 

channels at each sample.

Check peak Calculates the FFT on the block of data and rejects blocks that do not 

show a peak in a specified frequency range.

Combine orientations Combines the orientations resulting from source projection by either 

rotating the components using a PCA and choosing the one with the 

highest eigen value or by calculating the total energy.

Complex demodulation Complex demodulation of the incoming signal.

Distribution Calculates the percentile of the data based on a distribution acquired in a 

calibration run.

FFT Fast Fourier transform using the fftw library. Frigo and Johnson (2005)

FIR filter (lowpass and 

highpass)

Finite impulse response filter calculation using Windowed-Sinc algorithm 

with Blackman-Window.

Octave-Forge (2010)

Hilbert Calculates the Hilbert transform.

ICA artifact correction Corrects the data for artifacts using filters calculated by PCA or ICA 

(currently only JADE is implemented)

Cardoso and Souloumiac (2002)

IIR filter (lowpass, 

highpass, and bandpass)

Infinite impulse response filter calculation using the Butterworth 

algorithm.

Octave-Forge (2010)

Interpolator Interpolates the signal of all channels in a block of data that are identified 

of including artifacts based on variance and maximum amplitude using 

spline interpolation.

Perrin et al. (1989, 1990)

Matlab Sends the data to Matlab and runs a script on the data. The result is fed 

back to ConSole.

Normalizer Compute z-values of the data based on a calibration run.

RejectVarMax Rejects blocks of data that show high variance or amplitude specified in 

the paradigm.

Source projection Dipole source projection using a four-shell concentric sphere model. 

Adapted from Fieldtrip (Oostenveld et al., 2011).

Cuffin and Cohen (1979), Scherg (1990)

Spatial filter Applies an externally calculated spatial filter to the data by matrix 

multiplication.
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Two ConSole modules provide rejection of contaminated tri-
als. The “Reject VarMax” module implements thresholding of 
the incoming data. It first identifies channels exceeding a certain 
 variance or absolute maximum. These channels are then set to zero. 
The remaining channels are then tested for variance and absolute 
maximum. If one of the defined thresholds is exceeded, the trial is 
not forwarded to the next module.

Another approach for separating good and bad trials in an exper-
iment investigating oscillatory activity is checking for peaks in the 
frequency spectrum of the trial. For instance, in an experiment 
studying the impact of high/low alpha on some cognitive measure, 
each trial can be checked for a peak in the alpha band using the 
“Check Peak” module. Trials containing only noise or some other 
artifact interfering with the normal spectrum are thus rejected.

measurIng tImIng accuracy
A crucial property of a real-time experiment system is the precise 
timing of the triggered events. Events should be detected and propa-
gated with as little delay and jitter as possible. Both parameters have 
many influencing factors. It is thus important to separate these 
factors in order to optimize the system.

Factors influencing delay and jitter
As pure electrical transmission occurs almost instantly, the first 
factor to be taken into account is the amplifier, including the trans-
mission to the PC (in most cases today via USB). The delay and 
jitter introduced until this point cannot be reliably estimated, and 
for the amplifier used in our setup (ANT, 128 channels), no speci-
fications exist. We thus used a custom-built button box capable 
of generating TTL pulses to trigger the amplifier and a function 
generator (WAVETEK 10 MHz DDS model 29). The function gen-
erator produced a negative pulse at one of the amplifier’s channels. 
When this negative pulse was detected by ConSole, it sent a second 
TTL pulse to the amplifier that could be differentiated from the 
pulse generated by the button box (see Figure A3 in Appendix). 
It is thus possible to calculate the delay between the button press 
and the TTL pulse generated by ConSole. We used 398 pulses to 
measure the minimum delay and jitter of the system.

These are, of course, ideal conditions. In a normal experiment, 
delay and jitter are necessarily greater since the higher amount of 
running analysis modules will add to both. Furthermore, certain 
signal processing methods such as digital filters inherently add delay 
and jitter. In addition, many methods require blocks of data to 
operate on. In those cases, a decision between better and more valid 
signal processing against faster signal processing has to be made. 
These parameters largely depend on data quality and the features 
to be extracted and must be balanced with timing constraints. To 
measure a more realistic setup, we adapted the design of the second 
experiment to measure timing accuracy. Incoming data was filtered 
(IIR Highpass, order 2, cutoff 2 Hz; IIR bandpass, order 3, passband 
3–40 Hz) and then grouped into 1-s blocks (512 samples) every 
125 ms. These blocks were then prepared for Hilbert transformation 
by applying an IIR bandpass filter (order 3, passband 8–12 Hz). 
To avoid filter artifacts at the beginning of the blocks, the first 256 
samples (500 ms) of the blocks were discarded before the Hilbert 
transform. The instantaneous amplitude of the remaining data was 
then computed by calculating the square root of the sum of squares 

to C++, this is not always feasible due to time constraints, thus 
further increasing the value of the Matlab Interface for initial 
testing purposes.

Artifact correction
Depending on the regions of interest and the setup of a particular 
experiment, a powerful artifact correction or artifact rejection 
algorithm is essential to a real-time experiment. The impact of 
artifact-contaminated data on the outcome of an experiment 
is much greater for real-time, brain state-driven studies, as an 
 artifact is not only a period of unusable data but might also lead 
to a false calculation of the current brain state and could there-
fore, for example, trigger a stimulus that should not have been 
triggered. The impact of certain artifacts of course depends to a 
great extent on the region of interest for the calculation of the 
brain states and the reference used. So the choice of whether to 
employ artifact correction, rejection of contaminated trials or no 
correction at all in an experiment should be carefully considered. 
Artifact correction algorithms alter the data and reduce independ-
ence between channels. Rejecting contaminated trials is possible 
as long as the experiment does not depend on ongoing, uninter-
rupted output. Identifying contaminated trials is not a trivial task 
in a real-time experiment. In contrast to offline analysis, visual 
inspection of the data is not possible. Only unsupervised, auto-
matic algorithms, which commonly employ simple thresholds 
for the absolute maximum or the variance in the data, can be 
used. This method is, of course, far from perfect and results in 
false positives and false negatives. Proper tuning of the relevant 
parameters is therefore crucial.

Presently, the best method for artifact correction suitable for 
online approaches is using spatial filters calculated that use one 
of the many ICA algorithms available. In general, ICA algorithms 
calculate components of the data that are as independent as pos-
sible from one another. This property renders the approach very 
suitable for online EEG analysis, as (1) common artifacts like eye 
movements, blinks, and movements of the head or body are com-
pletely independent from any cortical signal, and (2) as opposed to 
PCA approaches, the contamination of artifact components with 
cortical data is kept to a minimum as the ICA algorithms ensure 
maximum independence between the components.

Constance System for Online EEG implements ICA-based arti-
fact correction using a modular framework, essentially allowing 
any spatial filter-based algorithm to be included in the application. 
To calculate the weights, a calibration run is performed before the 
actual experiments on which the weights are calculated. ConSole 
provides the user with a very convenient way of choosing artifact 
components by offering a three-split window (see Figure A2 in 
Appendix). The upper panel shows the original data, the middle 
panel the calculated components, and the lower panel the resulting 
data after correction. Artifact components can be marked in the 
middle panel with an immediate effect on the lower panel. Together 
with the possibility of displaying the topography of the component 
on a 3D head, choosing the correct components to reject is a fast 
and easy process. To use the calculated weights and chosen com-
ponents in the experiment, the “ICA Artifact Correction” module 
has to be placed between the “Average Reference” module and the 
rest of the processing queue.
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not average over trials, we decided to use a window-size from the 
upper range. Therefore with regards to online power analysis, there 
is an inherent trade-off that the researcher is faced with in setting 
the optimal parameters. A good strategy in general would be to 
run some offline experiments first and to use ConSole’s possibil-
ity to simulate an online experiment using previously recorded 
data (see Simulating a Data Source). By this means the researcher 
has the possibility to optimize the code in order to be temporally 
as close to the events of interest as possible. In general “brain 
states” marked by an extended period (on the range of hundreds 
of milliseconds) of an increase/decrease of power are optimal for 
investigation using ConSole. Triggering on short-lived “bursts” 
of an oscillation is not recommended, at least with the standard 
analysis methods at hand.

The mentioned temporal limitations – i.e., to initiate events 
(e.g., TMS) as closely to the neuronal event of interest as possible 
– applies also to the phase of an oscillation which has received 
great interest recently (e.g., Hanslmayr et al., 2005a; Busch et al., 
2009; Mathewson et al., 2009). Theoretically it would be inter-
esting to directly stimulate at peaks and troughs of an oscilla-
tion, however the current delay using standard methods is not 
sufficient for this endeavor. An exception to this may be very 
slow oscillations below 1 Hz which have also gained increased 
interest recently.

example 1: phosphenes and real-tIme alpha
IntroductIon
In recent years, an increasing number of articles on the functional 
role of spontaneous alpha oscillations have been published. Most 
of these studies use a task involving covert attention to a region left 
or right of a fixation cross, which detects a target in these areas. The 
great majority of these studies come to the conclusion that ongo-
ing alpha oscillations are modulated by drawing attention to one 
area, either by an increase of power in ipsilateral cortical regions 
of the visual cortex or by a decrease contralateral to the attended 
visual hemifield (e.g., Thut et al., 2006). There is even evidence 
for a retinotopic organization of the modulation of ongoing alpha 
oscillations (Rihs et al., 2007). Overall, these studies give strong 
evidence that alpha represents a mechanism of active inhibition, 

of the real and imaginary part of the analytic signal. A preparatory 
run was used to calibrate the system to only react on high levels of 
the 10-Hz oscillation. As soon as the calibrated level was exceeded, 
a TTL pulse was sent to the amplifier.

We used the same function generator as in the first timing test 
to generate one hundred ten 10-Hz oscillations. The oscillation was 
triggered by pressing a button on the custom device and stopped 
after the button was released. The button press also sent a TTL 
pulse to the amplifier. As soon as ConSole detected the oscillation, 
it sent a TTL pulse to the amplifier. We used the difference between 
the two TTL pulses to estimate the delay and jitter of the setup.

As we had expected, the results differed greatly between the 
simple setup that only included the detection of a rectangular 
pulse and the more elaborate one in which a 10-Hz oscillation 
had to be detected. The first setup showed a mean delay of 17.5 ms 
with a SD of 0.5 ms. The delay was in the range between 0.8 and 
27.3 ms and the distribution was approximately uniform (see 
Figure 3A). In the oscillation detection task, the delay increased 
to 477.4 ms on average with a SD of 46.3 ms and the distribution 
was approximately normal (see Figure 3B). This increase can be 
very well explained by the use of blocks of 500 ms and the inter-
block interval of 125 ms.

Consequences and possible optimizations
The aforementioned benchmark results show that the delay and 
the jitter introduced by ConSole are reasonably low to conduct 
real-time experiments that analyze the power of oscillations. To 
further optimize for the delay and jitter between the input and 
the system’s reaction the amount of data averaged in one block 
could be decreased as well as the inter-block interval. While the 
latter would only increase the load on the computer system used 
to run the software on, decreasing the amount of data analyzed 
in each block would also increase the susceptibility to random 
fluctuations (noise) of the analysis. For the benchmarking and 
the first example in this paper, we chose a window of 5 cycles of 
the center frequency. This corresponds to window-lengths com-
monly used in offline analysis settings that range from about 1.5–7 
cycles (Tallon-Baudry et al., 1996; Rizzuto et al., 2003; Fujioka and 
Ross, 2008; Romei et al., 2008b; Schubert et al., 2009). As we did 

FiGurE 3 | Distribution of the delays between signal generation and reaction of ConSole. (A) Shows the histogram for the detection of a pulse, (B) shows the 
histogram for the detection of a 10-Hz oscillation.
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ing the participants at their individual threshold intensity, we 
discarded all runs that, according to a binomial test, did not 
show a balance between seen and unseen trials. Data from the 
remaining runs were then grouped into four categories (Seen/
Not Seen × High/Low Alpha) and visually inspected for artifacts 
in the time range between 1000- and 50-ms pre-stimulus. As we 
were interested in effects relative to the stimulation side, we mir-
rored data from the left hemisphere for those participants who 
were stimulated at the right hemisphere and vice versa. We then 
applied a time–frequency analysis using variable window-sizes 
of four times the wavelength of the respective frequency tapered 
with a Hanning window. We used a non-parametric, cluster-
based statistic with 1000 randomizations to control for type 1 
errors (Maris and Oostenveld, 2007). In this paper we show the 
preliminary results of six participants.

results
On average, ConSole triggered 71 ± 20 TMS pulses for each subject. 
Fifty-two percent of those trials were identified as low alpha.

To test the validity of the separation between low and high alpha 
trials, we applied a cluster-based statistic on the time–frequency 
representation of the data from trials identified as high versus low 
alpha by ConSole. The algorithm found one significant cluster 
(p < 0.001) that confirmed higher alpha from 700 to 125 ms before 
the stimulation (see Figure 4). Alpha was increased rather globally, 
however the maximum increase was found at the site of stimula-
tion as targeted by ConSole. The data also show a good timing 
accuracy. The window for the Hilbert transform of the paradigm 
was 500 ms. According to the aforementioned results, we would 
have expected delays of about 400–500 ms. The data, however, 
show that the maximum difference is between 350- and 175-ms 
pre-stimulation. Interestingly, higher synchronization in trials iden-
tified as containing high alpha is not restricted to the alpha band. 
Higher synchronization also extends into the beta range.

Although our results are similar to those reported by Romei 
et al. (2008a) in that, on average, trials in which no phosphene 
was perceived were preceded by higher alpha, we were not able to 
show that pre-stimulus alpha power predicted the probability of 
the participant seeing a phosphene by comparing the responses 
to high and low alpha trials. At first glance, these results do not 
seem to fit together. This could be due to the small number of 
participants, not optimally defined thresholds or a more com-
plex relationship between alpha and phosphene perception that a 
“simple” offline contrast of “seen” versus “unseen” would suggest. 
Interestingly, however, when comparing only the high alpha trials 
in which the phosphene was seen versus those in which it was not 
seen, a strong trend in frontal areas is revealed. If alpha was high 
under the stimulated site, alpha had to also be high in frontal areas 
in order to produce a phosphene. This could serve as a starting 
point for a more in-depth analysis, as this result could imply that 
the connectivity between these regions is relevant, but only if alpha 
is high in occipital areas.

dIscussIon
One purpose of this study was to test whether ConSole was capable 
of separating low and high alpha trials correctly and with rea-
sonable delay in a real online setting. Our results show that this 

pointing to a top-down mechanism modulating alpha oscilla-
tions. Although this assumption is most likely correct in regards 
to the aforementioned evidence, these studies do not answer the 
question of whether spontaneous fluctuations of these oscillations 
or even the different phases of the oscillation themselves have an 
impact on the processing of stimuli. The answer to the second 
question can be found in studies that account for the phase of the 
ongoing alpha oscillation immediately before stimulus presenta-
tion (Mathewson et al., 2009) or even earlier in the pre-stimulus 
period (Busch et al., 2009; Busch and VanRullen, 2010). Romei 
and Thut took an interesting approach to the first question and 
showed not only that the tonic level of occipital alpha predicts the 
interindividual phosphene threshold (Romei et al., 2008b), but 
also observed a dependency between fluctuations of ongoing alpha 
and the probability of phosphene perception when subjects where 
stimulated at phosphene threshold.

Although the dependency between ongoing alpha oscillations 
and phosphene perception could be causal, as mentioned above, 
offline studies only provide correlational evidence. In order to test 
the hypothesis that the likelihood of phosphene perception caus-
ally depends on the energy of spontaneous alpha oscillations, a 
real-time experiment is needed that can specifically stimulate the 
primary visual cortex at those points in time when alpha is either 
low or high.

methods
Six subjects (four female, mean age ± SD: 24 ± 3.9 years) were 
screened and trained according to procedures previously used in 
similar studies (Romei et al., 2008a,b) after giving written informed 
consent. The procedure was approved by the local ethics commit-
tee. Screening and training was necessary in order to select only 
those participants who reported seeing phosphenes and to train 
the reliability of their answers. We blindfolded the participants and 
used single-pulse TMS to elicit the perception. Neuronavigated 
TMS (Magstim Rapid2) was used to reproduce stimulation sites 
between sessions. In the last session, TMS pulses were triggered 
depending on the current alpha power in primary and secondary 
visual areas, which was computed using a minimum-norm estima-
tion (Hämäläinen and Ilmoniemi, 1994) relative to a 5-min baseline 
measurement. The participants performed four runs of 5 min each. 
A TMS pulse was triggered when the current alpha power fell into 
the upper or lower quartile of the distribution acquired in the base-
line run. To achieve a balance between low and high alpha power 
trials, the system did not react on high alpha if the total amount of 
high alpha trials exceeded the total amount of low alpha trials by 
two. The same strategy was used to limit the amount of low alpha 
trials with respect to high alpha trials. The participants indicated 
with a mouse click whether or not they had perceived a phosphene.

In order to verify the effectiveness of ConSole and the applied 
algorithms as well as to test the hypothesis that phosphenes are 
more likely to be seen when occipital alpha is low, we cut the 
data into trials 3000 ms before to 500 ms after the TMS pulse. 
The epochs were then subjected to a detrending algorithm in 
order to remove linear trends from the data. Afterward, the data 
were bandstop filtered (fourth order forward Butterworth filter; 
frequency range 49–51 Hz) in order to eliminate possible power 
line noise from the data. As the experiment relied on stimulat-
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separation was perfect but could be optimized to minimize the 
delay between classification (high versus low alpha) and stimulus 
onset. One concern for real-time experiments is that the amount 
of trials cannot be predicted. The example however shows that 
on average 71 trials out of the maximum number of 120 were 
triggered. The balance between high and low identified trials was 
guaranteed by limiting the amount of imbalance by definition in 
the paradigm file.

Another purpose of the study was to test the hypothesis of 
Romei et al. (2008a) that the perception of phosphenes depends 
on the current level of alpha synchronization over the occipital 
cortex at the stimulated hemisphere. Although the offline analy-
sis of the data points in the same direction, the online analysis 
seems at odds with a simple “high” versus “low” alpha functional 
distinction since we did not find any difference in the probability 
of seeing a phosphene in trials with high or low alpha as we had 
originally hypothesized. This might be due to the small number 

of participants, as the results shown are only preliminary. More 
interestingly, however, we observed that if alpha was high under 
the stimulated area, frontal areas had to be synchronized in the 
alpha band as well in order to produce the perception of a phos-
phene, thereby suggesting the influence of a connection between 
these two regions. Overall, the data suggest that the “high” alpha 
category is functionally more diverse than simply reflecting an 
inhibitory state and that under certain conditions it may even 
favor a perception near-threshold. In future approaches we will 
scrutinize the actual distribution of the underlying electrophysi-
ological marker in more depth, as one further possibility for not 
seeing the hypothesized results might also be that “high alpha” 
does not only cover the uppermost 25% of the distribution but 
extends into the low alpha range far deeper than we had expected. 
This might also indicate that the relationship between alpha 
power and behavior is not linear, as assumed in the study, but, 
for instance, logarithmic.

FiGurE 4 | results of example 1. (A,B) Show the comparison between 
trials identified as high alpha versus low alpha. (A) Time course at one 
representative occipital electrode. The maximum difference is between 400 
and 300 ms before ConSole sent the trigger. (B) Topography at the point of 
maximum difference. Higher alpha is not restricted to the area analyzed but 
extends to the other hemifield as well as to frontal areas. The stimulated area 

is depicted by the TMS coil sketch. (C) Box and whiskers plot showing the 
distribution of alpha power for all four conditions. The red lines represent the 
medians, the edges of the boxes mark the first and third quartile. Whiskers 
extend to the most extreme value not considered an outlier. Outliers are 
values that exceed the first or third quartile by 1.5 times the total range 
between the first and third quartile.
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results
To first test whether the participants in the neurofeedback study 
were able to learn how to modulate alpha power, we used a linear 
mixed-effects model with normalized alpha power at both temporal 
sources as the dependent variable. The individual session and the 
time of measurement (pre or post-training) were the independ-
ent variables. The advantage of a linear mixed-effects model is the 
possibility to add so-called random variables that control for vari-
ance between individuals. “Participant” was thereby chosen as the 
random variable. Our results show that, on average, alpha increased 
within each session (p < 0.001) by 19% (SD: 26%) as well as between 
the sessions (p < 0.05) as shown by an increase from the first to the 
last session by 38% (SD: 68%; see Figure 5B). A similar result was 
drawn by the behavioral results. We used a custom-made question-
naire with six Likert scales about different features of the tinnitus, 
like loudness, annoyance. On average, the total score decreased by 
13% (SD: 17%) within the sessions (p < 0.001) as well as between 
them (p < 0.05) as shown by a decrease from the first to the last 
session by 11% (SD: 7%; see Figure 5C).

dIscussIon
The increasing amount of studies into the effect of neurofeedback 
on tinnitus show that, though patients benefit from the treat-
ment, these effects are moderate and subject to strong interindi-
vidual variability. This might be owing to a number of reasons 
that remain unclear. In general, three factors are important for 
a successful neurofeedback training: contingent feedback about 
the correct features acquired from the brain, good adjustment to 
the demands of the task, and keeping the patient motivated. The 
approach we have presented in this example shows another way 
of neurofeedback training. The results are comparable to those 
of recent studies in terms of how much the patients improved. 
What is however more important is that we have demonstrated 
that ConSole provides scientists with a tool for rapidly develop-
ing and testing new approaches to the treatment of conditions 
including (but not limited to) tinnitus using neurofeedback. New 
trainings might include more tailor-made designs like QEEG, 
different frequency bands, interareal functional connectivity or 
other ways of giving feedback to the patient, just to name a few 
possibilities. ConSole not only facilitates the development of 
these new approaches but also makes testing at multiple sites 
with different equipment easier due to its independence from 
the acquisition device used.

example 3: monItorIng tms-Induced meps
IntroductIon
If a strong and brief magnetic pulse is applied to brain tissue asso-
ciated with motor functioning via TMS, changes in corticospinal 
excitability can be observed (e.g., Van Der Werf and Paus, 2006). 
In suprathreshold stimulations, these changes result in a typical 
pattern of periphysiological muscle activity. This summation of 
electromyographic, response is commonly called MEP (for further 
details refer to Barker et al., 1985; Rothwell et al., 1999; Di Lazzaro 
et al., 2004).

Motor-evoked potential amplitude and shape depend on sev-
eral factors, such as TMS pulse duration (Rothkegel et al., 2010), 
coil orientation (e.g., Mills et al., 1992), distance from the coil to 

Furthermore, we plan to extend this approach to other 
 modalities such as the visual and motor system, as alpha is believed 
to have a common functional meaning (Weisz et al., submitted) 
– at least in primary and secondary sensory and motor cortical 
areas.

example 2: treatIng tInnItus wIth neurofeedback
IntroductIon
Neurofeedback is generally defined as the operant conditioning 
of signals acquired from the brain via various methods such as 
EEG, MEG, fMRI. For almost 40 years, this approach has been 
used to teach patients how to normalize abnormal brain states 
(Sterman and Friar, 1972; Lubar and Shouse, 1976; Rockstroh et al., 
1993; Masterpasqua and Healey, 2003; Dohrmann et al., 2007a,b). 
Recent studies by our group have shown significant improvements 
of tinnitus loudness and distress in those patients who were able 
to learn to normalize temporal alpha and/or delta activity but not 
in those who failed to learn the task (Dohrmann et al., 2007a,b). 
To increase the number of patients who are able to learn the task 
and thus benefit from the training, we used the fact that sensory 
alpha rhythms desynchronize on sensory input – the extent to 
which albeit depending strongly on top-down factors such as atten-
tion (Bastiaansen et al., 2001; Müller et al., submitted; Hartmann 
et al., submitted).

methods
Nine otherwise healthy patients (one female, mean age ± SD: 
57 ± 8.8 years) suffering from chronic tinnitus were recruited 
via advertisements in the local newspaper. All patients were 
informed about the training and gave written consent. The pro-
cedure was approved by the local ethics committee. The patients 
took part in 10 session within 3 weeks. Each session consisted 
of one baseline measurement to calibrate the neurofeedback 
system, four training runs, and another baseline measurement 
after the training to assess changes in cortical activity within 
each session. In the training runs, patients were shown a feed-
back on a screen for 5 s without hearing a tone (see Figure 5A). 
They were instructed to consider this period as a baseline that 
showed how auditory areas of their brain behaved without any 
input. Afterward, patients were stimulated with a sound that 
was filtered to match their tinnitus sound as closely as possible. 
Because of the aforementioned effect, patients saw a decrease 
in alpha activity via the feedback. They were instructed that 
one possible strategy for increasing alpha activity was to ignore 
the sound. Baseline measurements before and after the training 
runs differed from those only by not providing feedback to the 
patients. The patients were instructed to passively listen to the 
sounds with eyes open.

For the training, data acquired from 29 electrodes on the scalp 
and 2 electrodes beside and above the right eye to facilitate arti-
fact correction were sent to ConSole, highpass filtered, average 
referenced, and artifact corrected (via ICA). The data were then 
projected onto eight regional sources. The data of the two tempo-
ral sources were subjected to a frequency analysis and the relative 
energy at the individual’s alpha frequency was fed back onto a 
computer screen. We analyzed the power at the individual’s alpha 
frequency before and after each training.
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methods
Surface electromyography was recorded from the right first interos-
seous muscle (FDI) and was sampled at 2048 Hz. ConSole acquired 
the voltage difference between two surface electrodes attached in a 
belly tendon montage with a ground electrode taped to the right 
ear contralateral to TMS Stimulation (Magstim Rapid2). The data 
were highpass filtered (third order, cutoff: 4 Hz). Upon receiv-
ing the trigger representing the TMS pulse, ConSole sent a cor-
responding block of data via its Matlab interface to a routine that 
first rectified the epoch and then searched for a peak of >50 mV. 
The result was fed back to ConSole and displayed on the screen 
as a text message.

Neuronavigated high intensity single-pulse TMS (on average 
60% stimulator output) was applied to the left hand knob area with 
the handle of the TMS coil pointing backward approximately 45° 
to the midsagittal line. Coil position was adjusted until absolute 
FDI MEP amplitude was maximal in three consecutive trials and 

the underlying cortex (Kozel et al., 2000), or individual biologi-
cal differences (Wassermann, 2002). We ran a number of com-
bined EEG–TMS studies with the aim of investigating oscillatory 
brain activity and its influence on MEPs. In order to achieve a 
comparable reference value between subjects, we determined 
resting motor thresholds using a Matlab-based decision-making 
algorithm within the ConSole environment. Data were acquired 
and preprocessed using the ConSole framework and the built-in 
modules. Although this could have also been carried out entirely 
in Matlab (apart from the acquisition), using the modules pro-
vided by ConSole is more convenient and much faster. The part 
of the paradigm that involved the special analysis of the MEP was 
confined to a block of data specific to the time range when a MEP 
was expected to occur. The analysis did therefore not have to run 
constantly and was not time-critical. This fact and the greater flex-
ibility in having a Matlab script qualified this part of the online 
analysis for execution in Matlab.

FiGurE 5 | (A) Screenshot of the patient’s training screen. The fish takes 10 s to 
move from the left to the right of the screen. The first 5 s are the “baseline” 
period for the patient without any stimulation. In the second half, the patients 
were stimulated with a sound that resulted in an alpha desynchronization. The 
patient’s task was then to increase temporal alpha power which was indicated 
by the height of the displayed fish. The patient was rewarded after the trial if the 

fish stayed above the target line for a sufficient amount of time. (B) Normalized 
alpha power of all subjects over all 10 sessions before and after neurofeedback 
training. Alpha power increased significantly within and between sessions. Error 
bars denote SE. (C) Distress rating of all subjects over all 10 sessions before and 
after neurofeedback training. Distress was reduced significantly within and 
between sessions. Error bars denote SE.
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to the primary effect (e.g., whether alpha is a correlate of active 
inhibition). In contrast to the offline correlational approach, 
differences between physiologically clearer defined brain states 
can be analyzed. For example, in the study comparing the effect 
of high and low alpha power on the perception of a phosphene, 
our online approach, despite superb separation of high and 
low posterior alpha, indicates that high levels of alpha may be 
functionally not a unitary phenomenon (e.g., inhibition). The 
contrast within the high alpha trials points to a critical role of 
frontal regions and suggests that, in some cases, high alpha activ-
ity may reflect a more efficient communication between sensory 
and frontal regions – potentially implemented via specific phase 
relationships (Busch et al., 2009).

In the current paper, we present a flexible software environment 
that helps scientists in conducting many kinds of real-time experi-
ments. Its modular approach and clear file format makes setting 
up experiments easy, even without any knowledge of computer 
programming.

One of the most important requirements of a real-time EEG/
MEG application is the exact and fast timing of the triggers that 
are used to stimulate the participant. Current computer systems 
with multi-core processors and gigabytes of RAM are generally 
fast enough to deal with the acquisition and processing of 128+ 
channels at high sampling rates. Our system with an Intel Core 
I7-970 and 4 GB of RAM is easily capable of handling the above 
presented experimental setups at very low processor load and with 
acceptable delay and jitter.

Three current examples from our laboratory were given to 
illustrate that ConSole is a flexible tool that can be universally 
applied in numerous real-time paradigms and that extends the 
possibilities in these areas. Apart from the envisaged real-time 
cognitive neuroscience experiments (Example 1), ConSole can be 
used, for instance, in clinical settings for neurofeedback (Example 
2) or to obtain online feedback about the presence or absence 
of a peripheral physiological response (Example 3). The latter 
example was mainly intended to demonstrate the ConSole/Matlab 
interface, further facilitating the process of creating a real-time 
analysis-flow, even for scientists not experienced in programming 
languages like C++.

In conclusion we wish to promote the idea that, apart from 
conducting offline data analysis, cognitive neuroscience-specific 
hypotheses should in the future be tested in real-time experi-
ments. This puts high demands on data quality and online signal 
processing. Furthermore, in order to enable as many neurosci-
entists as possible to pursue this research strategy, user-friendly, 
and open-source software frameworks are needed. With ConSole, 
we attempt to make such a framework publically available and 
have given first proof-of-concept evidence with regards to its 
functionality.
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was marked as so-called “hot spot.” Afterward the resting motor 
threshold was determined by a maximum likelihood paradigm 
using the software MTAT 2.0 (Awiszus, 2003).

results and dIscussIon
By using the aforementioned setup demonstrating the capabili-
ties of interactions between ConSole and Matlab, we were able to 
receive reliable feedback about whether a TMS pulse had triggered 
a MEP (see Figure 6 for a schematic example of the feedback in 
case a MEP was detected and in case, the TMS failed to elicit an 
MEP). This example demonstrates the use of ConSole to analyze 
peripheral data in response to a stimulus. Future applications are 
not limited to TMS and MEPs but may include, for instance, reac-
tions of peripheral signals like skin conductance on electrical or 
tactile stimulation.

dIscussIon
The analysis of brain activity acquired by EEG or MEG on a 
single trial level is becoming an increasingly important topic. 
Treating the variability between trials as a valuable source of 
information and not as noise that is to be discarded will lead 
to great advances in our understanding of how brain activity 
relates to behavior. However, the analysis of data on a trial-by-
trial basis raises the importance of good data quality during 
acquisition as well as advanced analysis strategies. Nevertheless, 
the offline analysis of the data does not exploit the full potential 
of the methods available as stimulation is done at random points 
in time and thus completely independent of the current brain 
state. Such a correlation approach makes sense as long as prior 
knowledge about the effect is small and the underlying hypothesis 
cannot be strictly defined. However, as soon as a clear hypothesis 
about the functional significance of distinct brain states exists, a 
more causal test of the hypothesis is favorable. Analyzing EEG or 
MEG in real-time is an approach that takes advantage of prior 
knowledge by controlling the experiment depending on those 
points in time that putatively mark a brain state of interest. This 
approach not only leads to a stronger test of the hypothesis but 
can also provide more in-depth insights in phenomena related 

FiGurE 6 | Schematic drawing of the setup to automatically identify 
TMS-induced MEPs.
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Hartmann et al. Introducing the ConSole environment

FiGurE A1 | Schematic of a typical ConSole paradigm. Data are acquired 
from the source and propagated from module to module, each further 
processing the data. The data can also be sent to multiple modules. 
Eventually, ConSole uses the final results to trigger an event like a TMS pulse 
or the display of a stimulus.
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Hartmann et al. Introducing the ConSole environment

FiGurE A2 | This figure shows the artifact component selection process of ConSole’s built-in artifact correction. An ICA algorithm was applied to calibration data. 
The upper panel shows the original data to identify the time points when artifacts were present. The middle panel shows the components calculated by the ICA algorithm. 
The user selects components representing artifacts by clicking on the number to the left. The lower panel shows the resulting data after correction to verify the outcome.
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Hartmann et al. Introducing the ConSole environment

FiGurE A3 | Schematic overview of the setup to measure the delay and 
jitter of ConSole. The Button-Box sends a TTL pulse to the Function 
Generator and the amplifier. The Function Generator immediately sends the 
analog signal (negative pulse or 10 Hz sine wave) to the amplifier. Both the TTL 
pulse and the analog signal are recorded by ConSole. ConSole then sends a 
TTL pulse to the amplifier as soon as it reacts on the incoming analog signal 
generated by the Function Generator. This second TTL pulse is also acquired 
by the amplifier and recorded by ConSole. The difference between the two 
TTL pulses is the delay between signal generation and ConSole’s reaction.
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and we have reason to believe that these times are relevant to the 
activity in the brain. The amplitudes of the regressor events are 
constant so there is no uncertainty in terms of their magnitude – 
i.e., a constant scale would not change the GLM analysis. We could 
also construct regressors derived from behavioral measures, such 
as response time (RT), and though this may vary across trial and 
subject, we can measure RTs very accurately and thus measure-
ment noise is low. However there is additional uncertainty in the 
interpretation of the amplitude variations. For example a long RT 
(e.g., high amplitude on a trial) might be caused by attentional 
lapses, natural alertness fluctuations, or additional neural process-
ing for increasing decision confidence. Thus, compared to the case 
in Figure 1A, the behavioral regressor in Figure 1B could be seen 
as having greater uncertainty.

When constructing regressors derived from EEG variability 
(Figure 1C), we must consider a number of factors affecting our 
uncertainty. One is related to the noise in the measurements – i.e., 
EEG has roughly a −20 dB signal to noise ratio (SNR; Parra et al., 
2008). Thus we have measurement noise that is greater than for the 
cases seen in Figures 1A,B. Secondly, there is the interpretation of 
the meaning of the EEG-derived variability. We might hypothesize 
that the variability relates to attentional modulation, workload, 
perceived error strength, etc., but this too is a hypothesis with its 
own noise/uncertainty – similar to the issue for the RT derived 
regressor of Figure 1B.

In order to take the uncertainty in the prior into account, we 
could resample from the prior distribution to construct our null 
hypothesis (H0). There are many ways to resample or bootstrap 
(e.g., for a review of techniques in signal processing see (Zoubir 
and Iskander, 2007). One of the simplest is to draw samples 

IntroductIon
It is becoming increasingly common to use single-trial EEG-derived 
values to model simultaneously acquired fMRI data. The combina-
tion of these two complementary neuroimaging modalities enables 
the variability of neural activity to be related to the blood oxygena-
tion level dependent (BOLD) response (e.g., Debener et al., 2005; 
Benar et al., 2007; Goldman et al., 2009). Particularly exciting is 
that this type of fusion of modalities exploits variability that is not 
observable via behavioral responses, and thus provides a window 
into latent states of the human brain.

Many efforts combining simultaneous EEG and fMRI in this 
way employ the general linear model (GLM; Worsley and Friston, 
1995). The GLM is a univariate approach which, when applied to 
massive datasets such as fMRI, requires correcting the statistics 
for multiple comparisons in order to properly perform hypothesis 
testing. The issue of multiple comparison correction has been 
addressed extensively in the literature and there are a number 
of procedures that have been adopted, both for fMRI analysis 
alone (Genovese et al., 2002; Nichols and Hayasaka, 2003) and 
for simultaneous EEG/fMRI (Debener et al., 2005; Eichele et al., 
2005; Benar et al., 2007; Esposito et al., 2009; Goldman et al., 
2009; Mayhew et al., 2010; Mulert et al., 2010; Scheibe et al., 2010; 
Novitskiy et al., 2011).

One concern that is specific to using the variability of EEG-
derived regressors is the added uncertainty in the “interpretation” 
of the resulting statistics within the context of statistical paramet-
ric maps. This can be easily seen if we consider the sources of 
uncertainty for different types of regressors. In conventional fMRI, 
regressors might be constructed based on the timing of the stimulus 
presented to the subject (see Figure 1A). We know the times exactly 
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from a distribution of the noise by permuting or randomizing 
the EEG-derived variability. In previous work we used a simple 
resampling procedure to compute cluster thresholds for correct-
ing for multiple comparisons (Goldman et al., 2009). However 
this method for estimating a cluster size threshold was limited 
because it sacrificed sensitivity for overly conservative specificity. 
Here we expand this work to a more exhaustive search of the 
parameter spaces by developing a better representation of the 
relationship between characteristics of the data. This enables 
us to maintain both sensitivity and specificity over a range of 
cluster sizes.

We present these results for two such characteristics: cluster 
size and maximum z-score within a cluster. We use the rela-
tionship between them to correct for multiple comparisons 
by trading-off z-score for cluster size. Specifically, we pro-
pose a resampling technique, adapted to the noise distribu-
tion of the single-trial EEG-derived regressors, that enables 
increased sensitivity by identifying significance values that are 
a joint function of cluster size and maximum z-score – i.e., 
enables us to construct the null hypothesis H0 and set a joint 
threshold to test significance. This approach increases sensi-
tivity by allowing smaller clusters having higher z-score, while 
maintaining specificity.

MaterIals and Methods
The data used in this study are taken from Goldman et al. (2009). 
Detailed methods of subjects, paradigm, data acquisition, and sin-
gle-trial analysis are given there (Goldman et al., 2009). In brief, 
simultaneous EEG and fMRI data were acquired for 11 healthy 
normal subjects (six female, mean age 31, range 25–38) during an 
auditory oddball paradigm. Informed consent was obtained from 
all participants in accordance with the guidelines and approval of 
the Columbia University Institutional Review Board.

Subjects listened to standard (frequency 350 Hz, probability of 
occurrence 0.8) and oddball tones (frequency 500 Hz, probability of 
occurrence 0.2). Subjects were instructed to respond with a button 
press to the target oddball tone. There were a total of 50 target and 
200 standard trials for each subject.

EEG was acquired simultaneously with fMRI using a custom-
built MR-compatible system using 36 bipolar twisted pair elec-
trodes sampled at 1 kHz (Goldman et al., 2005; Sajda et al., 2007) 
in a 1.5-T scanner (Philips Medical Systems, Bothell, WA, USA). 
Whole brain functional EPI data were acquired with 15 axial slices 
(TE = 50 ms; TR = 3000 ms; matrix = 64 × 64 voxels, 3.125 mm 
in-plane resolution, 8 mm thickness). EEG pre-processing included 
a 0.5-Hz high-pass filter, 60 and 120 Hz notch filters, and gradi-
ent artifact removal (mean subtraction as well as 10 ms median 
filter). BCG artifacts were removed by principal component analysis 
(PCA) by first estimating the principal components on data after 
high-pass filtering at 4 Hz and then applying these estimates to the 
original EEG. The EEG data was epoched into trials in two ways: 
stimulus-locked (SL, aligned to the onset of the tone) and response-
locked (RL, for the target tones, they were aligned to the subject’s 
button press and for the standard tones they were randomly chosen 
from the RT distribution of the target tones). Individual subject 
single-trial analysis of EEG was then performed via logistic regres-
sion to discriminate between the EEG responses to two classes of 
stimuli (targets and standards) within consecutive 50 ms training 
windows. The output of this process is a discriminating component, 
y, specific to that trial and discriminating window, where y repre-
sents the distance to the discriminating hyperplane (Parra et al., 
2002, 2005; Goldman et al., 2009). The amplitudes of the resulting 
discriminating components within the training window for each SL 
and RL window were then used to model the BOLD response on a 
single-trial basis. Figure 2 illustrates our approach, mapping from 
trial-to-trial variability in EEG components to fMRI regressors (in 
this case using time windows of 200 and 350 ms post-stimulus).

resaMplIng
Our goal in the resampling was to maintain the overall distributions 
of the EEG discriminating components (y-values) for target and 
standard trials while removing the specific trial-to-trial correlations 
in the individual experimental runs. To this end, we constructed 
two empirical distributions (one for “target y-values” and one for 
“standard y-values”) by pooling the y-values for each condition 
across all subjects and runs. To best demonstrate the contribu-
tion of the trial-to-trial variability, we constructed our empirical 
distributions using y-values from only behaviorally correct trials 
and computed from a time window (450 ms SL) which yielded 
both substantial discrimination in the EEG (across subject, average 

RT1 RT2 RT3 

electrophysiological variability 

1 2
3

A

B

C

FIGuRE 1 | Sources of uncertainty in different regressor models. Shown are 
three regressor types (before convolution with the hemodynamic response 
function). (A) Regressor constructed from the onset times of the stimulus. The 
high certainty in this type of regressor is a result of stimulus times being set by 
the experiment and measured exactly. There is no uncertainty in the 
interpretation of amplitudes since they are constant. (B) Regressor constructed 
by modulating the stimulus onset times by response times (RTs). Measurement 
noise of RTs is low (i.e., RTs are high SNR measurements) however there is 
additional uncertainty (relative to case A) in terms of the interpretation of the 
trial‑by‑trial variations in response time. (C) Regressor constructed by modulating 
stimulus by activity derived from electrophysiological variability. Sources of 
uncertainty include both measurement noise, due to the low SNR of the signal, 
as well as the interpretation of the trial‑to‑trial electrophysiological variability.
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These procedures allowed us to construct the null hypothesis H0, 
and establish a joint threshold on cluster size and max z-score 
(see below).

fMrI analysIs
For each of the 100 resampled iterations, a full three-level analysis 
(run, subject, group) was performed. Standard fMRI pre-processing 
was performed: slice-timing correction, motion correction, spatial 
smoothing at 8 mm full-width at half-maximum, and high-pass 
filtering at 0.01 Hz. Our design matrix included 11 regressors, six of 
which related to the degrees of motion correction. Of the remaining 
five regressors (which were convolved with a double-gamma hemo-
dynamic response function), two were a traditional event-related 
model of target and standard tones (onset at the time of stimulus 
presentation, duration 100 ms, amplitude of 1), one represented 
the RTs (with onset at the time of stimulus  presentation, duration 

Az > 0.75; Figure 2 in Goldman et al., 2009) as well as significant 
correlation in the fMRI (p < 0.005 and cluster corrected for com-
parison of <73 voxels; Figure 2 in Goldman et al., 2009).

Given these empirical distributions, we constructed a “resa-
mpled run” by taking the ordered vector of targets and standard 
trials (250 trials per subject, with 50 targets and 200 standards 
intermixed) and drew randomly, without replacement, from 
the distribution corresponding to the label of that trial. Thus 
for a resampled run, all trials were drawn from the distribution 
with the correct “label” (target or standard) however the specific 
y-value was mixed between trials, runs and subjects. All sub-
jects had the same resampled run y-values for a given iteration, 
though the resulting regressors for each subject were different 
given that the each had a random sequence of target and stand-
ard trials. This entire procedure was repeated 100 times, yield-
ing 100 resamplings of the entire data set (run, subject, group). 

Discriminating Component

Stimulus locked time (ms)

T
ria

ls

250 ms LR component

200 400 600 800 1000

10
20
30
40

Stimulus locked time (ms)

T
ria

ls

400 ms LR component

200 400 600 800 1000

10
20
30
40

0 100 200 300 400 500 600 700 800 900 1000

250ms

400ms

Regressor fits for a target trial

Stimulus locked time (ms)

0 50 100 150 200 250 300 350

250ms

400ms

EEG−derived explanatory variables

Time (s)

FIGuRE 2 | Method used to construct fMRI regressors from EEG 
component trial-to-trial variability. Top: y‑values for all target trials of the 
single‑trial EEG discriminator for two stimulus‑locked windows. Data between 
black vertical bars indicates those y‑values used in the analysis. In this example 
the window width is 50 ms, with one window centered at 200 ms and the other 
at 350 ms post stimulus‑onset. Hot to cold color scale indicates high likelihood 
to low likelihood for a target. Middle: y‑value for a single target trial for each of 
the two components (black curves), showing the fMRI event model amplitude 

as the average of the discriminator output within each 50 ms window, with one 
modulated event shown for 200 ms (blue) and 350 ms (red). Bottom: Single‑trial 
fMRI regressor for target trials across the entire session for the 200 and 350 ms 
windows, shown after convolution with the hemodynamic response function. 
Note that the event timing for each of the two windows is the same, but the 
event amplitudes are different. A separate fMRI analysis is run for each window, 
using that window’s single‑trial output to model single‑trial variability. Figure 
from Goldman et al. (2009).
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cluster sIze threshold
We examined the distribution of cluster sizes (number of voxels) 
for the resampled data and used these data to establish adaptive 
thresholds. The largest 1% (n = 6 of 655) of the resampled data had 
a cluster size that exceeded 94 voxels. The largest 5% (n = 32 of 655) 
of the resampled data clusters had a cluster size that exceeded 50 
voxels. These thresholds were then applied to the clusters observed 
in the original data, which represent regions where BOLD signal 
correlated with either SL or RL single-trial EEG variability. The 
relationship between the resampled and original data is depicted 
in Figure 3. This figure indicates that there were only three clus-
ters from the original data that exceeded the p < 0.01 resampled 
significance threshold of 94 voxels. Further, these three clusters 
were the only ones that exceeded the p < 0.05 resampled signifi-
cance threshold of 50 voxels. Two of those activations were seen 
in the right lateral occipital cortex (Table 1, clusters 1 and 2). One 
cluster was found in the left postcentral gyrus (Table 1, cluster 3). 
Twenty-six percent (22 of 85) of the original clusters exceeded a 
canonical 10 voxel threshold. Thirty-seven percent (244 of 655) of 
the resampled clusters exceeded that canonical 10 voxel threshold.

Max z-score threshold
We also plotted the distribution of maximum z-scores (the peak 
value within the clusters) for the resampled data and used these to 
establish adaptive thresholds. The upper 1% of the resampled data 
clusters had a z-score that exceeded 3.17, and the upper 5% had a 
z-score that exceeded 3.01. These thresholds were then applied to 
the z-scores from the original data. The relationship between the 
resampled and original data is depicted in Figure 4. This figure indi-
cates one cluster that exceeds the p < 0.01 resampled significance 
threshold of z = 3.17. This cluster was located in the right lateral 
occipital cortex (Table 1, cluster 1). The figure also indicates three 
additional clusters that exceed the p < 0.05 resampled significance 
threshold z = 3.01. These clusters were located in the right lateral 
occipital cortex (Table 1, cluster 2), and bilaterally in the amygdala 
(Table 1, clusters 4 and 5).

JoInt thresholds
The relationship between cluster size (log scale) and 1 − (p-value) 
for the resampled and original data is depicted in Figure 5. The 
linear regression visualizes the first principal component of the 
resampled data (n = 655). Significance values (p < 0.05 and <0.01) 
were determined by the projections to the regression line of the 
32nd and 6th largest resampled data clusters along this first prin-
cipal component. Significance thresholds, the orthogonal projec-
tions from regression line, intersected for p < 0.05 at a cluster size 
of 52 and a 1 − p-value of 0.998 [x

05
 = (52,0.998)] and for p < 0.01 

at a cluster size of 88 and a 1 − p-value of 0.999 [x
01

 = (88,0.999)]. 
Two clusters from the original data exceeded p < 0.01 significance 
(clusters 1 and 2) and three additional clusters exceeded p < 0.05 
significance (clusters 3, 4, and 5).

dIscussIon
Simultaneously acquired EEG and fMRI data offers the potential 
to investigate neural states with temporal and spatial precision 
that is not afforded by either method alone. However, while in 

100 ms, amplitude corresponding to RT), and the final two regres-
sors modeled the amplitude variability of the single-trial discrimi-
nating component (onset time at window time, duration 100 ms, 
amplitude given by the single-trial EEG discriminator y-value) 
and were orthogonalized to the traditional target and standard 
regressors. These single-trial regressors allowed us to examine the 
BOLD signal related to the variation in the resampled single-trial 
EEG discriminating component values. Specifically, we looked 
at the cluster outputs from the resampled single-trial target and 
standard regressors.

one-dIMensIonal thresholds
All clusters that exceeded minimal thresholds [cluster size of 
2 and z-score of 2.57 (per voxel p = 0.005)] from all 100 itera-
tions were assembled for both positive and negative correlations 
for the resampled single-trial targets. Two characteristics of the 
resampled data were obtained: cluster size (number of voxels) 
and z-score (maximum value in cluster). The resampled data 
were sorted and thresholds were established based on the top 
5% and top 1%. Canonical thresholds were also used: 10 voxel 
cluster size and 2.57 z-score. The results from the analysis of 
single-trial simultaneous EEG/fMRI from Goldman et al. (2009) 
were overlaid to examine those clusters that exceeded each of 
these thresholds.

constructIng JoInt thresholds
We developed an approach for increasing the sensitivity for smaller 
cluster sizes by constructing a significance threshold based on 
the joint distribution of cluster size and maximum z-score. Our 
approach was to identify a joint distribution, based on these two 
measures, that showed a strong positive linear correlation which 
could be used to construct a one-dimensional projection for thresh-
olding which was a function of both dimensions. We found that the 
log cluster size versus 1 − (maximum p-value in the cluster) resulted 
in a strong linear fit (Pearson’s correlation coefficient r = 0.88) for 
all resampled clusters that exceeded the minimal thresholds [cluster 
size of 2 and z-score of 2.57 (per voxel p = 0.005)]. The projec-
tions of the resampled activations along this linear regression were 
sorted to obtain the maximal 5 and 1%. Significance thresholds 
(p = 0.05 and 0.01) were defined by orthogonal projections from 
this linear fit of the resampled activations. The results from the 
analysis of single-trial simultaneous EEG/fMRI from Goldman 
et al. (2009) were overlaid to examine those clusters that exceeded 
both of these thresholds.

results
statIstIcs
There were 655 clusters with a per-voxel p < 0.005 that survived 
the minimum cluster threshold of two voxels in the resampled 
analysis. The mean cluster size was 14 voxels with a standard devia-
tion of 18. The mean z-score within these clusters was 2.8 and 
the standard deviation was 0.14. The clusters from the resampled 
analysis were overlaid onto a standard MNI template brain volume 
to ensure that clusters of activation from resampling came from 
regions throughout the brain and did not represent the same cluster 
(data not shown).
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activated cluster size and local maximum z-score and showed that 
the joint distribution of the size of activation clusters and the maxi-
mum z-score found in the cluster can be used to establish signifi-
cance thresholds that provide a proper trade-off of sensitivity and 
specificity. Principled methods for trading-off spatial extent and 
individual voxel statistical significance were originally proposed 
for use in neuroimaging by Poline et al. (1997).

Figure 6 graphically summarizes the results from Table 1 and also 
illustrates the improved sensitivity we obtained using the joint thresh-
old method. Compared to the results in Goldman et al. (2009), these 
results show additional significant correlations in areas that overlap 
with the amygdala. Though this current paper is meant as a statistical 
methods paper and is not aimed at  re-evaluating the specific findings 

 traditional event-related fMRI the model is known with high cer-
tainty, explanatory variables defined by a measured quantity such as 
EEG introduce more uncertainty into the model. While it is becom-
ing increasingly common to acquire multi-modal data, as yet there 
is no generally agreed upon method for analysis or interpretation 
of this data that takes the uncertainty of the model into account.

In this study, we used the data from Goldman et al. (2009), in 
which the single-trial variability derived from the EEG was used to 
construct BOLD fMRI regressors, to illustrate a resampling method 
for determining significance in single-trial EEG/fMRI data. With 
this method, we can correct for multiple comparisons by adaptively 
resampling the noise distribution of the EEG-derived regressors. 
This resampling method demonstrated an interaction between 

Table 1 | Significant clusters of activation in the original data of Goldman et al. (2009).

Index Cluster z-score 1 − (p-value)  Hemisphere Location (MNI)  Brain   EEG single-trial logistic 

 size  (joint threshold)        region   regression results

     x y z   Correlation Az Locked to Window

1 203 3.42 0.9997 R 40 −74 −8 Lateral occipital cortex – 0.92 Response 50

2 108 3.04 0.9988 R 42 −68 −4 Lateral occipital cortex – 0.86 Response 150

3 101 3.01 0.9987 L −28 −36 60 Postcentral gyrus – 0.76 Stimulus 450

4 46 3.17 0.9992 R 12 −4 −18 Amygdala + 0.83 Response 200

5 44 3.14 0.9992 L −32 2 −18 Amygdala – 0.79 Response −100

Index is a number to uniquely identify the cluster for later reference. Cluster size is given in number of voxels. For the one-dimensional thresholds, the background 
color (yellow, p < 0.01; red, p < 0.05) indicates if the cluster was significant in the corresponding column. For the joint threshold, the background color in the 
1 − p-value column indicates the significance. Cluster location is given by hemisphere (R, right; L, left), location of the peak z-score (x, y, z in MNI space), and brain 
region. Also shown for each cluster is the direction of correlation between single-trial regressor and BOLD signal (−, +), Az value for the single-trial window, whether 
the window was locked to stimulus onset or response time, and the window onset time in milliseconds.
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FIGuRE 3 | The resampling method, used to generate the threshold based on 
cluster size. The resampled data (blue) are sorted and plotted in increasing cluster 
size (number of voxels). Three significance thresholds are presented: 10 voxel 
canonical cluster threshold (black solid line), p = 0.05 resampled significance 

threshold (red solid line), and p = 0.01 resampled significance threshold (yellow 
solid line). Horizontal dashed lines show the cluster sizes of the original data from 
Goldman et al. (2009), both those below (green) and the three clusters that 
exceed (yellow) the resampled cluster size significance threshold (p < 0.01).
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FIGuRE 4 | The resampling method, used to generate thresholds based on the 
maximum z-score within the cluster. The resampled data (in blue) are sorted and 
plotted in increasing z‑score. Horizontal dashed lines of the z‑scores of the original 
data are overlaid (in green). Three significance thresholds are shown: z = 2.57 

threshold (black), p = 0.05 resampled significance threshold (red), and p = 0.01 
resampled significance threshold (yellow). The dashed lines of the four clusters from 
the original data of Goldman et al. (2009), that exceed significance thresholds are 
colored accordingly: three for which p < 0.05 (red) and one for which p < 0.01 (yellow).
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FIGuRE 5 | Joint thresholds of cluster size (log scale) versus p-value 
(maximum of cluster) from resampling methods. Shown are scatter plots of 
cluster size versus p‑value of the resampled data (blue open circles) and the 
original data of Goldman et al. (2009; green filled circles). Two joint significance 

thresholds are shown: p = 0.05 resampled significance threshold (red), and 
p = 0.01 resampled significance threshold (yellow). Those clusters from the 
original data that exceed the joint significance thresholds are colored 
accordingly.

of Goldman et al. (2009), it is worth noting that the responses in the 
amygdala have been observed, intracranially, for activity associated 
with P300 timing and polarity (Halgren et al., 1980).

Projection of the data onto the first principal component of this 
distribution allows us to simply compute a joint threshold for a one-
sided significance level. One might ask “why not use the full distri-
bution instead of the projection on the first principle  component?” 

For example, one might imagine trying to empirically construct a 
one-sided multivariate test of significance by constructing contours 
of fixed probability mass about the mean and then utilize the contour 
cutoff so that an increase in single-voxel significance always yields a 
decrease in voxel size, and vice versa. Though such a procedure seems 
to be even more powerful than simply looking at the one-dimensional 
projection, it comes with the following disadvantages/costs. First it 
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conclusIon
In summary, our results suggest that additional care is required 
when using cluster-size to correct for multiple comparisons and 
determine significance in EEG/fMRI data. Some groups use 
conservative thresholds (Goldman et al., 2009) while others use 
cutoffs that are more lenient (Debener et al., 2005; Benar et al., 
2007; Mayhew et al., 2010; Scheibe et al., 2010). Conservative 
cluster thresholds reduce false positives, but they also limit the 
sensitivity of single-trial analysis. The resampling method pro-
posed here suggests that standard ad hoc cluster size thresholds, 
for example of 10 voxels, are too lenient (at least in this case) 
since more than a third of the resampled data clusters were 
found to have a larger size. For this data, a more conservative 
threshold of 50 voxels, as determined by the variability in the 
data itself, is a better estimate of the true data significance. 
This is less conservative than the threshold (of 73) presented 
in Goldman et al. (2009) that was derived from a less expansive 
bootstrapping method. In any case, our results suggest that 
establishing statistical significance using a threshold criteria 
that has been used in another EEG/fMRI study may not be 
adequate. Instead these corrections are better off left to be data 
adaptive, and though this can be computationally expensive, it 
improves interpretation of the results and properly establishes 
statistical significance.
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requires a parametric representation of the joint distribution so as to 
determine the shape of the contours and secondly it requires substan-
tially more resampling to identify the contour/boundary and/or fit the 
parametric distributions if modeling the data. Since the distribution in 
Figure 5 does not appear to be well-modeled by a multivariate normal, 
we chose to illustrate our procedure with the simplest method which 
maintains the key points and findings of the approach.

Our focus has been on a data adaptive approach to correct for 
multiple comparisons in the joint space of single-voxel p-value and 
cluster size. Cluster size thresholding has been a popular method for 
correcting for multiple comparisons in EEG/fMRI, but often these 
thresholds are selected ad hoc and then propagate in the literature, 
used by others with little statistical justification (e.g., see Scheibe 
et al., 2010). There are of course other data adaptive approaches that 
can be used to correct for multiple comparisons and are not based 
on using cluster-size. One of the more recently adopted techniques 
controls the false-discovery rate (FDR; Genovese et al., 2002; Nichols 
and Hayasaka, 2003), namely the expected ratio of false positives to 
true positives. The FDR is data adaptive in that the thresholds are 
inherently linked to the signal to noise in the data. FDR correction 
methods are easily interpretable and are computationally efficient, 
compared to the resampling procedure we describe here. However, 
FDR usually does not take into account any prior model or certainty 
about the regressor model and requires some assumptions about 
the structure of the noise distribution. FDR correction methods 
are none-the-less an attractive approach for multiple comparison 
correction and more work is needed to understand how they can 
best be employed in EEG/fMRI data analysis.

FIGuRE 6 | Significant clusters (yellow, p < 0.01; red, p < 0.05) overlaid on axial 
slices of an MNI template brain image. Each row corresponds to a different 
thresholding technique derived from our resampling tests: (A) cluster size only based 

threshold, (B) maximum z‑score based threshold, (C) joint threshold. Sampled slices 
not shown (slices sampled every 6 mm) had no significant clusters for any of the 
thresholding techniques. See Table 1 for additional information on these clusters.
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Real-time measurement of face recognition in rapid serial 
visual presentation
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Event-related potentials (ERPs) have been used extensively to study the processes involved 
in recognition memory. In particular, the early familiarity component of recognition has been 
linked to the FN400 (mid-frontal negative deflection between 300 and 500 ms), whereas the 
recollection component has been linked to a later positive deflection over the parietal cortex 
(500–800 ms). In this study, we measured the ERPs elicited by faces with varying degrees of 
familiarity. Participants viewed a continuous sequence of faces with either low (novel faces), 
medium (celebrity faces), or high (faces of friends and family) familiarity while performing 
a separate face-identification task. We found that the level of familiarity was significantly 
correlated with the magnitude of both the early and late recognition components. Additionally, 
by using a single-trial classification technique, applied to the entire evoked response, we were 
able to distinguish between familiar and unfamiliar faces with a high degree of accuracy. The 
classification of high versus low familiarly resulted in areas under the curve of up to 0.99 for some 
participants. Interestingly, our classifier model (a linear discriminant function) was developed 
using a completely separate object categorization task on a different population of participants.

Keywords: event-related potential, recognition memory, object categorization, classifier

the recognition response change with the level of experience? And, 
does this change affect both early and late components in a similar 
fashion? Here, to manipulate level of experience with the stimuli, we 
used color photographs of faces from three distinct categories: novel 
individuals, famous persons or celebrities selected by the partici-
pant, and personal friends and family provided by the participant. 
In this way, we were able to quantify the effect of experience or 
knowledge of the depicted individual on the recognition response. 
While this study does not explicitly dissociate the neural proc-
esses involved in familiarity and recollection, the magnitude of the 
evoked responses (within the early and late integration windows) 
do have implications for the competing models of recognition.

In addition to this conventional analysis of the ERP, we also 
wanted to determine how accurately the recognition response could 
be classified on a single-trial basis. To accomplish this, we integrated 
the face stimuli into a real-time system that classifies the evoked 
response elicited by each stimulus, based on a linear model of the 
neural response pattern. The motivation for this approach stems 
from a potential application of the recognition response toward 
a novel brain–machine interface (BMI). BMI technologies often 
utilize the visual categorization response for binary output or clas-
sification (Parra et al., 2002; Sellers et al., 2006). An example of this 
is a rapid presentation of images or letters for which each P300 
is classified as a “yes” or “no” response. This response can then 
be used to identify relevant objects in a stream of imagery or to 
select letters for building a word or phrase. Here, we sought to use 
a similar experimental paradigm to further quantify the recognition 
response. Specifically, can the recognition response be identified 
in a continuous presentation of faces where explicit recognition of 
each face is not required?

IntroductIon
The neural substrates of recognition, an essential aspect of declara-
tive memory, have been extensively studied with the use of event-
related potentials (ERPs). Many of these studies attempt to dissect 
the two phenomenologically distinct processes involved in recogni-
tion: familiarity and recollection (Yonelinas, 2002; Yovel and Paller, 
2004; Guo et al., 2005; Curran and Hancock, 2007; MacKenzie 
and Donaldson, 2007). A commonly accepted definition of famili-
arity is the sense of having previous experience with the probe 
stimulus (e.g., person, object, word) without any accompanying 
contextual information as to the nature of the previous encoun-
ter. Recollection, on the other hand, is when the memory of the 
probe stimulus is accompanied by contextual or associative detail. 
The neural correlates of familiarity have been linked to the early 
mid-frontal negativity (FN400) in the ERP. Specifically, the ampli-
tude of the negative deflection between 300 and 500 ms is less for 
familiar as compared to novel stimuli (Rugg et al., 1998; Curran, 
2000). Recollection, by contrast, has been linked to a later positive 
component over the central–parietal cortex. This positive deflec-
tion, between 500 and 800 ms, is greater for stimuli that have been 
consciously recollected (Smith, 1993). However, there is still an 
ongoing debate as to whether or not these ERP components are a 
reflection of two distinct neural processes (Yonelinas, 2002; Paller 
et al., 2007). In addition, the influences of conceptual priming (Voss 
and Paller, 2006; Voss et al., 2008, 2010) make some prior research 
on this question difficult to interpret.

For the purpose of this study we used the early (300–500 ms) 
and late (500–800 ms) windows, associated with familiarity and 
recollection respectively, as a means to quantity the gradations in 
the recognition response. Specifically, how does the magnitude of 
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variation in block number was due to the dynamics of the real-time 
system. If the response corresponding to a particular face presenta-
tion contained EEG artifacts (blinks, eye movement, etc.) that face 
was then re-queued for subsequent presentation. The experiment 
was complete when all faces were shown to the participant, artifact 
free, at least four times. Participants were instructed to fixate at the 
center of the monitor and respond, via button press, when they 
saw a target face (Presidents Obama, Clinton, or Bush). There was 
a pause at the end of each block and the participant started the 
next block at their discretion. Thus, the participants experienced 
approximately 2 min of RSVP, followed by a self-paced rest period.

EEG rEcordInG
Scalp EEG was collected with a 128-channel HydroCel Geodesic 
Sensor Net™ (Electrical Geodesics, Inc., Eugene, OR, USA) con-
nected to an AC-coupled 128-channel, high-input impedance 
amplifier (200 MΩ, Net Amps™, Electrical Geodesics, Inc.). 
Individual sensors were adjusted until impedances were less than 
50 kΩ. Amplified analog voltages (0.1–100 Hz bandpass) were 
digitized at 250 Hz and then low-pass filtered at 40 Hz. Recorded 
voltages were initially referenced to a vertex channel. Trials were 
excluded from analysis if they contained eye movements (vertical 
electro-oculogram channel differences greater than 70 μV) or more 
than five bad channels (changing more than 100 μV between sam-
ples, or reaching amplitudes over 200 μV). Data from individual 
bad channels were replaced using a spherical-spline interpolation 
algorithm. An average-referenced transform was then used for sub-
sequent ERP analysis. All ERPs were baseline-corrected to a 100 ms 
pre-stimulus recoding interval.

rEal-tImE classIfIcatIon
The real-time classification of the EEG signal was accomplished 
through analysis of the evoked response following the presentation 
of each face. The goal was to find a linear combination of the com-
ponents of the signal that most reliably discriminated between the 
responses to familiar or recognized versus novel faces. Classification 
was initially performed using a standard or general model. This 
linear model was developed from the responses of multiple par-
ticipants in a prior study (Curran et al., 2009; Touryan et al., 2010) 
examining the P300 object classification signal (Thorpe et al., 1996). 
Individualized or custom models were also developed for each par-
ticipant using only that participants data. Below we describe the 
feature selection process (Perkins et al., 2003) we implemented to 
develop the linear models (both general and custom) used in the 
real-time EEG classification.

For each trial, N features are generated, giving a feature vec-
tor x ∈ RN. The basic machine learning approach is to find a dis-
criminant function f : RN  R that maps the features x into the 
probability that the trial was caused by one of two stimulus classes. 
For recognition, we define the classes as familiar and unfamiliar. 
Here, the probability of recognition, given the data vector x and a 
discriminant function f(x), is

p
e f

( ) .
( )

familiar |x
x

=
+ −

1

1  
(1)

The probability of non-recognition is

This unorthodox approach to measuring the recognition 
response utilized the rapid serial visual presentation (RSVP) par-
adigm (Chun and Potter, 1995). In this paradigm the participant 
viewed a continuous stream of rapidly presented faces for several 
minutes. The task was simply to identify, via button press, a small 
number of target faces from amongst the ensemble of images. There 
was no explicit study phase beyond the imagery that was provided 
by the participant. Likewise, there was no explicit test phase where 
the participants indicated which faces they recognized. Despite the 
less controlled nature of this study (relative to the prior research) 
we were able to clearly identify the recognition response both at 
an aggregate and trial-by-trial level.

matErIals and mEthods
PartIcIPants
Twenty-two individuals participated in the experiment for payment 
of $20 per hour. The participants (17 female and 5 male) ranged in 
age from 22 to 53, with a mean age of 28. Participants were both 
right-handed and left-handed (19 right-handed, 3 left-handed). 
Five of the 22 individuals participated in a second, experimen-
tally identical session roughly a week after the initial session. None 
of the participants were excluded from the analysis due to noise 
(bad channels), movement artifacts, or low behavioral accuracy. 
However, the real-time classification system did exclude individual 
trials based on pre-defined noise and movement artifact thresholds.

stImulI
Stimuli consisted of 256 × 320 pixel color photographs of single 
faces that were manually centered, scaled, and cropped. The eyes 
were centered just above the midline and the entire face was con-
tained within the cropped region. Photographs were excluded from 
the experiment if the face was obscured by sunglasses, hats, or 
costumes. Novel faces, both male and female, were obtained from 
the Flickr Creative Commons database1. All 447 novel faces were 
used in every experiment. Famous faces of movie stars, singers, or 
celebrities were obtained from Getty Images2. There were 79 famous 
females and 80 famous males in total. Participants were allowed to 
select the 20–30 most familiar individuals, roughly balancing for 
gender. The average number of faces selected by the participant 
was 24.6 ± 4.5 (std). Personal faces were obtained from each par-
ticipant prior to the experimental session. On average, 15.7 ± 4.1 
faces provided by the participant met the above criteria and were 
included in the experiment. The target faces were the three most 
recent presidents (Obama, Bush, and Clinton), which were shown 
to the participant prior to the experiment.

ProcEdurE
The participants were seated in front of a computer monitor at 
a distance of approximately 100 cm. All images were displayed at 
the center of the monitor and subtended a visual angle of about 
7° horizontally and 9° vertically. The experiment consisted of 
10–14 blocks, each containing roughly 200 faces presented in rapid 
sequence (i.e., the RSVP paradigm). Each face was presented in ran-
dom order for 500 ms and there were no breaks between faces. The 

1http://www.flickr.com/creativecommons
2http://www.gettyimages.com
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only w
0
 to vary, then iteratively finding the zero weight with the 

largest |∂L/∂w
i
| to add to the empirical risk function. This process 

is repeated until no more weights can be added. The purpose of the 
λ

0
 term (for this study λ

0
 = 10−6) is to force any w

i
 that is very near 

zero to be precisely zero. Conveniently, L(w
k
) is a convex function 

(ignoring the λ
0
 term), so the only minimum is a global minimum.

classIfIEr fEaturEs
For each evoked response, a large number of features are generated by 
first linearly transforming the raw EEG signal using principal com-
ponents analysis (PCA), and then calculating windowed fast Fourier 
transforms (FFT) for a variety of window sizes and starting times 
relative to the stimulus onset. We typically include window sizes of 
w = 128, 256, and 512 ms in the feature set. For memory capacity 
reasons, features corresponding to frequencies greater than 25 Hz are 
discarded. All other non-zero frequency components are split into real 
and imaginary parts. For each epoch, the features for all times, window 
sizes and frequencies are assembled into a large feature vector x ∈ RN.

rEsults
The experimental task used in this study (Figure 1) is a simple 
extension of the traditional RSVP target-detection paradigm (Chun 
and Potter, 1995). Here, participants had little difficulty detect-
ing the target faces (Presidents Obama, Bush, and Clinton) from 
amongst the other faces, both familiar, and novel. However, due to 
the presentation speed (2 Hz) and block duration (2 min), partici-
pants reported difficulty in responding to a target face in time (i.e., 
before the next face appeared). This is likely the primary reason that 
behavioral performance was not at ceiling. Over the population of 

p p
e f

( ) ( ) .
( )

unfamiliar| familiar|x x
x

= − =
+ +1

1

1  (2)

Thus if f(x) is large and positive, the probability of recognition 
is near one, and if f(x) is large and negative, the probability of 
recognition is near zero. The midpoint  f(x) = 0 corresponds to a 
probability of recognition of 1/2 and is used as the dividing line 
between the classes.

We use the following linear discriminant function to distin-
guishing between recognized and unrecognized trials:

f w w xi i
i

N

( ) ,x = +
=
∑0

1  
(3)

where N is the number of features and w
i
 is the weight of the ith 

feature. This collection of weights represents the linear model that 
separates the two classes by means of a hyperplane. The goal then is 
to find the collection of weights that maximally separates the two 
classes. To accomplish this, a dataset is built from the initial experi-
mental session. These sessions include repeated presentations of all 
faces (novel, famous, and personal) in random order. The session 
data is decomposed into a set of feature vectors: xa

r
ra N, , ,= 1…  

for the familiar or recognized faces, and xa
u

ua N, , ,= 1…  for the 
unfamiliar faces. The session is then randomly and iteratively split 
into separate training and validation portions. The training data is 
used to find a set of weights which are then applied to the feature 
vectors in the validation data. The linear model is then applied to 
any subsequent experimental session for that participant.

An important factor to consider with dense array EEG (128 
channels at 250 Hz) is the large number of features in each evoked 
response. Since every channel contains some noise, it is easy to find 
a set of weights that perfectly fits the training data, but gives poor 
results on the validation data or subsequent sessions. Thus, a model 
is more robust if the majority of weights w

i
 are zero, so that only 

the most important (and stable) features are used. The approach 
described by Perkins et al. (2003) is to penalize any non-zero w

i
. 

Specifically, the weights are found by minimizing the regularized 
empirical risk function
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where λ
1
 and λ

0
 are regularization constants. The first two terms in 

the empirical risk function are the logarithms of the probability that 
the training set is correctly classified. The λ

1
 term favors features 

where small values of w
i
 distinguish well between the classes. The 

λ
0
 term simply counts the number of non-zero weights.
Given a fixed set of non-zero weights, L(w

k
) can be minimized 

using standard function minimization, while ensuring that any 
weight that was initially zero remains at zero. A concurrent greedy 
strategy decides which of these zero weights (if any) should be 
allowed to vary by choosing the weight with the largest value of 
|∂L/∂w

i
|. This weight is then added to the set of non-zero weights, 

and L(w
k
) is again minimized. The algorithm begins by allowing 

Time
500 ms

~2 min

Figure 1 | Schematic representation of experimental design. Color 
photographs of faces were presented in a rapid serial sequence (500 ms per 
face). Participants were asked to respond, via button press, only when a target 
face (Presidents Obama, Bush, and Clinton) appeared. Besides the target 
face, the stimulus ensemble included faces of novel individuals, famous 
persons selected by the participant and personal friends and family provided 
by the participant.

112

http://www.frontiersin.org/
http://www.frontiersin.org/perception_science/archive


Frontiers in Psychology | Perception Science   March 2011 | Volume 2 | Article 42 | 

Touryan et al. Real-time measurement of face recognition

p < 0.001] as well as between personal and novel/famous faces 
[F(1,21) = 58.13, p < 0.001]. There was no significant hemispheric 
difference in the LAS and RAS mean amplitudes [F(1,21) = 3.67, 
p = 0.07]. Likewise, there was no significant interaction effect 
between condition and hemisphere [F(2,42) = 2.33, p = 0.11]. 
This result confirms previous research describing the effect of face 
familiarity on ERP amplitudes over the frontal cortex during the 
300–500 ms time window (Curran and Hancock, 2007).

One important difference with our results is the exaggerated 
effect due to level of familiarity with the particular individual in 
each stimulus (i.e., faces of friends and family elicited the largest 
response). To quantify this we calculated the Pearson’s correlation 
coefficient between mean amplitude and stimulus type. Specifically, 
we calculated the correlation coefficient between stimulus type, sorted 
from least to most familiar (i.e., novel–famous–personal), and mean 
amplitude across all participants and each channel group: r = 0.445, 
p < 0.001. This indicates that a substantial part of the variance in the 
mean response is due to stimulus type, or level of familiarity with 
the stimulus, in addition to individual differences and scalp topogra-
phy. Typically, familiarity with the stimulus set is carefully controlled 
during a study phase where participants associate a novel face with 
some attribute (Yovel and Paller, 2004; Curran and Hancock, 2007; 
MacKenzie and Donaldson, 2007). This process constrains familiarity 
with the stimulus to that specific laboratory setting, thereby limiting 
the strength of subsequent recognition. By using faces of individuals 
previously known to the participant, we have maximized the ampli-
tude effect and validated the phenomenon in a more realistic context.

The mean amplitudes of the parietal LPS and RPS channel groups 
were compared over the later 500–800 ms window. Again, a repeated-
measure ANOVA with condition (novel, famous, personal) *hemi-
sphere indicated a main effect of stimulus type [F(2,42) = 50.68, 
p < 0.001]. Within-subjects contrasts were also significant at all levels 
[novel versus famous F(1,21) = 24.37, p < 0.001; personal versus 

22 participants, the average accuracy for the behavioral response 
was 81% with high and low scores of 92 and 60.4%, respectively. 
The average reaction time was 598 ± 53 ms (std).

ErP rEsults
Initial analysis focused on spatial regions of interest (ROIs) that 
were used in previous studies (Yovel and Paller, 2004; Curran and 
Hancock, 2007). In particular, we analyzed the same channel groups 
as Curran and Hancock (2007). The two anterior, superior channel 
groups located near the standard F

3
 and F

4
 sites were labeled LAS and 

RAS (see Figure 2 montage overlays). The two posterior–superior 
channel groups, which included the standard P

3
 and P

4
 sites, were 

labeled LPS and RPS. Both the familiarity response, or FN400, and 
recollection response we analyzed over all channel groups. Here the 
early familiarity response was analyzed from 300 to 500 ms, whereas 
the recollection response was analyzed from 500 to 800 ms. The 
increased time window (300 ms) for the recollection response was to 
compensate for the initial visual response elicited from the following 
stimuli (presented 500 ms after stimulus onset). Figure 2 shows the 
average ERPs for each channel group. In agreement with previous 
studies (Curran and Hancock, 2007; MacKenzie and Donaldson, 
2007), the anterior groups (LAS and RAS) showed a greater differ-
ence in the early familiarly response as a function of stimulus class 
(novel, famous, personal) relative to the posterior groups (LPS and 
RPS). For the later recollection response, all channel groups showed 
a clear differentiation with stimulus class. Average amplitudes for 
each channel group are detailed in Table 1.

We compared the mean amplitudes of the frontal LAS and RAS 
channel groups during the 300–500 ms window. A repeated-meas-
ures analysis of variance (ANOVA) with condition (novel, famous, 
personal) *hemisphere indicated a main effect of stimulus type 
[F(2,42) = 46.23, p < 0.001]. A within-subjects contrast confirmed a 
significant effect between novel and famous faces [F(1,21) = 23.57, 
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linear discriminant function that was applied to the evoked response 
to generate a score for each face. Figure 3 shows the grand-average 
topographic ERP for personal faces and the general classifier model 
overlaid on the same ERP. Essentially, the model is a set of linear 
weights applied to each channel at each time point in the evoked 
response. The weighted evoked response is then summed to generate 
the score. Here, the general model (used in every participant’s initial 
session) primarily isolates regions over the parietal cortex during 
the later epoch of the evoked response (500–600 ms). These spatial–
temporal regions align well with the maximal recognition response 
shown in Figure 2. Interestingly, the general model was built from 
a prior target-detection experiment (Curran et al., 2009; Touryan 
et al., 2010). In that experiment participants were asked to detect 
targets (people and vehicles) in an RSVP sequence of natural images. 
A machine learning algorithm (Perkins et al., 2003) was then used 
to identify features in the evoked response that maximally separated 
target from background images. Data from all participants, both 
right- and left-handed, was used to build this general classifier model, 
which captured the relevant components of the P300 complex.

We quantified the performance of the general classifier model 
in the face recognition task with receiver operating characteristics 
(ROC) analysis (Green and Swets, 1966). For each participant, we 
calculated the areas under the curve (AUC) for two conditions. 
First, famous and personal faces were combined and considered 
as familiar and compared against novel faces. Second, only per-
sonal faces were compared against novel faces. Figure 4 shows 
the performance of each participant using these two calcula-
tions. The classifier performed well for the majority of partici-
pants with an average AUC for the familiar versus novel of 0.827 
(min. = 0.583, max. = 0.957). The comparison between personal 
and novel was even more compelling with and average AUC of 
0.858 (min. = 0.580, max. = 0.998). This difference was statistically 
significant (p < 0.05, paired t-test).

Overall, the classifier performance was not correlated with behav-
ioral accuracy (r = −0.17, p = 0.46; Pearson’s correlation), rather 
it reflected the individual differences in the underlying response. 
Figure 5 illustrates this diversity in the recognition response over 
the right-parietal electrodes (RPS channel group). This area in par-
ticular, is critical to the general classifier model (see Figure 3). Not 
surprisingly, the performance of the general model was good for 
the first participant (participant 121, AUC = 0.91) but not for the 
second (participant 107, AUC = 0.69). It is clear from the average 
ERPs that the first participant had a large recognition response by 
500 ms, whereas the second participant’s recognition response was 
substantially delayed. The general classifier model, built from mul-
tiple participants, is heavily weighted toward the earlier response 

novel and famous F(1,21) = 58.48, p < 0.001]. The parietal channel 
groups did show a significant hemispheric difference [F(1,21) = 5.38, 
p < 0.05] with a larger mean amplitude over the right (RPS) channel 
group. However, there was no significant interaction effect between 
condition and hemisphere [F(2,42) = 2.34, p = 0.11]. Again, this result 
confirms and extends the prior work on the recollection response. As 
with the earlier FN400, the magnitude of the later parietal response is 
significantly correlated with level of familiarity (r = 0.554, p < 0.001; 
Pearson’s correlation). Importantly, this parietal recognition response 
was preserved even with the addition of the early visual response 
elicited from the following stimulus.

To compare the broad topography between the early and later 
windows, we again computed the mean amplitudes within the four 
channels groups shown in Figure 2. In this instance however, we 
used vector normalization (McCarthy and Wood, 1985) and only 
considered the ERPs associated with the personal stimulus cate-
gory. Specifically, the average amplitudes for each participant were 
calculated for the early and late windows described above. These 
amplitude distributions were normalized, creating 128 dimensional 
vectors with unit length. The montage averages were then re-cal-
culated using these normalized distributions. Repeated-measures 
ANOVA indicated that the early and late scalp distributions were 
significantly different. Both the time (300–500, 500–800 ms) *hemi-
sphere interaction, F(1,21) = 12.85, p = 0.002, and time *anterior/
posterior interaction, F(1,21) = 53.78, p < 0.001, show a significant 
effect. This result is consistent with separate-source theory of famili-
arity and recollection (Yonelinas, 2002; Curran and Hancock, 2007).

lInEar classIfIEr
In addition to the post-experiment ERP analysis described above, 
the participant’s neural response was scored via a classification algo-
rithm, in real-time, after each stimulus presentation (see Materials 
and Methods for details). In our case, the classifier consisted of a 

Table 1 | Amplitude means and Se.

Channel group Latency (ms) Novel Famous Personal

LAS 300–500 0.0 (0.0) 1.1 (0.1) 2.5 (0.1)

 500–800 0.6 (0.1) 1.1 (0.1) 2.6 (0.2)

RAS 300–500 0.2 (0.0) 1.4 (0.1) 3.1 (0.2)

 500–800 0.9 (0.1) 1.7 (0.2) 3.6 (0.2)

LPS 300–500 0.0 (0.0) −0.1 (0.1) 0.9 (0.2)

 500–800 0.6 (0.1) 1.6 (0.1) 3.5 (0.1)

RPS 300–500 0.3 (0.0) 0.1 (0.2) 1.1 (0.3)

 500–800 1.0 (0.1) 2.1 (0.1) 4.3 (0.1)

Figure 3 | Topographic maps of the evoked response. Upper column: grand-averaged ERP for personal (faces of friends and family) stimulus class. Lower 
column: same grand-averaged ERP weighted by the general classifier model (linear discriminant function).
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models, we again calculated the AUC for the familiar versus novel 
condition (Figure 6). In each case, the customized model resulted 
in a substantial improvement in classifier performance. Here, the 
average AUC was 0.945 (min. = 0.868, max. = 0.991) a significant 
improvement over the general model (p < 0.001, paired t-test). For 
an additional validation of these customized models, a subset of 
participants (n = 5) returned for a second experimental session. 
During this second session, the custom model was used for the real-
time classification of the evoked response. Again, the customized 
model significantly improved classifier performance (p < 0.05, paired 
t-test) with an average improvement of 0.06 AUC. The separate ses-
sions controlled for any effects of over-fitting or sensitivity to exact 
electrode placement. In sum, while the general model was able to 
capture the universal neural correlate of the recognition response, 
the customized models improve the performance by accounting for 
some of the individual variations in the evoked response.

dIscussIon
In this study we quantified the neural correlates of recognition 
evident the evoked response (Yovel and Paller, 2004; Curran and 
Hancock, 2007; MacKenzie and Donaldson, 2007). Unlike previ-
ous studies, the components of recognition, namely familiarity, 
and recollection, were not independently manipulated. However, 
it is clear from these results that both the mid-frontal FN400 
(familiarity) and later parietal component (recollection) are influ-
enced by knowledge of the individual depicted in the photograph 
(Paller et al., 2007). A common hypothesis describes familiarly as 
a sub-threshold process that does not achieve the level of contex-
tual memory recall associated with recollection (Yonelinas, 2002; 
Wixted, 2007). If this is the case, one might expect this process 
would saturate once recollection is achieved. Our results, however, 
indicate that the frontal FN400 is significantly larger for individuals 

(500–600 ms) and is thus negatively affected by this type of delay. 
These types of individual variations in the evoked response are a pri-
mary reason for the suboptimal performance of the general model.

To accommodate the individual variations in the evoked 
response, we built customized models for each participant after their 
initial session. The custom models were built in the same manner 
as the general model described above (see Materials and Methods 
for details). To compare classification performance between the 
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performance. Scatter plot of the area under the curve (AUC) for each 
participant. The x and y axes represent the two comparison conditions: familiar 
(personal and famous) versus novel and personal versus novel. Red diamonds 
indicate the individual participants whose ERPs are shown in Figure 5.
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participants) and a custom model (unique to each participant). Blue diamonds 
indicate the individual participants whose custom model was validated with a 
second, independent experimental session.
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Brain–machine interfaces are one of the more common applica-
tions that utilize the evoked response (Sellers et al., 2006). Many 
BMI technologies rely on classification of the occipital–parietal 
P300 signal, similar to the ERPs shown here (Krusienski et al., 2006). 
While this classification is typically designed to identify stimuli 
that are task-relevant (e.g., a particular letter or type of object), 
the recognition response produces a similar signal. While the BMI 
applications of spelling out letters to form words (Krusienski et al., 
2006; Klobassa et al., 2009) or finding relevant targets in imagery 
is clear (Luo and Sajda, 2009; Touryan et al., 2010), one can also 
imagine applications that employ the recognition response as either 
a memory probe or a metric for learning (i.e., what items has the 
participant committed to memory). This study indicates that, not 
only is the recognition response distinguishable within single-
trials (Parra et al., 2002), but that EEG classification techniques 
developed for visual categorization tasks can be easily adapted to 
recognition tasks.

Likewise, the differential neural activity based on memory 
(referred to as Dm) could be adapted for the same purpose. Previous 
studies have shown an enhanced posterior positivity in the ERP 
(with latency similar to the recognition response) for word stim-
uli that are subsequently remembered (Paller and Wagner, 2002). 
Yovel and Paller (2004) showed a similar Dm effect during a face-
occupation memory task. Here there was a clear distinction in the 
evoked response for faces that were later remembered as opposed 
to faces later forgotten. In other words, the evoked response elicited 
from the initial exposure to a stimulus is predictive of subsequence 
memory for that stimulus. This intriguing signal offers the prospect 
for applications that directly measure memory encoding. Ideally, 
such an application could use this signal to identify information 
that will either be remembered or forgotten. In addition, this type 
of tool could be useful for exploring the neural mechanisms of 
memory at the level of a single object, word or atom of information. 
Such a memory encoding tool could be useful when designing BMI 
systems that seek to maximize or augment human performance.

personally known by the participant than for celebrities selected 
by the participant. Here, the entire recognition response is a not a 
binary operation but rather a process that reflects the participant’s 
level of experience with the stimulus. While this study does not 
resolve the debate over neural correlates of familiarity and recol-
lection, it supports the conclusion that the early and late compo-
nents of the recognition response behave in a similar continuous 
or graded fashion.

Our results also indicate that magnitude and time course of the 
recognition response remains robust even when the stimuli, color 
photographs of faces, are much less controlled relative to previous 
studies. In our experiment, faces were of different genders and 
ethnicities, with large variations in lighting, angle, background, and 
resolution. Indeed, this diverse ensemble was necessary to control 
for the variation in participant-provided imagery. Likewise, the ERP 
associated with each stimulus category clearly shows the early and 
late components of the recognition response, even though the fol-
lowing stimulus was presented before the complete evolution of the 
response. These results offer an increased level of ecological validity 
to the previously described recognition response and demonstrate 
the utility of the signal for applications outside the laboratory.

In previous studies the level of familiarity was carefully con-
trolled within the laboratory session. Typically, participants would 
encode novel stimuli (words or faces) during an explicit study 
phase. This process mitigates, to some degree, influences external 
to the experimental session and is often necessary for controlling or 
counterbalancing various cognitive processes (Gabrieli, 1998; Paller 
et al., 2007). However, one consequence of this is an attenuation 
of the recognition signal due to the capacity or limits of human 
memory. In the real world, recognition is often clear and unam-
biguous, especially the recognition of individuals we encounter 
on a daily basis (friends, coworkers, family members, etc.). For 
applications that seek to use the recognition signal, evidenced in 
the evoked response, it is important to quantify the magnitude of 
the effect in a more realistic setting.
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Motion perception in humans critically depends on area hMT+ 
(also known as V5, for a review see Born and Bradley, 2005). 
Extensive research on its equivalent in monkeys (MT) has shown 
that neurons in this region are selective for the direction and speed 
of moving stimuli. Direction sensitive neurons show columnar 
organization, with columns of smoothly changing preferred direc-
tions abutting columns of the opposite preferred direction (Born 
and Bradley, 2005). Relating neuronal characteristics to behavior, 
neurometric functions of single-neurons were shown to correlate 
with psychometric functions in a direction discrimination task 
(Britten et al., 1992). More evidence for a direct link between MT 
neuronal properties and perception comes from studies which show 
that microstimulation can considerably bias performance (Cohen 
and Newsome, 2004) and that deteriorated neuronal speed and 
direction selectivity accompanies aging (Yang et al., 2009; Liang 
et al., 2010).

In humans, hMT+ lies in an anatomically variable region and 
shows variation in histological and functional anatomy across indi-
viduals (Dumoulin et al., 2000; Huk et al., 2002; Malikovic et al., 
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2007). Studies exploring neurophysiological properties of hMT+ 
have worked with exogenous variation of the stimulus (e.g., coher-
ence of movement) to describe related modulations of the blood 
oxygen level dependent (BOLD) signal. Other studies have consid-
ered endogenous signal changes in hMT+ during the presentation 
of ambiguous stimuli, reflecting switches between percepts (for 
example Castelo-Branco et al., 2002; Muckli et al., 2002). The latter 
line of research shows the informative value of looking at endog-
enous fluctuations in hMT+, an approach we took in the current 
study to describe inter-individual physiological differences. While 
structural differences in the visual stream have been shown to cor-
relate with individual psychophysical thresholds (Kanai and Rees, 
2011), the connection between individual physiological properties 
of hMT+ and inter-individual differences in psychophysical tasks 
is less explored.

On a neuronal level, a possible reason for different perceptual 
sensitivity for direction could be the relative width of directional 
tuning curves. Sharper tuning curves lead to an unambiguous pop-
ulation signal in hMT+, which could be reflected in more distinct 
patterns for different directions of motion. On the behavioral level, 
this might translate into lower psychophysical thresholds when 
an individual has to make fine discrimination between different 
directions of motion (Purushothaman and Bradley, 2005; Liang 
et al., 2010). A potential candidate for revealing such physiological 
differences in fMRI is multi-voxel pattern analysis (MVPA) which 
is able to resolve fine grain patterns of hMT+ organization invisible 
to univariate techniques (Kamitani and Tong, 2006). Individual 
differences in decoding accuracy might indicate the distinctiveness 
of the hMT+ population pattern and correlate with perceptual 
performance.

Another method which has been recently suggested as a good 
gauge for inter-individual comparisons is variability analysis of 
the BOLD signal (Garrett et al., 2010; Mohr and Nagel, 2010; 
Samanez-Larkin et al., 2010; Mennes et al., 2011). Measurements 
of variability aim to describe endogenous background fluctua-
tions in the signal, which appear independent of the timecourse 
of the experimental manipulation. An important confound for 
accurately measuring such endogenous variability is that the 
relationship between the stimulus and the BOLD signal has to 
be described as precisely as possible. Only if this is achieved 
can one investigate if the observed physiological variability has 
functional significance. A growing body of studies suggests that 
neurophysiological variability patterns can be understood as 
(functional relevant) “signal” rather than (function disturbing) 
“noise” (Faisal et al., 2008; McDonnell and Abbott, 2009; Garrett 
et al., 2010). Population signal variability in hMT+ could have 
different effects on performance accuracy: higher overall vari-
ability levels in hMT+ could be detrimental for discrimination 
performance if they would have an destabilizing effect on the 
hMT+ population signal as some authors suggest for the dopa-
mine system (Winterer et al., 2006; Samanez-Larkin et al., 2010). 
Alternatively, a certain level of variability has been described 
to improve the sensitivity of systems, e.g., by stabilizing syn-
chronized oscillating populations (Ermentrout et al., 2008), 
an observation described as stochastic resonance (Emberson 
et al., 2007; McIntosh et al., 2008; McDonnell and Abbott, 2009; 
Garrett et al., 2010).

In the present study, we set out to characterize brain activity that 
correlates with inter-individual variability in the accuracy of visual 
motion perception. We used multivariate pattern classification (PC) 
to describe hMT+ population patterns and we characterized the 
variability of the hMT+ BOLD signal during perception of motion 
in different directions. We investigated if these measures can serve 
as sensitive indicators for inter-individual performance differences 
on a motion direction discrimination task.

MaterIals and Methods
PartIcIPants
Fifteen healthy subjects gave written informed consent to partici-
pate in this study. The study was performed in accordance with the 
Declaration of Helsinki and approved by the ethics committee of 
the medical faculty of the Ludwig-Maximilians University Munich. 
Handedness was determined according to a 10-item excerpt of the 
“Handedness Inventory,” coding the degree of handedness (+100: 
exclusively right handed, −100: exclusively left handed; Oldfield, 
1971). It resulted in +100 in 13 subjects, one with +64 and one with 
+81. All subjects had normal or corrected-to-normal visual acuity as 
determined binocularly with a Snellen table (0.8 on 6 m or better). 
None of the subjects were taking medication or had any history 
of neurological disease. All subjects understood the instructions 
without difficulty. One subject was excluded from the MR analysis 
due to excessive motion resulting in a final cohort of 14 subjects (age 
range: 21–27, 6 female). These 14 subjects consecutively also took 
part in the psychophysical task on direction discrimination. Three 
subjects were excluded from psychophysical data analysis, as their 
measurements did not fulfill stability criteria as described below.

PsychoPhysIcs
Apparatus
Stimuli were generated by a Fujitsu Siemens Pentium(R) 4 CPU at 
a frame rate of 85 Hz and displayed on a 40-cm × 30-cm Conrac 
Elektron CRT monitor driven by a NVIDIA Quadro Pro2 graphics 
card. The monitor resolution was set to 1280 × 1024. White and 
black pixel had a luminance of 25.3 and 0.1 cd/m2, respectively, 
resulting in a maximum Michelson contrast of 99%. Experiments 
were conducted in a darkened room and subjects were seated in 
60 cm distance from the monitor.

Stimulus
Stimuli were programmed in Matlab 7.3 using the Psychophysics 
Toolbox extensions (Brainard, 1997). Coherent translational flow 
fields were presented in a circular aperture (11.4° × 11.4°), contain-
ing 300 white dots (diameter: 0.1°) at a time on a black background. 
All dots of one stimulus moved in a upward direction either verti-
cally or at a small tilt from the vertical with a speed of 8°/s. Dots 
moving out of the aperture reappeared at new random positions 
(at the bottom of the aperture). Stimulus intensity was defined as 
the degree of tilt of the match stimulus (clockwise or anticlockwise) 
in respect to the upward (0°) reference stimulus.

Procedure
A two-alternative-forced-choice task was used to determine individ-
ual thresholds and psychometric functions of direction sensitivity. 
Reference stimulus and match stimulus were presented  consecutively 
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To ensure data reliability, those subjects whose thresholds 
exceeded the fourth quartile were excluded from further analysis 
(2 of 14). Subjects were furthermore excluded if the fit of their 
psychometric function did not meet goodness-of-fit criteria in the 
sensitivity analysis. Summary statistics yielded good fits between 
the psychometric function and the data for 11 of the 12 remaining 
subjects. Ninety-five percentage confidence intervals (CI) were 
calculated for the thresholds of each subject using the bootstrap-
ping method (sampling with replacement, 1999 repetitions).

A one-way Kruskal–Wallis ANOVA tested for inter-individual dif-
ferences in the behavioral thresholds, using the bootstrapped results.

Averaged reaction times (RT) were calculated as the arithmetic 
mean over the whole constant stimuli experiment. RT consistency 
was calculated as the SD over the experiment.

MagnetIc resonance IMagIng
Experimental stimulus and procedure
Visual stimuli were projected with a LCD projector on a screen 
placed behind participants in the MR-scanner, which they viewed 
through a mirror placed above them at 45°. Vizard 3.0 (Worlviz)1, 
was used to produce coherent translational flow fields presented in 
a circular aperture (300 dots per display, aperture size 11.4° × 11.4°). 
Participants watched flow fields in one of four possible directions 
(0°, 90°, 180°, and 270°), shown in a randomized order, while fixat-
ing on a cross in the middle. Using a block design, 18 s task peri-
ods were interleaved with 10 s rest periods, during which subjects 
continued fixating. One block consisted of four trials, in which 
direction of motion was kept constant. Subjects performed a two-
alternative forced-choice speed discrimination task, to keep their 
attention directly related to the movement of the stimulus while 
incidentally coding stimulus direction. In each trial, two  consecutive 

(stimulus duration: 1.5 s, inter stimulus interval: 0.25 s, intertrial 
interval: 1.25 s). While fixating on the center of the aperture, sub-
jects indicated with a buttonpress whether the second stimulus 
(match) was tilted clockwise or anticlockwise with respect to the 
first, upward moving reference stimulus (compare Figure 1A). After 
initial training with feedback (60 trials), preliminary thresholds were 
determined by two repetitions of a 3-down-1-up adaptive double-
staircase method (140 trials). The staircase measure was defined as 
stable if the slope of the linear fit from the last 12 reversals was less 
than 0.02. All but one subject achieved stable staircase measurements 
(this subject belonged also to the outliers in the measurement of 
constant stimuli, defined as subjects whose threshold exceeded the 
fourth quartile, see 2.2.4). Consecutively, the method of constant 
stimuli was used to sample the psychometric function, the range of 
sampling was set around the threshold determined by the staircase 
measurements. Tilt was varied between seven different intensities 
and each intensity was presented in 30 trials, resulting in a total of 
210 trials. Subjects answered following the second stimulus and 
both speed and accuracy of the response were emphasized. Response 
times were measured from the moment the second stimulus ended 
until the moment of response. No feedback was given in staircase 
or constant stimulus measurements.

Data analysis
Data was analyzed using psignifit toolbox (Wichmann and Hill, 
2001a,b) in Matlab 7.3. Final thresholds were obtained by fitting 
the percentage of correct responses determined by the method of 
constant stimuli with a cumulative Weibull distribution using a 
maximum likelihood procedure. Free parameters were threshold, 
slope, and lapse rate, which was kept variable between 0 and 0.5 
(Wichmann and Hill, 2001b). Thresholds were taken as the 0.5 
cut-off from the fitted function, corresponding roughly to a per-
formance level of 75% correct (see Figure 1B).

A B

C

FIguRe 1 | Setup and results of the psychophysical experiment. (A) A 
coherent flow field of white dots was moving in an upward vertical direction 
followed by a match stimulus moving upward with a slight tilt clockwise or 
anticlockwise from vertical. Participants responded following the match stimulus. 
One trial is depicted. (B) Psychometric function of one representative subject. 
Percent correct responses are plotted as a function of the deviation (in degree) of 

the match stimulus from the reference stimulus. Thresholds were taken at the 
mid-point of the psychometric function (t0.5, shown by dotted lines). (C) Subjects 
yielded different thresholds. Shown are individual t0.5 thresholds with errorbars 
depicting the 95% confidence intervals. Subjects which were not found to be 
different in a post hoc test are shown with gray dotted lines. deg, degree tilt from 
vertical; ISI, interstimulus interval; CW, clockwise; ACW, anticlockwise.

1http://www.worldviz.com/
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A separate fMRI experiment was conducted to functionally 
localize hMT+ in each subject, according to previously established 
procedures (Morrone et al., 2000; Huk et al., 2002). Briefly, a stimu-
lus of alternating moving and stationary dot patterns was presented 
in a circular aperture with interleaved rest periods. Moving dots 
(velocity: 17.1°/s) traveled toward and away from the fixation cross 
for 16 s, followed by a 16-s stationary dot field, and a 20-s blank 
screen. Subjects fixated at all times.

fMRI acquisition
Imaging data were acquired on a 3T MR-Scanner (GE Sigma 
HDx) with a standard 8 channel head coil using an echo-planar 
imaging sequence (TR: 2 s, echo time: 40 ms, flip angle: 70°) to 
acquire 25 slice volumes (interleaved acquisition, no gap), cen-
tered on the area of interest (medial temporal lobe). Voxel size was 
1.75 mm × 1.75 mm × 2.4 mm. In total, 8 runs of 225 volumes for 

stimuli were shown, a reference speed of 8°/s and a match stimulus 
of faster speed randomly distributed to the first or second presenta-
tion (stimulus duration: 1.5 s, interstimulus interval: 0.25 s, inter-
trial interval: 1.25 s, as for the psychophysical stimulus). Subjects 
reported the  order-position of the faster stimulus with a buttonpress 
(see Figure 2A). For keeping task difficulty constant, individual speed 
discrimination thresholds were kept at a task performance of about 
80% correct with an adaptive staircase procedure (QUEST, Watson 
and Pelli, 1983). Subjects performed 8 runs for a total of 32 repetitions 
per direction. Participants practiced the task outside the MR-scanner 
until they reached a satisfactory performance level (2 runs in which 
participants had to be error-free for 12 trials (fixed velocity differ-
ence) after which a staircase procedure started, on which subjects had 
to demonstrate a stable 80% correct threshold for at least 12 trials). 
They also  practiced inside the bore of the MR-scanner, until they 
were comfortable conducting the task in a supine position.

A B

C D

FIguRe 2 | Setup and hMT+ classification results of MR experiment. (A) 
Experimental setup. Coherent flow fields of white dots moved in one of four 
directions (0°, 90°, 180°, and 270°, clockwise from upward) while subjects 
performed a speed discrimination task. One trial is depicted. Blocks consisted of 
4 trials and runs of 16 blocks. Direction of motion was consistent within blocks 
and differed between blocks. (B) Example of an individual hMT+ t-mask as 

created with the functional localizer experiment. (C) Classification accuracy in 
hMT+ with varying number of voxels used in the mask. Classification 
performance averaged over subjects is shown. Note that the accuracy plateaus 
at 120 voxels. (D) Individual classification accuracy in hMT+ for each subject with 
a t-mask of 160 voxels. The dotted line indicates chance performance. The 
shading shows different probability levels as determined by permutation testing.
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Generating a stability index to quantify head motion
An index was designed to assess data stability for individual sub-
jects. Head-movement causes image shifts between classifier train-
ing and test periods which are detrimental for MVPA. Specifically, 
a movement in the middle of the acquisition is more detrimental 
than a movement at its start or end because there will be more 
cross-validation iterations in which the training set contains vol-
umes misaligned with the test set’s volumes. Our stability index 
(SI) roughly represents the longest stable stretch of head orien-
tation during data acquisition. For each volume, the location of 
the center of hMT+ is estimated from the realignment parameters 
generated during image preprocessing. Each volume is compared 
with all others. At each comparison (e.g., between volumes i and 
j), the distance, d

ij
 between the estimated locations of hMT+ is 

calculated and a number, A
ij
, assigned describing how aligned the 

pair of volumes are. This alignment score is

 

A
d

ij

ij

=
+
1

1
 (1)

The similarity S
i
 of each volume with all the other volumes is 

summarized by summing over all of its alignment scores:

 

S Ai ij
j

= ∑
 (2)

Finally, the whole recording session is given a SI, which is the 
score for the volume with the highest similarity score:

 SI max= i iS  (3)

Figure 3A illustrates how the similarity value varies for different 
time points over a fictitious series of volumes. The example shows 
little head motion during the longest part of data acquisition and 
a single large head motion toward the end. Similarity values for 
volumes in the long stable period are higher than for those after 
the movement, because the volumes in the former are similar to 
many more timepoints than a volume taken after the movement.

Estimating BOLD signal statistics using a generative model
Variability of the timecourses of the 160 voxels from the above 
described hMT+ and V1 masks was assessed with a genera-
tive model for stimulus (SDstim) and rest periods (SDrest) (see 
Figure 4B for an illustration of the model). In addition, variability 
was estimated in a white matter region to quantify the contribution 
of non-physiological variability to noise, as those regions show little 
change in local metabolism (Rostrup et al., 2000). Spheres of 80 
voxels in each hemisphere were selected from the anterior portion 
of the corona radiata (CR), as determined by the Harvard–Oxford 
structural atlas (see Figure 3C for an example).

Timecourses were high-pass filtered before model analysis. The 
temporal properties of the BOLD signal were described by mod-
eling all eight events within a stimulus block as box-cars (1.25 s 
duration), which is similar to modeling them as delta functions as 
used in event-related designs. Box-cars were then convolved with 
the canonical hemodynamic response function (HRF), to account 
for the latency of the BOLD signal. A mixing parameter a

i
 was gen-

erated by this function and assigned to each volume i, describing 
the proportion of the signal recorded at that timepoint that was 
provided by the stimulus periods.

the experimental condition and 1 run of 132 volumes for the func-
tional hMT+ localizer were acquired in each subject. In addition, a 
T1-weighted anatomical volume was acquired.

Defining hMT+ and V1 masks
To define functional regions of interest, fMRI data from the func-
tional localizer were realigned to the first volume of the timeseries 
and smoothed with a kernel of 4 mm FWHM as implemented in 
SPM8 (Wellcome Department of Imaging Neuroscience, London, 
UK). Data were processed in individual space. A general linear 
model analysis comprising regressors for motion and stationary 
conditions was performed. Contrasting motion and stationary 
regressors identified clear delineated clusters for hMT+ (FWE, 
p < 0.05 in all but two subjects, who showed hMT+ clusters only 
at p < 0.001 uncorrected). See Figure 2B for an example. The clus-
ters from the two hemispheres were combined to make a hMT+ 
mask of voxels for further analysis.

The V1 mask was created using anatomical and functional con-
straints. V1 was determined anatomically using FreeSurfer’s cortical 
parcelation algorithms in every subject, based on anatomical con-
strains described by Hinds et al. (2008). The final mask consisted of 
voxels within this anatomically defined V1 which showed significant 
activation in the functional localizer, using the motion–stationary 
contrast.

Multivariate pattern classification and preprocessing
We used the Princeton Multi-Voxel Pattern Analysis Toolbox 
(MVPA)2, to test whether voxels within hMT+ or V1 contained 
information about the direction of the stimulus. Data were pre-
pared by unwarping, realigning (SPM8), and detrending (MVPA) 
the timeseries to remove linear trends and high-pass filtering (cut-
off: 128 s) to remove low frequency noise. Z-scoring of response 
amplitudes for stimulus periods of individual voxels was applied 
to minimize baseline differences across runs and to reduce the 
impact of outliers. To account for the latency of the hemodynamic 
response, all stimulus onset times were shifted forward in time 
by 4 s as described previously (Kamitani and Tong, 2006). Data 
were neither smoothed nor spatially normalized, to avoid signal 
degradation and preserve inter-individual differences. The nine 
image volumes from each block of four trials were combined to 
generate a single average volume for each block.

The 160 voxels with the highest t-values in the functional 
localizer experiment were selected from the hMT+ or V1 masks 
respectively for decoding analysis. We tested different mask sizes, 
but found no improvement in classification accuracy beyond 160 
voxels (see Figure 2C).

The lSVM (linear support vector machine) classifier was chosen 
as it provided stable results across participants without overfitting. 
It was used with a fixed cost, c = 1. Classification used standard 
leave-one-out cross-validation, in which the data set was divided, 
with seven runs in the training set and one run in the testing set. 
The test was repeated eight times, with each different run being the 
test set (Pereira et al., 2009). The accuracy scores reported represent 
the proportion of blocks in which the classifier correctly decoded 
directions.

2www.pni.princeton.edu/mvpa
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p x Ni ci ci( ) = ( )m s, 2

 (6)

Assuming independent and identically distributed sampling, 
the likelihood of the whole timeseries is:

 
p x N ci ci

i
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 (7)

The log likelihood therefore is:
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m
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The four parameters were estimated by maximizing this function 
with respect to each of them.

For the generative model, both stimulus and rest periods were 
modeled as gaussian distributions (stimulus: mean m

s
, variance 

ss
2 ; rest: mean m

r
, variance sr

2 ). The proportion of each of these 
distributions included in the final signal was estimated using maxi-
mum likelihood estimation (MLE). The estimate of the signal for a 
particular time point was calculated by finding the weighted sum 
of the two distributions. The mean and variance of the sum of two 
independently distributed gaussian random variables was found 
by adding the means and variances of the two distributions. So the 
mean and variance of the new distribution for time point i could 
be written as:

 
m a m a mci i s i r= + −( )1

 (4)

 
s a s a sci i s i r

2 2 2 2 21= + −( )
 (5)

this allows one to write the probability of value x
i
 as

A B

C D

FIguRe 3 | Origins of classification variability. (A) Schematic of the stability 
index. The upper plot shows simulated movement of a participant across a 
scanning session. The lower plot indicates how similar each of the volumes is to 
all the other volumes in the scan. For example the last few volumes are very 
dissimilar to the rest of the scan. The value of the volume with the highest 
similarity score is used as this participant’s overall stability index. (B) Stability 

index and hMT+ classification accuracy. The stability index was positively 
correlated with decoding accuracy. (C) Region of interest in white matter. The 
region is defined by placing two spheres of 80 voxels each in the anterior portion 
of the corona radiata (CR). (D) Signal variance in white matter and hMT+ 
classification accuracy. The individual SD during block-periods in CR was 
negatively correlated with the decoding accuracy in their hMT+.

Wutte et al. hMT+ variability reflects psychophysical performance

Frontiers in Psychology | Perception Science  August 2011 | Volume 2 | Article 185 | 123

http://www.frontiersin.org/perception_science/
http://www.frontiersin.org/perception_science/archive


Methods. Slopes of the individual psychometric functions were het-
erogeneous as well and showed a negative correlation with thresh-
old (the higher the slope, the lower the threshold). The width of 
subjects 95% CI also differed between subjects. Average RT and RT 
consistency varied between subjects (max: 460 ms, min: 176 ms, 
SD: 67 ms, and SD max: 149 ms, SD min 57 ms respectively). RT 
means or variability did not correlate with individual direction 
discrimination thresholds.

Pattern classIfIcatIon Is confounded by resIdual head 
MotIon and cannot exPlaIn PercePtual dIfferences
Replicating previous results (Kamitani and Tong, 2006), the linear 
SVM was able to discriminate between the four motion directions 
in hMT+ with above chance accuracy (m = 53 ± 13%, p < 0.002 using 
permutation testing) in all but one participant (see Figure 2D). 
Also consistent with previous results, classification accuracy was 
still higher in V1 (m = 65 ± 12%, p < 0.001).

To test if individual classification scores in hMT+ or V1 were 
related to performance on the direction discrimination tasks, a 
correlation analysis between scores and psychophysical thresholds 
(t0.5) was performed which showed no significant effect (hMT+: 
r = 0.15, p = 0.64; V1: r = 0.16, p = 0.64).

To investigate possible reasons for inter-individual differences 
in classification scores, we looked at its correlation with non-phys-
iological noise of the MR signal. Classification accuracy correlated 
significantly with variability (SDstim) in the white matter region 
CR (r = −0.59, p < 0.03, Figure 3D), from which we concluded that 
the level of global noise determined the differences in decoding 
success rather than local hMT+ noise.

To test this, we looked at one of the largest methodological con-
tributors to variability in MR signal: head-movement (Friston et al., 
1996; Lund et al., 2005). A strong correlation was observed between 
the SI reflecting stability of the signal and classification accuracy 
(r = 0.62, p < 0.02, Figure 3B).

This implies that noise induced by subject movement is the pre-
dominant cause for differential classification accuracies in subjects. 
Being this sensitive for head-movement artifacts, PC differences 
between subjects are unlikely to be a viable method to investigate 
physiological differences between subjects.

a generatIve Model for assessIng bold sIgnal varIabIlIty
We used the arithmetic difference between SD of block and rest 
periods (SDdiff) to look at variability of the MR signal in hMT+ 
and V1 in individual participants. Being a relative measure, it was 
assumed to be largely resistant to movement induced artifacts and 
background scanner noise, as those would influence both periods 
to the same extend.

Considerably more variability was found in the hMT+ region 
than in a white matter region (CR), both within stimulus blocks, 
and rest periods (SD was 30% higher in hMT+ and V1 than in 
CR). The SDdiff was also found to be larger in hMT+ and V1 than 
in CR (36%).

Importantly, subjects with a larger noise difference in hMT+ 
between rest and blocks did not have larger SI scores (r = −0.4810, 
p = 0.0695) which demonstrates that SDdiff is less affected by head 
motion.

Finally, the arithmetic difference between the SD within stimulus 
periods (s

s
) and within rest periods (s

r
) was calculated for each 

participant (SDdiff).

 Adaptation model. The above model is not the only conceivable 
description of the signal timecourse. An alternative model was 
tested to assess the stability of our results yielded with the first 
approach. In this alternative model, possible signal adaptation in 
hMT+ over a block was accounted for by introducing a exponential 
decay term with a time constant of 5 s. This reduced the (pre-HRF 
convolved) box-car signal exponentially while the stimulus was 
applied, and allowed it to recover using the same exponential func-
tion during the stimulus-off periods. A maximum reduction of 14% 
in the BOLD response due to the adaptation was assumed, based 
on electrophysiological studies (Petersen et al., 1985; Krekelberg 
et al., 2006). The model was tested at four values of the time con-
stant: 5, 10, 20, and 40 s. All other parameters of the model were 
kept constant.

assessIng eye MoveMents froM fMrI data
Although subjects were instructed to fixate, we were concerned 
that systematic eye movements occurred. It has been shown pre-
viously that eye movements can be estimated from fMRI data by 
analyzing the timecourse of fMRI signal in the vitreous of the eye 
(Beauchamp, 2003). We took this retrospective approach in those 
subjects in which the eyeball was partially contained in the field 
of view (FOV; in 3 of 11 participants the eyeballs were to 33, 40, 
and 46% contained in the FOV, see Figure 5). We defined a region 
of interest for the available section of the eyeball using FreeSurfer. 
The mean timecourse was extracted using marsbar in SPM8. To 
estimate the dependency between eyeball signal and the rest of the 
brain, we used the eyeball timecourse as regressor in a GLM, as has 
been described previously (see Muckli et al., 2009 supplementary 
material).

correlatIon of behavIoral data wIth Mr MeasureMents
A Pearson correlation was calculated between individual thresholds 
from the behavioral experiment (t0.5) and the individual noise 
difference between block and rest periods as determined by the 
generative model (SDdiff). Additionally, a Spearman correlation 
was performed which also showed a significant correlation. The 
robustness of the significant Pearson correlation was estimated 
using bootstrapping, sampling with replacement with 2000 itera-
tions, to produce 95% CI for the r distributions.

results
Inter-IndIvIdual varIabIlIty In dIrectIon dIscrIMInatIon
On average, direction discrimination thresholds were found to 
be similar to previous results (Westheimer and Wehrhahn, 1994). 
We observed significant differences in discrimination thresholds 
between subjects (Kruskal–Wallis ANOVA, p < 0.001). Post hoc 
analysis also revealed similarities in subgroups of subjects, in three 
subject pairs (see Figure 1C: there was no significant difference 
between subject 1 and 4, between subject 3 and 11 and between 
subject 6 and 8). Note that data stem from 11 subjects, as three 
subjects did not reach reliability criteria explained in Materials and 
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varIabIlIty Patterns In hMt+, but not v1, correlate wIth 
dIrectIon sensItIvIty
In the final analysis, we tested whether inter-individual variability 
of perceptual performance was correlated with variability char-
acteristics of the hMT+ signal. As can be seen in Figure 4A, we 
observed a significant correlation between psychophysical thresh-
old and SDdiff: participants with a greater SDdiff showed better 
behavioral performance (smaller thresholds) compared to partici-
pants with a smaller SDdiff (r = −0.61, p < 0.046, bootstrap CI 95% 
for r: −0.87 to −0.23). In other words, the larger the difference in 
variability (stimulus block minus rest), the lower the threshold the 
respective subject achieved. Similar correlation results were found 
for estimating SDdiff with an alternative model taking into account 
adaptation effects within blocks (r = −0.59, p < 0.058, bootstrap CI 
95% for r: −0.84 to −0.20).

To investigate the specificity of this effect, we also correlated 
SDdiff in the CR with the psychophysical thresholds which was 
not significant (r = −0.35, p = 0.29, Figure 4C, lower panel). To test 
another region involved in direction coding, we correlated SDdiff 
of V1 with psychophysical thresholds. We did not observe a sig-
nificant correlation in V1 neither (r = −0.44, p = 0.181, Figure 4C, 
lower panel).

When the MR-blocks were split into those with stimuli of dif-
ferent directions, the effect remained significant for vertical but 
not horizontal motion (see Figure 4C, upper panel). Given that the 
stimulus in the psychophysics experiment were visual flow fields 
moving vertically upward, this might indicate that we are observing 
a phenomenon specific for vertical motion. Alternatively, one could 
interpret this observation as showing a general bias for vertical 
versus horizontal motion in hMT+. Further studies are necessary 
to clarify this point.

eye MoveMent analysIs
The hMT+ is known to be influenced by eye movements (Dukelow 
et al., 2001; Acs and Greenlee, 2008). For this reason we instructed 
subjects to fixate, with which they reported no difficulties. We can 
not exclude however, that eye movements occurred. To investigate 
this, we used a retrospective approach to assess, if the signal time-
course of the eyeballs taken from the EPI images correlates with 
fluctuations in hMT+. In the three subjects analyzed, we did not 
observe significant correlations of eyeball signal timecourse with 
fluctuations in area hMT+ (see Figure 5).

dIscussIon
We demonstrate in the current study that inter-individual differ-
ences in performance on a direction discrimination task of visual 
motion are correlated with signal variability characteristics of 
hMT+ but not V1. We furthermore show that PC, though being 
able to decode direction from hMT+ within subjects, is a poor tool 
to describe inter-individual differences. Assessing individual BOLD 
signal variability difference in stimulus and rest periods is shown 
to be a better measure for such comparisons, being less influenced 
by non-physiological noise.

Differences in psychophysical thresholds between subjects 
show that perceptual sensitivity for motion direction is variable 
even within a homogeneous sample. Worse or better perception 

of motion stimuli in subjects with normal visual acuity has been 
suggested to reflect changes in higher level visual cortical areas 
rather than in the peripheral apparatus (Halpern et al., 1999).

Relatively little is known about hMT+’s contribution to worsen-
ing of direction perception (Bennett et al., 2007; Billino et al., 2008), 
although concepts like the “magnocellular theory” behind learning 
disorders like dyslexia attribute a partial cause of the phenomenon 
to perceptual malfunctioning in the dorsal visual stream (Stein, 
2001). Other authors already suggested that BOLD signal variability 
over the whole brain (Garrett et al., 2010) or in specific regions like 
the nucleus accumbens (Samanez-Larkin et al., 2010) might have 
predictive value for degradation of function during aging. Our 
method of characterizing signal variability in hMT+ could help 
the clinical understanding of degraded motion perception in aging 
or disorders like dyslexia.

Better performance in the psychophysical task suggests higher 
perceptual sensitivity in that particular participant and thereby 
most likely more effective processing in the brain. Our results show 
that variability characteristics in hMT+ but not V1 correlate with 
psychophysical thresholds. This might indicate that we observe 
individual differences not at the initial encoding of the visual infor-
mation in V1, but rather during a more complex motion process-
ing step in hMT+, an area thought to drive perceptual decisions 
in higher cortical areas.

We find lower thresholds correlating with larger variability dif-
ferences between stimulus and rest periods which mean higher 
variability levels in stimulus periods (but see the below discussion 
on model bias as a limitation to this claim). How could increased 
random physiological signal be beneficial for the sensitivity of a sys-
tem? An influential theory based on the phenomenon of stochastic 
resonance advertises “[...]randomness that makes a non-linearity 
less detrimental to a signal.” (McDonnell and Abbott, 2009). The 
theory asserts that a certain level of noise can actually be beneficial 
for signal transmission. Studies have shown that a certain level 
of endogenous noise can make synchronized oscillating popula-
tions more stable (Ermentrout et al., 2008; Ghosh et al., 2008) and 
benefits the emergence of fast oscillations in local field potentials 
(Brunel and Wang, 2003). For us this means that detecting higher 
levels of endogenous variability in the hMT+ population signal 
might actually reflect a more robust signal.

Other fMRI and EEG studies have described lower levels of 
cortical noise in senior subjects (Garrett et al., 2010) and children 
(McIntosh et al., 2008) compared to young adults. This has been 
discussed as neurophysiological noise being inversely related to 
the well described U-shaped function of performance during the 
lifespan (MacDonald et al., 2006; McIntosh et al., 2008).

More specifically for our case of signal variability in the visual 
system, Bair et al. (2001), recording single-neurons in macaque MT, 
describe that those neuron pairs with high signal correlations also 
showed an increase in the correlation of noise. Clearly, given the 
coarse MR resolution, correlated noise would be more detectable 
at the fMRI level than uncorrelated noise. Our results suggest that 
greater variability differences between stimulus and rest periods 
might be beneficial for perceptual sensitivity in hMT+. The basis for 
signal variability could be caused by individual neurophysiological 
characteristics of hMT+.
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FIguRe 4 | Blood oxygen level dependent (BOLD) signal variability and 
behavioral performance. (A) Correlation of BOLD signal variance and direction 
discrimination threshold. The difference in individual SD between the blocks 
and rest periods correlated with single-subject thresholds from the 
psychophysics experiment. A larger variability difference is correlated with 
lower direction discrimination thresholds. (B) This figure illustrates the 
generative model used to estimate the parameters of the two distributions. The 
graph shows how the alpha “mix” values are calculated from the block times. 
Each volume’s alpha value is used to estimate what proportion of the signal is 
from the stimulus and what proportion is from the rest period. These two 

distributions are sampled and their weighted sum is found. This is used to 
generate the distribution. The log likelihood of the real distribution being 
generated in this way is calculated. The parameters of the block and rest 
distributions are then altered to maximize this log likelihood. (C) Top graph: 
Comparing correlations for different stimulus directions. Splitting the block and 
rest periods in the four directions shown during the MR experiment, we 
observed small differences in correlation strength. Bottom graph: Comparing 
correlations over different brain regions. The correlation between noise 
difference and psychophysical threshold was smaller and not significant in the 
white matter region CR and V1. CR, corona radiata.
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2002; Liu et al., 2011; Stoppel et al., 2011), and those participants 
able to apply attention most accurately to the stimulus are not only 
likely to do well in the psychophysics direction discrimination task, 
but may also show the BOLD signal variability we observe. Top-
down control by areas described for internally evoked attention 
processes like the intraparietal cortex and superior frontal cortex 
could play a role in inducing the individual hMT+ signal variability 
we observe (Corbetta and Shulman, 2002).

From the methodological point of view, we demonstrate that 
PC is a poor method to determine between subject differences. 
Although it could decode directional information from hMT+ 
activity in individual subjects, its ability to describe the relative 
difference between subjects was confounded by individual head-
movement and scanner artifact differences. Filtering out movement 
artifacts has been a challenge in the field of MR, as it contributes 
the greatest amount of non-physiological noise (Friston et al., 
1996; Lund et al., 2005). Although successful methods have been 
established for reducing the effect of head-movement in univari-
ate analysis based on the general linear model (Friston et al., 1996; 
Andersson et al., 2001), the specific influence of residual artifacts 
on new methods like PC is less well documented. Beyond this meth-
odological confound, other evidence exists that classification accu-
racy may not be an appropriate metric to compare experimental 
conditions, brain regions, or participants. Smith et al. (2011) for 
example suggest that classifier performance is influenced by other 
factors besides neural specificity such as response amplitude. Using 
MVPA for between subject comparison might therefore require 
further corrections to guarantee comparability.

Head-movement artifacts can also confound measures of signal 
variability. Garrett et al. (2010) show that the predictability of a 
noise measure was greatly improved by the extensive preprocessing 
of the data, beyond the conventional steps of realignment and nor-
malization. Their methods included artifact correction via inde-
pendent component analysis (Beckmann and Smith, 2004) and 
regressing out motion parameters. For future analysis of both PC 
and BOLD signal variability, this seems to be a fruitful approach. 
In the current study we used the relative value of noise differ-
ences between stimulus and rest periods, which minimizes the 
movement confound, as both periods should be equally affected 
by movement.

Critically, all assumptions on signal variability characteristics 
depend on the validity of our method to estimate the variability in 
the hMT+ signal. We used a generative model to estimate variability 
in the fMRI signal, modeling all eight events within a stimulus 
blocks separately as box-cars convolved with the HRF. The model 
furthermore accounted for the HRF-induced overlap of stimulus 
blocks and rest periods by assigning mixing values to each indi-
vidual volume, based on the estimation of the relative contribu-
tion of stimulus and rest periods to the signal in that particular 
volume. Compared to other methods to assess variability in the 
BOLD signal, our method is quite complex. Garrett et al. (2010) 
for example directly calculated the SD over blocks. Considering 
that the physiological response in hMT+ to our stimulus periods 
probably consisted of a sustained elevation in BOLD signal, over-
laid with single spikes evoked by the eight single events, simply 
calculating the SD would have not allowed us to separate the endog-
enous from the stimulus induced variability. The current model is 

FIguRe 5 | Retrospective eye movement analysis. The mean timecourse 
was extracted from the eyeball ROIs (green) defined for three subjects. The 
timecourses were used as regressors in general linear models to assess 
correlated activity in the rest of the brain (blue). No overlap was found with the 
hMT+ masks (red).

A confound that must be considered before interpreting our 
variability signal is signal fluctuations in hMT+ caused by eye 
movements. Participants were instructed to fixate, but as we used 
translation stimuli, an automatic smooth pursuit must have been 
suppressed which individual subjects might have achieved with 
more or less success over the timecourse of stimulation. However, 
we did not find that the signal timecourse from the eyeball ROIs 
as measured in a subgroup of subjects correlated with hMT+ 
signal fluctuations. Participants furthermore did not report dif-
ficulties fixating. Although we cannot exclude an influence of eye 
movements on the hMT+ signal, we believe it is not the strongest 
component causing the observed inter-individual differences in 
fluctuation of the hMT+ signal.

Also non-perceptual phenomena like individual motivation 
or attentional levels could explain our results, influencing both 
physiological and perceptual measurements. It has been shown that 
hMT+ BOLD signal is modulated by attention (Berman and Colby, 

Wutte et al. hMT+ variability reflects psychophysical performance

Frontiers in Psychology | Perception Science  August 2011 | Volume 2 | Article 185 | 127

http://www.frontiersin.org/perception_science/
http://www.frontiersin.org/perception_science/archive


references
Acs, F., and Greenlee, M. W. (2008). 

Connectivity modulation of early 
visual processing areas during covert 
and overt tracking tasks. Neuroimage 
41, 380–388.

Andersson, J. L., Hutton, C., Ashburner, 
J., Turner, R., and Friston, K. (2001). 
Modeling geometric deformations 
in EPI time series. Neuroimage 13, 
903–919.

Bair, W., Zohary, E., and Newsome, W. T. 
(2001). Correlated firing in macaque 
visual area MT: time scales and rela-
tionship to behavior. J. Neurosci. 21, 
1676–1697.

Beauchamp, M. S. (2003). Detection of eye 
movements from fMRI data. Magn. 
Reson. Med. 49, 376–380.

Beckmann, C. F., and Smith, S. M. (2004). 
Probabilistic independent compo-
nent analysis for functional magnetic 
resonance imaging. IEEE Trans. Med. 
Imaging 23, 137–152.

Bennett, P. J., Sekuler, R., and Sekuler, A. B. 
(2007). The effects of aging on motion 
detection and direction identification. 
Vision Res. 47, 799–809.

Berman, R. A., and Colby, C. L. (2002). 
Auditory and visual attention 
modulate motion processing in 
area MT+. Brain Res. Cogn. Brain 
Res. 14, 64–74.

Billino, J., Bremmer, F., and Gegenfurtner, 
K. R. (2008). Differential aging of 
motion processing mechanisms: 
evidence against general perceptual 
decline. Vision Res. 48, 1254–1261.

Born, R. T., and Bradley, D. C. (2005). 
Structure and function of visual area 
MT. Annu. Rev. Neurosci. 28, 157–189.

Brainard, D. H. (1997). The psychophysics 
toolbox. Spat. Vis. 10, 433–436.

Britten, K. H., Shadlen, M. N., Newsome, 
W. T., and Movshon, J. A. (1992). 
The analysis of visual motion: a 
comparison of neuronal and psycho-
physical performance. J. Neurosci. 12, 
4745–4765.

Brunel, N., and Wang, X. J. (2003). What 
determines the frequency of fast net-
work oscillations with irregular neu-
ral discharges? I. Synaptic dynamics 
and excitation-inhibition balance. J. 
Neurophysiol. 90, 415–430.

Castelo-Branco, M., Formisano, E., Backes, 
W., Zanella, F., Neuenschwander, S., 
Singer, W., and Goebel, R. (2002). 
Activity patterns in human motion-
sensitive areas depend on the inter-
pretation of global motion. Proc. Natl. 
Acad. Sci. U.S.A. 99, 13914–13919.

Cohen, M. R., and Newsome, W. T. (2004). 
What electrical microstimulation has 
revealed about the neural basis of 
cognition. Curr. Opin. Neurobiol. 14, 
169–177.

Corbetta, M., and Shulman, G. L. (2002). 
Control of goal-directed and stimulus-
driven attention in the brain. Nat. Rev. 
Neurosci. 3, 201–215.

Dukelow, S. P., DeSouza, J. F., Culham, J. 
C., van den Berg, A. V., Menon, R. S., 
and Vilis, T. (2001). Distinguishing 
subregions of the human MT+ com-
plex using visual fields and pursuit 
eye movements. J. Neurophysiol. 86, 
1991–2000.

Dumoulin, S. O., Bittar, R. G., Kabani, 
N. J., Baker, C. L., Goualher, G. L., 
Pike, G. B., and Evans, A. C. (2000). 
A new anatomical landmark for reli-

able identification of human area V5/
MT: a quantitative analysis of sulcal 
patterning. Cereb. Cortex 10, 454–463.

Emberson, L., Kitajo, K., and Ward, L. M. 
(2007). “Endogenous neural noise and 
stochastic resonance”, in Proceedings 
SPIE Noise and Fluctuations in 
Biological, Biophysical, and Biomedical 
Systems, ed. S. M. Bezrukov, Florence, 
6602.

Ermentrout, G. B., Galán, R. F., and 
Urban, N. N. (2008). Reliability, syn-
chrony and noise. Trends Neurosci. 31, 
428–434.

Faisal, A. A., Selen, L. P. J., and Wolpert, 
D. M. (2008). Noise in the nerv-
ous system. Nat. Rev. Neurosci. 9, 
292–303.

Friston, K. J., Williams, S., Howard, R., 
Frackowiak, R. S., and Turner, R. 
(1996). Movement-related effects in 
fMRI time-series. Magn. Reson. Med. 
35, 346–355.

Garrett, D. D., Kovacevic, N., McIntosh, A. 
R., and Grady, C. L. (2010). Blood oxy-
gen level-dependent signal variability 
is more than just noise. J. Neurosci. 30, 
4914–4921.

Ghosh, A., Rho, Y., McIntosh, A. R., Kötter, 
R., and Jirsa, V. K. (2008). Noise dur-
ing rest enables the exploration of 
the brain’s dynamic repertoire. PLoS 
Comput. Biol. 4, e1000196. doi: 
10.1371/journal.pcbi.1000196

Halpern, S. D., Andrews, T. J., and Purves, 
D. (1999). Interindividual variation in 
human visual performance. J. Cogn. 
Neurosci. 11, 521–534.

Hinds, O. P., Rajendran, N., Polimeni, 
J. R., Augustinack, J. C., Wiggins, G., 
Wald, L. L., Rosas, H. D., Potthast, A., 

Schwartz, E. L., and Fischl, B. (2008). 
Accurate prediction of V1 loca-
tion from cortical folds in a surface 
coordinate system. Neuroimage 39, 
1585–1599.

Huk, A. C., Dougherty, R. F., and Heeger, 
D. J. (2002). Retinotopy and functional 
subdivision of human areas MT and 
MST. J. Neurosci. 22, 7195–7205.

Kamitani, Y., and Tong, F. (2006). 
Decoding seen and attended motion 
directions from activity in the 
human visual cortex. Curr. Biol. 16, 
1096–1102.

Kanai, R., and Rees, G. (2011). The 
structural basis of inter-individual 
differences in human behaviour and 
cognition. Nat. Rev. Neurosci. 12, 
231–242.

Krekelberg, B., van Wezel, R. J. A., and 
Albright, T. D. (2006). Adaptation in 
macaque MT reduces perceived speed 
and improves speed discrimination. J. 
Neurophysiol. 95, 255–270.

Liang, Z., Yang, Y., Li, G., Zhang, J., 
Wang, Y., Zhou, Y., and Leventhal, A. 
G. (2010). Aging affects the direction 
selectivity of MT cells in rhesus mon-
keys. Neurobiol. Aging 31, 863–873.

Liu, T., Hospadaruk, L., Zhu, D. C., and 
Gardner, J. L. (2011). Feature-specific 
attentional priority signals in human 
cortex. J. Neurosci. 31, 4484–4495.

Lund, T. E., Nørgaard, M. D., Rostrup, E., 
Rowe, J. B., and Paulson, O. B. (2005). 
Motion or activity: their role in intra- 
and inter-subject variation in fMRI. 
Neuroimage 26, 960–964.

MacDonald, S. W. S., Nyberg, L., and 
Bäckman, L. (2006). Intra-individual 
variability in behavior: links to brain 

designed to account for the stimulus induced modulation of the 
BOLD signal, leaving us with the endogenous variability. Certain 
stimulus induced modulation of the BOLD signal might still not 
have been accounted for, such as repetition suppression which 
might occur due to repetitive stimulus display during a block. An 
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perceptual sensitivity in direction discrimination might be associ-
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to understand normal and pathological changes in visual motion 
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