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Varied Mechanisms and Models for
the Varying Mitochondrial Bottleneck
Iain G. Johnston*

Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway

Mitochondrial DNA (mtDNA) molecules exist in populations within cells, and may carry

mutations. Different cells within an organism, and organisms within a family, may have

different proportions of mutant mtDNA in these cellular populations. This diversity is often

thought of as arising from a “genetic bottleneck.” This article surveys approaches to

characterize and model the generation of this genetic diversity, aiming to provide an

introduction to the range of concepts involved, and to highlight some recent advances

in understanding. In particular, differences between the statistical “genetic bottleneck”

(mutant proportion spread) and the physical mtDNA bottleneck and other cellular

processes are highlighted. Particular attention is paid to the quantitative analysis of the

“genetic bottleneck,” estimation of its magnitude from observed data, and inference of

its underlying mechanisms. Evidence that the “genetic bottleneck” (mutant proportion

spread) varies with age, between individuals and species, and acrossmtDNA sequences,

is described. The interpretation issues that arise from sampling errors, selection, and

different quantitative definitions are also discussed.

Keywords: mtDNA, bottleneck, development, inheritance, modeling, uncertainty, heterogeneity

1. INTRODUCTION

Mitochondria are vital energy-producing compartments in eukaryotic cells. As a result of their
evolutionary history, they retain small genomes (mtDNA) which encode important respiratory
machinery. In humans and other species, mtDNA molecules are inherited uniparentally, rarely
recombine, and can acquire damaging mutations (Wallace and Chalkia, 2013). As hundreds or
thousands of mtDNA molecules exist in the same cell, mutations may be present in some but not
all molecules: we refer to the fraction of molecules in a cell with a given mutation as the “mutant
proportion”. MtDNA molecules within the same cell can harbor many different genetic variants at
low proportions, a situation called microheteroplasmy (Guo et al., 2013). The mutant proportion
associated with each single genetic variant is of scientific and translational interest, particularly as
some variants (e.g., point mutations) have pathological consequences above a certain “threshold”
proportion (Rossignol et al., 2003; Johnston and Burgstaller, 2019).

If mothers passed an identical mutant proportion onto each offspring, the buildup of mutations
would eventually cause extinction (Muller, 1964). As a result, a developmental process has evolved
to generate cell-to-cell variability in mutant proportion in animal germlines (Carling et al., 2011;
Jokinen and Battersby, 2013; Stewart and Chinnery, 2015; Zhang et al., 2018)1. Thus, while some
oocytes may receive higher mutant proportions, some will receive lower loads. Rather than all of
a mother’s oocytes having 50% mutant proportion, for example, they may range from 20 to 80%
(Figure 1A). Oocytes with lower mutant proportions may then go on to become viable offspring,
avoiding the buildup of mutation over generations. This increase in the oocyte-to-oocyte variance

1Other mechanisms, outside the scope of this article, exist to mitigate mtDNA mutation in other taxa (Johnston and
Burgstaller, 2019).
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FIGURE 1 | The “genetic bottleneck” increases cell-to-cell mutant proportion spread. (A) A mother’s life begins as a single cell, with no associated variance in mutant

proportion (white circles are wildtype mtDNAs, black circles are mutant mtDNAs; inset numbers give mutant proportion). Development increases cell-to-cell mutant

proportion spread in the mother’s developing oocytes. In the next generation, oocytes or offspring with lower mutant proportions may be favored. (B) Different

experimental structures to investigate the generation of mutant proportion spread. (i) Comparing mutant proportion in a mother to her offspring. (ii) Comparing mutant

proportion from a reference measurement to a set of individual oocytes. (iii) Comparing mutant proportion differences in a set of mother-child pairs. (iv) Recording

mutant proportion differences across oocytes or siblings.

of mutant proportion is typically discussed as resulting from
a “genetic bottleneck.” Increasing cell-to-cell mtDNA variance
has also been reported in somatic tissues, suggesting that the
“genetic bottleneck” picture may also apply outside the germline
(Sekiguchi et al., 2003; Wilton et al., 2018).

Oocyte-to-oocyte, and offspring-to-offspring, variance in
mutant proportion is important in the fundamental biology of
inheritance, and in human health and disease. While beneficial
from an evolutionary perspective, this variance makes it hard to
predict mtDNA inheritance patterns. As diseases result from high
mutant proportions (Rossignol et al., 2003; Wallace and Chalkia,
2013), this unpredictability makes clinical planning difficult
for families carrying dangerous mtDNA mutations (Poulton
et al., 1998; Sallevelt et al., 2013). As such, substantial scientific
effort is spent characterizing the processes that give rise to
mtDNA variability.

The picture of the “genetic bottleneck” can be useful as a
simple comparative statistic. However, experimental technology
and mathematical theory has now advanced to the stage
where we can ask (and begin to resolve) questions about the
detailed physical mechanisms behind this genetic behavior.
This article will attempt to compare the effective models
and detailed mechanisms used to understand this important

process, and discuss how these vary through biology and in the
scientific literature.

1.1. Terminology
The “genetic bottleneck” refers to a genetic quantity—an increase
in cell-to-cell variability in mutant proportion. In humans and
other animals, the genetic bottleneck is achieved in part
(though likely not in full) by a “physical bottleneck” (described
further below, and recently reviewed in Zhang et al., 2018).
This “physical bottleneck” is a physical reduction in the copy
number of mtDNA molecules per cell, which occurs during
development. Because the word “bottleneck” appears in both
terms, it is sometimes tempting to view the genetic and physical
bottlenecks as equivalent. This is not generally the case. Unlike
the physical bottleneck, the genetic bottleneck does not directly
correspond to a observable number of molecules that can be
directly measured by some experiment (Birky, 2001; Johnston
and Jones, 2016). A genetic bottleneck of size 10, for example,
does not mean that the physical copy number of mtDNAs per
cell need ever be 10 at any point during development. As such,
the term “mutant proportion spread,” with less physical and
more genetic implication, will be used here as a synonym for
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BOX 1 | Calculation and symbols used for mutant proportion statistics.

Given a set of n heteroplasmy measurements h1, h2, . . . , hn, the

sample mean [h] = 1
n

∑n
i=1 hi . Different ways exist to calculate sample

variance. Typically, the “unbiased sample variance” is used, that is

s2 = 1
n−1

∑n
i=1(hi − sample mean [h])2. The “biased sample variance” is the

mean squared difference from the mean s2n = 1
n

∑n
i=1(hi−sample mean [h])2.

The use of n − 1 rather than n, known as Bessel’s correction, removes

bias in the sample variance. As described in the text, studies calculate

sample var [h] using either s2 (usually for Figure 1Bi,ii,iv) or a mean squared

difference approach more like s2n (for Figure 1Biii).

In the literature, sample variances s2 may also be found represented by

V(h), V (h), or σ 2 (but the latter is usually used for population variance). Sample

means may be written h̄, E(h), 〈h〉, µ (but the latter is usually used for

population mean).

“genetic bottleneck.” Note that a smaller “bottleneck” leads to
more spread and vice versa. As described below, the “genetic
bottleneck” (mutant proportion spread) may vary with species,
individual, time, mtDNA sequence and other factors. The term
“mutant proportion spread” perhaps captures this fluidity more
than the more rigid “bottleneck.”

We use “mutant proportion” rather than “heteroplasmy”
because a heteroplasmy level over 50% is semantically difficult:
the majority mtDNA type should then strictly be considered
the reference type, and heteroplasmy redefined with respect to
that type.

When taking biological observations and comparing them
to models, population and sample statistics must be considered.
Population statistics are summaries of a quantity—like the
mean and variance—over the entire population of interest—
for example, all oocytes in an organism. Sample measurements
of statistics like mean and variance are those derived from a
limited number of samples of a larger population. Experimental
limitations usually mean that we must consider sample
statistics—for example, a set of 20 oocytes from an organism. By
contrast, quantitative models typically phrase their predictions
in terms of population statistics. Accidents of sampling
may lead to differences between sample measurements and
population statistics.

When considering these statistics, different studies often use
different symbols for the same quantity (Box 1). Here, we will
attempt to make equations as verbally “readable” as possible. We
write sample var

[

h
]

for sample variances, sample mean
[

h
]

for
sample means, var

[

h
]

for population variances and mean
[

h
]

for population means. The sample quantities are computed as
described in Box 1.

2. OBSERVATIONS

The fundamental observation that implies the existence of a
“genetic bottleneck” (mutant proportion spread) is that offspring
have different mutant proportions to their parents (Figure 1A).
mutant proportions also differ from offspring to offspring.
Therefore, at some point(s) between generations, variability in
mutant proportion is induced. Parent-to-offspring differences

in mtDNA mutant proportion were first reported in cattle
(Hauswirth and Laipis, 1982; Ashley et al., 1989; Koehler et al.,
1991). Following this, experimental evidence for a “genetic
bottleneck” (mutant proportion spread) has been found in
animals from flies (Solignac et al., 1984), crickets (Rand and
Harrison, 1986), mice (Wai et al., 2008; Burgstaller et al.,
2018), salmon (Wolff et al., 2011), and penguins (Millar et al.,
2008) to humans (Marchington et al., 1997; Rebolledo-Jaramillo
et al., 2014; Li et al., 2016). Some examples of the variety of
experimental bottleneck studies are compiled in Figure 2.

A mother starts her life as a single fertilized oocyte. As this
is a single cell, there is no cell-to-cell variability in mutant
proportion; there is only a single value. The oocytes that later
develop in that mother, however, may vary substantially in
mutant proportion. This suggests that the reason for offspring
differencesmay be the induction of cell-to-cell mtDNA variability
in germline development.

To compute the size of the “genetic bottleneck” (mutant
proportion spread), we need a set of “before and after”
measurements (Figure 1B). Often, the “before” measurement is
taken from a mother. Different studies have different “after”
observation structures. In animal models and some human
experiments, sets of “after” observations are obtained: for
example, measurements across a set of offspring (Figure 1Bi),
or a set of single-cell oocyte measurements (Figure 1Bii).
Developmental studies aimed at identifying mechanisms rather
than “bottleneck size” may take samples of oocytes or
their precursors at different stages of development. In other
experiments, particularly in human population genetics, a
single “after” observation is taken: for example, a single
offspring (Figure 1Biii). Many before-after pairs are then used
to characterize the population. When a “before” observation is
not available, mutant proportion spread may be characterized
from “after” measurements and some estimate of the “before”
state is constructed (Figure 1Biv). This estimate is often the
sample mean of the “after” measurements, thus assuming that no
selective shift has occurred.

The mutant proportion variability for a system is typically
reported as the sampled variance across a set of “after”
observations sample var

[

h
]

(Figure 1B). Mostmodels describing
mtDNA statistics (see below) predict that the population variance
will follow the form:

var
[

h
]

= h0(1− h0)× . . . , (1)

where . . . is some expression that may vary according to the
model, and h0 is the mutant proportion in the initial “before”
population from which sampling takes place (not the new
“after” population). In other words, most models predict cell-
to-cell mutant proportion variance to depend on initial mutant
proportion h0, and specifically to be proportional to h0(1− h0).

Because most models have the above form, we often work with
a quantity which we here call “mutant proportion spread” but
which is usually called “normalized heteroplasmy variance”:

sample var′
[

h
]

=
sample var

[

h
]

h0(1− h0)
. (2)
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FIGURE 2 | Mutant proportion spreads observed in different systems. Some examples of the diverse mutant proportion spread sample var′ [h] observed

experimentally. Loci in brackets refer to specific human mtDNA mutations; PGC, primordial germ cell.

The reason for working with sample var′
[

h
]

is that its normalized
value does not typically depend on the specific initial mutant
proportion values h0 from one particular experiment. The results
from different experiments, with different values of h0, can then
be more naturally compared.

These variability observations are typically studied from two
different perspectives. First, at the “statistical” level: what is
the distribution of mutant proportions that will arise from a
given mother? This perspective often uses “genetic bottleneck
size” as a single number that reflects the observed sample-to-
sample mutant proportion spread. Second, at the “mechanistic”
level: what physical mechanisms give rise to this distribution
of mutant proportions? This perspective attempts to link the
coarse-grained outcome of the “genetic bottleneck” to specific,

measurable physical rates and properties. In this article, we will
first discuss concepts related to this first perspective, before
surveying recent progress on the second.

3. THE “GENETIC BOTTLENECK”
ABSTRACTED AS SAMPLING EVENTS OR
DRIFT

3.1. Abstracting the “Genetic Bottleneck”
as a Single Sampling Event
For convenience, studies often describe the “genetic bottleneck”
(mutant proportion spread) as the result of a single abrupt
event that creates many new individuals, with different mutant
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FIGURE 3 | Constructing new populations from random sampling of an initial population. (A) Sampling an initial population to construct many new populations of size

N. Smaller N generates more variability between the new populations. (B) Reamplification of sampled populations to the original size can be deterministic (left,

preserving mutant proportion) or stochastic (right, changing mutant proportion). (C) Structures of several distributions related to the study of the “genetic bottleneck”

(mutant proportion spread), parameterized by effective “bottleneck size” N.

proportions, from an initial individual (Figure 3A). In this
case, the resulting “bottleneck size” is simply a readout of
mutant proportion spread, and does not directly correspond
to any physical observable. In particular, it is not generally
equal to the minimum copy number of mtDNA molecules (the
“physical bottleneck”) (Birky, 2001; Jokinen and Battersby, 2013;
Johnston and Jones, 2016; Zhang et al., 2018). This is because
the “genetic bottleneck” folds together all mechanisms that can
influence mutant proportion spread—the physical bottleneck,
cell divisions, random mtDNA dynamics, and so on. The
specific number associated with “genetic bottleneck size” may
therefore be substantially lower than the physical bottleneck
during development.

The goal in this perspective is typically to characterize the
“genetic bottleneck” (mutant proportion spread) under different
conditions. These may involve, for example, different genetic
features, different populations, and different species. Knowledge
of the value associated with the “genetic bottleneck” (mutant
proportion spread) in these cases can inform fundamental
biology and clinical planning (Sallevelt et al., 2013).

The concept underlying this approach is a model of “random
sampling.” Here, we start with an initial population of mtDNA,
with mutant proportion h0. To create one instance of a final
population—for example, the population in one oocyte in the
next generation—we randomly sample that initial population.
Specifically, we pick at random one member of the initial
population and put an mtDNA molecule of that type in our final
population. If we are sampling “with replacement,” we retain
the picked member in the original population. The alternative
is sampling “without replacement,” which involves removing the
picked member from the source population so it cannot be
picked again.

If we use N picks with replacement to construct one new
population, and another N picks with replacement to construct
a second new population, and so on, the new populations will
likely differ (Figure 3A). This is because we are likely to choose

different numbers of eachmtDNA type when we are constructing
the new populations.

Quite how different the new populations will be depends on
N, the number of picks. If we just pick N = 1 mtDNA from
our source population for each new population, different new
populations may differ substantially: each will contain only one
mtDNA type, so some populations will have a mutant proportion
of 0 and some a mutant proportion of 1. By contrast, if N is high,
we drawmany samples from our initial population, and are likely
to end up with new populations that look rather like the initial
one (with mutant proportions close to h0). We can immediately
see that our mutant proportion spread (genetic bottleneck) will
decrease as N decreases (Figure 3A).

This process is called binomial sampling. The actual variance
between our new populations is well-known from theory, and is

var
[

h
]

=
h0(1− h0)

N
. (3)

A common picture of the “genetic bottleneck” is exactly this N.
That is, if we observe a certain mutant proportion spread across
cells or samples, we work out how large or small N would have
to be to generate that amount of spread through this binomial
sampling, and call this number the “genetic bottleneck.”

How we estimate N depends on the structure of our
experiment (Figure 1B). First consider the case where we have
a single “before” measurement and a set of “after” measurements
(for example, a mother mutant proportion and a set of offspring
(Figure 1Bi) or oocyte (Figure 1Bii) mutant proportions). Take
the sample variance sample var

[

h
]

of the “after” measurements.
Call the “before” measurement h0. Then the definition of
“bottleneck size” is often taken to be

N =
h0(1− h0)

sample var
[

h
] =

1

sample var′
[

h
] (4)

based on this binomial sampling picture. If h0 is not known,
as in Figure 1Biv, it is sometimes estimated to be equal to
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FIGURE 4 | Estimating the “genetic bottleneck” from different data sources. (A) Simulated data, comparing estimates of “bottleneck size” N using either 16 “after”

measurements (“Variance”) or 16 sets of single “after” measurements (“MSD”). Estimates are performed in the presence of different levels of selection (s = 1, no

selection; decreasing s is increasing selective pressure). (B) Uncertainty in a “bottleneck size” estimate using mean [h] = 0.5, var [h] = 0.01, and different numbers of

samples n. Particularly for n < 10, bottleneck size estimates can have large uncertainty.

sample mean
[

h
]

. That is, the assumption is made that no shift in
mutant proportion has taken place due to selection or accidents
of sampling.

The idea here is to convert a less intuitive quantity
sample var′

[

h
]

into a more intuitive one (an effective number
of segregating units). However, this binomial sampling picture
has some issues. First, it does not correspond to a plausible
biological mechanism. Development does not involve a single,
abrupt sampling event. How reamplification of mtDNA back
to its original level takes place is rarely considered (Figure 3B),
although models for reamplification do exist (see below). Second,
and related, a binomial sampling regime predicts a binomial
distribution for final mutant proportion (Figure 3C). For a small
value of N, this means that mutant proportion can only take one
of a restricted set of values. For example, if N is 4, we would
only expect mutant proportions of 0, 25, 50, 75, and 100% after
sampling. Other models have been proposed to address these
shortcomings (see below).

Next, consider the case where we have a set of paired
“before” and “after” observations (for example, the mother-
single offspring pairs in Figure 1Biii). The prevailing approach
to calculate a “bottleneck size” here is via an expression derived
in references (Millar et al., 2008; Hendy et al., 2009) based on

N =
h0(1− h0)

sample mean
[

(h− h0)2
] . (5)

Here, the spread of “after” measurements sample var
[

h
]

=
1

n−1

∑

i(hi − sample mean
[

h
]

)2 has been replaced by the mean
square difference between the “before” and “after” measurements

1
n

∑

i(hi − h0)2. That is, the approach assumes that the average

“after” measurement sample mean
[

h
]

is equal to the “before”
measurement h0—in other words, that no shifts in mean mutant
proportion act between generations. If selection is in fact present,
Equations (4) and (5) give different results, and Equation (5)
quickly fails to capture the true bottleneck size even in abstracted
systems (Figure 4). Because Equation (5) deals with squared
differences, selective shifts in different directions do not “cancel
out” but rather reinforce the resultant discrepancy.

3.2. The “Genetic Bottleneck” Abstracted
as Several Sampling Events or Drift
A single binomial sampling event does not represent a real
biological mechanism. To improve this picture, some studies
consider the “genetic bottleneck” (mutant proportion spread)
as arising from a series of sampling events, modeling cell
divisions that randomly partition mtDNA molecules between
cells. Early work on mtDNA inheritance (Solignac et al., 1984;
Rand and Harrison, 1986; Ashley et al., 1989; Howell et al.,
1992) drew on a classical result from Sewall Wright (Wright,
1942, 1984) to this end. This result describes the spread of
allele frequencies due to “accidents of sampling” in repeated
generations, where the individuals in one generation are a
random sample from the previous generation. For mtDNA, this
“Wright equation” predicts

var
[

h
]

= h0(1− h0)

(

1−
(

1−
1

N

)kn
)

, (6)
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FIGURE 5 | Relationship between different quantities related to mutant proportion spread. (A) Mutant proportion spread with different sampling parameters.

Horizontal axis gives “bottleneck size” N. Vertical axis gives corresponding mutant proportion spread sample var′ [h] (from Equation 6 with g = kn). Different traces are

for different numbers of sampling events g. To convert a sample var′ [h] value to a “bottleneck size” N, choose the number of sampling events g and read off the

corresponding value (distribution sketches at the far left give illustrations of the Kimura distribution for the various sample var′ [h] values). (B) Mutant proportion spread

with summary parameter b, from simulated sampling dynamics. Horizontal axes gives “bottleneck parameter” b. Vertical axis gives corresponding mutant proportion

spread sample var′ [h]. Behavior at different N and g are now “folded together,” collapsing on the same line.

where k is the number of random samplings per generation (for
example, the number of cell divisions in germ line formation)
and n is the number of generations. The reader will notice that
if kn = 1, describing a single sampling event as above, Equation
(4) is recovered.

For convenience, some studies have since defined new
“bottleneck parameters” to simplify this expression. One choice
is to set α = (1 − 1/N)k. Another more recent alternative is to
define b = exp(−g/N). Here g = kn represents an amalgamated
number of samplings, and the exponential form is used for
algebraic convenience because exp(−g/N) ≃ (1−1/N)g . In these
cases, Equation 6 becomes:

var
[

h
]

= h0(1− h0)
(

1− αn
)

≃ h0(1− h0)
(

1− b
)

. (7)

The advantage of using these “bottleneck parameters” is that they
fold together two unknown quantities: the number of generations
and the effective population size. Under Equation (6), readouts
of “bottleneck size” (mutant proportion spread) using N are
contingent on a particular choice of g, the number of generations
for which the bottleneck applies (Figure 5A). Readouts using
b (and α) absorb this dependency, providing a simple readout
of mutant proportion spread that makes no assumptions about
the number of sampling events (Figure 5B). Given a number of
generations, N can be recovered from b via N = −g/ ln b.

An approximation of the cell-to-cell distribution of mutant
proportion under these repeated-sampling models is the so-
called Kimura distribution (Wonnapinij et al., 2008) (Figure 3C).
Strictly, the assumptions involved in deriving this approximation
rely on N being large (Kimura, 1955). However, the Kimura

distribution reproduces intuitive behavior for the distribution of
mutant proportion under drift, and several studies use a fit to the
Kimura distribution to estimate b (Wonnapinij et al., 2008; Otten
et al., 2018).

The relationship between these quantities N, b, g, and
sample var′

[

h
]

is illustrated in Figure 5, which may serve as
a reference for comparison of reported “genetic bottleneck”
(mutant proportion spread) statistics in different studies.

3.3. Drift Manifest Through Random
Replication
One issue with a simple sampling picture is that it predicts a
set of cellular mtDNA populations consisting of N molecules.
In most circumstances, this N value is much lower than the
size of typical cellular populations. For example, in animal
germline development, the number of mtDNA molecules per
cell is amplified several orders of magnitude from a minimum
copy number back to a functional level (Cree et al., 2008; Wai
et al., 2008; Cotterill et al., 2013; Zhang et al., 2018). If this
reamplification happened perfectly deterministically, no further
change in var

[

h
]

would occur. However, cell biology is rarely
deterministic, and there is good reason to believe that this
reamplification process involves a random component (Birky,
1994; Chinnery and Samuels, 1999; Capps et al., 2003; Johnston
et al., 2015).

Several recent studies have considered models for this
reamplification (Johnston and Jones, 2015; Wilson et al., 2016).
Most are based on the idea of random mtDNA replication. That
is, an mtDNA molecule is randomly chosen from the current
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population, and replicated. Then a new mtDNA molecule is
randomly chosen and replicated, and so on until the desired
population size is achieved. This is a modified Moran model
(Moran, 1958) (the usual Moran model involves removing one
molecule per replication, so that overall population size remains
constant), also known as a Pólya urn model (Eggenberger and
Pólya, 1923; Johnson and Kotz, 1977).

In the limit of infinite reamplification, the model gives rise
to a beta distribution for mutant proportion spread (Figure 3C).
Infinite reamplification may not seem realistic, but actually the
structure of this distribution is quickly stabilized after a relatively
small number of replications, so the simple infinite limit is
similar to more reasonable cases. However, results also exist for
intermediate cases, and their exploration may be a fruitful area
of future research. The beta distribution takes two parameters,
α and β , intuitively corresponding to the number of mutant
and wildtype molecules in the cell before any replication. If we
α = h0N and β = (1 − h0)N, the mean of the beta distribution
is mean

[

h
]

= h0 as expected, and the variance of the beta
distribution is

var
[

h
]

=
h0(1− h0)

N + 1
. (8)

3.4. Uncertainty
The “genetic bottleneck” (mutant proportion spread) is a readout
of variance. Revealing trends in cell-to-cell variance is more
challenging than revealing trends in average behavior, and
requires more data. Wonnapinij et al. (2010) have drawn
attention to the challenging nature of obtaining reliable estimates
of mutant proportion spread. Uncertainty in estimated mutant
proportion spread is often large, challenging precise estimates of
the “bottleneck size” and leading to variability in these estimates.
Even in the case of no technical error (see below), sampling
errors can lead to large variability in estimates of “bottleneck size,”
particularly if fewer than 10 samples are used (Figure 4B).

Uncertainty in readouts of variance can be an unintuitive
quantity. We are perhaps more used to thinking about mean
values as the quantity of interest, with variance around a mean
value corresponding to uncertainty. However, we can—and
should—also describe and estimate the uncertainty associated
with an observation of variance.

One way to estimate uncertainty in sample var
[

h
]

involves
assuming that mutant proportion samples are drawn from a
normal distribution. This is not generally the case (as seen in
Figure 3C), but is a simple illustration that may be applied
when spread is low. Confusingly, there are two expressions in
circulation for the sampling error in this case. Which of these
values gets used depends on how the variance was computed. If
the variance is calculated using an estimate of the mean taken
from the same dataset (employing Bessel’s correction, as with
many “after” measurements), Wonnapinij et al. (2010) cite:

SE
[

sample var
[

h
]]

= var
[

h
]

×
√

2

n− 1
, (9)

for the standard error in sample var
[

h
]

, where n is the number
of samples used to characterize sample var

[

h
]

. If the mean is

estimated from a different source (omitting Bessel’s correction, as
with mean-squared-difference calculations using a single “after”
measurement), an estimate of the variance of the sample variance
is (var

[

h
]

)2(n−1)/n2, as quoted in reference (Millar et al., 2008),

corresponding to a standard error of var
[

h
]

×
√

(n− 1)/n2.
The standard error associated with a variance measurement
can then be estimated by using var

[

h
]

≃ sample var
[

h
]

in
these expressions.

However, for wide spreads or means close to 0 or 1, mutant
proportion distributions do not have normal structure. In this
case (Wonnapinij et al., 2010), cite a more general result:

SE
[

sample var
[

h
]]

=

√

1

n

(

D4 − (var
[

h
]

)2 ×
(

n− 3

n− 1

))

(10)
where D4 = (n − 1)/n3 × ((n2 − 3n + 3)µ4 + 3(2n −
3)µ2

2), and µ2 = 1/n
∑n

i=1(hi − h0)2, µ4 = 1/n
∑n

i=1(hi −
h0)4. While more complicated in structure, all these quantities
can readily be worked out from the set of observed mutant
proportion measurements.

All these expressions have the standard error of sample var
[

h
]

scale roughly with the observed value divided by
√
n. Thus, unless

a large number n of samples are used to characterize mutant
proportion spread, the associated uncertainty in sample var

[

h
]

can be rather high. As “bottleneck size” estimates depend
on 1/sample var

[

h
]

, the corresponding uncertainty can be
enormous for low sample sizes (Figure 4B).

These expressions are based on the statistics of sampled
variances, and assume that the sample mutant proportion
values themselves have no associated uncertainty (in other
words, there is no technical error associated with the genetic
measurement). Technical error should also be included in
the uncertainty associated with these estimates. Several studies
include considerations of technical error in their estimates of
mtDNA statistics (Bendall et al., 1996; Millar et al., 2008; Li et al.,
2016; Wilson et al., 2016). This is typically achieved through
simple uncertainty propagation, that is, considering an observed
variance to be a combination of natural variance and technical
variance. The technical variancemay either be quantified through
experimental calibration (Millar et al., 2008) or as part of a
statistical inference process (Bendall et al., 1996; Li et al., 2016;
Wilson et al., 2016).

3.5. Results
Early reports of the size of the genetic bottleneck (mutant
proportion spread) varied substantially across organisms.
Contributing to this variability was the fact that different studies
used different values of kn in Equation (6). These different
values reflected, for example, estimates of the number of cell
divisions involved in germline development in different species.
More recently, it has become more common to set kn = 1 and
assume a single binomial sampling event, or to use a “bottleneck
parameter,” usually b, to summarize mutant proportion spread
as above. Figure 2 summarizes the mutant proportion spreads
observed in several key experimental studies across species.
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The rapid intergenerational shifts observed in cattle
(Hauswirth and Laipis, 1982; Koehler et al., 1991) have
given rise to the highest mutant proportion spread values so
far observed. Insects appear to have lower mutant proportion
spreads (Solignac et al., 1984; Rand and Harrison, 1986). In
mice, several experiments have observed the increase of mutant
proportion spread through germline development (Jenuth
et al., 1996; Wai et al., 2008). Fish show similar behavior
(Wolff et al., 2011).

Mutant proportion spread in humans was observed some
time ago (Bendall et al., 1996; Marchington et al., 1997), but
its magnitude remains debated. Variability in the behavior of
mutant proportion spread was quickly apparent. Blok et al.
found dramatic skew toward extreme mutant proportions in
transmission of the 8993 mutation (Blok et al., 1997). Lutz et al.
(2000) found evidence for variable mutant proportion spread
in a human family; while they did not provide quantitative
estimates they noted that the different spreads they observed
suggest a varying “bottleneck size” which could be very small.
Bendall et al. (1996) used a Bayesian approach to show that it
was unlikely that their study families had the same “bottleneck
size.” More recently, two large-scale population-genetic studies
suggest rather different “bottleneck sizes” (Rebolledo-Jaramillo
et al., 2014; Li et al., 2016). Pathogenic mutations seem to involve
more mutant proportion spread, particularly the 8993 mutation
(Blok et al., 1997; Monnot et al., 2011; Wilson et al., 2016;
Otten et al., 2018). Ongoing preimplantation genetic diagnoses
approaches continue to provide data on mutant proportion
spread at different developmental stages (Monnot et al., 2011;
Treff et al., 2012; Sallevelt et al., 2013). Pallotti et al. (2014)
performed a meta-analysis of 3243 bottlenecks along with their
own experiments and found reasonable consistency in mutant
proportion spread. Notably, different studies still use different
protocols for reporting a “bottleneck size,” sometimes setting
g(= kn) = 24 or g(= kn) = 1 in Equation (6).

While not a focus of this article, we note that genetic
bottlenecks (increasing mutant proportion spread) (Sekiguchi
et al., 2003; Wilton et al., 2018) and physical bottlenecks (Cao
et al., 2007; Otten et al., 2016; Floros et al., 2018) have also been
reported in somatic tissues.

4. THE “GENETIC BOTTLENECK” AS A SET
OF PHYSICAL PROCESSES

In parallel with statistical characterization of the “genetic
bottleneck” (mutant proportion spread), related research
attempts to understand the physical processes that give rise to
an observed “genetic bottleneck” (mutant proportion spread) in
a given system. The goal here is typically to identify biological
mechanisms and potential targets for intervention.

A plausible physical mechanism for the “genetic bottleneck”
(mutant proportion spread) must account for both physical and
genetic observations over time during development. The physical
observations involve mtDNA copy number per cell and the
occurrence of cell divisions; the genetic observations involve
cell-to-cell variability in mutant proportion. An example from a

meta-analysis of mouse observations is shown in Figures 6A,B.
The joint prediction of these physical and genetic observations
is very important because it constrains the mechanisms that
are possible—for example, the size of the physical bottleneck,
the timing of cell divisions, and the rate of reamplification all
influence the resulting genetic statistics of mtDNA populations.

While not a focus of this article, the specific genetic players
behind the physical processes below are increasingly being
revealed, and have been reviewed in, for example, references
(Carling et al., 2011; Jokinen and Battersby, 2013).

4.1. The Physical Bottleneck During
Development
One process that occurs during germline development in animals
is a physical reduction in the number of mtDNA molecules per
cell (Zhang et al., 2018). This reduction is observed in animals
including mice (Cao et al., 2007; Cree et al., 2008; Wai et al.,
2008), fish (Wolff et al., 2011; Otten et al., 2016), sheep (Cotterill
et al., 2013), and humans (Floros et al., 2018). For some time after
fertilization, cell divisions repeatedly halve the cellular mtDNA
population, with little compensatory replication. This halving
leads to a pronounced drop in mtDNA copy number per cell
(Figure 6Ai). A fertilized oocyte typically contains manymtDNA
molecules [hundreds of thousands in mice (Cree et al., 2008;
Wai et al., 2008); around a million in humans (Floros et al.,
2018)]. The size of the physical bottleneck—that is, the lowest
copy number of mtDNA per cell during development—remains
debated, but is often orders of magnitude lower; Zhang et al.
(2018) have recently provided a survey of mtDNA reduction
in different species. In mice, the lowest copy number may lie
between 200 and 1,000 (Cao et al., 2007, 2009; Cree et al.,
2008; Wai et al., 2008; Johnston et al., 2015) (Figure 6Aii).
In humans, mean copy numbers around 1400 are observed in
progenitor germ cells (Floros et al., 2018). In zebrafish, decreases
from tens of millions to hundreds of mtDNAs per cell are
observed (Otten et al., 2016). The copy number ofmtDNAduring
development seems to depend on genetic characteristics of the
mtDNA (Monnot et al., 2013), potentially making the physical
bottleneck sequence-dependent.

Pictured as drawing a random selection of mtDNA molecules
from a larger population, copy number reduction provides
a way to generate variability between cells. Additionally, the
magnitude of variability generated through other random
sampling processes is amplified by low copy numbers.

4.2. Random Replication of a Subset of
mtDNA Molecules
In this mechanism, at some point(s) in germline development,
a random subset of a cell’s mtDNA population is allowed to
replicate, while all others are eventually subject to degradation
or loss (Wai et al., 2008). This subset may be, for example, those
mtDNAs within a certain distance of the nucleus (Wallace, 2018).
As the random subset chosen will differ in different cells, this
process imposes a natural sampling inducing variance between
cells. A smaller subset of molecules will lead to more mutant
proportion spread.
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FIGURE 6 | Flexibility in the physical processes underlying the “genetic bottleneck.” (A) Physical mtDNA dynamics (copy number per cell) in mouse germline

development. (i) repeated cell divisions after fertilization with little compensatory mtDNA replication lead to a drop in copy number to a minimum “physical bottleneck”

(ii). Copy number is subsequently reamplified (iii) through later development. (B) Dynamics of sample var′ [h] in mouse germline development. In (A,B), datapoints

(black) are amalgamated from references (Jenuth et al., 1996; Cao et al., 2007; Cree et al., 2008; Wai et al., 2008); shading shows posterior distributions from the

most-supported “birth-death-partitioning” model, involving random mtDNA turnover and partitioning at cell divisions (Johnston et al., 2015). (C) Observations of

physical and genetic dynamics (A,B) are best fit by a model that allows a flexible “physical bottleneck” (left, posterior distribution) which can be compensated by a

flexible amount of mtDNA turnover (right, posterior distribution). Figure uses results from Johnston et al. (2015).

Wai et al. observed a sharp increase in mutant proportion
spread in mice aged between 4 and 8 days (as in Figure 6B)
(Wai et al., 2008; Samuels et al., 2010). Using microscopy, they
showed that only a subset of mtDNA molecules was involved in
replication at a given time. They propose this subset replication
model as the mechanism by which variability is generated at
this development stage (folliculogenesis, Figure 6Aiii). Johnston
et al. (2015) suggest that this observation is also compatible
with random mtDNA turnover (see below), where a non-fixed
subset of mtDNAs is expected to be involved in replication at any
given time.

The random replication model described above, connected to
the beta distribution, can describe the dynamics of the subset-
replication model. Care must be taken here to ensure that
physical copy number dynamics are reproduced: for example,
the small amount of replicating mtDNAs must balance the large
number of degrading mtDNAs as copy number is amplified
(Figure 6Aiii).

4.3. Random Partitioning of mtDNA
Molecules at Cell Divisions
This mechanism is possible during specific times when cells are
undergoing divisions. At division, a “parent” cell distributes its

population of mtDNA to its two “daughter” cells. The assignment
of each mtDNA molecule to one or the other daughter may
follow a random process (Birky, 2001; Huh and Paulsson, 2011;
Johnston et al., 2012). In this case, each division will increase the
cell-to-cell mutant proportion variability between daughter cells.
If mtDNAmolecules are partitioned in clusters, this increase will
be faster (Cao et al., 2007). Larger clusters will lead to more
mutant proportion spread.

Whether the “unit of inheritance” of mtDNA is a single
molecule or a cluster is a debated question. MtDNA within
mitochondria is packaged into complexes called nucleoids. These
were thought to contain around 5–10 mtDNA genomes (Jacobs
et al., 2000; Cao et al., 2007; Khrapko, 2008), suggesting that
clusters of mtDNA may be the natural state. However, evidence
from microscopy suggests that nucleoids may only contain
around 1 mtDNA genome (Kukat et al., 2011). Model selection
for mouse germline development (Johnston et al., 2015) and
human transmission (Li et al., 2016) both suggest that single
mtDNA molecules are the unit of inheritance.

Observations in rhesus monkeys (Lee et al., 2012) showed a
dramatic induction of variance by the 8-cell stage, presumably
due to random partitioning of mtDNAs over the first three cell
divisions. In this study, mtDNA admixtures in oocytes were
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created by fusing two cytoplasm halves from different oocytes.
Cell divisions then immediately followed the construction
of these admixed oocytes. It is thus not inconceivable that
physical heterogeneity in the distribution of mtDNA molecules,
remaining from the cytoplasm fusion, may contribute to this
high mutant proportion spread. For example, if the fusion
process created a “north hemisphere” containing exclusively one
mtDNA type and a “south hemisphere” containing exclusively
the other, and the first cell division occurred along the “equator,”
the resultant cells would then immediately have maximum
mutant proportion differences. Natural systems may be expected
to have more physically mixed mtDNA populations, and so
potentially show less extreme mutant proportion spreads in these
early stages.

The “repeated sampling” approaches above attempt to model
cell divisions during development as a series of random
binomial samples. Partitioning dynamics can also be embedded
in stochastic models of mtDNA replication and degradation
(Johnston and Jones, 2015, 2016). Much of this work assumes
binomial partitioning; however, recent work in yeast has
suggested that partitioning of mtDNA is tighter than binomial
sampling (Jajoo et al., 2016). Mathematical results do exist for
more controlled partitioning, or the partitioning of clusters of
mtDNA (Johnston and Jones, 2015) but are often complicated,
so simulation is often used to make quantitative predictions in
these cases (Johnston et al., 2015; Li et al., 2016).

4.4. Random Turnover of mtDNA Molecules
MtDNA replicates and degrades quasi-independently of the cell
cycle. The noisy environment of the cell means that these
processes have a random component (Birky, 1994; Chinnery
and Samuels, 1999; Capps et al., 2003; Johnston et al., 2015).
The ongoing action of this random turnover creates cell-to-cell
mutant proportion variability. For example, two cells that start
with identical mtDNA populations will diverge over time, as
different molecules undergo replication and degradation. Faster
turnover, or turnover of clusters, will lead to more mutant
proportion spread.

To account for the full set of processes that an individual
mtDNA molecule may undergo, several stochastic modeling
approaches have been developed (reviewed in Hoitzing et al.,
2017). These approaches model every individual mtDNA
molecule in a cell and subjects them to the physical processes
that we may expect to occur during development. Typically,
these processes will have a random component, so that if the
model is simulated twice, the precise outcomes will differ. These
differences can be used to characterize the variability supported
by different mechanisms.

A well-known model involves “relaxed replication,” that is,
replication of mtDNA independent of the cell cycle (Birky,
1994). Models of this process typically involve mtDNAmolecules
degrading with a fixed rate, and replicating randomly with a
rate that depends on population size (Chinnery and Samuels,
1999; Capps et al., 2003). This model generates variability
over time because of these random dynamics. Cree et al.
propose this mechanism, amplified by the physical bottleneck,

to generate mutant proportion spread in mouse development
(Cree et al., 2008).

More recently, the different ways that the cell could control
this replication rate have recently been explored in detail using
“birth-death” models (Johnston et al., 2015; Johnston and Jones,
2016; Hoitzing et al., 2019). Strikingly, this work showed that no
matter how the cell controls mtDNA replication, if there is some
mutant proportion, the variance of this mutant proportion will
increase linearly over time.

Specifically, in a population of N mtDNAs, random turnover
of molecules with rate β over time t gives rise to the behavior

sample var′
[

h
]

=
2fβt

N
, (11)

so that, for example, a year of mtDNA turnover, with average
rate one degradation event per week, in a cell with 1,000 mtDNA
molecules would give a mutant proportion spread of (2 ×
52)/1, 000 = 0.104. This would be interpreted as a “bottleneck
size” around 9.6. In followup theoretical developments (Aryaman
et al., 2019), the factor f in Equation (11) has been shown to
be the fraction of unfused mitochondria, that is, mitochondria
containing mtDNAs subject to mitophagy (Youle and Narendra,
2011; Diot et al., 2016). Mitochondrial quality control, linked
to fission-fusion dynamics, contributes to the turnover of
mitochondria in the cell (Twig et al., 2008) and provides one
way that mitochondrial dynamics may influence both mean and
variance dynamics of mtDNA populations (Hoitzing et al., 2015;
Johnston, 2018; Latorre-Pellicer et al., 2019). Higher rates of
quality control related turnover can result in higher cell-to-
cell mutant proportion variance (Johnston et al., 2015) [and, if
mitochondria associated with one mtDNA type are preferentially
degraded, this selective pressure will also influence mean mutant
proportions (Twig et al., 2008; Hoitzing et al., 2015)]. Equation
(11) provides a coupling between the physical fission-fusion
dynamics of mitochondria and the time behavior of mtDNA
mutant proportion spread (Hoitzing et al., 2015; Johnston, 2018;
Aryaman et al., 2019).

4.5. Combinations of Mechanisms
Several of these processes are conceptually linked. For example,
when a cell divides, it loses around half of its mtDNA content,
immediately restricting the subset of mtDNAs that are available
for replication. If mtDNA molecules are involved in ongoing
random turnover, only a subset of molecules will be replicating
at any given time (Johnston et al., 2015).

In each of these cases, a smaller mtDNA population acts to
amplify increases in mutant load spread, because the influence
of random events is less “smoothed out” in small populations.
Therefore, we can end up with the same amount of spread by
either (i) generating a smaller amount and amplifying it more
through small population size; or (ii) generating a larger amount
and amplifying it less. Indeed, analysis of mouse data suggests
that the same amount of spread can be achieved with a small
physical bottleneck and less mtDNA turnover (less generation,
more amplification) or a large physical bottleneck and more
mtDNA turnover (more generation, less amplification) (Johnston
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et al., 2015) (Figure 6C). This flexibility may help reconcile
differing reports on the size of the physical bottleneck (Cao
et al., 2007, 2009; Cree et al., 2008; Johnston et al., 2015). It is
not inconceivable that some mechanism may allow the cell to
sense and control this choice, so that, for example, embryos with
slightly lower mtDNA turnover have their mtDNA populations
depleted more to compensate.

To consider these mechanisms together, the birth-death
framework above was coupled to a description of cell divisions to
provide a detailed stochastic model of germline development in
mice (Johnston and Jones, 2015; Johnston et al., 2015). Compared
to other detailed models, this birth-death-partitioning model
provided the best fit to a meta-analysis of existing physical
and genetic data. The best model for cell-to-cell spread of
mutant proportion had two components: a contribution from
partitioning at cell divisions and a contribution from ongoing
drift due to mtDNA turnover.

The birth-death-partitioning model provides closed-form,
though complicated, expressions for full distributional details
of mutant proportion at all times through development, which
well-predicted independent experimental observations of mutant
proportion distributions in oocytes (Johnston et al., 2015).
The combined birth-death-partitioning model was also used
to provide an update to the Wright equation (Equation 6)
to include random mtDNA turnover (Johnston and Jones,
2016), predicting:

sample var′
[

h
]

= 1−
(

1−
1

N

)g

+
4t

3Nτ
, (12)

where N is now a physical mtDNA copy number, g a physical
number of cell divisions, t is time and τ is the timescale of
mtDNA degradation. Append:

The final term in Equation (12) estimates the ongoing increase
in mutant load spread due to mtDNA turnover, increasingly
linearly with time t.

5. RECENT TOPICS

5.1. Model Selection and Predictions
We have discussed a range of different proposed mechanisms
for the “genetic bottleneck” (mutant proportion spread). A
comparatively recent set of studies has attempted to identify
the mechanisms that are most supported by data. This has
been attempted through the use of model selection (Kirk
et al., 2013), a process that compares the statistical support for
different mechanisms while guarding against overfitting. Li et al.
used likelihood-based model selection with a human dataset to
provide support for a “genetic bottleneck” (mutant proportion
spread) that varies for different sequences and involves individual
mtDNAs (rather than clusters) as segregating units (Li et al.,
2016). Johnston et al. used likelihood-free model selection for
mouse data to identify themechanism(s) most supported by data.
They found little support for partitioning of clustered mtDNA,
and most support for the birth-death-partitioning model above,
which was further supported by followup experiments (Johnston
et al., 2015). A theoretical comparison of different models for

mtDNA control (Johnston and Jones, 2016) revealed the above
principles of increasing variance that hold regardless of which
specific mechanism is true. More recently, large-scale inter-
generational data from mice was used in a statistical framework
to identify which processes influence mtDNA statistics during
development and aging (Burgstaller et al., 2018).

These detailed mathematical models present the opportunity
to refine the prediction of mutant proportion distributions. The
birth-death-partitioningmodel predicted distributional details of
oocyte mutant proportion in developing mice (Johnston et al.,
2015). Based on the picture of increasing mutant proportion
spread in aging oocytes, a simple model involving a variation
of a logit-normal distribution for mutant proportion predicted
distributional details of mutant proportion in mouse litters
(Burgstaller et al., 2018).

5.2. Sequence-Specific Behavior in Mutant
Proportion Spread
Substantial recent attention has been focussed on whether the
genetic bottleneck (mutant proportion spread) is sequence-
specific. Evidence for this hypothesis includes observations
from different pathological mtDNA mutations (Monnot et al.,
2011; Wilson et al., 2016; Otten et al., 2018). Consideration
of different human variants in a population genetic context
also suggests that the magnitude of the genetic bottleneck
(mutant proportion spread) depends on the specific variant
under investigation (Li et al., 2016). A particularly striking
difference appears to exist between the 3243 and 8993 mutations
(Monnot et al., 2011; Wilson et al., 2016; Otten et al., 2018).
The aforementioned population study (Li et al., 2016) also found
a variable-size bottleneck to be most statistically supported for
non-pathological mutations.

As discussed throughout, sequence-specific proliferative
advantages of one mtDNA type over another can confound
attempts to analyse the genetic bottleneck (mutant proportion
spread). A sequence-specific increase in mutant proportion
spread can arise without a proliferative difference between
sequences: for example, if one sequence experiences both
higher replication and degradation rates, increasing random
turnover without an overall selective advantage. Conversely,
under some experimental designs, sequence-specific differences
in the behavior of mean mutant proportion (i.e., proliferative
differences) could be interpreted instead as differences in mutant
proportion variance if it is assumed that no proliferative
differences exist (as in Figure 4A). Further theoretical work
unpicking the behavior of mtDNA statistics as mean and variance
change together will be useful in interpreting these observations.

5.3. Ongoing Increase of Mutant Proportion
Spread During Aging
Recent large-scale intergenerational data in mice has shown an
ongoing increase in mutant proportion spread in oocytes over
time in adult mice (Figure 7). This increasing oocyte-to-oocyte
spread of mutant proportion with age has been directly observed
in mouse oocytes (Burgstaller et al., 2018), and has been shown to
be more statistically supported than a constant-spread model in
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FIGURE 7 | Increasing mutant proportion spread in oocytes with mouse age. Data from Burgstaller et al. (2018), reporting sample var′ [h] in sets of individual oocytes

from mice of different ages. HB and LE label two genetic models, involving admixtures of wild-derived haplotypes HB and LE, respectively with haplotype C57Bl/6N.

Error bars are derived using Equation (10); “model fit” accounts for this uncertainty and “naive fit” simply fits the bare observations. In all cases a significant linear

increase in sample var′ [h] with time, following Equation (11), is observed.

independent observations in flies, mice, and humans (Johnston
and Jones, 2016).

The mechanism(s) behind the ongoing shrinking of the
genetic bottleneck (increasing mutant proportion spread)
remains unclear (Johnston et al., 2015; Zhang et al., 2018).
However, random turnover of mtDNA may be a reasonable
candidate mechanism (Johnston et al., 2015; Johnston and Jones,
2016; Burgstaller et al., 2018). The cumulative action of stochastic
replication (and degradation) is to generate cell-to-cell spread in
mitochondrial statistics, including in mutant proportion. Other
processes like diversifying selection, physical clustering, and
even mutagenesis could all contribute to the observed increase
in spread.

These results are from systems involving cellular admixtures
of two main haplotypes. Other results suggest a consistent
picture, for example, showing an increasing number of
heteroplasmic sites in children from older mothers, which the
authors suggest is likely attributable to oocyte aging (Rebolledo-
Jaramillo et al., 2014). Another study found non-uniform changes
in heteroplasmy with age in humans (Sondheimer et al., 2011).

In light of this observation, this article would advocate an
additional careful analysis of the contribution of maternal age
to observed mutant proportion patterns. As we expect the
genetic bottleneck (mutant proportion spread) to decrease with
age, any systematic differences in age between these compared
variances could confound other relationships. Conversely and
more positively, appropriate accounting for age would help
increase the statistical power of these comparisons.

6. THE PROBLEM OF SELECTION

Throughout the above, we have alluded to the problems that
systematic selection for one or more mtDNA types can cause
in these analyses. Theory describing the influence of selection
has been established, but is complicated (Johnston et al., 2015).
In particular, if approaches that assume the absence of selection

are used when it is in fact present, errors can arise in estimates
of genetic properties and physical mechanisms. As pointed out
above, these issues may lead to dramatic underestimation of
“bottleneck size,” and cannot be assumed to “cancel out.”

Several of the results above are valid only in the absence of
selection: when no mtDNA type experiences an advantage over
any other. This is known to be false for many mtDNA pairings
in many somatic tissues, where selection for one mtDNA type
over another is often observed (reviewed in Burgstaller et al.,
2014). Selection in the germline has been more debated, but
evidence is increasing. In several studies, the transmission of
pathological mutations seems to be subject to selective pressure.
The maximum level of transmission for the 3243 mutation in
humans has appeared to be limited (Monnot et al., 2011; Otten
et al., 2018), and selection against severe mtDNA mutations has
been observed in mice (Fan et al., 2008). Recent observations
in mice (Burgstaller et al., 2018; Latorre-Pellicer et al., 2019)
and humans (Wei et al., 2019) have indeed observed selection
at different loci. Burgstaller et al. (2018) suggest that selection
may act in different directions at different developmental stages
(very recently supported by Latorre-Pellicer et al., 2019), and
that these directions may either cancel out or provide a net
selective shift. Mathematical theory for the behavior of mutant
proportion spread when selection is present remains less well-
developed and represents an important future theoretical target.
The birth-death-partitioning approach in references (Johnston
et al., 2015; Johnston and Jones, 2016) can account for selection
but are mathematically complicated. Otten et al. (2018) have
proposed a truncated Kimura distribution to describe a selective
regime where mutant proportions above a certain value are
prohibited, and found that it is supported by observations of the
3243 mutation.

Comparison to the Kimura distribution is often used to
argue for an absence of selection. However, this approach must
be interpreted with caution. Depending on the mechanism of
selection, Kimura-distributed samples may be observed even
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when selection has occurred. In particular, as approaches using
the Kimura distribution sometimes use several “after” but no
“before” measurements, it is possible that an early shift in mutant
proportion will not be detected.

7. CONCLUSIONS

7.1. The Variable “Genetic Bottleneck”
This article has attempted to review the various models
and mechanisms that have been considered for the “genetic
bottleneck” (mutant proportion spread). Some diversity
in reported mtDNA behavior comes from the choice of
analysis protocol: the use of bottleneck parameters, rather than
bottleneck sizes that allow a choice of “generation number,”
can help avoid this. The reporting of sample var′

[

h
]

, the
fundamental observation from which these statistics are derived,
and its associated uncertainty, will also help interpretability
and comparison.

Ongoing research has provided evidence that the “genetic
bottleneck” (mutant proportion spread) varies with age, species,
individual, and genetic features. Intriguingly, the coupling of
physical and genetic behavior of mitochondria (Equation 11; Tam
et al., 2013; Aryaman et al., 2019) suggests that heterogeneity
in mitochondrial dynamics may induce heterogeneity in
mutant proportion.

A diverse range of studies on the mtDNA bottleneck
continues to provide a wealth of insight into this important
process. However, the very diversity of this research risks
confusion arising, particularly around aspects of the prevailing
terminology. This article has attempted to clarify some of the
concepts involved, to serve as a reference for the increasingly
interdisciplinary community working in this field.

Some takehome messages for reference include:

• The “genetic bottleneck” is a readout of mutant proportion
spread that is generally not an observable physical
quantity, and is measured reported in diverse ways through
the literature;

• Observations of mutant proportion spread can have
substantial uncertainty both from sampling and technical

error, particularly if under 10 samples are used (when the
standard error can approach half the observation);

• The physical mechanisms underlying the “genetic bottleneck”
(mutant proportion spread) include a combination of
copy number reduction (a physical bottleneck), random
replication and degradation of mtDNA molecules, and
random partitioning at cell divisions;

• The magnitude of the physical bottleneck appears to be
flexible, as flexibility in mtDNA turnover can compensate to
produce the same effects on mutant proportion spread;

• The presence of mtDNA selection complicates estimates of
mutant proportion spread, and different experimental designs
report different statistics in this case;

• The “genetic bottleneck” (mutant proportion spread) likely
varies by species, individual, age, and mtDNA sequence.
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The higher order organization of eukaryotic and prokaryotic genomes is pivotal in the
regulation of gene expression. Specifically, chromatin accessibility in eukaryotes and
nucleoid accessibility in bacteria are regulated by a cohort of proteins to alter gene
expression in response to diverse physiological conditions. By contrast, prior studies have
suggested that the mitochondrial genome (mtDNA) is coated solely by mitochondrial
transcription factor A (TFAM), whose increased cellular concentration was proposed to be
the major determinant of mtDNA packaging in the mitochondrial nucleoid. Nevertheless,
recent analysis of DNase-seq and ATAC-seq experiments from multiple human and
mouse samples suggest gradual increase in mtDNA occupancy during the course of
embryonic development to generate a conserved footprinting pattern which correlate with
sites that have low TFAM occupancy in vivo (ChIP-seq) and tend to adopt G-quadruplex
structures. These findings, along with recent identification of mtDNA binding by known
modulators of chromatin accessibility such as MOF, suggest that mtDNA higher order
organization is generated by cross talk with the nuclear regulatory system, may have a role
in mtDNA regulation, and is more complex than once thought.

Keywords: ATAC-seq, DNase-seq, G-quadruplex, higher order organization, mtDNA, mitochondrial
transcription factor A
INTRODUCTION

The genome of all organisms undergoes concerted cycles of packaging to reduce its volume and to
control access to the regulatory mechanisms of transcription and replication. In the eukaryotic
nucleus, DNA is compacted into chromatin, which provides differential accessibility in response to a
variety of histone modifications (Zhu and Li, 2016). The bacterial genomes, which lack histones, are
folded into nucleoids using a set of dedicated proteins, entitled Nucleoid-Associated Proteins
(NAPs), such as HU, Histone-like Nucleoid Structuring protein (H-NS) and Structural
Maintenance of Chromosomes proteins (SMC). Alongside their architectural role in DNA
packaging, these proteins also play a role in other processes, such as replication and
chromosome segregation (Badrinarayanan et al., 2015; Dame and Tark-Dame, 2016). Notably,
the most commonly used models for investigation of nucleoid organization are Escherichia coli,
December 2019 | Volume 10 | Article 1285121
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Bacillus subtilis and Caulobacter crescentus (Dame and Tark-
Dame, 2016); the latter is an alphaproteobacterium, which
belongs to the same phylogenetic branch from which the
mitochondria originated (Wang and Wu, 2015).

The circular genomes of C. crescentus are organized in
ellipsoidal and helical structures between two opposite poles of
the cell, creating two ‘arms’ that are folded around each other (Le
et al., 2013). While analyzing interactions between different
regions within the C. crescentus genome by genome-wide
chromatin conformational capture (Hi-C) (Le et al., 2013), 23
preferential Chromosomal Interaction Domains (CID) were
identified. CID boundaries seem to closely associate with
transcription and replication units. The boundaries tend to
reestablish shortly after, or even during DNA replication,
possibly to disentangle the newly formed DNA molecules.
Additionally, the CID boundaries can be disrupted by
transcription inhibition (Le et al., 2013). Novel CID boundaries
can be created by artificially moving loci of highly expressed
genes into inherently low expressed regions (Le et al., 2013).
These findings, strongly suggest that the bacterial nucleoid,
including that of alphaproteobacteria, is a highly regulated
structure with great importance to DNA replication
and transcription.

In addition to their nuclear genome, all eukaryotic cells
conta in a much smal ler cytoplasmic genome— the
mitochondrial DNA (mtDNA). This genome originated ~2.5
billion years ago from an ancient endosymbiosis between a
former free-living alphaproteobacterium and the progenitor of
all eukaryotic cells (Sagan, 1967; Pittis and Gabaldon, 2016).
Although during the course of evolution the ancient bacterium
lost most of its inherent genetic material either due to transfer to
the nucleus, or due to natural selection, the mitochondria in the
vast majority of eukaryotes still harbor their own genomes.
Despite its modest size, the mammalian mtDNA encodes 13
critical subunits of the oxidative phosphorylation system
(OXPHOS), two ribosomal RNA genes and 22 tRNAs that are
required for cellular energy production. Mammalian mtDNA
forms a protein-DNA structure that was termed ‘nucleoid’, to
highlight its ancient bacterial heritage (see below). The animal
mtDNA is four orders of magnitude smaller than the nuclear
genome, and has been long thought to be separately regulated
from the nuclear genome (Gustafsson et al., 2016). Accordingly,
mitochondrial transcription factor A (TFAM) is believed to be
sufficient for mitochondrial nucleoid formation (Kaufman et al.,
2007) and the primary driver of mtDNA packaging (Gustafsson
et al., 2016; Farge and Falkenberg, 2019). The role of TFAM in
mtDNA packaging and higher order organization has been
recently thoroughly reviewed, and therefore will be mentioned
here only briefly (Farge and Falkenberg, 2019). TFAM is highly
conserved across species, and despite the apparently linear
mtDNA organization in yeast (Gerhold et al., 2010), the yeast
orthologue (Abf2p) of TFAM packs this genome as well (Farge
and Falkenberg, 2019). mtDNA condensation positively
correlates with the cellular concentration of TFAM so that
increased TFAM concentration leads to higher degrees of
mtDNA compaction (Kukat et al., 2015).
Frontiers in Genetics | www.frontiersin.org 222
Thus, our current view of mtDNA regulation suggests that a
nuclear-encoded yet mitochondrially restricted set of proteins
modulates mtDNA transcription, replication and packaging
(Gustafsson et al., 2016). For example, mtDNA genes are
transcribed by POLRMT, and not RNA Polymerase II which
transcribes nuclear mRNAs, and the mtDNA is replicated by
DNA polymerase gamma (POLG), which has no accepted role in
replication of the nuclear DNA. However, it would be surprising
from an evolutionary point of view if the past 2.5 billion years
since mitochondrial endosymbiosis had not led to significant
adaptation of the regulation of the mitochondrial and nuclear
DNA. Is it plausible that the longtime co-existence of the
mitochondrion and its host have been accompanied by
adaptation of mtDNA to the host regulatory and packaging
systems? Co-adaptation of the nuclear and mitochondrial
genomes had been demonstrated in the context of the
OXPHOS and in the mitoribosomes, which use nuclear DNA-
encoded proteins, and either exclusively mtDNA-encoded
proteins (in OXPHOS) or mtDNA-encoded rRNA and tRNA
transcripts (in the mitoribosome) (Levin et al., 2014). However,
the discovery of transcription factors that directly regulate
transcription in both the nucleus and in the mtDNA has
suggested that the control of gene expression is coordinated
not only by signals, but by dual localization of transcription
factors (Barshad et al., 2018). Hence, adaptation of mtDNA
regulation to the nuclear regulatory system is plausible.

Mitochondrial DNA is compacted through its interactions
with TFAM (Kukat et al., 2015), but there is growing evidence for
the involvement of additional nuclear-encoded proteins that also
regulate nuclear chromatin. This includes MOF (Chatterjee et al.,
2016), members of the AP1 family (c-Jun and JunD) as well as
CEBPB (Blumberg et al., 2014) and MEF2D (She et al., 2011).
The discovery of mtDNA binding and mitochondrial
transcriptional regulation by MOF, a histone lysine
acetyltransferase that remodels chromatin, was particularly
surprising, as it raises questions about its acetyltransferase
target in the mitochondria, and its possible role in mtDNA
organization. Secondly, c-Jun and JunD, which were recently
shown to bind negatively selected sites in the mtDNA (Blumberg
et al., 2014), tend to bind nuclear DNA enhancer regions and
affect nuclear DNA gene regulation (Phanstiel et al., 2017).
Third, CEBPB, a known chromatin remodeler (Bornstein et al.,
2014), not only binds the mtDNA in vivo, but also serves as a
candidate repressor of human mtDNA gene expression (Barshad
et al., 2018). Fourth, DNase-seq and ATAC-seq analysis in
multiple human and mouse cells revealed a conserved
footprinting pattern, which overlapped known mtDNA
regulatory elements, yet correlated with low TFAM occupancy
in HeLa cells (Blumberg et al., 2018). This ATAC-seq mtDNA
footprinting pattern was gradually formed during the course of
embryogenesis in both mouse and humans, as reflected by
gradually increasing mtDNA occupancy (Marom et al., 2019).
Hence, it is possible that there are mtDNA sites which are
consistently occupied, and sites that are consistently under-
occupied across the mtDNA, and that the mtDNA is bound
not only by TFAM but rather by other additional proteins in an
December 2019 | Volume 10 | Article 1285
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organized manner. This reflects the existence of an organized
protein–DNA structure in the mitochondrial genome, thus
providing first clues for the existence of a structured higher
order organization of the mitochondrial genome.

We would argue that the investigation of the regulation of the
mitochondrial nucleoid in the frame of protein-DNA patterns of
interactions and their impact on regulation of mtDNA gene
expression and replication is of equivalent importance to our
understanding of the organization and compaction of the nuclear
chromosome, but that it is markedly less well studied and
understood. In this essay we will discuss current knowledge
regarding the nature of the higher order organization of the
mitochondrial genome (Figure 1), and assess its functional
potential from an evolutionary perspective.
Mitochondrial Nucleoid and
mtDNA Content
The only known structural unit of the mitochondrial genome is
the nucleoid, which contains mtDNA and closely interacting
proteins (Hensen et al., 2014). The nucleoids are vital for
mitochondrial function as they coordinate transcription
(Rebelo et al., 2011), translation (He et al., 2012) and interact
with enzymatic activities of the mitochondrial inner membrane
(Wang and Bogenhagen, 2006). There are a correspondingly
large number of proteins that can be pulled down by crosslinking
Frontiers in Genetics | www.frontiersin.org 323
to nucleoids, thus reflecting these diverse activities (Bogenhagen
et al., 2008). High-resolution microscopy techniques were used
to show that nucleoids are compact and ellipsoidal, suggesting
the exclusion of non-nucleoid proteins, and that nucleoids are
associated with the mitochondrial inner membrane (Brown et al.,
2011; Kukat et al., 2011; Kukat et al., 2015). The number of
mtDNA molecules in each nucleoid has been a matter of
considerable debate. Logically, the nucleoids must at least
transiently contain multiple mitochondrial genomes after the
completion of replication. Most studies have observed that the
copy number is stably higher with estimates ranging from 1.4 to
7.5 genomes per nucleoid [(reviewed in (Lee and Han, 2017)].
MtDNA Folding and Loops—Current and
Future Studies
Higher order organization of both the eukaryotic nuclear
genome and the bacterial nucleoid involve regulated steps of
protein binding followed by bending and folding to allow the
interaction of sequences that are distant in the primary DNA
sequence. In a study of the mtDNA binding pattern of the
mitochondrial transcription termination factor MTERF1 in
mammalian cells, simultaneous binding of MTERF1 was
observed at the proximal heavy strand promoter (HSP1) and
within the MT-TL1 sequence (Martin et al., 2005). This
interaction increased the expression of genes regulated by
FIGURE 1 | The possible structural changes in the mtDNA and the cross-talk between mtDNA higher order organization and regulation.
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HSP1, and a model was proposed that would allow the direct
recycling of transcription complexes from the termination point
of HSP1 transcription back to its origin. While attractive, the
phenotype of an Mterf1 deficient mouse cast doubt upon this
elegant concept, as the predicted loss in HSP1 activity was not
observed (Terzioglu et al., 2013). Other cis interactions along
mtDNA are yet to be discovered. Interactions between distant
nuclear genomic regions are currently being investigated using
sequencing-based techniques such as the Chromosome
conformation capture (3C) and subsequent derivative of this
methodology (i.e., 4C, 5C and HiC) (Oluwadare et al., 2019), yet
all of these techniques are currently designed to identify
interactions between regions that are megabases apart, which
limit their utility in the study of the human mtDNA. Although a
recent study of HiC data claimed to observe direct interactions
between the mitochondrial and nuclear genomes (Doynova et al.,
2016), no independent study supported such findings. Given the
above, there is a need for the development of techniques that will
allow mapping of interactions between mtDNA sequences, while
taking into account the small size of this genome and
its circularity.
Mitochondrial Transcription Responds to
Structural Cues Along mtDNA
Mitochondrial transcription uses unique features to allow the
differential expression of a very tightly packed genome with a
limited number of primary transcripts. Since mitochondrial
transcription has recently been reviewed (Gustafsson et al.,
2016), here we will only consider the role of the physical
structure of mtDNA in the initiation and termination
of transcription.

One key challenge for mitochondrial transcription is the use
of oppositely oriented promoters that transcribe the same
regions in both directions—with strand specific promoters in
mammals but bidirectional promoters in birds (L’Abbe et al.,
1991; Randi and Lucchini, 1998) and amphibians (Bogenhagen
et al., 1986; Bogenhagen and Romanelli, 1988). The human
mtDNA harbors a single light-stranded promoter, which is
responsible for expression of the OXPHOS complex I subunit
ND6 as well as eight tRNA. The activation of this promoter
requires the binding of TFAM, which creates a pronounced U-
turn bending in mtDNA, proximal to the site of transcription
initiation (Ngo et al., 2011; Rubio-Cosials et al., 2011). The two
heavy-strand promoters are closely adjacent to each other, with
HSP1 principally driving expression of the two rRNA genes (i.e.
the 12S and 16S rRNAs), and HSP2 driving the expression of the
remaining twelve protein-coding genes and the distal tRNA
genes along the heavy strand (Montoya et al., 1983). Like LSP,
TFAM activates HSP1, although studies have come to different
conclusions as to the topology of TFAM’s interaction at HSP1
(Ngo et al., 2014; Morozov and Temiakov, 2016; Hillen et al.,
2017; Uchida et al., 2017).

The balancing of expression of HSP1 and HSP2 has been a
matter of some debate. It seems reasonable that some mechanism
must exist, since HSP1 is primarily devoted to rRNA and HSP2
to the expression of protein coding genes, which was also shown
Frontiers in Genetics | www.frontiersin.org 424
in living cells (Blumberg et al., 2017). Our group and others have
shown that HSP2 is distinct in that TFAM is not only dispensable
for activation, but actively inhibits it (Lodeiro et al., 2012; Zollo et
al., 2012). We have further shown that the topological state of
mtDNA may be important for HSP2 activation. Unique among
the promoters, HSP2 is activated by negative supercoiling in a
fashion reminiscent of bacterial systems, but no similar effect is
seen at LSP and HSP1 (Zollo and Sondheimer, 2017).

The termination of mitochondrial transcription is also
regulated by the physical state of mtDNA. Because the
molecule is circular and has oppositely oriented promoters,
processive transcriptional complexes are at risk of collision.
Because of the positioning of genes, the termination of LSP
and HSP1 at a point between mt.3229 (the end of the 16S
ribosomal RNA as transcribed by HSP1) and mt.4329 (the end
of MT-TQ as transcribed by LSP) would allow the simultaneous
utilization of LSP and HSP1 without promoter collision.
Considerable evidence has been provided for the role of
MTERF1 in interaction with mt.3232–3253 (within the coding
sequence of MT-TL1), including the crystal structure of the
interaction of MTERF1 with its mtDNA target sequences
(Yakubovskaya et al., 2010). As noted above, evidence from
mouse knockout studies ofMterf1 agreed only partially with this
concept, and suggested that the insulation of the LSP against
transcription proceeding back through the promoter might also
be important (Terzioglu et al., 2013). It is important to recognize
that the regulation of both transcription and mtDNA physical
structure in mouse and human may not be identical, but the
organization of mtDNA regulatory elements clearly influences
interactions with transcription factors to exert control over gene
expression. The means of controlling interactions between
transcriptional complexes arising from LSP and HSP2
remains undiscovered.
Could mtDNA Packaging and Regulation
Be Affected by G-Quadruplex
(GQ) Formation?
G-Quadruplexes (GQs) are non-canonical nucleic acid
secondary structures that use Hoogsteen hydrogen bonding
between guanines on the same strand (Rhodes and Lipps,
2015). The occurrence of GQs within the DNA is not random,
and is notably conserved across species, thus supporting selective
constraints and hence potential functional importance (Murat
and Balasubramanian, 2014). Moreover, whereas transient GQs
correlate with binding sites of chromatin remodeling-related
transcription factors, genome-wide sites with more stable GQs
have been implicated in replication stalling and inhibition of
chromatin remodeling (Varizhuk et al., 2019), which support
their involvement in regulation of higher order DNA
organization. For example, GQ-ChIP-seq experiments revealed
that most GQs tend to form within nucleosome-depleted regions
with increased transcription activity (Hansel-Hertsch et al.,
2016). As GQ structures are mostly resolved by RecQ helicases
(Mendoza et al., 2016; Sauer and Paeschke, 2017; Varizhuk et al.,
2019), it is noteworthy that one such helicase, RecQ4, is
transported into the mitochondria, interacts with DNA POLG
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and promotes mtDNA replication (Ding and Liu, 2015). Indeed,
due to the asymmetric composition of nucleotides in the heavy
(more guanine-rich) and light (more cytosine-rich) strands of
mtDNA, the heavy mtDNA strand is prone to GQ formation.
Previously, in silico analysis suggested the existence of G-
quadruplex-forming motifs throughout the human mtDNA
(Falabella et al., 2019). Imaging of mtDNA using GQ binding
dyes showed that they are widely present (Huang et al., 2015),
and the application of compounds that bind to GQ impact
mtDNA transcription and replication (Falabella et al., 2019).
We have recently demonstrated that GQ formation can even
selectively bias the replication of a mixed mtDNA population
(heteroplasmy) (Naeem et al., 2019). Hence, similar to the
nuclear genome, GQ formation in the human mtDNA affects
the regulation of this genome.

Although in vitro experiments suggested that TFAM binds to
GQ at non-physiological concentrations (Lyonnais et al., 2017),
analysis of ChIP-seq TFAM binding experiments in HeLa cells
revealed TFAM occupancy throughout the mtDNA (Wang et al.,
2013), yet low occupancy of TFAM at GQ-forming regions
(Blumberg et al., 2018). Moreover, we showed that G-
quadruplex-forming motifs tend to co-localize with conserved
DNase-seq footprinting sites in adult cells (Blumberg et al., 2018)
and during development (Marom et al., 2019). Other proteins
such as the ATP-dependent Lon protease bind GQ sequences
in vitro (Lu et al., 2003), and in vivo (Lu et al., 2007). Thus, it is
plausible that investigation of the conformation assumed by such
motifs in vivo will offer clues for the discovery of novel mtDNA
binding proteins that may be involved in the construction and
regulation of its higher order organization. Interestingly, nuclear
DNA regions that tend to be packed late during the cell cycle,
and are prone to breakage, also harbor non-B DNA structures
(Dong et al., 2014). Specifically, GQ structures are resolved at the
DNA, likely by the Pif1 helicase, to allow maintenance of the
mtDNA (Bannwarth et al., 2016). Indeed, double mutant Pif1
mice exhibit elevated levels of mtDNA damage. As in the nuclear
genome, hotspots for chromosomal aberrations and fragile sites
tend to correlate with the state of chromatin accessibility
(Mishmar et al., 1999). Further investigating the patterns of
non-canonical DNA structure may offer additional insights to
differential accessibility of sites across the mitochondrial genome.
Structural mtDNA Aberrations in Aging
and Disease: Potential Impact on the
Higher Order mtDNA Organization
Chromosomalaberrationsof various types in thenucleargenome(i.e.
inversions, deletions, insertions, duplications and translocations)
not only change the location of genes, but also change the location
of regulatory elements, thus changing the chromatin structure
and regulatory landscape of the modified region. As discussed
above, regulatory factors bind the mtDNA not only within the
non-coding promoters’ region, but rather throughout the
mitochondrial genome [reviewed in: (Barshad et al., 2018)].

Therefore, it is logical that mtDNA aberrations such as
deletions, duplications, inversions and insertions may not only
change the coding content, but will change the location of
Frontiers in Genetics | www.frontiersin.org 525
regulatory elements and hence have the potential impact on
mtDNA regulation. Consistent with this hypothesis, and because
of the high gene density of mtDNA, structural rearrangements
and deletions are poorly tolerated. The association between
mitochondrial deletions and pathology is robust. The
accumulation of deletions during the process of aging was
discovered nearly thirty years ago (Cortopassi and Arnheim,
1990) and at nearly the same time it was recognized that the
Kearns-Sayre syndrome was also linked to deletions in mtDNA
(Shoffner et al., 1989). The phenotypic impact of mtDNA
deletions has been largely interpreted as the result of the loss
of genetic material. The effect of such mtDNA aberrations on
mtDNA regulation in vivo merits further investigation.

Is it possible that structural aberrations are not random,
preferentially occurring at positions of special mtDNA
organization? Indeed, the 4,977 bp deletion has previously been
shown to be flanked by simple repeat sequences with the tendency
to form non-BDNA structures (Hou andWei, 1998). Interestingly,
non-B DNA structures tend to co-localize in general with other
types of mtDNA deletions that accumulated with aging (Hou and
Wei, 1996; Damas et al., 2012). Specifically, as already discussed
above, G-quadruplex forming sequences tend to occur at such
breakpoints (Dong et al., 2014), and affect mtDNA transcription in
vitro (Hillen et al., 2017). Hence, it is logical to suggest the existence
of mtDNA hotspots for aberrations. In the nuclear genome hot
spots for chromosomal aberrations tend to occur in regions with
special chromatin organization (Mishmar et al., 1999;
Fungtammasan et al., 2012), which calls for assessing such
connection in the mtDNA as well.
Structural Differences in mtDNA
Across Evolution
mtDNA aberrations do not only associate with human
pathologies, but also led to changes in mtDNA gene order and
content during the course of evolution. As an example, although
the mitochondrial genome remained circular in most studied
metazoans, it is linear in Medusozoa (Kayal et al., 2012).
Secondly, although most vertebrate mtDNAs contain a non-
coding region, which harbors most known regulatory elements,
the chordate amphioxus nearly lacks a non-coding region
(Spruyt et al., 1998; Boore et al., 1999), which prevents
identification of the positions of orthologous regulatory
elements. Third, fragmentation of the mtDNA into several co-
segregating parts that together comprise the full gene content
seen in vertebrates has been described in organisms such as lice
(Shao et al., 2012) and certain nematodes (Phillips et al., 2016).
Do such mtDNA rearrangements affect mtDNA regulation? A
recent study of in vivo mtDNA transcription using the precision
global run-on transcription-sequencing (PRO-seq) revealed, that
although the mtDNA gene contents in Drosophila and
Caenorhabditis elegans are nearly identical to that of humans,
the gene order and gene content per mtDNA strand profoundly
changed (Blumberg et al., 2017). We recently showed that such
changes were accompanied by the emergence of a very different
mtDNA transcriptional initiation and termination schemes in
vivo (Blumberg et al., 2017). Specifically, we observed that in
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contrast to human mtDNA which harbors two heavy strand and
one light strand transcriptional initiation sites, Drosophila had 5-
7 initiation sites, and C elegans had a single transcription
initiation site, consistent with their mtDNA strand-gene
contents. These phenomena exemplify how changes in mtDNA
organization, during the course of evolution and in human
diseases, likely lead to changes in mtDNA regulation.

As the recently identified mtDNA DNAse-seq and ATAC-seq
footprinting patterns appears to be conserved between human and
mouse (Blumberg et al., 2018), it would be of interest to study such
in organisms with different mtDNA organization, as well as in
human cells with pathological mtDNA deletions. Such study will
directly assess the impact ofmtDNAaberrations onmtDNAhigher
order organization and while engaging such study with techniques
that assess transcriptional pattern invivo (suchasPRO-seq)onewill
be able to assess the connection between such changes with
alteration in mtDNA regulation.
The Management of mtDNA Structure—
Mitochondrial Topoisomerases as
Key Players
The structure of mtDNA and its accessibility is also impacted by
topoisomerases, single or double-strand DNA-cleavage proteins
that are used to alter the topological state of DNA, keeping it
available for transcription and replication and preventing the
formation of knots or other unusable structures (Vos et al.,
2011). The issues faced by mtDNA that must be resolved by
topoisomerase are distinct from those seen in linear
chromosomes and include the resolution of concatameric
structures formed by mtDNA replication (Kolesar et al., 2013).

There is a single known topoisomerase that is specific for the
mitochondrion, TOP1MT (Zhang et al., 2001). This is a type IB
topoisomerase, capable of relaxing supercoiling by single-strand
cleavage and strand passage. Surprisingly, mice deleted for the
homologous Top1mt, are viable, although they do show evidence
of increased supercoiling of their mtDNA (Zhang et al., 2014).
Instead, Top1mt−/− animals had increased activity of type IIA
topoisomerases, suggesting the capacity for compensation for the
loss of Top1mt activity.

The presence of type IIA topoisomerases is probably required
in mitochondria, since these proteins fulfill the requirement for
the de-catenation of linked molecules of mtDNA. Top2b has
dual localization to the mitochondria and nucleus, with a
shortened isoform present in the mitochondrion (Low et al.,
2003). Top2b is canonically responsible for type IIA activity in
non-proliferating cells. Although Top2a was not initially
identified in the mitochondrion, recent studies have confirmed
that it does locate within the organelle (Zhang et al., 2014).

The topoisomerases collectively appear to play important
roles in regulating the supercoiling and also the transcription
of mtDNA (Sobek et al., 2013). This provides a striking echo of
our growing understanding of the role of topoisomerases in
regulating nuclear transcription (McKinnon, 2016). The
continuing studies, particularly of the bigenomic type IIA
topoisomerases, may increase our understanding of how
nuclear and mitochondrial transcription are coordinately
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regulated using template topology, a mechanism of control
that is strikingly conserved from bacteria to man.
MtDNA Methylation and Acetylation
of TFAM
Nuclear chromatin is regulated by DNA and protein
modifications including the methylation of cytosines and the
acetylation of specific lysine residues in histones. Such changes
directly correlate with chromatin accessibility and have
antagonistic impact on gene expression: whereas H3K27 tri-
methylation correlates with gene silencing, K27 acetylation
correlates with gene activation (Rada-Iglesias et al., 2011). As
histones are not imported into the mitochondria, there is
considerable interest in the possibility that equivalent
modifications occur in the mtDNA or proteins that bind to it.
Recent work reported that acetylation and phosphorylation of
TFAM can fine-tune TFAM-DNA binding affinity (King et al.,
2018). However, as such results were obtained while testing the
binding capacity of TFAM (modified and unmodified) to non-
specific DNA, it still remains to be assessed whether such
modifications affect TFAM binding to mtDNA in living cells.
More intriguing is the discovery of several types of mtDNA
methylation in different porcine tissues, which correlated with
different patterns of mtDNA transcription and mtDNA copy
numbers (Liu et al., 2019). The extent to which mtDNA CpG and
GpC methylation affect mitochondrial function in cells and in
the entire organism remains still in open discussion (Mposhi
et al., 2017), and its very existence has been questioned (Matsuda
et al., 2018). Nevertheless, there are reports of association
between altered levels of mtDNA methylation and Alzheimer’s
disease (Stoccoro et al., 2017), suggesting physiological relevance.
Taken together, it seems that similar to the nuclear genome, the
mtDNAmight be ‘epigenetically’modified, which correlates with
downstream activity. However, the connection between such
modifications and mitochondrial higher order organization,
and with mitochondrial activities, still remains to be tested.
CONCLUSIONS

The higher order organization of the bacterial nucleoid and the
nuclear chromatin are tightly regulated, and the impact of such
structures on regulation has been widely studied. In the current
essay we discussed current knowledge of the higher order
organization of the mitochondrial genome in light of evolution
and of the growing usage of functional genomics techniques
(Figure 1). Recent analysis of DNase-seq and ATAC-seq suggest
a conserved mtDNA footprinting pattern between tissues, which
does not correlate with the binding sites pattern of the only
known mtDNA coating protein—TFAM. As such pattern is
conserved between man and mouse, the time is ripe to
hypothesize that mtDNA–protein interactions, and hence
mtDNA higher order organization, are more complex, and
more regulated, than once thought. As functional genomics
techniques that determine interactions between genomic
regions (such as HiC) grow gradually more sensitive, they
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could shed light on the packaging of this small genome, and its
impact on regulation.
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Julio Alberto Andrés-Sanz1, Delia Yubero4,5, Ana Fernández-Marmiesse6,
Maria M. O’Callaghan4,5, Juan D. Ortigoza-Escobar4,5, Marti Iriondo4,5,
Eduardo Ruiz-Pesini1,2,3,5, Angels García-Cazorla4,5, Mercedes Gil-Campos7,8,
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Encephalomyopathic mitochondrial DNA (mtDNA) depletion syndrome 13 (MTDPS13) is a
rare genetic disorder caused by defects in F-box leucine-rich repeat protein 4 (FBXL4).
Although FBXL4 is essential for the bioenergetic homeostasis of the cell, the precise role of
the protein remains unknown. In this study, we report two cases of unrelated patients
presenting in the neonatal period with hyperlactacidemia and generalized hypotonia.
Severe mtDNA depletion was detected in muscle biopsy in both patients. Genetic
analysis showed one patient as having in compound heterozygosis a splice site variant
c.858+5G>C and a missense variant c.1510T>C (p.Cys504Arg) in FBXL4. The second
patient harbored a frameshift novel variant c.851delC (p.Pro284LeufsTer7) in
homozygosis. To validate the pathogenicity of these variants, molecular and
biochemical analyses were performed using skin-derived fibroblasts. We observed that
the mtDNA depletion was less severe in fibroblasts than in muscle. Interestingly, the cells
harboring a nonsense variant in homozygosis showed normal mtDNA copy number. Both
patient fibroblasts, however, demonstrated reduced mitochondrial transcript quantity
leading to diminished steady state levels of respiratory complex subunits, decreased
respiratory complex IV (CIV) activity, and finally, low mitochondrial ATP levels. Both
patients also revealed citrate synthase deficiency. Genetic complementation assays
established that the deficient phenotype was rescued by the canonical version of
FBXL4, confirming the pathological nature of the variants. Further analysis of fibroblasts
allowed to establish that increased mitochondrial mass, mitochondrial fragmentation, and
augmented autophagy are associated with FBXL4 deficiency in cells, but are probably
secondary to a primary metabolic defect affecting oxidative phosphorylation.
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INTRODUCTION

A dysfunction in the maintenance of the mitochondrial DNA
(mtDNA) leads to the reduction of mtDNA copy number and/or
the accumulation of defects in mtDNA. mtDNA depletion
syndromes (MDSs) are a group of mitochondrial disorders
characterized by a severe loss of mtDNA copy number. MDSs
are autosomal recessive disorders, genetically heterogeneous, and
clinically presented in encephalomyopathic, hepatocerebral or
myopathic forms (Suomalainen and Isohanni, 2010; Viscomi
and Zeviani, 2017).

The human mtDNA contains genetic coding information for
13 proteins, which are core constituents of the mitochondrial
respiratory complexes I, III, and IV (CI, CIII, and CIV) and the
F1F0-ATPsynthase [complex V (CV)]. The respiratory
complexes are embedded in the inner mitochondrial
membrane and function together with the tricarboxylic acid
(TCA) cycle in the matrix. The TCA cycle, together with the
beta oxidation of fatty acids, is pivotal for generation of NADH
and FADH2 to be oxidized by the respiratory chain. The electron
flux along the chain creates an electrochemical gradient that
powers the synthesis of most cellular ATP by CV [oxidative
phosphorylation (OxPhos)]. mtDNA depletion therefore causes
a combined respiratory chain deficiency and deficiency of
oxidative ATP-synthesis.

The study of pathogenic variants in patients with defects in
mtDNA maintenance has shown that this process depends on a
number of nuclear gene-encoded proteins that function in
mtDNA synthesis, either participating in mtDNA replication
or in the maintenance of balanced nucleotide pools, which
constitute the necessary building blocks (Suomalainen and
Isohanni, 2010). Qualitative defects in mtDNA (multiple
mtDNA deletions) can in addition be caused by defects in
mitochondrial division and fusion processes that influence
mtDNA segregation (El-Hattab et al., 2017a; Viscomi and
Zeviani, 2017).

Defects in F-box leucine-rich repeat 4 (FBXL4) protein, whose
molecular function has yet to be determined, cause an
encephalomyopathic type of MDS (MTDPS13; OMIM #
615471). MTDPS13 commonly presents with hypotonia,
psychomotor delay, failure to thrive, feeding difficulties, growth
failure, and lactic acidosis, among other less common
manifestations (El-Hattab et al., 2017a). The age of onset ranges
from birth to 2 years (mean 4 months). More than a third of
affected children die during childhood and long-term survivors
develop severe psychomotor retardation. In skeletal muscle tissue
commonly appear cytochrome oxidase (COX)-deficient fibers,
decreased activities of all respiratory chain enzymes, particularly
CI and CIV, and mtDNA depletion (El-Hattab et al., 2017a). The
study of cells derived from affected patients demonstrated that
FBXL4 is a mitochondrial protein controlling bioenergetic
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homeostasis and mtDNA maintenance (Bonnen et al., 2013;
Gai et al., 2013). However, the molecular role of FBXL4 in
mtDNA maintenance remains unclear.

Here we report the identification of novel FBXL4mutations in
two independent patients and supported the causal role of those
mutations. The study of patient derived fibroblasts provided
some clues to understand the molecular function of the protein.
MATERIALS AND METHODS

Cell Culture and Cell Staining With
Fluorescent Dyes
S1, S2, and C1 primary skin-derived fibroblasts were obtained
from Subject 1, Subject 2, and a 1 month-old control child,
respectively. C refers to mix of three primary fibroblasts from 1
month, 3 years and 38 years old controls, respectively. Cells were
cultured at 37°C under a 5% CO2 atmosphere in high-glucose
DMEMmedium (Gibco-ThermoFisher Scientific) with 10% fetal
bovine serum (FBS; Gibco-ThermoFisher Scientific).

Cell staining was performed in six well plates. Logarithmically
growing cells were incubated with FBS free DMEM for 30 min
at 37°C and then stained for 30 min at 37°C in the dark with
200 nM of either MitoTracker™ Green (Invitrogen) or
MitoTracker™ Red CMXRos (Invitrogen) in the culture
medium. For flow cytometry, immediately after staining, cells
were collected by trypsinization and 10,000 particles were
analyzed with a Beckman Coulter CITOMICS FC 500 Flow
Cytometer. For fluorescent microscopy, cells grown and stained
over cover-slides were fixed following a standard protocol and
images were obtained with a ZEISS HAL100 microscope.

Biochemical Analysis
Blood lactate values were determined by automated
spectrophotometry. Plasma amino acids and urine organic
acids were analyzed by ion exchange chromatography with
ninhydrin detection derivatives and gas chromatography/mass
spectrometry, respectively.

Genomic Analysis
Nuclear DNA (nDNA) was assessed by next generation
sequencing (NGS) using customized gene panels as previously
reported (Yubero et al., 2016; Fernandez-Marmiesse et al., 2019),
in a NextSeq500 sequencer (Illumina).

Alignment of FBXL4 Reference Sequences
Chordate FBXL4 reference sequences (243) were obtained from
GenBank (http://www.ncbi.nlm.nih.gov/genbank/) (accessed
July 22nd, 2019), and aligned with Clustal Omega (https://
www.ebi.ac.uk/Tools/msa/clustalo/).
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Analysis of FBXL4 Transcripts and Genetic
Complementation
The FBXL4 cDNA (corresponding to RefSeq NM_012160.4;
NP_036292.2) was amplified from retrotranscribed total RNA
of control and patient fibroblasts, as in (Emperador et al., 2014),
using the specific primers: Fw: GATATCGCCACCATGTC
ACCGGTCTTTCC and Rv: GATATCTCACTGAGTAA
AGCTC. After cloning with the TOPO™ PCR Cloning system
(Invitrogen), six to eight bacterial clones per cell line were
isolated and their plasmids sequenced.

For genetic complementation, a sequence checked clone,
obtained from control fibroblasts, was transferred to the
lentiviral expression vector pWPXLd-ires-NeoR, that is a
modified version of pWPXLd (Tronolab, Addgene #12258).
Lentiviral particles were generated as in (Perales-Clemente
et al., 2008) and fibroblasts were transduced with lentiviral
particles in 100 mm dishes by adding 10 ml of medium with
viral particles. Transduced cells were isolated by 10 days selection
in the presence of 400 mg/ml geneticin (Invitrogen-
ThermoFisher Scientific).

Real Time Quantitative Polymerase Chain
Reaction Experiments
mtDNA copy number was quantitated by quantitative
polymerase chain reaction (qPCR) as previously described
(Andreu et al., 2009), using a StepOne™ Real-Time PCR
System (Applied Biosystems™). The mitochondrial probe,
labeled with a FAM fluorophore, was targeted to the MT-
RNR1 gene (TGC CAG CCA CCG CG) and the nuclear probe,
labeled with a VIC was targeted to the RNAsa P gene.

To assess mitochondrial mRNA levels, total RNA was isolated
from exponentially growing cells using a NucleoSpin® RNA II kit
(Macherey-Nagel). Total RNA (1 mg) was reversed-transcribed
(RT) with the Transcriptor First Strand cDNA Synthesis Kit
(Roche). The levels of MT-ND1, MT-ND6, MT-CYB, MT-CO1,
and MT-ATP6 were determined by RT-qPCR using the One-
Step Real-Time system (Applied Biosytems). The expression
levels were normalized using the 18S ribosomal RNA. The
DDCt method was used to calculate fold expression. StepOne
software version 2.0 (Applied Biosystems) was used for data
analysis. To quantify FBXL4 transcripts qPCR was carried out in
a LightCycler 2.0 system (Roche), using the specific primers:
q F w : T GAGATGTGTCCAAATCTACAGG a n d
qRv: GCTGAGCAGTGCTGTTTGC.

SDS-PAGE and Western Blot Analysis
For Western blotting (WB), 20 mg of either total cellular protein
extracted in RIPA buffer (MILLIPORE), or total cell homogenate
treated by freeze-thawing (4X) (for LC3B WB) was separated in
12.5% acrylamide/bis-acrylamide SDS/PAGE, electroblotted
onto PVDF filter, and sequentially probed with specific
antibodies: anti-FBXL4 (Sigma, #SAB2701256), anti-OXPHOS
cocktail (Abcam, #ab110411), anti-SDHA (Thermo Fisher
Scientific, #459200), anti-Actin (Sigma, #A 2066), anti-CS
(Sigma, # SAB2702186), anti-TOMM20 (SantaCruz
biotechnology, Inc., #sc-11415), and anti-LC3B (Sigma,
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#L7543). Luminescence images were acquired using Amersham
Imager 600 (GE Healthcare Life Sciences) and quantitative data
were obtained with ImageQuant™ TL 8.1 analysis software.

Complex IV Levels and Complex IV and
Citrate Synthase Specific Activities
When Microplate Assays were indicated, complex IV (CIV)
activity and levels were measured using the CIV Specific
Activity Microplate Assay Kit (Mitosciences, Abcam®),
according to the manufacturer's instructions, and CS was
measured in 96 well plates, using freeze-thawing treated total
cell homogenate and a standard protocol (Kirby et al., 2007).
Microplate assays were performed in a NovoStar MBG Labtech
microplate instrument. Otherwise, CIV and CS activities were
measured in an UNICAM UV 500 spectrophotometer using
digitonin (Sigma) solubilized cell samples as described previously
(Kirby et al., 2007). Activity data were normalized for
total protein.

ATP Measurements
ATP levels were measured using the ATP bioluminescence assay
kit CellTiter-Glo® Luminescent Cell Viability Assay (Promega),
according to the manufacturer's instructions. Values were
normalized using the CellTiter-Blue® Cell Viability Assay
(Promega) according to the manufacturer's instructions.
Samples were measured using a NovoStar MBG Labtech
microplate instrument.

Statistical Analysis
The statistical package StatView 6.0 was used to perform the
statistical analysis. Data are expressed as mean ± SD (standard
deviation). The non-parametric Mann-Whitney test was used to
evaluate the statistical significance between experimental groups.
P-values lower than 0.05 were considered statistically significant.
All samples were measured at least in biological triplicates.
RESULTS

Subject Description
S1: This female child, born to nonconsanguineous parents of
European ancestry, was delivered at 38 weeks gestation with a
very low weight for gestational age (2.650 kg, < 1st percentile).
Fetal ultrasounds also reported a single umbilical artery and
megacisterna magna. In the first days of life, mild hypotonia and
nystagmus triggered by Moro reflex were observed. Blood lactate
was repeatedly increased (4.8 to 11.3 mmol/L; reference values
(RV) < 2.2) along with alanine. Brain magnetic resonance image
(MRI) revealed mild cerebellar hypoplasia and probable bilateral
simplified temporal and frontal gyration pattern. These results
led to the study of mitochondrial disease. At 2 months of age, she
had frequent visits to the Emergency Department due to
intercurrent respiratory processes. Psychomotor development
was delayed with poor eye contact and hypotonia. At 6 months
of age, she presented with infantile spasms (West syndrome) that
responded to treatment with vigabatrin and prednisolone. Due to
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metabolic acidosis, treatment with bicarbonate and L-carnitine
was initiated. In addition, she had gastroesophageal reflux with
frequent vomiting. She presented with progressive dysphagia
with poor control of respiratory secretions, convergent
strabismus as well as brain MRI lesions compatible with Leigh
syndrome. At 10 months, there was an episode of aspiration with
marked deterioration in her general condition, generalized
hypotonia and seizures. A worsening of the brainstem lesions
was observed on brain MRI. The symptoms were progressive
with encephalopathy, metabolic acidosis, and death.

S2: This male child, born to consanguineous parents of
Moroccan ancestry, was delivered by caesarean section due to
arrest of dilation at 38.4 weeks gestation with a low weight for
gestational age (2.650 kg, 8th percentile), short length for
gestational age (47 cm, 5th percentile), and normal head
circumference (34 cm, 43rd percentile). On the third day of life,
he showed an acute neurological and respiratory worsening with
cyanosis and hypotonia. The patient was intubated and
ventilated. Physical examination showed clinical signs of poor
peripheral perfusion and absence of responses to stimuli due to
sedoanalgesia. On admission, he presented with metabolic
acidosis (pH 7.13, pCO2 22.2 mmHg on mechanical ventilation,
stHCO3 8.9 mmol/L, EB –20.6 mmol/L), hyperamonemia (224
µmol/L: RV <70), and hyperlactacidemia (25 mmol/L: RV < 2.2).
Plasma amino acids exhibited increased alanine (1385 µmol/L:
RV 190–337), glycine (658 µmol/L: RV 180–291), glutamine (971
µmol/L: RV 420–750), and lysine (705 µmol/L: RV 67–202).
Organics acids revealed a massive accumulation of lactic, 3-
hydroxybutyric, acetoacetic, and 2-hydroxybutyric acids,
leading to investigate mitochondrial diseases. No analytical
signs of infection were detected. Transfontanellar ultrasound
showed extensive hyperechogeneity that seemed to correspond
to retro cerebellar hemorrhage and enlarged magna cisterna. No
brainMRI or lumbar puncture was performed. Echocardiography
showed pulmonary hypertension.

Different treatment approaches were initiated to correct the
metabolic abnormalities: protein restriction, high energy intake
(100–120 cal/kg/day), L-carnitine, arginine, and vitamins (biotin,
hydroxycobalamin, pyridoxine, riboflavin, and thiamine). An
intravenous insulin and dopamine (maximum dose 5 µg/kg/
min) pump and antibiotics (ampicillin and gentamicin) were also
started. He received several doses of intravenous bicarbonate and
three doses of adrenaline for severe bradycardia. At 24 hours of
admission, there was a limitation of the therapeutic effort due to
the refractoriness of lactic acidosis. The child died at the age of
4 days.

Although some dysmorphisms have been reported in
FBXL4 patients, microcephaly, cataracts, malformed ears, or
other dysmorphic facial features were not found in S1 or S2
patients. However, S2 showed distal hypospadias and
bilateral cryptorchidism.

Biallelic Mutations in FBXL4 Are Present in
the Probands
Exome sequencing analysis of S1 and S2 detected novel mutations
in FBXL4 (Figure 1A). S1 was found to be compound
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heterozygous for the split site variant c.858+5G>C and the
missense variant c.1510T>C (p.Cys504Arg). The first variant
was detected in the father and the second in the mother. S2 was
found to be homozygous for the frameshift variant c.851delC
(p.Pro284LeufsTer7), that was detected in both parents in
heterozygosis. The variants were confirmed by Sanger sequencing.

Patient RNA-retrotranscription and cDNA cloning revealed
two classes of FBXL4 transcripts in S1 (Figure 1A). One
transcript harbored the missense variant c.1510T>C
(p.Cys504Arg) and a second one lacked exon 4, which can be
compatible with a splicing defect. The analysis of S2 detected
only one type of transcript harboring the frameshift variant
c.851delC (p.P284LfsTer7) (Figure 1A).

None of these variants were present in the ExAC browser
(accessed July 2019). However, the variant producing an
unexpected transcript in S1 has been previously published in
heterozygosis in a patient with MTDPS13 (rs1257765682)
(Pronicka et al., 2016). The S1 missense variant affects a
position conserved in 243 out of 243 reference sequences and is
considered pathogenic by several prediction software packages
(MutationTaster, PMut and PolyPhen-2). Eighteen months after
the death of S1, the parents had a healthy girl that was not a carrier
of either of the two mutations. Two years later, the parents had a
new twin pregnancy. The amniocentesis of both fetus revealed
that they were only carriers of the c.858+5G>C variant inherited
from the father. At 2-years of age, both of them are healthy.

Defective OxPhos System Biogenesis
Is Associated With the Novel
FBXL4 Mutations
Analysis of mtDNA copy number revealed severe mtDNA
depletion in muscle biopsies of the patients (85% in S1 and
93% in S2). In cultured skin fibroblasts, milder mtDNA depletion
was detected in S1 (38%) whereas normal levels of mtDNA were
observed in S2 (Figure 1B). The levels of five mitochondrial
transcripts (transcripts of MT-ND1 and MT-ND6 subunits from
CI;MT-CYB subunit from CIII, MT-CO1 subunit from CIV and
MT-ATP6 subunit from CV) were consistently reduced in S1 and
S2 compared with control fibroblasts (Figure 1C). Notably, S2,
with normal mtDNA copy number, showed the highest
reduction of the five transcripts measured.

The steady-state levels of subunits from respiratory chain
complexes were also found decreased in fibroblasts from S1, and,
to a greater extent, in fibroblasts from S2 (Figure 1D). The levels
of the nDNA-encoded ATP5A subunit from CV, however,
remained unchanged in S1, or were mildly decreased in S2,
excluding a global problem in the mitochondrial protein content.
The expression of two subunits (SDHA and SDHB) of the
nuclear encoded complex II, the citrate synthase (CS) of the
TCA cycle, and the translocase of the outer mitochondrial
membrane (TOMM20) were partially decreased in S2 (Figure
1D). Fully assembled CIV levels were clearly lower in patient
fibroblasts relative to controls (Figure 1E). Enzymatic
measurements provided evidenced of a severe CIV dysfunction
(Figure 1F). Noteworthy, the CS activity in fibroblasts from S1
and S2 was also significantly diminished (Figure 1F).
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FIGURE 1 | Genetic, molecular, and biochemical characterization of the patients. (A) Pedigrees of S1 and S2 with genotypes indicated under each symbol (black
symbols designate affected subjects); sequencing electropherograms corresponding to the two different FBXL4-derived transcripts found in S1 and to the unique
transcript found in S2; and FBXL4 gene structure (reference sequence NM_012160.4). In gene structure, empty boxes: non-coding exons; dark blue boxes: F-Box
domain; striped boxes: leucine-rich repeats domain (LRRs). (B) Quantification of mtDNA copy number. The bars represent percentage of mtDNA normalized to
nDNA relative to the mean value of controls levels (C, dotted line, 100%). *: Significant mtDNA copy-number reduction, p < 0.05, compared with C cells.
(C) Mitochondrial transcript levels. For each transcript, the bars represents mean values, in percentage, relative to the mean value of control fibroblasts (C, dotted
line, 100%). *: significant mtDNA reduction, p < 0.05, compared with C cells. (D) Steady-state levels of mitochondrial respiratory chain subunits. WB-
immunodetection of SDS-PAGE separated total cellular protein isolated from patient S1, S2 and C fibroblasts (−), and those transduced with wt-FBXL4 expressing
construct (+). An OXPHOS cocktail of antibodies was used in the upper membrane (blot 1) and the indicated antibodies were sequentially used in the lower
membrane (blot 2). (E) Complex IV quantity (Microplate Assay). The bars represent the mean value of S1 and S2, in percentage, compared to that of controls
fibroblasts (dotted line, 100%). *: p < 0.05 (vs. C cells). (F) Complex IV (CIV) and CS specific activities (s.a.) (Microplate Assay). The bars represent enzymatic activity
of CIV and CS normalized for total cellular protein and compared to the mean value of controls fibroblasts in percentage (dotted line, 100%). *: p < 0.05 (vs. C cells).
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These results indicated that a decreased expression of
mtDNA-encoded genes affects the correct biogenesis and
function of the respiratory chain, with the TCA-cycle enzyme
CS also affected.

Delivery of Wild-Type FBXL4 Corrects the
OxPhos Dysfunction
In order to confirm the pathogenicity of the FBXL4 mutations,
we performed genetic complementation studies. Stably
transduced patient cells showed a robust expression of wild-
type FBXL4 (wt-FBXL4) at transcript and protein levels (Figures
2A, B). The quantification of FBXL4 transcripts by qRT-PCR
revealed decreased steady-state levels of FBXL4mRNA in S1 and
S2 by approximately 80% when compared with an age matched
control cell line, C1. These levels were increased significantly in
the over-expressing cell lines (Figure 2A). The WB-
inmunodetection assay failed to detect the FBXL4 protein in
the total protein lysate of non-transduced cells (Figure 2B).

Delivery of the wt-FBXL4 gene increased significantly the
amount of mtDNA in both patient cell lines (Figure 2C). As a
result, the mtDNA copy number deficiency in S1 cells was
corrected (compared to C), whereas in S2 cells the mtDNA
levels increased up to 200% of the levels of controls. In both S1
and S2 cells over-expressing wt-FBXL4, the steady state levels of
respiratory complex subunits were fully rescued (Figure 1D), the
CIV specific activity was increased to control values (Figure 2D),
and the CS activity and lastly the mitochondrial ATP levels were
also increased significantly (Figures 2E, F).

These results confirmed the causal role of the mutations
identified in FBXL4 in the metabolic dysfunction.

Mitochondrial Mass, Mitochondrial
Fragmentation, and Autophagosomes Are
Increased in FBXL4 Deficiency
Next, we investigated the mitochondrial mass in cultured patient
fibroblasts to determine whether it is reduced as could be
suggested by the low CS activity. Assessment of mitochondrial
content by staining with the cationic lipophilic dye MitoTracker
Green failed to show differences between C1 and wt-FBXL4
overexpressing C1 cells (Figure 3A). However, a small but
significant increase in mitochondrial content (15–20%) was
detected in S1 and complemented S1 cell lines compared to
C1, and a remarkable increase (250% of C1) was detected in S2
fibroblasts and in the S2 cell line overexpressing wt-FBXL4.

The mitochondrial network morphology was next examined.
As shown in the fluorescence microscopy images (Figure 3B),
the fluorescent pattern obtained with the mitochondrion-specific
dye MitoTracker was mainly tubular in C1 cells. On the contrary,
S1 and S2 cell lines showed fragmentation of the mitochondrial
network. Genetically complemented S1 cells recovered partially
the tubular appearance of the mitochondrial network observed in
C1 but interestingly, genetically complemented S2 cells
maintained a fragmented mitochondrial network.

The autophagosome marker MAP1 light chain 3B (LC3B) can
be found as LC3B-I, mainly cytosolic, or as LC3B-II, which is
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covalently attached to phosphatidylethanolamine and coats the
sur face of autophagosomes . Western blot t ing and
immunodetection were used to analyze LC3B-I to LC3B-II
conversion and estimate the abundance of autophagy-related
structures (Klionsky et al., 2008). The ratio LC3B-II/LC3B-I was
found augmented in S1 and S2 cells (Figure 3C). Albeit in
genetically complemented S1 cells, the ratio was reduced to the
control levels; in genetically complemented S2 cells, however, the
significantly high levels of autophagy marker LC3-II related to its
cytosolic isoform LC3-I persisted.

These results suggested that mitochondrial fragmentation and
an increase of autophagosomes are associated with FBXL4
mutations in cultured fibroblasts. Remarkably, the genetically
complemented S2 cell line failed to recover normal
mitochondrial size or shape and normal autophagy levels,
suggesting that these are secondary adaptations to the
metabolic dysfunction promoted by FBXL4 deficiency.
DISCUSSION

This work presents two patients with severe encephalopathy and
severe mtDNA depletion in muscle associated with novel variants
in FBXL4; S1 harboring two variants in compound heterozygosis
c.[858+5G>C];[1510T>C] and S2 harboring one variant in
homozygosis c.[851delC];[851delC]. The pathogenicity of the
variants was confirmed by genetic complementation assays in
skin-derived fibroblasts. Genetic complementation studies with
this gene have only been performed in three subjects previously
(Bonnen et al., 2013; Gai et al., 2013).

A review of genotype–phenotype correlation in 87 affected
individuals with pathological variants in FBXL4 indicated that
genotypes with missense variants are frequently associated with
longer survival (El-Hattab et al., 2017b). Thus, the missense
variant encountered in S1 could be associated with preservation
of some residual protein function and therefore with a milder
phenotype. However, both patients presented with very severe
clinical phenotype associated with very early onset and short
survival (S1, 10 months, and S2, 4 days), indicating that any
possible residual function of the S1 missense variant was not
sufficient to maintain in vivo protein function.

The finding of severe mtDNA depletion in skeletal muscle
biopsies (85% in S1 and 93% in S2) are in line with published
data indicating an essential role of FBXL4 in the maintenance of
mtDNA. Interestingly, important differences were observed in
the mtDNA content of cultured fibroblasts. S1 cells presented
with quantitative mtDNA copy number reduction (38%),
whereas S2 cells had normal mtDNA copy number.
Remarkably, genetic complementation increased the mtDNA
levels in at least 50%, still indicating an involvement of FBXL4
in mitochondrial mtDNA copy number maintenance. Despite
having normal mtDNA content, S2 derived fibroblasts showed a
more severe OxPhos deficient phenotype than S1 cells. The levels
of mtDNA-derived transcripts were lower than those in S1, and
several subunits of the respiratory chain complexes were absent.
Thus, mtDNA levels did not correlate with mitochondrial RNA
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levels as expected (Gomez-Duran et al., 2012) indicating that
FBXL4 deficiency also affects the correct mtDNA expression.

The patient primary fibroblasts showed augmented
mitochondrial mass, when assessed by MitoTracker Green
fluorescent staining. The increase was particularly high in S2
cells. It can be speculated that FBXL4 deficient fibroblasts
might have overcome the defect in mtDNA maintenance by
expanding their mitochondrial mass as an adaptation to the life
in culture. An attempt to compensate for OxPhos defects
increasing mitochondrial mass resembles the massive
mitochondrial proliferation observed in muscle of patients with
Frontiers in Genetics | www.frontiersin.org 736
mtDNA-related diseases (resulting in ragged-red fibers)
(DiMauro and Schon, 2003). However, in muscle from FBXL4
deficient patients no ragged red fibers have been observed (Gai
et al., 2013; Morton et al., 2017), although they are a common
feature in newborns and infants with mitochondrial disorders
(Jou et al., 2019).

Previous patient reports have described a hyperfragmentation
of the mitochondrial network in affected fibroblasts (Bonnen
et al., 2013; Gai et al., 2013; Antoun et al., 2016). This has lead to
classify FBXL4 as protein participating in mitochondrial
dynamics (El-Hattab et al., 2017a). The highly compacted
FIGURE 2 | FBXL4 complementation assays. (A) FBXL4 expression levels. Bars represent FBXL4 mRNA levels of patient fibroblasts compared to the mean value of
an age-matched control in percentage (C1 dotted line, 100%). *: p < 0.05 (vs. C1 cells); #: p < 0.05 (vs. non-transduced cells). (B) FBXL4 protein levels. WB-
immunodetection with anti-FBXL4 antibody of total cellular proteins isolated from S1, S2, and C1 fibroblasts, and those transduced with wt-FBXL4 expressing
construct. (C) Quantification of mtDNA copy number of S1, S2, and C1 fibroblasts and those transduced with the wt-FBXL4 expressing construct. Bars represent
the mean value of mtDNA normalized to nDNA, in percentage, relative to the mean value of controls levels (C, dotted line, 100%). *: p < 0.05 (vs. C cells); #: p < 0.05
(vs. non-transduced cells). (D) Complex IV specific activity of S1, S2, and C1 fibroblasts and of those transduced with the wt-FBXL4 expressing construct. Bars
represent the mean value relative to that of control fibroblasts in percentage (C1, dotted line, 100%). *: p < 0.05 (vs. C1 cells). (E) CS specific activity of S1, S2, and
C fibroblasts and those transduced with the wt-FBXL4 expressing construct. Bars represent the mean value relative to that of control fibroblasts, in percentage (C1,
dotted line, 100%). *: p < 0.05 (vs. C1 cells); #: p < 0.05 (vs. non-transduced cells). (F) Mitochondrial ATP levels. Bars represent the mean values in S1, S2 and C1,
S1 and S2 transduced with the wt-FBXL4 expressing construct, relative to that of control cells in percentage (C1, dotted line, 100%). *: p < 0.05 (vs. C1 cells);
#: p < 0.05 (vs. non-transduced cells).
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mtDNA–protein complexes or nucleoids, that usually can be
visualized as punctate structures evenly distributed within the
mitochondrial network, have also been found altered, enlarged,
and clustered (Bonnen et al., 2013). Our patients' fibroblasts also
presented a mitochondrial network fragmented into multiple
small mitochondria. Interestingly, S1 fibroblasts partially
recovered a connected mitochondrial network when
functionally complemented with wt-FBXL4 , whereas
mitochondria in S2 complemented fibroblasts remained mostly
punctuate. These findings suggest that mitochondrial
fragmentation could be secondary to the metabolic defects
induced by absence of the FBXL4 protein. Augmented
mitochondrial division could be related with attempts to
increase mtDNA synthesis because both processes are closely
related. In mammalians, tubular ER-mitochondria contacts, by
an unknown mechanism, connect the sites of mitochondrial
division with the subset of nucleoids engaged in mtDNA
synthesis. Thus, following division, nucleoids segregate to both
tips of daughter mitochondria (Lewis et al., 2016). This fact,
however, could not be confirmed in our studies.

Increased mitochondrial division can also precede mitophagy,
because it divides elongated mitochondria into pieces that can be
engulfed by autophagosomes to regulate their number and
maintain quality control (Youle and Narendra, 2011). Both S1
and S2 fibroblasts demonstrated increase of the autophagic-vesicles
Frontiers in Genetics | www.frontiersin.org 837
coating-protein LC3B-II, suggesting that FBXL4 deficiency
promotes autophagic processes. In genetically complemented S1
cells autophagosome formation decreased. It could be speculated
that it reflects the need for selective elimination of the organelles
lacking a functional OxPhos system and/or the necessity of
recycling intracellular components to compensate for the
starvation-like situation (Geng and Klionsky, 2008). The
reduction of mitochondrial components other than subunits of
the respiratory chain clearly observed in S2 can be reflecting its
elimination by mitophagy. In genetically complemented S2 cells,
the increased autophagy persisted possibly regulating the organelle
number since the abnormally high increase in mitochondrial
membrane also persisted.

In contrast to patients with typical MDSs due to a disorder of
mtDNA replication or nucleoside salvage/synthesis, in patients
with FBXL4 deficiency the mtDNA/CS ratio is normal (Huemer
et al., 2015). Our patient cells also presented CS deficiency. It can
be a secondary effect, because interruptions to the respiratory
chain can affect the TCA cycle flux (Vafai and Mootha, 2012).
Deficiency in another TCA cycle enzyme, succinyl-CoA
synthetase (SCS), has also been associated with an
encephalomyopathic form of MDS. However, the involvement
of SCS in MDS seems to be related to a role of the enzyme in the
mitochondrial nucleoside salvage pathway, facilitating the
conversion of dNDPs to dNTPs (Viscomi and Zeviani, 2017).
FIGURE 3 | Mitochondrial network shape and size, and autophagy detection. (A) Quantification of mitochondrial mass. Bars represent the mean fluorescence values
relative to the mean value of age-matched control fibroblasts in percentage (C1, dotted line, 100%). *: p < 0.05 (vs. C1 cells). (B) Mitochondrial networks of control
and patients fibroblasts. Fluorescence microscopy representative images of cells obtained from control and patient fibroblasts and of those transduced with the wt-
FBXL4 expressing construct, as indicated. (C) Quantification of autophagy marker LC3-II. WB-immunodetection of the LC3B isoforms (LC3B-I and LC3B-II) of total
cell homogenates, and ratio LC3B-II/LC3B-I obtained by quantification of the respective WB-band intensities. The bars represent the mean value, in percentage,
compared to that of control fibroblasts (dotted line, 100%). *: p < 0.05 (vs. C1 cells).
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In summary, this work provides evidence of the pathogenicity
of novel variants in FBXL4, demonstrating that FBXL4 is
necessary not only for the homeostasis but also for the
expression of mtDNA. Since in S2 fibroblasts the rescue of the
bioenergetics defects by the FBXL4 gene can occur independently
of the recovery of control mitochondrial mass, mitochondrial
network, or autophagic levels, these could be compensatory and
subsequent to the bioenergetic defects. Most F-box proteins
function as adaptors in phosphorylation dependent
ubiquitination-complexes (Craig and Tyers, 1999). A role in
post-translational modification of the mitochondrial proteome
could reconciled the disparity of effects observed in defective
FBXL4, but further work is required to determine the precise
molecular function.
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Mitochondrial Genetics and
Epigenetics in Osteoarthritis
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During recent years, the significant influence of mitochondria on osteoarthritis (OA), the
most common joint disease, has been consistently demonstrated. Not only mitochondrial
dysfunction but also mitochondrial genetic polymorphisms, specifically the mitochondrial
DNA haplogroups, have been shown to have an important influence on different OA-
related features, including the prevalence, severity, incidence, and progression of the
disease. This influence could probably be mediated by the role of mitochondria in the
regulation of different processes involved in the pathogenesis of OA, such as energy
production, the generation of reactive oxygen and nitrogen species, apoptosis, and
inflammation. The regulation of these processes is at least partially controlled by the bi-
directional communication between the nucleus and mitochondria, which permits the
regulation of adaptation to a wide range of stressors and the maintenance of cellular
homeostasis. This bi-directional communication consists of an “anterograde regulation”
by which the nucleus regulates mitochondrial biogenesis and activity and a “retrograde
regulation” by which both mitochondria and mitochondrial genetic variation exert a
regulatory signaling control over the nuclear epigenome, which leads to the modulation
of nuclear genes. Throughout this mini review, we will describe the evidence that
demonstrates the profound influence of the mitochondrial genetic background in the
pathogenesis of OA, as well as its influence on the nuclear DNA methylome of the only cell
type present in the articular cartilage, the chondrocyte. This evidence leads to serious
consideration of the mitochondrion as an important therapeutic target in OA.

Keywords: mitochondria, genetics, epigenetics, osteoarthritis, methylation
INTRODUCTION

Osteoarthritis (OA) is the most common chronic progressive disorder that involves movable joints,
occurring in 10-20% of the population over 50 years of age; the incidence of OA is estimated to
double within the next 30 years (Blanco et al., 2011). The pathogenesis of OA is characterized by
extracellular matrix degradation and cell stress initiated by micro- and macro-injuries that lead to
the activation of maladaptive repair responses, including proinflammatory pathways of innate
immunity. The disease manifests first as a molecular derangement (abnormal tissue metabolism)
followed by anatomical and/or physiological derangements (characterized by cartilage degradation,
bone remodeling, osteophyte formation, joint inflammation, and the loss of normal joint function)
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that can culminate in illness (Kraus et al., 2015). OA is actually
considered a disease of the whole joint as an organ, resulting in
organ dysfunction or joint failure (Blanco, 2014). In addition,
this disease is one of the most common reasons for visits to
primary care physicians and is also the leading cause of
permanent work incapacitation. OA has no effective treatment
today, and joint replacement is the only choice in cases of total
joint dysfunction.

The nature of OA is heterogeneous, because a combination of
factors such as occupation, age, gender, body mass index, and
genetics have a profound influence on its pathogenesis. As a
consequence of this, several different phenotypes characterize
this disease, including inflammatory, aging-related, metabolic,
pain, and post-traumatic phenotypes (Berenbaum, 2013; Sellam
and Berenbaum, 2013; Blanco et al., 2018). In agreement with
this heterogeneous nature, it has also been proposed that, on the
one hand, mitochondria and mitochondrial DNA (mtDNA)
have an important impact on the development of OA (Valdes
and Goldring, 2017; Blanco et al., 2018; Li et al., 2019) and, on
the other hand, that epigenetics is one of the main actors
involved in the phenotypic modulation that articular
chondrocytes, the only cell type present in articular cartilage,
undergo during the OA process (Roach et al., 2005; Reynard and
Loughlin, 2012; Blanco and Rego-Pérez, 2014). In this sense, it
has also been consistently shown that specific mtDNA
polymorphisms, called mtDNA haplogroups, have been
associated not only with different OA-related features such as
the incidence or progression of the disease (Fernandez-Moreno
et al., 2017a; Fernandez-Moreno et al., 2017b; Koo et al., 2019)
but also with the differential methylation status of articular
cartilage (Cortes-Pereira et al., 2019). In light of the
involvement of mitochondrial DNA in cell behavior and
metabolism (Wallace et al., 1999; Martínez-Redondo et al.,
2010), in this review, we discuss some of the evidence
implicating the epigenetic effect of mtDNA variation in the
pathogenesis of OA.
MITOCHONDRIA IN OSTEOARTHRITIS

Because articular chondrocytes are highly glycolytic cells that
obtain their energy mainly from anaerobic glucose metabolism,
the role of mitochondria in the pathogenesis of OA was not
studied in depth until early 2000. However, a large number of
studies have demonstrated the profound influence of
mitochondria in the pathogenesis of OA.

Terkeltaub and co-workers published a full review describing
how mitochondrial impairment of chondrocytes is an important
mediator of the establishment of OA (Terkeltaub et al., 2002).
Specifically, these and other authors described that
mitochondrial dysfunction mediates several specific pathogenic
pathways implicated in the OA process, including oxidative
stress, chondrocyte apoptosis, cartilage matrix calcification,
autophagy, impaired anabolic and growth response of
chondrocytes, and increased cytokine-induced inflammation
(Terkeltaub et al., 2002; Blanco et al., 2004; Lotz and Loeser,
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2012; López de Figueroa et al., 2015). In agreement with these
findings, our group also demonstrated that, compared with
healthy chondrocytes from patients of the same age,
osteoarthritic chondrocytes have reduced mitochondrial
activity, mainly in complexes II and III, and increased
mitochondrial mass (Maneiro et al., 2003). In addition, the
apoptotic mitochondrial pathway is implicated in the apoptosis
of osteoarthritic chondrocytes (Hwang and Kim, 2015), and the
inhibition of mitochondrial complexes III and V increases the
mitochondrial-mediated inflammatory response in OA
chondrocytes mediated by an overproduction of reactive
oxygen species (ROS) (Vaamonde-García et al., 2012).
Mitochondrial dysfunction has also been associated with a
significant downregulation of superoxide dismutase 2 (SOD2)
(Gavriilidis et al., 2013), one of the major mitochondrial
antioxidant proteins, whose levels are also diminished in the
superficial layers of end-stage OA cartilage (Ruiz-Romero et al.,
2009; Scott et al., 2010).

Mitophagy is a form of autophagy, a process that involves the
removal of damaged macromolecules and organelles to regulate
cell homeostasis (Choi et al., 2013); specifically, mitophagy
consists of the elimination of depolarized and damaged
mitochondria. Different studies have demonstrated that the
activation of this process protects against mitochondrial
dysfunction, prevents ROS production and improves
chondrocyte survival under pathological conditions (López de
Figueroa et al., 2015; Ansari et al., 2018). It has also been
demonstrated that mitochondrial biogenesis is deficient in
human OA chondrocytes, leading the chondrocyte to adopt
procatabolic responses; however, the activation of the AMP-
activated protein kinase (AMPK)-NAD-dependent protein
deacetylase sirtuin-1 (SIRT1)-peroxisome proliferator-activated
receptor g co-activator 1a (PGC1a) pathway reverses impaired
mitochondrial biogenesis, which is mediated by mitochondrial
transcriptional factor A (TFAM) (Wang et al., 2015).
mtDNA HAPLOGROUPS
AND OSTEOARTHRITIS

Mitochondria are considered unique organelles because they
contain their own maternally inherited DNA, the mtDNA,
containing 2 rRNAs, 22 tRNAs, and 13 essential mitochondrial
protein-coding genes. The mutation rate of this circular molecule
is higher than that of the nuclear DNA, mainly due to i) its
proximity to the main source of ROS production, ii) the lack of
an efficient repair system, and iii) the higher replication rate of
mtDNA (Li et al., 2019). As a consequence of this, mtDNA
sequences evolved by sequentially accumulating functional
mutations along radiating maternal lineages when humans
migrated out of Africa and adapted their energy metabolism to
different environments, giving rise to mtDNA haplogroups
(Torroni et al., 1996; Wallace, 2016). However, these types of
mtDNA variants, though providing an important degree of
adaptation as people migrated into new environments, might
also have contributed to modern human disorders such as
January 2020 | Volume 10 | Article 1335
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hypertension, diabetes, obesity, or neurodegenerative diseases
(Ruiz-Pesini et al., 2004; Marom et al., 2017).

In this sense, OA is not an exception. During recent years,
different studies have shown clinical associations between
specific mtDNA haplogroups and different OA-related features,
including the prevalence, progression, and incidence of the
disease (Table 1).

mtDNA Haplogroups and the Prevalence
of OA
Different studies have shown significant associations between
specific mtDNA haplogroups and the prevalence of OA.
Specifically, mtDNA variants belonging to the European
cluster JT have been associated with a lower risk of knee and
hip OA in a cohort of Spanish patients (Rego-Perez et al., 2008;
Rego et al., 2010). mtDNA haplogroup T was also associated with
a decreased risk of knee OA in a population from the United
Kingdom (Soto-Hermida et al., 2014a); however, a later study in
a larger population cohort from the same country failed to
replicate these findings (Hudson et al., 2013). In addition,
Asian mtDNA haplogroups B and G have been described as
protective and risk factors respectively for knee OA in a
population of southern China (Fang et al., 2014). The authors
have proposed that the mechanisms that could explain that
association are related to the alteration of both mitochondrial
function and OA-related signaling pathways (Fang et al., 2016).
Frontiers in Genetics | www.frontiersin.org 342
A meta-analysis summarizing most of the studies described
above concluded that mtDNA cluster JT is associated with a
lower risk of OA prevalence in Spanish populations (Shen
et al., 2014).

A plausible cause for the lack of replication among different
case-control studies, even when nuclear DNA polymorphisms
are analyzed, could be the unavailability of knee (or hip)
radiographs for most population-based controls. This is not a
minor issue, since up to 50% of people without joint symptoms
may develop radiographic changes comparable to OA (Hannan
et al., 2000). In this sense, our group has always considered the
radiological status, because we believe that both mitochondrial
dysfunction and mtDNA variation have a greater impact on the
evolution of joint structure than on pain.

mtDNA Haplogroups and Radiographic OA
Progression and Incidence
The use of well-characterized prospective cohorts of patients
permits rigorous studies to analyze the influence of mtDNA
haplogroups on the rate of progression and incidence of OA over
time. mtDNA variants within mitochondrial cluster JT were
associated with lower rates of radiographic knee OA progression
in different world populations, including Spain, the USA, and the
Netherlands. Specifically, in a Spanish cohort, mtDNA cluster JT
was associated with a lower rate of radiographic progression in
terms of Kellgren and Lawrence grade (Kellgren and Lawrence,
TABLE 1 | Published associations of mtDNA variants with specific OA-related features.

Study cohort Population Haplogroup OR (95%CI) p-value/effect on the biomarker Reference

OA prevalence
Spanish 457 OA cases, 262 controls J OR = 0.460 (0.282-0.748) p = 0.002 (Rego-Perez et al., 2008)

JT OR = 0.564 (0.384-0.828) p = 0.005
Spanish 550 OA cases, 505 controls J OR = 0.519 (0.271-0.994) p = 0.048 (Rego et al., 2010)
UK 453 OA cases, 280 controls T OR = 0.574 (0.350-0.939) p = 0.027 (Soto-Hermida et al., 2014a)
UK 7846 OA cases, 5402 controls J OR = 1.190 (0.720-1.950) ns & (Hudson et al., 2013)
Meta-analysis 2557 OA cases, 1339 controls J OR = 0.570 (0.460-0.710) p < 0.0001 (Shen et al., 2014)

2478 OA cases, 1173 controls JT OR = 0.700 (0.580-0.840) p = 0.0002
Chinese 187 OA cases, 420 controls G OR = 3.834 (1.139-12.908) p = 0.003 (Fang et al., 2014)

B OR = 0.503 (0.283-0.893) p = 0.019
OA progression
OAI 891 knee OA cases T HR = 0.499 (0.261-0.819) p < 0.05 (Soto-Hermida et al., 2014b)
Spanish 281 knee OA cases JT* HR = 0.584 (0.354-0.964) p = 0.036 (Soto-Hermida et al., 2015)
CHECK 431 knee OA cases T HR = 0.645 (0.419-0.978) p < 0.05 (Fernandez-Moreno et al., 2017b)

JT HR = 0.707 (0.501-0.965) p < 0.05
Meta-analysis 1603 knee OA cases T HR = 0.612 (0.454-0.824) p = 0.001 (Fernandez-Moreno et al., 2017b)

JT HR = 0.765 (0.624-0.938) p = 0.009
OA incidence
OAI 2579 subjects J HR = 0.680 (0.470-0.968) p < 0.05 (Fernandez-Moreno et al., 2017a)
CHECK 635 subjects J HR = 0.728 (0.469-0.998) p < 0.05 (Fernandez-Moreno et al., 2017a)
Meta-analysis 3214 subjects J HR = 0.702 (0.541-0.912) p = 0.008 (Fernandez-Moreno et al., 2017a)
Korean 438 subjects B RR = 2.389 (1.315-4.342) p = 0.004 (Koo et al., 2019)
OA biomarkers
Spanish 73 knee OA cases, 77 controls J Decreased serum levels of catabolic type II collagen biomarkers& (Rego-Perez et al., 2010)

H Increased serum levels of catabolic type II collagen biomarkers&

Spanish 73 knee OA cases, 77 controls J Decreased serum levels of MMP-13& (Rego-Perez et al., 2011)
H Increased serum levels of MMP-13 and MMP-3&

Spanish 79 knee OA cases, 166 controls J Lower NO production (Fernandez-Moreno et al., 2011)
OAI 255 knee OA cases J Fewer large tibiofemoral BMLs (Rego-Perez et al., 2018)
January
mtDNA, mitochondrial DNA; UK, United Kingdom; OA, Osteoarthritis; OAI, Osteoarthritis Initiative; CHECK, Cohort Hip and Cohort Knee; NO, nitric oxide; BMLs, bone marrow lesions;
MMP, metalloproteinase; OR, odds ratio; HR, hazard ratio; RR, risk ratio; ns, non-significant; (*) when compared with mtDNA cluster KU; (&) p-value after multiple testing correction.
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1957), and even patients with haplogroup H were more prone to
requiring total joint replacement (Soto-Hermida et al., 2015).
mtDNA haplogroup T was associated with a decreased rate of
radiographic knee OA progression, as well as a reduced loss of
knee cartilage integrity over time in patients of the Osteoarthritis
Initiative (OAI) of the US National Institutes of Health (NIH)
(Soto-Hermida et al., 2014b). This association was then
replicated in the CHECK cohort (cohort hip and cohort knee),
another prospective cohort of OA patients from the Netherlands
(Fernandez-Moreno et al., 2017b). Finally, a subsequent meta-
analysis including the above-mentioned studies confirmed that
mtDNA variants of the JT cluster act as protective factors against
the radiographic progression of the disease (Fernandez-Moreno
et al., 2017b).

In terms of disease incidence, a meta-analysis including 3217
individuals from the OAI and CHECK cohorts concluded that,
compared with the most common Caucasian haplogroup H,
subjects with mtDNA haplogroup J show a lower rate of incident
knee OA over an eight-year period (Fernandez-Moreno et al.,
2017a). This study included the design of a cellular model of
transmitochondrial cybrids, consisting of cells with a defined and
uniform nuclear background containing mitochondria from
different sources, to demonstrate the existence of functional
differences between haplogroups H and J; the study concluded
that, compared with H cybrids, J cybrids produce less ATP, but
this was accompanied with lower amounts of peroxynitrite and
mitochondrial superoxide anion together with a lower rate of
apoptosis under stress conditions as well as an increased ability
to cope with oxidative stress (Fernandez-Moreno et al., 2017a).
Another study in Korean populations showed that Asian
mtDNA haplogroup B, described as a protective factor against
knee OA prevalence in a population from the south of China
(Fang et al., 2014), was a risk factor for the incidence of knee OA
over an eight-year period (Koo et al., 2019).

mtDNA Haplogroups and Biomarkers in OA
In an effort to detect structural changes in an early stage of the
disease, to monitor disease progression, or even to assess
therapeutic responses with more sensitivity and reliability,
molecular biomarkers have been developed in OA (Garnero et
al., 2002; Rousseau and Delmas, 2007; Camacho-Encina et al.,
2019). In a set of clinically relevant studies, OA-protective
haplogroup J has been significantly associated with lower
serum levels of catabolic type II collagen biomarkers and
matrix metalloproteinases, in contrast to haplogroup H
carriers, which showed significantly higher levels (Rego-Perez
et al., 2010; Rego-Perez et al., 2011). Despite not being
considered a biomarker of the disease, although higher-than-
normal production has been described in OA chondrocytes
(Maneiro et al., 2005; Henrotin and Kurz, 2007), the
production of nitric oxide (NO) is significantly lower in
articular chondrocytes harboring mtDNA haplogroup J than in
non-J chondrocytes (Fernandez-Moreno et al., 2011). Based on
these findings, haplogroups J and H represent two different OA
phenotypes, leading to the consideration of these mtDNA
haplogroups as complementary genetic biomarkers of the
disease (Fernandez-Moreno et al., 2012).
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In terms of imaging biomarkers, the identification and
quantification of early bone marrow lesions (BMLs) has great
relevance for assessing symptomatic progression and
radiographic worsening over time in patients with OA
(Roemer et al., 2016). In this sense, a longitudinal study
including 255 participants from the OAI cohort that developed
incident knee OA at 48 months revealed that patients with
mtDNA haplogroup J were less likely to develop large BMLs in
the tibiofemoral compartment of the knee than those with
mtDNA haplogroup H (Rego-Perez et al., 2018). This
association could be due to the differential behavior of mtDNA
haplogroups H and J in terms of the metabolic activity and
inflammation that takes place in BMLs (Kuttapitiya et al., 2017).

In summary, in Caucasian populations, it seems that
haplogroups belonging to mitochondrial cluster JT are
protective against OA and have even been associated with
increased longevity in some European populations (Dato et al.,
2004). However, in energy-deficiency diseases, such as LHON
(Leber Hereditary Optic Neuropathy) these haplogroups,
specifically haplogroup J, are risk factors (Hudson et al., 2007).
This controversy is potentially related to the uncoupling nature
of the genetic polymorphisms associated with these haplogroups,
by which ATP production is reduced but, conversely, lower ROS
generation, oxidative damage, and apoptosis are also expected
(Ruiz-Pesini et al., 2004).
THE MITOCHONDRIAL GENOME AS AN
EPIGENETIC REGULATOR IN ARTICULAR
CARTILAGE

It is well known that bi-directional communication exists
between the nucleus and mitochondria with the aim of
maintaining cellular homeostasis and regulating adaptation to
a broad range of stressors (Quirós et al., 2016; Wallace, 2016).
This communication implies, on the one hand, that
mitochondria are controlled by the nucleus by means of an
“anterograde regulation,” a mechanism that regulates
mitochondrial activity and biogenesis to provide cellular needs;
on the other hand, mitochondria and mtDNA variation maintain
partial regulatory signaling control over the nucleus through a
“retrograde regulation,” which leads to the modification of
cellular metabolism and function by activating the expression
of nuclear genes with the aim of protecting against mitochondrial
dysfunction (Jazwinski, 2013; Horan and Cooper, 2014;
Matilainen et al., 2017).

Based on the above findings, and taking into account the
reported associations between common mtDNA variants and
different physiological and pathological phenotypes (Gómez-
Durán et al., 2010; Martínez-Redondo et al., 2010; Marom
et al., 2017), it can be deduced that interactions between
mtDNA sequences, nuclear DNA, and the environment have
important effects on mammalian biology (Kenney et al., 2014). In
this sense, the effect of specific nuclear polymorphisms classically
identified as risk factors for different diseases, such as Parkinson´s
disease, cancer, and severe cardiopathy, is also modulated by
January 2020 | Volume 10 | Article 1335

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Rego-Pérez et al. Mitochondrial Variation in Osteoarthritis
mtDNAvariation (Maruszak et al., 2008; Strauss et al., 2013; Blein et
al., 2015). In the case of OA, as subjects carrying mtDNA
haplogroup J are not fully protected from suffering from the
disease, it would be interesting to investigate potential
interactions between this haplogroup, as well as the biochemically
opposite haplogroup H (Wallace et al., 1999; Martínez-Redondo et
al., 2010), and themost robust nuclear polymorphisms described in
different GWAS performed in OA (Warner and Valdes, 2017;
Zengini et al., 2018; Tachmazidou et al., 2019).

In terms of animal models, interesting work in conplastic
mice (mice with a constant nuclear background but different
mtDNA genomes) showed profound differences in health
longevity between conplastic strains. The level of divergence
between the two strains, equivalent to that between human
African and Eurasian mtDNAs, showed different behavior in
terms of mitochondrial proteostasis, reactive oxygen generation,
obesity, and insulin signaling as well as in cell-senescence-related
parameters such as telomere shortening and mitochondrial
dysfunction (Latorre-Pellicer et al., 2016). Most of the altered
processes described in the work of Latorre-Pellicer and co-
workers are also involved in many common human diseases.
In agreement with this, preliminary analyses of OA-related
features using the two strains of these animals revealed
significant differences between them in terms of the expression
of the autophagy-related protein microtubule-associated protein
1 light chain 3 (LC3) and extracellular matrix-degrading protein
metalloproteinase-13 (MMP-13) as well as significant differences
in the Mankin score, a scoring system for the histopathological
classification of the severity of cartilage lesions in OA (Scotece
et al., 2019).

In this context of mitochondrial-nuclear interactions,
epigenetics emerges as an important mechanism. Specifically,
DNA methylation is the best-characterized epigenetic
mechanism in OA. DNA methylation consists of the addition
of a methyl group (CH3) by S-adenosyl-methionine (SAM) to a
cytosine that lies at 5´ of guanine (CpG site) to give rise to
methylated cytosine. When this process occurs in high-density
CpG regions of promoters, gene silencing occurs; in contrast,
when methylation occurs in gene bodies, it leads to increased
gene expression (Hellman and Chess, 2007). In contrast to
nuclear DNA, the effects of mtDNA methylation in OA have
not been explored so far; however, it is well accepted that
mtDNA variation is able to modulate the nuclear methylome.
Consistent with this concept, two independent studies using
transmitochondrial cybrids showed that global DNA
methylation levels are differentially modulated by mtDNA
haplogroups J and H (Bellizzi et al., 2012; Atilano et al., 2015);
in addition, these two haplogroups also mediate the methylation
profile and the expression levels of genes involved in
angiogenesis, inflammation, and other signaling pathways
(Atilano et al., 2015). Moreover, different haplogroups on a
uniform nuclear background of mouse embryonic stem cells
were also associated with different methylation profiles and gene
expression (Kelly et al., 2013).

In the case of OA, DNA methylation is involved in the
phenotypic modulation that articular chondrocytes undergo
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during the OA process (Roach et al., 2005). After the few first
studies, in which the methylation pattern of specific genes
involved in OA pathogenesis was explored (Roach et al., 2005;
Hashimoto et al., 2013), genome-wide DNA methylation assays
were performed. These studies not only showed that knee and
hip OA cartilages have different DNA methylation patterns but
also identified a subgroup of OA patients with an enrichment of
altered genes involved in inflammation and immunity
(Fernandez-Tajes et al., 2014; Rushton et al., 2014). The only
study that has so far analyzed the effect of mtDNA variation on
the methylome of articular cartilage revealed that cartilages
harboring haplogroups H and J show a differential methylation
pattern, regardless of diagnosis. The study consisted of a
genome-wide DNA methylation approach followed by a whole
transcriptomic assay and demonstrated that apoptosis is
enhanced in haplogroup H cartilage samples, together with an
enrichment of overexpressed genes related to cell death; on the
contrary, apoptosis appeared more repressed in haplogroup J
cartilages. In addition, compared with H cartilages, samples with
haplogroup J also showed a significant enrichment of
hypomethylated CpGs of genes related to developmental
process, including those belonging to the homeobox family of
transcription factors, while H cartilages showed an enrichment
of genes related to metabolic processes (Cortes-Pereira et al.,
2019). These findings reflect that the epigenetic modifications
that occur during the pathogenesis of OA and affect different key
processes, such as metabolic alterations or apoptosis, vary
depending on the mitochondrial genetic background, and this
could determine the evolution of the disease (Figure 1).

Based on the description above, it is conceivable to consider the
mitochondrial genome as an epigenetic regulator of the nuclear
genome in articular cartilage. Stimuli such as reactive metabolic
intermediates from the mitochondrial metabolism, small RNAs,
mitochondria-derived peptides, and/or reactive oxygen species
could be considered among the underlying mechanisms by which
mitochondrial variation promotes modifications in the nuclear
DNA methylome in OA (Schroeder et al., 2013; Horan and
Cooper, 2014; Shadel and Horvath, 2015).
CONCLUSIONS AND
FUTURE DIRECTIONS

The evidence presented in this review supports the hypothesis
that mitochondrial genetics not only influences different features
of OA disease but also modulates, in terms of mtDNA
haplogroups, the nuclear DNA methylome of the only cell type
present in articular cartilage, the chondrocyte. Based on this
evidence, a broad field of promising research lies ahead.

Efforts must be made in the use of conplastic mice to
investigate the influence of the mitochondrial background on
specific OA-related features in animal models that develop
spontaneous OA as well as in conplastic animals with induced
OA. On the other hand, of special interest would be the design of
transmitochondrial cybrids using chondrocytes as stable nuclear
donors to subsequently test the influence of mtDNA variants in
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FIGURE 1 | The interactions between the nucleus and mitochondria that take place inside articular chondrocytes give rise to epigenetic modifications that are
mediated by mitochondrial DNA haplogroups. As a consequence, different haplogroup-associated methylation patterns condition key processes related to the
development of OA. Permission is granted for publication of this figure as a modified version of the figure that appeared on page A17 of the July 2019 issue of
Arthritis & Rheumatology (Clinical Connections).
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the native cells of articular cartilage. The use of both animal and
cellular models, together with the methylation data originating
from different genome-wide methylation studies, could
contribute to the development of molecular biomarkers aimed
at identifying specific OA phenotypes from the design of CpG
class ifier panels combined with the mitochondria l
genetic background.

Given the role of adaptive selection in the origin of mtDNA
haplogroups, and recognizing that they could be maladaptive in
different environments with new lifestyles (Wallace, 2005), the
proposed study of potential interactions between mtDNA
variants and different nuclear DNA polymorphisms previously
associated with OA susceptibility in various GWAS should be
conducted taking into account the specific environment. Because
none of the studies described in Table 1 aimed to identify specific
or single mitochondrial polymorphisms associated with different
OA-related features, the precise identification through next-
generation sequencing techniques of these specific mtDNA
polymorphisms, characteristic or not of each haplogroup, from
both isolated blood and articular cartilage from the same patient,
would be a powerful tool for the consideration of mtDNA
variation as a potential robust biomarker of OA.

In terms of therapeutic research, the restoration of
mitochondrial function in OA chondrocytes would be the
ultimate goal. This can be achieved by using different
approaches to design different drugs that are capable of: i)
suppressing mitochondrial oxidative damage and restoring
extracellular matrix homeostasis (Farnaghi et al., 2017), ii)
activating the AMPK-SIRT1-PGC1a pathway to induce
mitochondrial biogenesis, therefore decreasing the pro-
catabolic response of chondrocytes (Wang et al., 2015), iii)
activating mitophagy, given its importance in preventing
mitochondrial dysfunction (López de Figueroa et al., 2015), or
iv) emulating the physiological effects of the OA-protective
mtDNA haplogroup J on mitochondrial activity, as well as
administering healthy isolated mitochondria into the
Frontiers in Genetics | www.frontiersin.org 746
osteoarthritic joint. On the other hand, given the bi-directional
communication between the nucleus and mitochondria,
interventions focused on the management of mitochondrial
dysfunction by targeting the epigenome, or vice versa
(Matilainen et al., 2017), would also be of interest.
AUTHOR CONTRIBUTIONS

FB and IR-P contributed equally to the design and coordination
of the study; both conceived the study and participated in its
design. AD-S and PR-L contributed to some of the findings
described in the manuscript and helped to draft the final version
of the manuscript.
FUNDING

This work is supported by grants from Fondo de Investigación
Sanitaria (CIBERCB06/01/0040-Spain, RETIC-RIER-RD16/
0012/0002, PRB2-ISCIII-PT17/0019/0014, PI14/01254, PI16/
02124 and PI17/00210) integrated in the National Plan for
Scientific Program, Development and Technological
Innovation 2013–2016 and funded by the ISCIII-General
Subdirection of Assessment and Promotion of Research-
European Regional Development Fund (FEDER) “A way of
making Europe”. IR-P is supported by Contrato Miguel Servet-
II Fondo de Investigación Sanitaria (CPII17/00026).
ACKNOWLEDGMENTS

Figure 1 is a modification of a figure originally published in the
Clinical Connections section of Arthritis & Rheumatology,
volume 71 (2019).
REFERENCES

Ansari, M. Y., Khan, N. M., Ahmad, I., and Haqqi, T. M. (2018). Parkin clearance
of dysfunctional mitochondria regulates ROS levels and increases survival of
human chondrocytes. Osteoarthritis Cartilage 26 (8), 1087–1097. doi: 10.1016/
j.joca.2017.07.020

Atilano, S. R., Malik, D., Chwa, M., Cáceres-Del-Carpio, J., Nesburn, A. B.,
Boyer, D. S., et al. (2015). Mitochondrial DNA variants can mediate
methylation status of inflammation, angiogenesis and signaling genes. Hum.
Mol. Genet. 24 (16), 4491–4503. doi: 10.1093/hmg/ddv173

Bellizzi, D., D'Aquila, P., Giordano, M., Montesanto, A., and Passarino, G. (2012).
Global DNA methylation levels are modulated by mitochondrial DNA
variants. Epigenomics 4 (1), 17–27. doi: 10.2217/epi.11.109

Berenbaum, F. (2013). Osteoarthritis as an inflammatory disease (osteoarthritis is
not osteoarthrosis)! Osteoarthritis Cartilage 21 (1), 16–21. doi: 10.1016/
j.joca.2012.11.012

Blanco, F. J., and Rego-Pérez, I. (2014). Editorial: is it time for epigenetics in
osteoarthritis? Arthritis Rheumatol. 66 (9), 2324–2327. doi: 10.1002/art.38710

Blanco, F. J., Lopez-Armada, M. J., and Maneiro, E. (2004). Mitochondrial
dysfunction in osteoarthritis. Mitochondrion. Netherlands 4 (5–6), 715–728.
doi: 10.1016/j.mito.2004.07.022
Blanco, F. J., Rego, I., and Ruiz-Romero, C. (2011). The role of mitochondria in
osteoarthritis. Nat. Rev. Rheumatol. 7 (3), 161–169. doi: 10.1038/
nrrheum.2010.213

Blanco, F. J., Valdes, A. M., and Rego-Perez, I. (2018). Mitochondrial DNA
variation and the pathogenesis of osteoarthritis phenotypes. Nature Reviews
Rheumatology 14 (6), 327–340. doi: 10.1038/s41584-018-0001-0

Blanco, F. J. (2014). Osteoarthritis: something is moving. Reumatol. Clin. 10 (1), 4–5.
doi: 10.1016/j.reuma.2013.12.001

Blein, S., Bardel, C., Danjean, V., McGuffog, L., Healey, S., Barrowdale, D., et al.
(2015). An original phylogenetic approach identified mitochondrial
haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2
mutation carriers. Breast Cancer Res. 17, 61. doi: 10.1186/s13058-015-0567-2

Camacho-Encina, M., Balboa-Barreiro, V., Rego-Perez, I., Picchi, F., VanDuin, J.,
Qiu, J., et al. (2019). Discovery of an autoantibody signature for the early
diagnosis of knee osteoarthritis: data from the Osteoarthritis Initiative. Ann.
Rheum. Dis. 78 (12), 1699–1705. doi: 10.1136/annrheumdis-2019-215325

Choi, A. M., Ryter, S. W., and Levine, B. (2013). Autophagy in human health and
disease. N. Engl. J. Med. 368 (19), 1845–1846. doi: 10.1056/nejmra1205406

Cortes-Pereira, E., Fernandez-Tajes, J., Fernandez-Moreno, M., Vazquez-
Mosquera, M. E., Relano, S., Ramos-Louro, P., et al. (2019). Mitochondrial
DNA (mtDNA) haplogroups J and H are differentially associated with the
January 2020 | Volume 10 | Article 1335

https://doi.org/10.1016/j.joca.2017.07.020
https://doi.org/10.1016/j.joca.2017.07.020
https://doi.org/10.1093/hmg/ddv173
https://doi.org/10.2217/epi.11.109
https://doi.org/10.1016/j.joca.2012.11.012
https://doi.org/10.1016/j.joca.2012.11.012
https://doi.org/10.1002/art.38710
https://doi.org/10.1016/j.mito.2004.07.022
https://doi.org/10.1038/nrrheum.2010.213
https://doi.org/10.1038/nrrheum.2010.213
https://doi.org/10.1038/s41584-018-0001-0
https://doi.org/10.1016/j.reuma.2013.12.001
https://doi.org/10.1186/s13058-015-0567-2
https://doi.org/10.1136/annrheumdis-2019-215325
https://doi.org/10.1056/nejmra1205406
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Rego-Pérez et al. Mitochondrial Variation in Osteoarthritis
methylation status of articular cartilage: potential role in apoptosis and
metabolic and developmental processes. Arthritis Rheumatology (Hoboken
NJ). 71 (7), 1191–1200. doi: 10.1002/art.40857

Dato, S., Passarino, G., Rose, G., Altomare, K., Bellizzi, D., Mari, V., et al. (2004).
Association of the mitochondrial DNA haplogroup J with longevity is population
specific. Eur. J. Hum. Genet. 12 (12), 1080–1082. doi: 10.1038/sj.ejhg.5201278

Fang, H., Liu, X., Shen, L., Li, F., Liu, Y., Chi, H., et al. (2014). Role of mtDNA
haplogroups in the prevalence of knee osteoarthritis in a southern Chinese
population. Int. J. Mol. Sci. 15 (2), 2646–2659. doi: 10.3390/ijms15022646

Fang, H., Zhang, F., Li, F., Shi, H., Ma, L., Du, M., et al. (2016). Mitochondrial
DNA haplogroups modify the risk of osteoarthritis by altering mitochondrial
function and intracellular mitochondrial signals. Biochim. Biophys. Acta 1862
(4), 829–836. doi: 10.1016/j.bbadis.2015.12.017

Farnaghi, S., Prasadam, I., Cai, G., Friis, T., Du, Z., Crawford, R., et al. (2017).
Protective effects of mitochondria-targeted antioxidants and statins on
cholesterol-induced osteoarthritis. FASEB J 31 (1), 356–367. doi: 10.1096/
fj.201600600r

Fernandez-Moreno, M., Tamayo, M., Soto-Hermida, A., Mosquera, A., Oreiro, N.,
Fernandez-Lopez, C., et al. (2011). mtDNA haplogroup J Modulates telomere
length and nitric oxide production. Bmc Musculoskeletal Disord. 283. doi:
10.1186/1471-2474-12-283

Fernandez-Moreno, M., Soto-Hermida, A., Oreiro, N., Pertega, S., Fenandez-
Lopez, C., Rego-Perez, I., et al. (2012). Mitochondrial haplogroups define two
phenotypes of osteoarthritis. Front. Physiol. 129. doi: 10.3389/
fphys.2012.00129.

Fernandez-Moreno, M., Soto-Hermida, A., Vazquez-Mosquera, M. E., Cortes-
Pereira, E., Relano, S., Hermida-Gomez, T., et al. (2017a). Mitochondrial DNA
haplogroups influence the risk of incident knee osteoarthritis in OAI and
CHECK cohorts. A meta-analysis and functional study. Ann. Rheum. Dis. 76
(6), 1114–1122. doi: 10.1136/annrheumdis-2016-210131

Fernandez-Moreno, M., Soto-Hermida, A., Vazquez-Mosquera, M. E., Cortes-
Pereira, E., Pertega, S., Relano, S., et al. (2017b). A replication study and meta-
analysis of mitochondrial DNA variants in the radiographic progression of
knee osteoarthritis. Rheumatology 56 (2), 263–270. doi: 10.1093/rheumatology/
kew394

Fernandez-Tajes, J., Soto-Hermida, A., Vazquez-Mosquera, M. E., Cortes-
Pereira, E., Mosquera, A., Fernandez-Moreno, M., et al. (2014). Genome-
wide DNA methylation analysis of articular chondrocytes reveals a cluster of
osteoarthritic patients. Ann. Rheum. Dis. 73 (4), 668–677. doi: 10.1136/
annrheumdis-2012-202783

Garnero, P., Ayral, X., Rousseau, J. C., Christgau, S., Sandell, L. J., Dougados, M.,
et al. (2002). Uncoupling of type II collagen synthesis and degradation predicts
progression of joint damage in patients with knee osteoarthritis. Arthritis
Rheum. 46 (10), 2613–2624. doi: 10.1002/art.10576

Gavriilidis, C., Miwa, S., von Zglinicki, T., Taylor, R. W., and Young, D. A. (2013).
Mitochondrial dysfunction in osteoarthritis is associated with down-regulation
of superoxide dismutase 2. Arthritis Rheum. 65 (2), 378–387. doi: 10.1002/
art.37782

Gómez-Durán, A., Pacheu-Grau, D., López-Gallardo, E., Díez-Sánchez, C.,
Montoya, J., López-Pérez, M. J., et al. (2010). Unmasking the causes of
multifactorial disorders: OXPHOS differences between mitochondrial
haplogroups. Hum. Mol. Genet. 19 (17), 3343–3353. doi: 10.1093/hmg/ddq246

Hannan, M. T., Felson, D. T., and Pincus, T. (2000). Analysis of the discordance
between radiographic changes and knee pain in osteoarthritis of the knee.
J. Rheumatol. 27 (6), 1513–1517.

Hashimoto, K., Otero, M., Imagawa, K., de Andrés, M. C., Coico, J. M., Roach, H.
I., et al. (2013). Regulated transcription of human matrix metalloproteinase 13
(MMP13) and interleukin-1b (IL1B) genes in chondrocytes depends on
methylation of specific proximal promoter CpG sites. J. Biol. Chem. 288
(14), 10061–10072. doi: 10.1074/jbc.m112.421156

Hellman, A., and Chess, A. (2007). Gene body-specific methylation on the active X
chromosome. Science 315 (5815), 1141–1143. doi: 10.1126/science.1136352

Henrotin, Y., and Kurz, B. (2007). Antioxidant to treat osteoarthritis: dream or
reality? Curr. Drug Targets 8 (2), 347–357. doi: 10.2174/138945007779940151

Horan, M. P., and Cooper, D. N. (2014). The emergence of the mitochondrial
genome as a partial regulator of nuclear function is providing new insights into
the genetic mechanisms underlying age-related complex disease. Hum. Genet.
133 (4), 435–458. doi: 10.1007/s00439-013-1402-4
Frontiers in Genetics | www.frontiersin.org 847
Hudson, G., Carelli, V., Spruijt, L., Gerards, M., Mowbray, C., Achilli, A., et al.
(2007). Clinical expression of Leber hereditary optic neuropathy is affected by
the mitochondrial DNA-haplogroup background. Am. J. Hum. Genet. 81 (2),
228–233. doi: 10.1086/519394

Hudson, G., Panoutsopoulou, K., Wilson, I., Southam, L., Rayner, N. W., Arden,
N., et al. (2013). No evidence of an association between mitochondrial DNA
variants and osteoarthritis in 7393 cases and 5122 controls. Ann. Rheum. Dis.
72 (1), 136–139. doi: 10.1136/annrheumdis-2012-201932

Hwang, H. S., and Kim, H. A. (2015). Chondrocyte Apoptosis in the Pathogenesis of
Osteoarthritis. Int. J. Mol. Sci. 16 (11), 26035–26054. doi: 10.3390/ijms161125943

Jazwinski, S. M. (2013). The retrograde response: when mitochondrial quality
control is not enough. Biochim. Biophys. Acta 1833 (2), 400–409. doi: 10.1016/
j.bbamcr.2012.02.010

Kellgren, J. H., and Lawrence, J. S. (1957). Radiological assessment of osteo-
arthrosis. Ann. Rheum. Dis. 16 (4), 494–502. doi: 10.1136/ard.16.4.494

Kelly, R. D., Rodda, A. E., Dickinson, A., Mahmud, A., Nefzger, C. M., Lee, W.,
et al. (2013). Mitochondrial DNA haplotypes define gene expression patterns
in pluripotent and differentiating embryonic stem cells. Stem Cells 31 (4), 703–
716. doi: 10.1002/stem.1313

Kenney, M. C., Chwa, M., Atilano, S. R., Falatoonzadeh, P., Ramirez, C., Malik, D.,
et al. (2014). Inherited mitochondrial DNA variants can affect complement,
inflammation and apoptosis pathways: insights into mitochondrial-nuclear
interactions. Hum. Mol. Genet. 23 (13), 3537–3551. doi: 10.1093/hmg/ddu065

Koo, B. S., Song, Y., Lee, S., Sung, Y. K., Shin, K. J., Cho, N. H., et al. (2019).
Association of Asian mitochondrial DNA haplogroup B with new development
of knee osteoarthritis in Koreans. Int. J. Rheum. Dis 22 (3), 411–416. doi:
10.1111/1756-185x.13453

Kraus, V. B., Blanco, F. J., Englund, M., Karsdal, M. A., and Lohmander, L. S.
(2015). Call for standardized definitions of osteoarthritis and risk stratification
for clinical trials and clinical use. Osteoarthritis Cartilage 23 (8), 1233–1241.
doi: 10.1016/j.joca.2015.03.036

Kuttapitiya, A., Assi, L., Laing, K., Hing, C., Mitchell, P., Whitley, G., et al. (2017).
Microarray analysis of bone marrow lesions in osteoarthritis demonstrates
upregulation of genes implicated in osteochondral turnover, neurogenesis and
inflammation. Ann. Rheum. Dis. 76 (10), 1764–1773. doi: 10.1136/
annrheumdis-2017-211396

López de Figueroa, P., Lotz, M. K., Blanco, F. J., and Caramés, B. (2015). Autophagy
activation and protection from mitochondrial dysfunction in human
chondrocytes. Arthritis Rheumatol. 67 (4), 966–976. doi: 10.1002/art.39025

Latorre-Pellicer, A., Moreno-Loshuertos, R., Lechuga-Vieco, A. V., Sánchez-Cabo,
F., Torroja, C., Acín-Pérez, R., et al. (2016). Mitochondrial and nuclear DNA
matching shapes metabolism and healthy ageing. Nature 535 (7613), 561–565.
doi: 10.1038/nature18618

Li, P., Ning, Y., Guo, X., Wen, Y., Cheng, B., Ma, M., et al. (2019). Integrating
transcriptome-wide study andmRNAexpressionprofiles yieldsnovel insights into
the biological mechanism of chondropathies. Arthritis Res. Ther. 21 (1), 194.

Li, H., Slone, J., Fei, L., and Huang, T. (2019). Mitochondrial DNA variants and
common diseases: a mathematical model for the diversity of age-related
mtDNA Mutations. Cells 8 (6).

Lotz, M., and Loeser, R. F. (2012). Effects of aging on articular cartilage
homeostasis. Bone 51 (2), 241–248. doi: 10.1016/j.bone.2012.03.023

Maneiro, E., Martin, M. A., de Andres, M. C., Lopez-Armada, M. J., Fernandez-
Sueiro, J. L., del Hoyo, P., et al. (2003). Mitochondrial respiratory activity is
altered in osteoarthritic human articular chondrocytes. Arthritis Rheum. 48 (3),
700–708. doi: 10.1002/art.10837

Maneiro, E., López-Armada, M. J., de Andres, M. C., Caramés, B., Martín, M. A.,
Bonilla, A., et al. (2005). Effect of nitric oxide on mitochondrial respiratory
activity of human articular chondrocytes. Ann. Rheum. Dis. 64 (3), 388–395.
doi: 10.1136/ard.2004.022152

Marom, S., Friger, M., and Mishmar, D. (2017). MtDNA meta-analysis reveals
both phenotype specificity and allele heterogeneity: a model for differential
association. Sci. Rep. 7, 43449. doi: 10.1038/srep43449

Martínez-Redondo, D., Marcuello, A., Casajús, J. A., Ara, I., Dahmani, Y.,
Montoya, J., et al. (2010). Human mitochondrial haplogroup H: the highest
VO2max consumer–is it a paradox? Mitochondrion 10 (2), 102–107. doi:
10.1016/j.mito.2009.11.005

Maruszak, A., Canter, J. A., Styczynska, M., Zekanowski, C., and Barcikowska, M.
(2008). Mitochondrial haplogroup H and Alzheimer's disease-Is there a
January 2020 | Volume 10 | Article 1335

https://doi.org/10.1002/art.40857
https://doi.org/10.1038/sj.ejhg.5201278
https://doi.org/10.3390/ijms15022646
https://doi.org/10.1016/j.bbadis.2015.12.017
https://doi.org/10.1096/fj.201600600r
https://doi.org/10.1096/fj.201600600r
https://doi.org/10.1186/1471-2474-12-283
https://doi.org/10.3389/fphys.2012.00129
https://doi.org/10.3389/fphys.2012.00129
https://doi.org/10.1136/annrheumdis-2016-210131
https://doi.org/10.1093/rheumatology/kew394
https://doi.org/10.1093/rheumatology/kew394
https://doi.org/10.1136/annrheumdis-2012-202783
https://doi.org/10.1136/annrheumdis-2012-202783
https://doi.org/10.1002/art.10576
https://doi.org/10.1002/art.37782
https://doi.org/10.1002/art.37782
https://doi.org/10.1093/hmg/ddq246
https://doi.org/10.1074/jbc.m112.421156
https://doi.org/10.1126/science.1136352
https://doi.org/10.2174/138945007779940151
https://doi.org/10.1007/s00439-013-1402-4
https://doi.org/10.1086/519394
https://doi.org/10.1136/annrheumdis-2012-201932
https://doi.org/10.3390/ijms161125943
https://doi.org/10.1016/j.bbamcr.2012.02.010
https://doi.org/10.1016/j.bbamcr.2012.02.010
https://doi.org/10.1136/ard.16.4.494
https://doi.org/10.1002/stem.1313
https://doi.org/10.1093/hmg/ddu065 
https://doi.org/10.1111/1756-185x.13453
https://doi.org/10.1016/j.joca.2015.03.036
https://doi.org/10.1136/annrheumdis-2017-211396
https://doi.org/10.1136/annrheumdis-2017-211396
https://doi.org/10.1002/art.39025
https://doi.org/10.1038/nature18618
https://doi.org/10.1016/j.bone.2012.03.023
https://doi.org/10.1002/art.10837
https://doi.org/10.1136/ard.2004.022152
https://doi.org/10.1038/srep43449
https://doi.org/10.1016/j.mito.2009.11.005
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Rego-Pérez et al. Mitochondrial Variation in Osteoarthritis
connection? Neurobiol. Aging 30 (11), 1749–1755. doi: 10.1016/
j.neurobiolaging.2008.01.004

Matilainen, O., Quirós, P. M., and Auwerx, J. (2017). Mitochondria and
Epigenetics - crosstalk in homeostasis and stress. Trends Cell Biol. 27 (6),
453–463. doi: 10.1016/j.tcb.2017.02.004

Quirós, P. M., Mottis, A., and Auwerx, J. (2016). Mitonuclear communication in
homeostasis and stress. Nat. Rev. Mol. Cell Biol. 17 (4), 213–226. doi: 10.1038/
nrm.2016.23

Rego, I., Fernandez-Moreno, M., Fernandez-Lopez, C., Gomez-Reino, J. J.,
Gonzalez, A., Arenas, J., et al. (2010). Role of European mitochondrial DNA
haplogroups in the prevalence of hip osteoarthritis in Galicia, Northern Spain.
Ann. Rheum. Dis. 69 (1), 210–213. doi: 10.1136/ard.2008.105254

Rego-Perez, I., Fernandez-Moreno, M., Fernandez-Lopez, C., Arenas, J., and
Blanco, F. J. (2008). Mitochondrial DNA haplogroups: role in the prevalence
and severity of knee osteoarthritis. Arthritis Rheum. 58 (8), 2387–2396. doi:
10.1002/art.23659

Rego-Perez, I., Fernandez-Moreno, M., Deberg, M., Pertega, S., Fenandez-Lopez,
C., Oreiro, N., et al. (2010). Mitochondrial DNA haplogroups modulate the
serum levels of biomarkers in patients with osteoarthritis. Ann. Rheum. Dis. 69
(5), 910–917. doi: 10.1136/ard.2009.117416

Rego-Perez, I., Fernandez-Moreno, M., Deberg, M., Pertega, S., Fernandez-Lopez,
C., Oreiro, N., et al. (2011). Mitochondrial DNA haplogroups and serum levels
of proteolytic enzymes in patients with osteoarthritis. Ann. Rheum. Dis. 70 (4),
646–652. doi: 10.1136/ard.2010.133637

Rego-Perez, I., Blanco, F. J., Roemer, F. W., Guermazi, A., Ran, D., Ashbeck, E. L.,
et al. (2018). Mitochondrial DNA haplogroups associated with MRI-detected
structural damage in early knee osteoarthritis. Osteoarthritis Cartilage 26 (11),
1562–1569. doi: 10.1016/j.joca.2018.06.016

Reynard, L. N., and Loughlin, J. (2012). Genetics and epigenetics of osteoarthritis.
Maturitas. 71 (3), 200–204. doi: 10.1016/j.maturitas.2011.12.001

Roach, H. I., Yamada, N., Cheung, K. S., Tilley, S., Clarke, N. M., Oreffo, R. O.,
et al. (2005). Association between the abnormal expression of matrix-
degrading enzymes by human osteoarthritic chondrocytes and
demethylation of specific CpG sites in the promoter regions. Arthritis
Rheum. 52 (10), 3110–3124. doi: 10.1002/art.21300

Roemer, F. W., Guermazi, A., Collins, J. E., Losina, E., Nevitt, M. C., Lynch, J. A.,
et al. (2016). Semi-quantitative MRI biomarkers of knee osteoarthritis
progression in the FNIH biomarkers consortium cohort - Methodologic
aspects and definition of change. BMC Musculoskelet Disord. 17 (1), 466.
doi: 10.1186/s12891-016-1310-6

Rousseau, J. C., and Delmas, P. D. (2007). Biological markers in osteoarthritis. Nat
Clin. Pract. Rheumatol. 3 (6), 346–356. doi: 10.1038/ncprheum0508

Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V., and Wallace, D. C.
(2004). Effects of purifying and adaptive selection on regional variation in
human mtDNA. Science 303 (5655), 223–226. doi: 10.1126/science.1088434

Ruiz-Romero, C., Calamia, V., Mateos, J., Carreira, V., Martinez-Gomariz, M.,
Fernandez, M., et al. (2009). Mitochondrial dysregulation of osteoarthritic
human articular chondrocytes analyzed by proteomics: a decrease in
mitochondrial superoxide dismutase points to a redox imbalance. Mol. Cell
Proteomics 8 (1), 172–189. doi: 10.1074/mcp.m800292-mcp200

Rushton, M., Reynard, L., Barter, M., Refaie, R., Rankin, K., Young, D., et al.
(2014). Characterization of the cartilage DNA methylome in knee and hip
osteoarthritis. Arthritis Rheum. 66 (9), 2450–2460. doi: 10.1002/art.38713

Schroeder, E. A., Raimundo, N., and Shadel, G. S. (2013). Epigenetic silencing
mediates mitochondria stress-induced longevity. Cell Metab. 17 (6), 954–964.
doi: 10.1016/j.cmet.2013.04.003

Scotece,M., Rego-Perez, I., LechugaVieco, A. V., Filgueira-Fernández, P., Enriquez, J.
A., and Blanco, F. J. (2019). Mitochondrial background impact on the joint
degeneration process during aging and forced exercise: a conplastic mouse
model. Ann. Rheum. Dis. 78, pA956. doi: 10.1136/annrheumdis-2019-eular.3201

Scott, J. L., Gabrielides, C., Davidson, R. K., Swingler, T. E., Clark, I. M.,
Wallis, G. A., et al. (2010). Superoxide dismutase downregulation in
osteoarthritis progression and end-stage disease. Ann. Rheum. Dis. England,
69 (8), 1502–1510. doi: 10.1136/ard.2009.119966

Sellam, J., and Berenbaum, F. (2013). Is osteoarthritis a metabolic disease? Joint
Bone Spine 80 (6), 568–573. doi: 10.1016/j.jbspin.2013.09.007

Shadel, G. S., and Horvath, T. L. (2015). Mitochondrial ROS signaling in
organismal homeostasis. Cell 163 (3), 560–569. doi: 10.1016/j.cell.2015.10.001
Frontiers in Genetics | www.frontiersin.org 948
Shen, J. M., Feng, L., and Feng, C. (2014). Role of mtDNA haplogroups in the
prevalence of osteoarthritis in different geographic populations: a meta-
analysis. PLoS One 9 (10), e108896. doi: 10.1371/journal.pone.0108896

Soto-Hermida, A., Fernández-Moreno, M., Oreiro, N., Fernández-López, C.,
Rego-Pérez, I., and Blanco, F. J. (2014a). mtDNA haplogroups and
osteoarthritis in different geographic populations. Mitochondrion. 15, 18–23.
doi: 10.1016/j.mito.2014.03.001

Soto-Hermida, A., Fernandez-Moreno, M., Oreiro, N., Fernandez-Lopez, C.,
Pertega, S., Cortes-Pereira, E., et al. (2014b). Mitochondrial DNA (mtDNA)
haplogroups influence the progression of knee osteoarthritis. Data from the
Osteoarthritis Initiative (OAI). PloS One 9 (11), e112735–e. doi: 10.1371/
journal.pone.0112735

Soto-Hermida, A., Fernandez-Moreno, M., Pertega-Diaz, S., Oreiro, N.,
Fernandez-Lopez, C., Blanco, F. J., et al. (2015). Mitochondrial DNA
haplogroups modulate the radiographic progression of Spanish patients with
osteoarthritis. Rheum. Int. 35 (2), 337–344. doi: 10.1007/s00296-014-3104-1

Strauss, K. A., DuBiner, L., Simon, M., Zaragoza, M., Sengupta, P. P., Li, P., et al.
(2013). Severity of cardiomyopathy associated with adenine nucleotide
translocator-1 deficiency correlates with mtDNA haplogroup. Proc. Natl.
Acad. Sci. U.S.A. 110 (9), 3453–3458. doi: 10.1073/pnas.1300690110

Tachmazidou, I., Hatzikotoulas, K., Southam, L., Esparza-Gordillo, J.,
Haberland, V., Zheng, J., et al. (2019). Identification of new therapeutic
targets for osteoarthritis through genome-wide analyses of UK Biobank data.
Nat. Genet. 51 (2), 230–236. doi: 10.1038/s41588-018-0327-1

Terkeltaub, R., Johnson, K., Murphy, A., and Ghosh, S. (2002). Invited review: the
mitochondrion in osteoarthritis. Mitochondrion. 1 (4), 301–319. doi: 10.1016/
s1567-7249(01)00037-x

Torroni, A., Huoponen, K., Francalacci, P., Petrozzi, M., Morelli, L., Scozzari, R.,
et al. (1996). Classification of European mtDNAs from an analysis of three
European populations. Genetics 144 (4), 1835–1850.

Vaamonde-García, C., Riveiro-Naveira, R. R., Valcárcel-Ares, M. N., Hermida-
Carballo, L., Blanco, F. J., and López-Armada, M. J. (2012). Mitochondrial
dysfunction increases inflammatory responsiveness to cytokines in normalhuman
chondrocytes. Arthritis Rheum. 64 (9), 2927–2936. doi: 10.1002/art.34508

Valdes, A. M., and Goldring, M. B. (2017). Mitochondrial DNA haplogroups and
ageing mechanisms in osteoarthritis. Ann. Rheum. Dis. 76 (6), 939–941. doi:
10.1136/annrheumdis-2016-210783

Wallace, D. C., Brown, M. D., and Lott, M. T. (1999). Mitochondrial DNA
variation in human evolution and disease. Gene 238 (1), 211–230. doi: 10.1016/
s0378-1119(99)00295-4

Wallace, D. C. (2005). A mitochondrial paradigm of metabolic and degenerative
diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev.
Genet. 39, 359–407. doi: 10.1146/annurev.genet.39.110304.095751

Wallace, D. C. (2016). Genetics: mitochondrial DNA in evolution and disease.
Nature 535 (7613), 498–500. doi: 10.1038/nature18902

Wang, Y., Zhao, X., Lotz, M., Terkeltaub, R., and Liu-Bryan, R. (2015).
Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but
reversible via peroxisome proliferator-activated receptor g coactivator 1.
Arthritis Rheum. 67 (8), 2141–2153. doi: 10.1002/art.39182

Warner, S. C., and Valdes, A. M. (2017). Genetic association studies in
osteoarthritis: is it fairytale? Curr. Opin. Rheumatol. 29 (1), 103–109. doi:
10.1097/bor.0000000000000352

Zengini, E., Hatzikotoulas, K., Tachmazidou, I., Steinberg, J., Hartwig, F. P.,
Southam, L., et al. (2018). Genome-wide analyses using UK Biobank data
provide insights into the genetic architecture of osteoarthritis. Nat. Genet. 50
(4), 549–558. doi: 10.1038/s41588-018-0079-y

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Rego-Pérez, Durán-Sotuela, Ramos-Louro and Blanco. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
January 2020 | Volume 10 | Article 1335

https://doi.org/10.1016/j.neurobiolaging.2008.01.004
https://doi.org/10.1016/j.neurobiolaging.2008.01.004
https://doi.org/10.1016/j.tcb.2017.02.004
https://doi.org/10.1038/nrm.2016.23
https://doi.org/10.1038/nrm.2016.23
https://doi.org/10.1136/ard.2008.105254
https://doi.org/10.1002/art.23659
https://doi.org/10.1136/ard.2010.133637
https://doi.org/10.1016/j.joca.2018.06.016
https://doi.org/10.1016/j.maturitas.2011.12.001
https://doi.org/10.1002/art.21300
https://doi.org/10.1186/s12891-016-1310-6
https://doi.org/10.1038/ncprheum0508
https://doi.org/10.1126/science.1088434
https://doi.org/10.1074/mcp.m800292-mcp200
https://doi.org/10.1002/art.38713
https://doi.org/10.1016/j.cmet.2013.04.003
https://doi.org/10.1136/annrheumdis-2019-eular.3201
https://doi.org/10.1136/ard.2009.119966
https://doi.org/10.1016/j.jbspin.2013.09.007
https://doi.org/10.1016/j.cell.2015.10.001
https://doi.org/10.1371/journal.pone.0108896
https://doi.org/10.1016/j.mito.2014.03.001
https://doi.org/10.1371/journal.pone.0112735
https://doi.org/10.1371/journal.pone.0112735
https://doi.org/10.1007/s00296-014-3104-1
https://doi.org/10.1073/pnas.1300690110
https://doi.org/10.1038/s41588-018-0327-1
https://doi.org/10.1016/s1567-7249(01)00037-x
https://doi.org/10.1016/s1567-7249(01)00037-x
https://doi.org/10.1002/art.34508
https://doi.org/10.1136/annrheumdis-2016-210783
https://doi.org/10.1016/s0378-1119(99)00295-4
https://doi.org/10.1016/s0378-1119(99)00295-4
https://doi.org/10.1146/annurev.genet.39.110304.095751
https://doi.org/10.1038/nature18902
https://doi.org/10.1002/art.39182
https://doi.org/10.1097/bor.0000000000000352
https://doi.org/10.1038/s41588-018-0079-y
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fcell-08-00004 January 21, 2020 Time: 17:47 # 1

REVIEW
published: 23 January 2020

doi: 10.3389/fcell.2020.00004

Edited by:
Joanna Rorbach,

Karolinska Institutet (KI), Sweden

Reviewed by:
Yasuo Shinohara,

Tokushima University, Japan
Oleksandr Lytovchenko,

Karolinska Institutet (KI), Sweden

*Correspondence:
Hongjuan Cui

hcui@swu.edu.cn;
hongjuan.cui@gmail.com

Specialty section:
This article was submitted to

Mitochondrial Research,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 07 August 2019
Accepted: 08 January 2020
Published: 23 January 2020

Citation:
Dong Z, Pu L and Cui H (2020)

Mitoepigenetics and Its Emerging
Roles in Cancer.

Front. Cell Dev. Biol. 8:4.
doi: 10.3389/fcell.2020.00004

Mitoepigenetics and Its Emerging
Roles in Cancer
Zhen Dong1,2,3,4, Longjun Pu5 and Hongjuan Cui1,2,3,4*

1 State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University,
Chongqing, China, 2 Cancer Center, Medical Research Institute, Southwest University, Chongqing, China, 3 Engineering
Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China, 4 Chongqing
Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University,
Chongqing, China, 5 Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden

In human beings, there is a ∼16,569 bp circular mitochondrial DNA (mtDNA) encoding
22 tRNAs, 12S and 16S rRNAs, 13 polypeptides that constitute the central core of
ETC/OxPhos complexes, and some non-coding RNAs. Recently, mtDNA has been
shown to have some covalent modifications such as methylation or hydroxylmethylation,
which play pivotal epigenetic roles in mtDNA replication and transcription. Post-
translational modifications of proteins in mitochondrial nucleoids such as mitochondrial
transcription factor A (TFAM) also emerge as essential epigenetic modulations in mtDNA
replication and transcription. Post-transcriptional modifications of mitochondrial RNAs
(mtRNAs) including mt-rRNAs, mt-tRNAs and mt-mRNAs are important epigenetic
modulations. Besides, mtDNA or nuclear DNA (n-DNA)-derived non-coding RNAs also
play important roles in the regulation of translation and function of mitochondrial genes.
These evidences introduce a novel concept of mitoepigenetics that refers to the study
of modulations in the mitochondria that alter heritable phenotype in mitochondria itself
without changing the mtDNA sequence. Since mitochondrial dysfunction contributes
to carcinogenesis and tumor development, mitoepigenetics is also essential for cancer.
Understanding the mode of actions of mitoepigenetics in cancers may shade light on
the clinical diagnosis and prevention of these diseases. In this review, we summarize the
present study about modifications in mtDNA, mtRNA and nucleoids and modulations
of mtDNA/nDNA-derived non-coding RNAs that affect mtDNA translation/function, and
overview recent studies of mitoepigenetic alterations in cancer.

Keywords: mtDNA methylation, mitoepigenetics, mtRNA modification, non-coding RNAs, cancer

INTRODUCTION

Epigenetics is the study of mitotically and/or meiotically heritable phenotype alterations that do
not entail a change in DNA sequence (Wu and Morris, 2001). Epigenetics in nuclear genome
(nDNA) has been well described and characterized. Generally, epigenetic regulation contains
three levels of biological actions, including covalent modifications in DNA bases, histone variants,
post-translational modifications of histones, RNA modifications, and non-coding RNA (ncRNA)
modulations (Dupont et al., 2009; Peschansky and Wahlestedt, 2014). Epigenetic regulation has
been shown to be an important biological process that participates in tumorigenesis and cancer
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development, and epigenetic biomarkers or targets can be
used in diagnosis, prognosis, and treatment of these diseases
(Kondo et al., 2017; Dong and Cui, 2018; Nebbioso et al., 2018;
Zhu et al., 2019).

As cellular organelles present in almost all eukaryotic cells,
mitochondria are places where ATP is biosynthesized and are
essential for various cellular biological processes, including
reactive oxygen species (ROS) generation, intracellular Ca2+

signaling, heme metabolism, intrinsic apoptosis, mitophagy,
metabolism and cell cycle progression (Yien et al., 2014;
Picard et al., 2016; van der Bliek et al., 2017; Gómez-
Durán et al., 2018). Genetic mutations in mitochondrial DNA
(mtDNA) and perturbations in mitochondrial proteins can
cause dysfunction of mitochondria that has been shown to
be tightly associated with many mitochondrial diseases and
cancer (Taylor and Turnbull, 2005; Garone et al., 2012a,b,
2013; Gómez-Durán et al., 2012; Ronchi et al., 2012; Kullar
et al., 2017; Chinnery and Gómez-Durán, 2018; Garone and
Viscomi, 2018; Andreazza et al., 2019). Therefore, mitochondria
are promising targets for the treatment of these diseases
(Gómez-Durán et al., 2010; Zong et al., 2016; Dong et al.,
2019). Recently, in addition to mitogenetics, epigenetics in
mitochondria (mitoepigenetics) also emerges as an important
regulatory mode that is related to human physiology and
disorders, such as stemness, drug addiction, neurodegenerative
diseases, cardiovascular diseases and metabolic diseases (Wallace,
1992; Gómez-Durán et al., 2010; Manev and Dzitoyeva, 2013;
Kalani et al., 2014; Sadakierska-Chudy et al., 2014; Ghosh et al.,
2015; Gao D. et al., 2017; Stimpfel et al., 2018; Coppede and
Stoccoro, 2019). Importantly, this kind of mode of action has
also emerged to be associated with cancers (Ferreira et al., 2015;
Lozano-Rosas et al., 2018). However, mitoepigenetics has not
been well depicted.

Herein, we define the concept of mitoepigenetics as the
study of modulations occurring in the mitochondria that
induce heritable phenotype alterations in mitochondria without
involving a change of mtDNA sequence. Based on current
studies, mitoepigenetics comprises of four levels: mtDNA
methylation/hydroxylmethylation, mitochondrial nucleoid
modifications, mtRNA modifications, and mtDNA-derived or
nDNA-derived non-coding RNA modulations during mtDNA-
encoded gene translation/function. In this article, we review
the current study on mitoepigenetics and its roles in cancers,
so as to provide a new sight for the diagnosis and treatment of
these disorders.

mtDNA AND ITS MODIFICATIONS

mtDNA
mtDNA exists in the matrix or the inner membrane of
mitochondria. Genome signature comparisons reveal that
mtDNA is analogous to prokaryotic genome (Campbell et al.,
1999). Especially, alpha-proteobacteria seems to be the most
likely bacterial ancestor of the mitochondria (Gray, 2012; Muñoz-
Gómez et al., 2017; Martijn et al., 2018). mtDNA has a
loop structure of guanine-rich heavy chains (H-strand) and

cytosine-rich light chains (L-strand) (Chinnery and Hudson,
2013). The length of mtDNA ranges from 15,000 to 17,000 bp
in different species (Chinnery and Hudson, 2013). Human
mtDNA is a ∼16,569 bp circular DNA that encodes 37 genes
(28 on the H-strand and 9 on the L-strand), including 2
rRNAs (12S and 16S rRNAs), 22 tRNAs, and 13 proteins in
the electron transport chain (ETC)/oxidative phosphorylation
(OxPhos) system (Table 1 and Figure 1) (Andrews et al.,
1999; Brandon et al., 2005; Chinnery and Hudson, 2013).
Besides, mtDNA also contains some pseudogenes (Woischnik
and Moraes, 2002; Gunbin et al., 2017) and encodes non-
coding RNAs (ncRNAs), including long non-coding RNAs
(lncRNAs) (Rackham et al., 2011) and small non-coding RNAs
(sncRNAs), such as microRNAs (Lung et al., 2006; Barrey
et al., 2011; Bandiera et al., 2013; Ro et al., 2013; Duarte
et al., 2014). Mitochondrial genome has some unique genetic
characteristics, including high mutation, heteroplasmy, threshold
effect, maternal inheritance and mitotic segregation (Wallace,
2005). The copy number of mtDNA varies between 100 and
10 000 per cell dependent upon cellular energy demand
(Srinivasan et al., 2017).

Unlike nDNA, mtDNA contains only one non-coding triple-
helical region (16,024-576, ∼1000 bp, ∼7% of all sequence),
the displacement loop (D-loop) formed by abortive initiation of
replication (Yamamoto, 2001). Both replication and transcription
are initiated from D-loop, which contains the H/L-strand
promotor (HSP1/LSP1), and the H-strand origin of replication
(OH) (Jemt et al., 2015). Sixty bp upstream of HSP1, there
is a HSP2. There are also some specific sites (ITL, ITH1,
ITH2) within the promotors, where mtDNA transcription
initiates. Mitochondrial RNAs are firstly transcribed as primary
transcripts, which are subsequently cleaved by enzymes and
affected by specific nucleotide modifications to yield polycistronic
precursors and finally mature RNAs (Van Haute et al., 2015).
Besides, like prokaryotic cells, mtDNA lacks intronic regions, and
intergenic sequences are either absent or only a few nucleotide
bases long. Some genes, such as MT-ATP6/8 and MT-ND4/4L,
have overlapping regions.

mtDNA Modifications
Although mitochondrial genome has a diminutive size,
mutations in mtDNA occur frequently, because mtDNA lacks
the error checking system that nDNA has. Some of mutations are
tightly associated with inherited diseases (Taylor and Turnbull,
2005). Apart from mtDNA mutations, mtDNA is also shown to
have some modifications, like that in nDNA.

As shown in Figure 2, DNA can be methylated by
methyltransferases, which can transfer a methyl group from a
methyl donor S-adenosylmethionine (SAM) onto the C5 position
of the cytosine to form 5-methylcytosine (5mC) by the aid of
DNA methyltransferases (DNMTs) such as DNMT1, DNMT3A,
and DNMT3B (Moore et al., 2013). Methylation leads to changes
of the molecular structure in DNA and affects transcription
factor, RNA polymerase, topoisomerase, or inhibitory protein
binding to DNA, resulting in dysfunction of gene transcription
and expression (Moore et al., 2013). DNA 5mC can also be
demethylated via either passive demethylation carried out by
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TABLE 1 | Protein-coding and RNA genes that encoded by human mtDNA (Pseudogenes and non-coding RNA genes are not included in this table).

Gene symbol Alternative names Description Location in mtDNA
(H/L-strand)

Size (nt)

MT-RNR1 12S rRNA Mitochondrially encoded 12S RNA 648/649–1601, H 954/955

MT-RNR2 16S rRNA Mitochondrially encoded 16S RNA 1,671–3,229, H 1,559

MT-TL2 mt-tRNALeu(CUN) Mitochondrially Encoded TRNA-Leu (CUN) 2 12,266–12,336, H 71

MT-TI mt-tRNAIle Mitochondrially Encoded TRNA-Ile (AUU/C) 4,263–4,331, H 69

MT-TQ mt-tRNAGln Mitochondrially Encoded TRNA-Gln (CAA/G) 4,329–4,400, L 72

MT-TW mt-tRNATrp Mitochondrially Encoded TRNA-Trp (UGA/G) 5,512–5,579, H 68

MT-TA mt-tRNAAla Mitochondrially Encoded TRNA-Ala (GCN) 5,587–5,655, L 69

MT-TN mt-tRNAAsn Mitochondrially Encoded TRNA-Asn (AAU/C) 5,657–5,729, L 73

MT-TC mt-tRNACys Mitochondrially Encoded TRNA-Cys (UGU/C) 5,761–5,826, L 66

MT-TY mt-tRNATyr Mitochondrially Encoded TRNA-Tyr (UAU/C) 5,826–5,891, L 66

MT-TS2 mt-tRNASer(AGY) Mitochondrially Encoded TRNA-Ser (AGU/C) 2 12,207–12,265, H 59

MT-TD mt-tRNAAsp Mitochondrially Encoded TRNA-Asp (GAU/C) 7,518–7,585, H 68

MT-TK mt-tRNALys Mitochondrially Encoded TRNA-Lys (AAA/G) 8,295–8,364, H 70

MT-TG mt-tRNAGly Mitochondrially Encoded TRNA-Gly (GGN) 9,991–10,058, H 68

MT-TR mt-tRNAArg Mitochondrially Encoded TRNA-Arg (CGN) 10,405–10,469, H 65

MT-TH mt-tRNAHis Mitochondrially Encoded TRNA-His (CAU/C) 12,138–12,206, H 69

MT-TS1 mt-tRNASer(UCN) Mitochondrially Encoded TRNA-Ser (UCN) 1 7,445–7,516, L 72

MT-TE mt-tRNAGlu Mitochondrially Encoded TRNA-Glu (GAA/G) 14,674–14,742, L 69

MT-TP mt-tRNAPro Mitochondrially Encoded TRNA-Pro (CCN) 15,955–16,023, L 69

MT-TT mt-tRNAThr Mitochondrially Encoded TRNA-Thr (ACN) 15,888–15,953, H 66

MT-TF mt-tRNAPhe Mitochondrially Encoded TRNA-Phe (UUU/C) 577–647, H 71

MT-TV mt-tRNAVal Mitochondrially Encoded TRNA-Val (GUN) 1,602–1,670, H 69

MT-TM mt-tRNAMet Mitochondrially Encoded TRNA-Met (AUA/G) 4,402–4,469, H 68

MT-TL1 mt-tRNALeu(UUR) Mitochondrially Encoded TRNA-Leu (UUA/G) 1 3,230–3,304, H 75

MT-CYB Cytochrome b Mitochondrially encoded cytochrome b 14,747–15,887, H 1,141

MT-CO1 COX 1 Mitochondrially Encoded Cytochrome C Oxidase I 5901–7442, H 1,542

MT-CO2 COX 2 Mitochondrially Encoded Cytochrome C Oxidase II 7586–8294, H 709

MT-CO3 COX 3 Mitochondrially Encoded Cytochrome C Oxidase III 9,207–9,990, H 784

MT-ND1 ND 1 Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase Core Subunit 1 3,305–4,262, H 958

MT-ND2 ND 2 Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase Core Subunit 2 4,470–5,511, H 1,042

MT-ND3 ND 3 Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase Core Subunit 3 10,059–10,404, H 346

MT-ND4 ND 4 Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase Core Subunit 4 10,760–12,137, H 1,378

MT-ND4L ND 4L Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase Core Subunit 4L 10,470–10,766, H 297

MT-ND5 ND 5 Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase Core Subunit 5 12,337–14,148, H 1,812

MT-ND6 ND 6 Mitochondrially Encoded NADH:Ubiquinone Oxidoreductase Core Subunit 6 14,149–14,673, L 525

MT-ATP6 ATPase 6 Mitochondrially Encoded ATP Synthase Membrane Subunit 6 8,527–9,206, H 681

MT-ATP8 ATPase 8 Mitochondrially Encoded ATP Synthase Membrane Subunit 8 8,365–8,572, H 207

dilution by replication without de novo methylation or active
demethylation carried out by oxidation or deamination.

During active demethylation pathway, some of 5mC sites
can also be catalyzed and oxidized by 2-oxoglutarate and
Fe(II)-dependent oxygenases of the ten-eleven-translocation
(TET) proteins, including TET1, TET2, and TET3, to form
5-hydroxymethylcytosine (5hmC), which is considered as
a possible intermediate in a replication-independent DNA
demethylation pathway (Richa and Sinha, 2014). 5hmC
is enriched in active genes that have a strong depletion
of 5mC (Mellen et al., 2012). With the aid of TET1/2/3,
5hmC is further catalyzed into 5-formylcytosine (5fC) and
5-carboxylcytosine (5caC), which can be subsequently excised
and replaced via base excision repair (BER). Besides, 5mC

and 5hmC can also be deaminated to yield thymine and
5-hydroxymethyluracil (5hmU) by the aid of activation
induced cytidine deaminase (AID)/apolipoprotein B mRNA
editing enzyme and catalytic polypeptide (APOBEC). This
results in a thymine-guanine mismatch that can lead
to a DNA repair in which thymine and 5hmU can be
replaced by unmethylated cytosine (Jang et al., 2017).
However, 5hmC seems to be not only the intermediate of
DNA demethylation, but is also a major element in the
modulation of chromatin structure and gene expression
through binding with methyl-CpG-binding protein 2 (MeCP2)
(Mellen et al., 2012).

With the development of technology for detecting
methylation, this kind of modification was also found in
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FIGURE 1 | The mtDNA and the processing and function of its encoding genes in the mitochondria. mtDNA with 16,569 nucleotides encodes 22 tRNAs, 2 rRNAs,
13 peptides that constitutes the ETC/OxPhos, and some non-coding RNAs. A, mt-tRNAAla; C, mt-tRNACys; D, mt-tRNAAsp; E, mt-tRNAGlu; F, mt-tRNAPhe; G,
mt-tRNAGly; H, mt-tRNAHis; I, mt-tRNAIle; K, mt-tRNALys; L(CUN), mt-tRNALeu(CUN); L(UUR), mt-tRNALeu(UUR); M, mt-tRNAMet; N, mt-tRNAAsn; P, mt-tRNAPro; Q,
mt-tRNAGln; R, mt-tRNAArg; S(AGY), mt-tRNASer(AGY); S(UCN), mt-tRNASer(UCN); T, mt-tRNAThr; V, mt-tRNAVal; W, mt-tRNATrp; Y, mt-tRNATyr; ATP6/8,
Mitochondrially encoded ATP synthase membrane subunit 6/8; CoQ, Coenzyme Q; COX1/2/3, Mitochondrially encoded cytochrome C oxidase I/II/III; Cytb,
Cytochrome b; Cytc, Cytochrome c; ETC, Electron transport chain; FAD, Flavine adenine dinucleotide; FADH2, Flavine adenine dinucleotide, reduced; HSP1/2,
H-strand promotor 1/2; H-strand, Heavy strand; LSP, L-strand promotor; L-strand, Light strand; NAD+, Nicotinamide adenine dinucleotide; NADH, Nicotinamide
adenine dinucleotide, reduced; ND1/2/3/4/4L/5/6, Mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1/2/3/4/4L/5/6; OL, L-strand origin of
replication; OH, H-strand origin of replication; OxPhos, Oxidative phosphorylation.

mtDNA. Distribution of 5mC seems to be conserved in
mitochondrial genomes across all cell and tissue types
(Ghosh et al., 2014). mtDNA methylation is usually
found within the non-coding D-loop and gene start sites
(GSS) (Mposhi et al., 2017), implying that methylation in
mtDNA can affect mtDNA replication and transcription.
Stimulating mtDNA replication results in increasing
methylation (Rebelo et al., 2009), confirming that methylation
can also be a feedback regulatory mode that maintains
mtDNA copy number.

CpG dinucleotides are the most prominent regions where
methylation occurs, however, non-CpG sites, such as CpA,
CpT, and CpC also have methylations (Jang et al., 2017). The

abundance of CpG sites varies in animal, fungal, protist, and
plant mitochondrial genomes. Like nDNA, human mtDNA
contains a relatively low frequency of CpG sites (435 in 16
659 nucleotides, 2.61%) (Cardon et al., 1994). Methylation
of CpG in the H-strand promoter (HSP1) induces TFAM
multimerization to augment cooperativity and enhances its
binding affinity to mtDNA, compared to that of the non-
methylated DNA. Although TFAM-dependent DNA compaction
is not affected by methylation of CpG sites, transcription
initiation from the three mitochondrial promoters is significantly
impaired by CpG methylation (Dostal and Churchill, 2019).
However, a study shows that mtDNA methylation mainly occurs
within non-CpG sites of the promoter region of the H-strand,
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FIGURE 2 | DNA methylation and active demethylation. DNA can be methylated by DNMTs and demethylated by active demethylation through oxidizing,
deaminating and base-excision repair. Enzymes were marked in green, metabolites were marked in blue, while biological process like BER was marked in red. 5caC,
5-Carboxylcytosine; 5fC, 5-Formylcytosine; 5hmC, 5-Hydroxymethylcytosine; 5hmU, 5-Hydroxymethyluracil; 5-AID, activation induced cytidine deaminase;
APOBEC, Apolipoprotein B mRNA editing enzyme catalytic subunit; BER, Base-excision repair; DNMT1/3A/3B, DNA methyltransferase 1/3A/3B; MBD4,
Methyl-CpG binding domain 4, DNA glycosylase; NEIL1, Nei like DNA glycosylase 1; SMUG1, Single-strand-selective monofunctional uracil-DNA glycosylase 1;
TET1/2/3, Tet methylcytosine dioxygenase 1/2/3; C, Cytosine; TDG, Thymine DNA glycosylase; Thy, Thymine.

which is essential for mtDNA replication and transcription
(Bellizzi et al., 2013).

5mC in mtDNA is catalyzed by mtDNMT1, an isoform of
DNMT1. mtDNMT contains a mitochondrial targeting sequence,
which can make it translocated into mitochondria (Shock et al.,
2011). However, DNA methyltransferases seem to contribute to
CpG methylation in the D-loop, while not non-CpG methylation
(Bellizzi et al., 2013), because MtDNMT1 binding to the mtDNA
is observed to be associated with the density of CpG sites (60).

5hmC is also found in mtDNA and it seems to promote
demethylation through impairing mtDNMT1-mediated
remethylation during replication (Manev and Dzitoyeva, 2013).

However, the detailed process and the enzymes involved are
not identified yet.

MITOCHONDRIAL NUCLEOID AND ITS
MODIFICATIONS

Mitochondrial Nucleoid
Similarly to nDNA, mtDNA is also packed by proteins to
form a protein-DNA structure referred to as a nucleoid.
It is located in mitochondrial pseudocompartments, and
some of its proteins may play histone-like architectural roles
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FIGURE 3 | The dynamics of TFAM controlled mitochondrial nucleoid and the constitutions of nucleiod. TFAm can directly bind to mtDNA and functions as a
histone-like protein. Its degradation is mediated by LONP1, an AAA + Lon protease. There are more than 50 nucleoid-associated proteins including POLRMT, TFAM,
TFB2M and TEFM that initiate the mtDNA transcription, and POLG, Twinkle and mtSSB that initiate the mtDNA replication. There are also some proteins that are
related to RNA processing and nucleoid regulation. ANT, Adenine nucleotide translocator; ATAD3, ATPase family AAA domain containing 3; ClpXp, ATP-dependent
Clp protease ATP-binding subunit clpX-like, mitochondrial; FASTKD2, FAST kinase domains 2; HSP60, Short heat shock protein 60; LONP1, Lon peptidase 1,
mitochondrial; M19, Mitochondrial protein M19; mtSSB, Single-stranded DNA binding protein 1, mitochondrial; POLG, DNA polymerase gamma; POLRMT, RNA
polymerase mitochondrial; SUV3, ATP-dependent RNA helicase SUV3, mitochondrial; TEFM, Transcription elongation factor, mitochondrial; TFAM, Transcription
factor A, mitochondrial; TFB2M, Transcription factor B2, mitochondrial.

(Kanki et al., 2004). There are more than 50 nucleoid-associated
proteins that can either temporarily or permanently associate
with mtDNA or other nucleoid-associated proteins to maintain
mtDNA and regulate gene expression (Figure 3). In nucleoid,
mitochondrial transcription factor A (TFAM), mitochondrial
polymerase γ (POLG), ATPase family AAA-domain-containing
protein 3 (ATAD3), mitochondrial AAA protease (LONP1), and
mitochondrial single-stranded DNA-binding protein (mtSSB)
possibly directly interact with the D-loop region of mtDNA (Lee
and Han, 2017). Mitochondrial RNA polymerase (POLRMT),
TFAM, mitochondrial transcription factor B2 (TFB2M) and
mitochondrial transcriptional elongation factor (TEFM) are key

components of the mitochondrial transcription (Shokolenko and
Alexeyev, 2017). POLG, Twinkle, mtSSB are key components
of the mitochondrial replication (Young and Copeland, 2016).
Besides them, nucleoid-associated proteins also include RNA
helicases (e.g., SUV3), RNA-binding proteins (e.g., FASTKD2),
quality-control proteases (e.g., lon-like peptidase LONP1 and
caseionlytic peptidase CLPXP), as well as mitochondrial RNA
processing proteins (Koc and Spremulli, 2003; Szczesny et al.,
2013; Popow et al., 2015; Levytskyy et al., 2016; Lee and Han,
2017). These evidences suggest that nucleoid may be a place
where mtRNAs are processed and mitoribosomes are assembled.
Recently, post-transcriptional mtRNA processing and ribosome
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biogenesis including, mtRNA maturation, ribosome assembly,
and translation initiation may occur within mitochondrial
RNA granules (MRGs), dynamic structures that juxtapose to
nucleoids (Jourdain et al., 2013; Antonicka and Shoubridge,
2015; Hensen et al., 2019). MRGs are transiently associated
with active nucleoids where they are assembled around the
newly synthesized primary transcripts, then MRGs become
detached and locate within the inner mitochondrial matrix and
subsequent events in mitochondrial gene expression take place
(Jourdain et al., 2016).

TFAM is a member of the high-mobility group domain
proteins family and can form a U-turn with an overall
bend of 180◦ on unspecific mtDNA sequence, functioning
as a transcription and packaging factor (Ngo et al., 2011).
In mammalian cells, this protein is very abundant. Per
each mtDNA molecule, there are about 1,000 molecules of
TFAM protein, which means that there is a TFAM molecule
in every 16 bp of mtDNA (Farge and Falkenberg, 2019).
Importantly, only with TFAM nucleoid compaction of mtDNA
can sufficiently complete (Kaufman et al., 2007). In addition,
single TFAM protein can also bridge neighboring mtDNA
duplexes to form a cross-strand binding and looping out
(Kukat et al., 2015). In the condition of high TFAM/mtDNA
ratio, the combination of duplex bending and cross-strand
binding result into mtDNA full compaction, which leads to
the blockade of mtDNA transcription and replication (Ngo
et al., 2014). Besides, TFAM can also act as a homodimer,
which promotes looping of the DNA (Ngo et al., 2014). In
summary, TFAM is the only nucleoid-associated protein that
can stringently fulfill the criteria of a true mtDNA packaging
factor (Bonekamp and Larsson, 2018). Unbalanced levels (low
or high) of TFAM result in decreasing mtDNA methylation
(Rebelo et al., 2009).

Nucleoids have a large size and are dynamically distributed
throughout the mitochondrial network. Therefore, nucleoids are
unlikely to move freely within mitochondrial matrix (Bonekamp
and Larsson, 2018). It may be anchored at the inner membrane of
mitochondria and its distribution may depend on mitochondrial
fusion and fission (Elgass et al., 2013). There are evidences
showing that deficiency of the large GTPase dynamin-related
protein 1 (Drp1), a major regulator during mitochondrial
fission, leads to remodeling of nucleoid clustering (Ban-Ishihara
et al., 2013). Mitochondrial topoisomerase 3a (Top3a) also
plays an essential role in genome separation and nucleoid
distribution because it can deconcatenate newly replicated
mtDNA (Goffart et al., 2019).

Mitochondrial Nucleoid Modifications
The protein scaffold of mtDNA nucleoids can also be
epigenetically and post-translationally modified, just like the
histones in the nDNA nucleosomes. There are more than
50 nucleoid-related proteins, in which TFAM is the only
protein whose behavior is highly similar with that of histones.
Therefore, mitochondrial nucleoid modifications refer to TFAM
modifications. Based on current studies, TFAM can be acetylated,
phosphorylated and ubiquitinated, thereby affecting its function
in mtDNA packaging.

TFAM Acetylation
A recent study showed that TFAM is lysine acetylated within its
high-mobility-group box 1 (HMGB1), which reduces TFAM to
interact with non-specific DNA through distinct kinetic pathways
(King et al., 2018). Another study showed that TFAM was
acetylated at a single lysine residue and the level of acetylation in
rat liver did not change with age (Dinardo et al., 2003). SIRT3 is
the deacetylase that mediates the deacetylation of K154 of TFAM
(Bagul et al., 2018; Liu et al., 2018).

TFAM Phosphorylation
Serine phosphorylation in HMGB1 domain of TFAM also
regulates mtDNA transcription by blocking TFAM to locate
at the promoter sites of target genes (King et al., 2018).
Extracellular signal-regulated protein kinases (ERK1/2) can
mediate phosphorylation of serine 177 in TFAM, thereby
downregulating mitochondrial transcription (Wang et al., 2014).
The AAA + LONP1, an ssDNA-binding protein, is responsible
for the degradation of DNA-free TFAM (Chen et al., 2008). When
Lon binds to heavy-strand sequences upstream of light-strand
promoter (LSPHS) or dsDNA-TFAM, its protease activity is
directly blocked, resulting in TFAM stabilization (Liu et al., 2004).
When TFAM is phosphorylated within its HMGB1 domain by
cAMP-dependent protein kinase in mitochondria, the ability
of TFAM to bind DNA is impaired and gene transcription is
activated, then TFAM is degraded by LONP1 (Lu et al., 2013).

TFAM Ubiquitination
In addition to the modifications above, TFAM can also be
ubiquitinated and its stability or sub-location may be affected.
For instance, in the retina from diabetic rats, high glucose can
lead to TFAM ubiquitination, which impedes its transport to the
mitochondria, resulting in subnormal mtDNA transcription and
mitochondria dysfunction (Santos et al., 2014).

mtRNA MODIFICATIONS

RNA modifications are present in almost all the cellular RNAs
in archaeobacteria, bacteria, plants, fungi, and animals. There
are almost 150 kinds of modifications that have been found in
RNA (Boccaletto et al., 2018). Mitochondrial RNAs (mtRNAs) are
processed from single polycistronic precursor RNAs, however,
there are also multiple different types of mt-RNAs, including 2
rRNAs, 22 tRNAs, 13 mRNAs and many ncRNAs, present in the
mitochondrial matrix. This suggests that the post-transcriptional
mechanisms are very important for the translation, maturation,
stability and assembly of mtRNAs.

A study on m6A patterns in the transcriptomes of Arabidopsis
mitochondria and chloroplast reveals that more than 86% of
the transcripts are m6A methylated. Over 350 m6A sites were
with ∼4.6 to ∼4.9 m6A sites per transcript are identified in
mitochondrial genome. The extent of overall m6A methylation
in mitochondria is much higher than that in the nucleus,
but lower than that in the chloroplast. However, the m6A
motif sequences in the transcriptome of mitochondria are
similar to those of the nucleus and chloroplast, which means
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TABLE 2 | Non-coding RNAs drived from human mtDNA.

Name Location in mtDNA
(H/L-strand)

Size (nt) Function or relation with disease References

uc022bqo.2 650–674, H 25 – Kumarswamy et al., 2014; de
Gonzalo-Calvo et al., 2016;
Kitow et al., 2016; Thum et al.,
2017; Du et al., 2018; Li et al.,
2018; Schulte et al., 2019

uc004cor.1 1,603–1,634, H 32 –

uc022bqp.1 5,543–5,566, L 24 –

uc022bqq.1 5,585–5,606, L 22 –

uc022bqr.1 5,690–5,714, L 25 –

uc022bqv.1 14,674–14,698, L 25 –

uc004cow.2 12,207–12,264, H 58 –

uc022bqx.1 15,959–16,024, L 66 –

uc004coq.4 235–368, L 134 –

uc004cos.5 1,843–4,264, H 2,421 –

uc031tga.1 5,904–7,439, H 1,535 –

uc022bqs.1
(LIPCAR)

15504–15888,
L + 7,587–7982, L

781 It predicts survival in patients with type 2 diabetes, heart failure and ST-segment
elevation myocardial infarction.

uc011mfi.2 7,585–9,206, H 1,622 –

uc022bqt.1 8,367–8472,
L + 13450–14,149, L

776 –

uc022bqu.2 10,060–10,404, H 345 –

uc022bqu.1 10,059–10,404, H 346 It is upregulated in patients with hypertrophic obstructive cardiomyopathy

uc004cov.5 10,470–12,138, H 1,669 –

uc031tgb.1 10,760–14,149, L 3,390 –

uc004cox.4 12,908–14,149, H 1,242 It provides prognostic information for non-muscle invasive bladder cancer

uc004cos.4 1,756–4,264, H 2,509 –

uc022bqw.1 14,857–15,888, H 1,032 –

uc004coz.1 15,999–16,571, H 5,73 –

uc004cov.4 10473–12138, H 1,666 It is upregulated in patients with hypertrophic obstructive cardiomyopathy

uc011mfh.1 5,855–7,427, H 1573 –

lncND5 12,337–14,148, L 1,812 – Rackham et al., 2011

lncND6 13,993–14,673, H 681 –

lncCytb 14,747–15,887, L 1,141 –

SncmtRNA-1
(GenBank:
DQ386868.1)

1,717–2,536,
L + 1,672–3,230, H

2,374 It is upregulated in the urine of patients with bladder cancer. It expresses in
normal proliferating cells.

Villegas et al., 2007; Burzio
et al., 2009; Rivas et al., 2012;
Villota et al., 2012; Vidaurre
et al., 2014; Bianchessi et al.,
2015; Gao Y. et al., 2017

SncmtRNA-2
(GenBank:
HM581520.1)

1,775–2,536,
L + 1,672–3,230, H

2,311 It is induced by HPV-16/18-encoded in human keratinocytes. It expresses in
normal proliferating cells.

ASncmtRNA-1
(GenBank:
EU863789)

2,808–3,124,
H + 1,671–3,226, L

1,866 It is downregulated in the urine of patients with bladder cancer. It is
downregulated in 17 types of tumor cells. binds to Dicer to recruit to the 3′-UTR
of survivin mRNA, resulting in degradation of this mRNA. It is downregulated by
HPV-16/18-encoded E2. It inhibits tumor growth and metastasis in the RenCa
murine renal adenocarcinoma model.

ASncmtRNA-2
(GenBank:
EU863790)

2,222–2,772,
H + 1,671–3,233, L

2,104 It involves in the establishment of replicative senescence by participating in the
cell cycle arrest in G2/M phase, possibly through the production of
hsa-miR-4485 and hsa-miR-1973. It promotes glomerular fibrosis in diabetic
nephropathy via promoting the expression of pro-fibrotic factors. It is
downregulated in the urine of patients with bladder cancer. It is downregulated
in 17 types of tumor cells. It binds to Dicer to recruit to the 3′-UTR of survivin
mRNA, resulting in degradation of this mRNA. It is downregulated by
HPV-16/18-encoded E2. It inhibits tumor growth and metastasis in the RenCa
murine renal adenocarcinoma model.

(Continued)
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TABLE 2 | Continued

Name Location in mtDNA
(H/L-strand)

Size (nt) Function or relation with disease References

tRNAGlnAS 4,329–4,400, H 72 – Gao et al., 2018

tRNAAlaAS-
tRNATyrAS

5,587–5,891, H 305 –

tRNASer(UCN)AS 7,445–7,516, H 72 –

ND5/ND6AS/tRNAGlu

AS
12,337–14,746, H 2,410 –

tRNAProAS 15,954–16,023, H 70

MDL1AS 16,024–407, H 953 –

MDL1 15,956–576, L 1,192 –

tRNAThrAS-Cytb 14,747–15,953, L 1,207 –

ND6-tRNAAspAS 7,518–14,673, L 7,156 –

COX1AS 5,901–7,442, L 1,542 –

tRNATrpAS-
tRNAMetAS

4,402–5,579, L 1,178 –

tRNAIleAS 4,263–4,331, L 69 –

that m6A motif is conserved among them. Besides, the m6A
patterns of rRNAs and tRNAs are also similar. However, the
mitochondrial and chloroplastic m6A patterns in mRNAs are
different from those of the nucleus. Methylated transcripts in
mitochondria and chloroplast are shown to be associated with
rRNA, ribosomal proteins, photosystem reaction proteins, tRNA,
NADH dehydrogenase and redox systems. Different organs of
the leaves, flowers and roots have differential m6A methylation,
suggesting that m6A methylation plays an important role
during development and differentiation (Wang et al., 2017).
Besides which, more than 20 m1A sites are also identified in
mitochondrial genes via using a transcriptome-wide analysis
(Zhang and Jia, 2018).

These findings unravel a new concept of
mitoepitranscriptome, referring to dynamic regulation of
gene expression by the modified mtRNAs. Some mutations
in mtDNA or nuclear-encoded mitochondrial modification
enzymes can cause RNA modification defects, which are shown
to be associated with various mitochondrial diseases. mtRNA
modifications in mt-mRNAs, mt-rRNAs and mt-tRNAs are
suspected to play essential roles, too. Besides, ncRNAs encoded
by mtDNA may also be modified as that reported in the
nDNA-derived ncRNAs (Romano et al., 2018). However, reports
about mt-ncRNA modifications are absent at present, because
mt-ncRNAs are not well identified yet.

Mitochondrial rRNA Modifications
The protein/DNA ratio of mitoribosomes is higher than that of all
other ribosomes, indicating that mitochondria need a more stable
structure to make sure that mt-rRNA is correctly scaffolded and
accurately folded (Greber and Ban, 2016). Therefore, mt-rRNA
modifications seem to be important for mitochondria. Currently,
there are only eight different types of modifications in 10
nucleotide sites (including m5U429, m4C839, m5C841, m6

2A936,
m6

2A937 in 12S rRNA and m1A947, Gm1145, Um1369, Gm1370
and ψ1397 in 16S rRNA) identified in mammalian mt-rRNAs

(reviewed by Bohnsack and Sloan, 2018), which is lower than
that of cytoplasmic and bacterial rRNAs. These sites are clustered
at peptidyl transferase center (PTC) in 16S rRNA and decoding
(DSC) sites in 12S rRNA, respectively, which are similar with
the ribosomal modification features in bacteria and eukaryotic
cytoplasm (Amunts et al., 2015).

The study of mitochondrial rRNA modification can be
traced since 1970s. A study of methylation in a fungus
Neurospora crassa shows that the mitochondrial rRNAs have
0.05–0.16 methyl groups per 100 nucleotides (Lambowitz
and Luck, 1975). The 25S and 19S rRNAs of this species
have methyl contents of approximately 70 and 55%,
respectively (Kuriyama and Luck, 1974). Unlike highly
modified cytoplasmic rRNA, mitochondrial rRNAs (15S
and 21S) of the yeast Saccharomyces cerevisiae only contain
three modified nucleotides: a pseudouridine (92918) and
two 2′-O-methylated riboses (Gm2270 and Um2791) located
at the peptidyl transferase center of 21S rRNA. Mrm2p, a
yeast nuclear genome encoding mitochondrial protein, is
required for methylating U2791 of 21S rRNA. Mrm2p belongs
to a new class of three eukaryotic RNA-modifying enzymes
and is the ortholog of Escherichia coli FtsJ/RrmJ that can
methylate a nucleotide of the peptidyl transferase center of
23S rRNA (Pintard et al., 2002). Nuclear gene-encoded PET56
catalyzes the site-specific formation of 2’-O-methylguanosine
on in vitro transcripts of both Saccharomyces cerevisiae
mitochondrial large ribosomal RNA (21S rRNA) and
Escherichia coli 23S rRNA. This modification is essential for
the formation of functional large subunits of the mitoribosome
(Sirum-Connolly and Mason, 1993).

In mitochondrial ribosomes of mammals, such as hamster, the
large ribosomal subunit RNA (17S rRNA) contains UmpGmpUp,
in which Um residue is methylated relatively later than Gm
residue (Dubin and Taylor, 1978). The small ribosomal subunit
RNA (13S rRNA) contains, on average, approximately one
residue of m4Cp, m5Cp and m5Up, and two residues of m26Ap.
m4Cp in 13 S rRNA is homologous to its ribose-methylated
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congener, m4Cmp of bacterial 16S ribosomal RNA. Neither
m4Cp nor m4Cmp exists in cell cytoplasmic ribosomal RNA
(Dubin et al., 1978).

There are three rRNA 2′-O-methyltransferase family members
RNMTL1, MRM1, and MRM2 in mammals. MRM1 and
MRM2 are bacterial and yeast homologs, whereas RNMTL1
is only found in eukaryotes. They also localize to the
mitochondria, especially near mtDNA nucleoids. MRM1, MRM2,
and RNMTL1 are responsible for modification of G1145,
U1369, and G1370 residues of human 12S rRNA, respectively
(Lee and Bogenhagen, 2014). Defective MRM2 can lead to
mitochondrial encephalopathy, lactic acidosis and stroke-like
episodes (MELAS)-like clinical syndrome possibly through
reducing of the 2′-O-methyl modification at specific uracil
position of 12S rRNA (Garone et al., 2017).

However, mitochondrial 16S rRNA can also be methylated
(m1A) by tRNA methyltransferase TRMT61B in all vertebrates
(Bar-Yaacov et al., 2016). Pseudouridine synthase RPUSD4 plays
a role in the pseudouridylation (ψ) of a single residue in the
16S rRNA, a modification that is essential for its stability and
assembly into the mitochondrial ribosome (Antonicka et al.,
2017). In addition to mono-methylation, the 3′ end of the rRNA
of the 12S rRNA of mouse also contains two dimethylated
adenines (m6

2A) that are extremely highly conserved. TFB1M
is a mammalian mitochondrial dimethyltransferase homologous
to bacterial that is responsible for these two dimethylated
adenines. Loss of TFB1M is embryonic lethal and deletion of
TFB1M in heart results in complete demethylation of these two
adenines of the 12S rRNA, thereby impairing mitochondrial
ribosome assembly and abolishing mitochondrial translation
(Metodiev et al., 2009). Besides, m5C911 in the mouse 12S
rRNA is catalyzed by NSUN4 without forming a complex
with MTERF4, which is essential in mitochondrial ribosomal
biogenesis (Metodiev et al., 2014).

Modifications in mt-rRNAs are essential for their stability to
ensure the normal functions of the mitoribosome. Abnormal
modifications in mt-rRNAs can be associated with the
dysfunction of the mitoribosome. For instance, mitochondrial
mutation 1584A 12S rRNA N6, N6-dimethyladenosine (m6

2A)
methylation is associated with hearing loss with 1555A > G
mutation (O’Sullivan et al., 2014). Lack of the two dimethylated
adenines (m6

2A) in 12S rRNA is associated with the pathogenesis
of type 2 diabetes (Koeck et al., 2011; Sharoyko et al., 2014).

Mitochondrial tRNA Modifications
The genetic code used during mammal mitochondrial gene
expression is non-universal. Mitochondria use only 22 mt-tRNAs
to decode 60 different codons. Therefore, flexible decoding is
needed for mt-tRNAs. Moreover, mt-tRNA modifications are
important processes for the biogenesis of the mature tRNA.
Based on the current studies, mt-tRNA contains several types
of modifications, such as m1A, m1G, m2G, m5C, m3C, τm5U,
τm5s2U, f5C, Q, t6A, i6A, ms2i6A, D, m2

2G and ψ (summarized
by Bohnsack and Sloan, 2018), each of which is essential for
biogenesis of mature mt-tRNA. These modifications are mediated
by different kinds of enzymes such as MRPP1/2, PUS1, GTPBP3,

MTO1, MTU1, NSUN2/3, ABH1, TRIT1/5, CDK5RAP1 and
TRMT61B (Bohnsack and Sloan, 2018).

For instance, m1A9 can disfavor the non-functional
conformation and shifts the observed equilibrium toward
the functional cloverleaf (Voigts-Hoffmann et al., 2007). RNase
P, a subcomplex in human mitochondria, is the endonuclease
that removes tRNA 5′ extensions and is the methyltransferase
responsible for m1G9 and m1A9 formation. The ability of
the mitochondrial tRNA:m1R9 (R = G/A) methyltransferase
(TRMT10C and SDR5C1) to modify both purines is uncommon
among nucleic acid modification enzymes. In this process,
PRORP, a short-chain dehydrogenase, is required as a partner
protein (Vilardo et al., 2012).

NOP2/Sun RNA methyltransferase family member 2
(NSUN2) is an RNA methyltransferase previously shown to
introduce m5C in tRNAs, mRNAs and microRNAs encoded by
nucleic genome. However, NSUN2 can also be imported into
mitochondrial matrix and introduces m5C at positions 48, 49,
and 50 of several mitochondrial tRNAs, including mt-tRNATyr,
mt-tRNAHis, mt-tRNALeu(UUR), mt-tRNAPhe, and mt-tRNAGlu.
However, NSUN2 inactivation does not remarkably affect
mitochondrial tRNA stability and OxPhos in differentiated cells
(Van Haute et al., 2019).

NSUN3, a RNA methyltransferase that localizes to
mitochondria and methylates cytosine 34 (C34) at the
wobble position of mt-tRNAMet via specifically recognizing
the anticodon stem loop (ASL) of the tRNA. Meanwhile, a
dioxygenase ALKBH1/ABH1 can oxidize m5C34 mt-tRNAMet

to yield an f5C34 mt-tRNAMet. During translation initiation,
mt-tRNAMet recognizes AUG, AUA and AUU codons and
mediates incorporation of methionine on these codons, whereas
mt-tRNAMet recognizes AUA codons and introduces methionine
incorporation during elongation. In fact, mitochondrial
translation factors prefer to use m5C34 mt-tRNAMet during
translation initiation. NSUN3 or ABH1 depletion remarkably
affects mitochondrial translation (Haag et al., 2016).

mt-tRNA modifications are essential for their normal
functions. Modifications in the anticodon loop can expand the
decoding capacity of mt-tRNAs and make sure the fidelity of
translation. Core modifications can enable the structural stability
of mt-tRNAs, however, this kind of modifications can also affect
its recognition by aminoacyl-tRNA synthetases in some cases
(Degoul et al., 1998).

Mitochondrial mRNA Modifications
In addition to modifications in rRNAs and tRNAs, the post-
transcriptional alterations in mRNA are also important for its
maturation and function, as well as regulation. There are 8
H-strand-derived mitochondrial genes (COX3, ND1/2/3/4/4L,
Cytb and ATP6/8) that lack translational termination codons,
but can be stopped by the addition of a polyadenine (polyA) tail
to a terminal U with the help of a mitochondrial PAP poly(A)
polymerase (mtPAP) and a polynucleotide phosphorylase
(PNPase), thereby generating sequence (UAA)TERAn (Chang and
Tong, 2012; Shokolenko and Alexeyev, 2015). Primary transcript
from the H-stand has an approximately 45 nt polyA extension.
However, the length of the polyA tail varies in different cell types
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and different transcripts (Temperley et al., 2010). PolyA in the
3′-termini can mediate the stability or instability of the transcript
possibly depending on additional polyA-binding factors or
sequence-specific proteins, which may affect the translation of
mt-DNA-encoded genes (Rorbach and Minczuk, 2012).

Recently, a transcriptome-wide analysis revealed that other
post-transcriptional modifications also exist in mitochondrial
mRNAs (Bohnsack and Sloan, 2018). Intriguingly, m1A in
the coding region of mitochondrial transcripts can block the
corresponding protein translation (Zhang and Jia, 2018). In
addition to methylation, specific residues in mitochondrial
mRNAs can also be pseudouridylated by TRUB2/RPUSD3,
thereby affecting mitochondrial protein synthesis and cell
viability (Antonicka et al., 2017). These results mean that
m1A and ψ in mt-mRNA are essential for the regulation of
protein translation.

Mitochondria-Derived Non-coding RNAs
Except for mRNAs, rRNAs and tRNAs, recent reports
show that mtDNA can also encode non-coding RNAs
(ncRNAs), including lncRNAs and small non-coding RNAs
(sncRNAs) (Table 2 and Figure 4), which are termed mtDNA-
encoded lncRNAs (lncRNAsmtDNA) and mtDNA-encoded
sncRNAs (sncRNAsmtDNA), respectively. However, circular
RNAs (circRNAs) seem to be absent in the mitochondria
(Zhang et al., 2019).

lncRNAsmtDNA

In rat mitochondrial genome, there are some unidentified RNAs
on both the H/L-strand, such as precursors of the ND2 mRNA
plus the tRNATrp and the tRNAs clustered in the Ori L region.
Besides them, antisense RNA species in the region of L-strand
replication and D-loop region are also observed (Sbisà et al.,
1992). A deep RNA sequencing study in human cardiac tissues
also shows that there is a high relative abundance (71%) of
lncRNAsmtDNA (Yang et al., 2014). Another analysis in data
sets from strand-specific deep sequencing shows that there is a
significant proportion (15.02%, excluding rRNA and tRNA) of
lncRNAs in the transcriptome of mitochondria in cervical cancer
cell HeLa. Among them, 3 lncRNAs (lncND5, lncND6, lncCytb)
transcripts are highly abundant (Figure 4B). These lncRNAs can
form intermolecular duplexes and they are expressed in a cell-
and tissue-specific manner. Their levels may be regulated by
the nuclear-encoded proteins such as ELAC2, MRPP1, MRPP3,
PTCD1, and PTCD2 (Rackham et al., 2011).

Recently, the PacBio full-length transcriptome data revealed
that there are 6 lncRNAs in the H-strand and 6 lncRNAs in
the L-strand of the mtDNA (Figure 4D). Among them, 2 novel
lncRNAs of MDL1 and MDL1AS from the D-loop region exist
ubiquitously in animal mtDNA (Gao et al., 2018).

However, from the UCSC Genome Bioinformatics (2016
version), 24 ncRNAs (including 6 microRNAs) derived from
human mtDNA were provided, which are very different
from those identified by the PacBio full-length transcriptome
(Figure 4A). Actually, many researches that focus on the
mtDNA-derived lncRNAs used this database to perform their
studies. Among them, the mitochondrial lncRNA uc022bqs.1

(long intergenic non-coding RNA predicting cardiac remodeling,
LIPCAR) is the best studied. This lncRNA is shown to be
downregulated early after myocardial infarction but upregulated
during later stages in the circulating blood of the patients
(Kumarswamy et al., 2014). In addition, circulating LIPCAR
also acts as a biomarker in patients with ST-segment elevation
myocardial infarction (Li et al., 2018). Circulating LIPCAR
is also inversely associated with diastolic function in patients
with type 2 diabetes (de Gonzalo-Calvo et al., 2016). However,
LIPCAR does not increase in human cardiac tissue after
transcoronary ablation of septal hypertrophy, suggesting that
this lncRNA is not originated from the cardiac tissues (Schulte
et al., 2019). Besides, another two mtDNA-derived lnRNAs
uc004cov.4 and uc022bqu.1 are also upregulated in serum of
patients with hypertrophic obstructive cardiomyopathy (HOCM)
but not hypertrophic non-obstructive cardiomyopathy (HNCM)
(Kitow et al., 2016).

Other researchers also identified 4 lnRNAsmtDNA, termed
SncmtRNA-1/2 and ASncmtRNA-1/2 (Figure 4C). Among them,
lncRNA ASncmtRNA-2 is induced in during aging and replicative
senescence in endothelial cells, but not in vascular smooth muscle
cells (VSMC). Mechanically, ASncmtRNA-2 may be the non-
canonical precursor of hsa-miR-4485 and hsa-miR-1973, which
are originated at least in part from a mitochondrial transcript.
These two microRNAs target p16 and induce a cell cycle
arrest at G2M phase, thereby affecting replicative senescence
establishment (Bianchessi et al., 2015). Besides, ASncmtRNA-
2 is also upregulated in diabetic kidneys and high glucose-
treated mesangial cells and can promote glomerular fibrosis via
modulating the expression of pro-fibrotic factors in diabetic
nephropathy (Gao Y. et al., 2017).

In conclusion, lncRNAsmtDNA are present in the
mitochondria, and may function as important epigenetic
regulators for the regulation of mitochondrial function. However,
a systemic study is needed to clarify the lncRNAsmtDNA, and
their mechanisms of biogenesis and processing, as well as their
functions and mode of actions.

sncRNAsmtDNA

Small non-coding RNAs (sncRNAs) are highly structured,
less than 200 nt ncRNA fragments that found in bacteria,
mitochondria and eukaryotes. According to their functions and
characteristics, they can be classified into at least 9 types, such as
microRNAs (miRNAs, ∼22 nt), Piwi-interacting RNAs (piRNA),
tiny non-coding RNAs (tncRNAs), short interfering RNAs
(siRNAs), repeat-associated small interfering RNAs (rasiRNAs),
small modulatory RNAs (smRNAs), palindrome small RNAs
(psRNAs), guide RNAs (gRNAs) and transcription initial RNAs
(tiRNAs). Most of them are encoded by the nucleus genome.
However, at present, mtDNA is reported to encode some
sncRNAs such as miRNAs, psRNAs, tiRNAs and gRNAs. Among
them, only mitochondrial-derived sncRNAs (sncRNAmtDNA) are
widely reported.

A comprehensive analysis of the human mitochondrial
transcriptome across multiple cell lines and tissues shows that
sncRNAs exist in the mitochondria (Mercer et al., 2011).
Remarkably, mt-tRNALys and mt-tRNAMe can be exported to
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FIGURE 4 | Non-coding RNAs encoded by the mtDNA identified by four different research groups. (A) ncRNAs obtained from the UCSC Genome Bioinformatics
(2016 version). (B) lncRNAs identified by Rackham et al., 2011. (C) lncRNAs indented by researchers from Fundación Ciencia para la Vida, Chile. (D) ncRNAs
identified by using PacBio full-length transcriptome data.

the cytoplasm and bind to argonaute-2 (AGO2), an essential
component of the RNA-induced silencing complex (RISC),
suggesting that mt-tRNAs may act as miRNA (Maniataki and
Mourelatos, 2005; Beitzinger et al., 2007). Mature tRNAs can
also be cleaved by stress-activated ribonuclease angiogenin
to generate 5′- and 3′-tRNA halves: a novel class of 30–
40 nt small non-coding RNAs (Saikia and Hatzoglou, 2015).
Besides, miR-1974, miR-1977, and miR-1978 may be encoded
by the tRNA and rRNA genes in mtDNA (Bandiera et al.,
2011). Some sequences of pre-miR-let7b and pre-miR-302a
located in the mitochondria of human muscle can be aligned
with the mtDNA, implying that these miRNAs may be
derived from mtDNA (Barrey et al., 2011). These evidences

suggest that the mtDNA can be a source of microRNAs
(Bandiera et al., 2013).

An analysis on the mouse mtDNA identified 6 sncRNAsmtDNA,
among which Mt-5 RNA is transcribed in antisense orientation
to ND4 and Mt-6 RNA is transcribed in antisense orientation to
ND6 (Lung et al., 2006). Further study shows that thousands of
sncRNAs are encoded in murine and human mtDNA and most
of them derived from the sense transcripts (Ro et al., 2013). The
processing of sncRNAsmtDNA is not only dependent on Dicer
but also some mitochondrial ribonucleases that are currently
unidentified (Ro et al., 2013). Overexpression of mitochondrial-
derived sncRNAs can significantly enhance the expression levels
of their host genes (Ro et al., 2013). Six miRNAs that are termed as
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miR-mit1 to miR-mit6 are identified in mouse mtDNA. Among
them, miR-mit3 and miR-mit4 can target MT-RNR2 (16S rRNA)
in skeletal muscles (Shinde and Bhadra, 2015). Furthermore, Mt-
1 can exhibit variable length due to polyadenylation, in which
contains a microRNA-like small RNA, mmu-mir-805, that is
encoded in the termination association sequence (TAS) of the
mtDNA, and it is upregulated in hippocampus during olfactory
discrimination training in the mice (Smalheiser et al., 2011).

Besides that, mtDNA also produces psRNAs, tiRNAs (Gao
et al., 2018), and gRNAs (Ochsenreiter and Hajduk, 2006).
These RNAs also play essential roles in mitochondria. For
instance, precise insertion and deletion of numerous uridines are
required to make full-length mitochondrial mRNAs. Guide RNA
responsible for COX3 mRNA can be alternatively edited to yield a
stable mRNA in the mitochondria of Trypanosoma brucei brucei
(Ochsenreiter and Hajduk, 2006).

Nucleus-Derived Non-coding RNAs That
Target mtDNA Encoded Genes
Apart from the ncRNAsmtDNA, nuclear DNA-derived non-
coding RNAs (ncRNAsnDNA) including mainly lncRNAsnDNA

and miRNAsnDNA may also mediate mitoepigenetics referring to
ncRNAsmtDNA that affect the translation and function of mtDNA-
encoded genes. These RNAs encoded by nuclear DNA may
be imported into mitochondria. In Trypanosoma brucei, RNA
import into mitochondria has been studied well. Nuclear encoded
tRNA of T. brucei can be imported into mitochondria (Schneider
et al., 1994). In fact, T. brucei imports all mitochondrial tRNAs
from the cytosol, and an in vitro study showed that there
were possible some membrane-bound receptors that can mediate
the import of small ribosomal RNAs (srRNAs) and tRNA in
protozoon Leishmania mitochondria (Mahapatra et al., 1994;
Mahapatra and Adhya, 1996). Subsequently, tRNA import into
the kinetoplast mitochondrion of the Leishmania tropica were
shown to be organized into a multiprotein RNA import complex
(RIC) that contained 3 mitochondrion- and 8 nuclear−encoded
subunits, such as Tim17 and mitochondrial heat-shock protein
70 (mtHSP70) at the inner membrane (Mukherjee et al., 2007;
Tschopp et al., 2011).

However, the RNA import systems in different species exhibit
some unique features (Schneider and Maréchal-Drouard, 2000).
For instance, Saccharomyces cerevisiae imports cytoplasmic
tRNAGln into mitochondria without any added protein factors
(Rinehart et al., 2005). The RNA import of plant mitochondria is
dependent on the voltage-dependent anion channel (Salinas et al.,
2006). The study of RNA import into mammalian mitochondria
is not so clear. A microarray analysis of highly purified rat
liver-derived mitochondria identified 15 miRNAsnDNA, 5 of
which were further confirmed by TaqMan 5′ nuclease assays.
These miRNAs may be associated with the expression of some
genes related to apoptosis, cell proliferation, and differentiation
(Kren et al., 2009). Further studies also show that there are
possible several ATP-dependent import pathways of nucleus-
encoded RNAs to human mitochondria (Duarte et al., 2015).
For example, polynucleotide phosphorylase (PNPase) is shown
as a contributor to mitochondrial RNases P (MRP), 5S rRNA,

tRNAs and miRNAs import into mitochondria (Wang et al., 2010;
Shepherd et al., 2017). Mitochondrial enzyme rhodanese was
also shown to be responsible for 5 S rRNA import into human
mitochondria (Smirnov et al., 2010). Both pre-miRNAsnDNA

and mature miRNAsnDNA were shown to be present in the
human mitochondria (Barrey et al., 2011; Bandiera et al., 2013),
implying that there is possible a miRNA synthesis system in the
mitochondria. However, it is also reported that tRNA import
into human mitochondria does not take place under normal
physiological conditions, but it is possible for mutant human
mitochondria to take in nucleus-encoded tRNAs (Kolesnikova
et al., 2004; Mahata et al., 2006; Rubio et al., 2008). However, the
RNA import to mitochondria needs to be further confirmed and
its mechanism investigated.

Selected nucleus-derived ncRNAs are possibly imported into
the mitochondria, where they can be involved in multiple
mitochondrial biological processes to act as “messengers”
between the nucleus and the mitochondria (Vendramin et al.,
2017; Jeandard et al., 2019). All the microRNAs present in
mitochondria are also called mitomiRNAs (mitomiRs), which is
commonly used in some reports (Rippo et al., 2014; Duarte et al.,
2015; Giuliani et al., 2018). Interestingly, all the mitomiRs seemed
to preferentially target multiple mtDNA sites, other than nuclear-
encoded mitochondrial genes, compared with a set of cytosolic
miRNAs (Duarte et al., 2015).

lncRNAsnDNA That Target mtDNA Encoded Genes
We summarize the lncRNAnDNA that may affect mtDNA-
encoded genes in Table 3. The behaviors of lncRNAs are
multi-faced and can be implicated in various regulatory levels
of gene expression, from transcription to post-translation. For
instance, Cerox1 promotes the levels of mitochondrial OxPhos
by upregulating mitochondrial complex I subunit transcripts
through binding to microRNA-488-3p, thereby leading to a
decrease of ROS production (Sirey et al., 2019). Besides,
a skeletal muscle- and heart-enriched lncRNA LINC00116
can encode a highly conserved 56-AA mitoregulin (Mtln)
that localizes in inner mitochondrial membrane. Mtln can
interact with ND5, thereby bolstering protein complex assembly
and/or stability. Overexpression of Mtln results in increasing
mitochondrial membrane potential and Ca2+ retention capacity,
decreasing fatty acid oxidation, mitochondrial ROS and matrix-
free Ca2+, promoting respiratory complex I activity and oxygen
consumption and maintaining lipid composition of the cell
(Stein et al., 2018; Chugunova et al., 2019). These evidences
show that lncRNAsnDNA act as messengers between nDNA
and mitochondria.

miRNAsnDNA That Target mtDNA Encoded Genes
AGO2, a Dicer1-interacting protein that plays an essential
role in short interfering RNA-mediated gene silencing, is
also found to localize to mitochondria and bind to the
mitochondrial transcripts COX3 and tRNAMet (Bandiera et al.,
2011), suggesting the activities of microRNA-mediated biological
processes in the mitochondria. In addition to the miRNAsmtDNA,
mitochondria also contain miRNAsnDNA. Table 4 summarizes
different microRNAsnDNA that can target mtDNA-encoded genes
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TABLE 3 | Nucleus-derived long non-coding RNAs that may target mtDNA encoded genes.

Name Target Function Mechanism References

Cerox1 COX1 Decrease in reactive oxygen species and upregulation in
mitochondrial oxidative phosphorylation

It binds with miR-488-3p,
which can target COX1

Sirey et al., 2019

LINC00116 ND5 Perturbations in mitochondrial respiratory (super) complex
formation and activity, fatty acid oxidation, tricarboxylic acid
(TCA) cycle enzymes, and Ca2+ retention capacity

It encodes a short peptide
named mitoregulin (Mtln) that
can interact with ND5

Stein et al., 2018; Chugunova
et al., 2019

AK055347 ATP synthase Inhibition of cell viability of H9C2 cardiomyocytes,
dysregulation of mitochondrial energy production

It downregulates ATP synthase Chen et al., 2016

in multiple species, thereby affecting various biological or
pathological processes. For instance, miR-181c was shown to
target mt-COX1 in cardiomyocytes of rat (Das et al., 2012). In
addition, miR-181c-5p is predicted to have 12 potential targets
(12S RNA, 16S RNA, ND1, ND4, ND5, ND6, COX1, COX2,
COX3, ATP6, Cytb, tRNAGly) encoded by mtDNA, whereas
miR-146a-5p is predicted to have 12 potential targets [16S
RNA, ND1, ND2, ND4, ND5, ND6, ATP8, tRNAAla, tRNAGlu,
tRNASer(UCN), tRNASer(AGY)] on mtRNAs (Dasgupta et al., 2015).
Some microRNAs, including miR-1275, miR-1246, miR-328-5p,
miR-1908, miR-1972, miR-1977, miR-638, miR-1974, miR-1978
and miR-1201, are also predicted to target mtDNA-derived
RNAs (Bandiera et al., 2011). These predictions need to be
further validated.

However, functional analysis of miRNAs identified in highly
purified rat liver-derived mitochondria showed that they were
not targeted to the mitochondrial genome nor nuclear RNAs
encoding mitochondrial proteins (Kren et al., 2009). This result
implies that there are may be other mechanisms independent of
miRNA-mediated mRNA degradation. Interestingly, microRNAs
are also shown to directly affect mtRNA translation. For example,
miR-1 can promote MT-ND1 and MT-CO1 translation but not
their mRNA stability in an AGO2-dependent manner, thereby
affecting muscle differentiation in mice (Zhang et al., 2014).

THE ROLES OF MITOEPIGENETICS IN
CANCER

Mitochondria are important organelles that are essential
for functional eukaryotic cells. In fact, cancer cells also
depend much on mitochondria. There are commonly
many alterations in mitochondria induced by both extra-
mitochondrial or intra-mitochondrial influencing factors that
sustain excessive proliferation of cancer cells via providing
energy and metabolites (Brandon et al., 2006; Wallace, 2012).
For the extra-mitochondrial influencing factors, there are more
than 1,000 of nucleus-encoded proteins and thousands of
nucleus-encoded non-coding RNAs that can be imported into
mitochondria and play a role in function, metabolism, regulation
and the production, fission, fusion, trafficking and degradation of
the mitochondria. Besides, many extra-mitochondrial signaling
pathways such as apoptosis and mitophagy, as well as some
factors can directly regulate the function of mitochondria.
Intra-mitochondrial influencing factors include mutations in the
mtDNA. However, most of these mutations in mtDNA do not

inhibit energy metabolism in mitochondria but rather change
the mitochondrial bioenergetic and biosynthetic state, which
can communicate with the nucleus via modulating signaling
pathways, transcriptional circuits and/or chromatin structural
remodeling to meet the requirements of the cancer cells (Wallace,
2012). For instance, certain control region mitochondrial single-
nucleotide variants (mtSNVs) highly co-occur with MYC
oncogene amplification in prostate cancer, and predict a poorer
patient survival (Hopkins et al., 2017).

Importantly, besides genetic mutations in mtDNA,
mitoepigenetics is emerging as an important regulatory
mode. All the mitoepigenetic networks including mtDNA
methylation, mitochondrial nucleoid modifications, mtRNA
methylation, mtDNA-encoded and nucleus-encoded ncRNAs,
have been shown to play essential roles in tumor development
and pathogenesis.

mtDNA Methylation in Cancer
Cancer is often related with a low level of total nDNA
methylation, hypermethylation of tumor suppressor gene
promoters and hypomethylation of oncogene promoters (Kulis
and Esteller, 2010). Therefore, it is suspected that methylation
in mtDNA should be accurately modulated. The copy number
of mtDNA is strictly regulated during cellular differentiation in
cancer cells. In breast cancer, mtDNA methylation is maternally
inherited in D-loop region, in which 8 aberrant mtDNA
methylation sites are tightly dysregulated (Han et al., 2017).
mtDNA copy number and ND-2 expression in colorectal cancer
tissues are higher than that of the corresponding non-cancerous
tissues. Methylation on the D-loop region in colorectal cancer
tissues was lower than that of their corresponding non-cancerous
tissues. Meanwhile, methylation on the D-loop region in stage
III/IV colorectal cancer tissues is also significantly decreased,
compared with that in stages I/II colorectal cancer tissues.
Furthermore, D-loop region de-methylation is tightly correlated
with a high mtDNA copy number and a high ND-2 expression.
DNA methylation inhibitor 5-aza-deoxycytidine treatment also
increases the mtDNA copy number and ND-2 expression in
Caco-2 cells (Gao et al., 2015). Further study reveals that de-
methylation of 4th and 6th/7th CpG islands of D-loop promoter
can lead to the elevation of mtDNA copy number in colorectal
cancer, thereby triggering cell proliferation, cell cycle progression
and reducing apoptosis (Tong et al., 2017). These results indicate
that mtDNA methylation is negatively correlated with mtDNA
number and tumor progression.
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TABLE 4 | Nucleus/mtDNA-derived MicroRNAs that have been confirmed to target mtDNA-encoded genes.

Targeted gene MicroRNA Species Organism/Tissues/Cells Biological/pathological process
influenced

References

COX 1 miR-181c Rattus norvegicus Cardiomyocytes, myoblast Mitochondrial respiration, reactive
oxygen species generation

Das et al., 2012, 2017

miR-488-3p Homo sapiens,
Mus musculus

Mouse Neuro-2a neuroblastoma cells,
human embryonic kidney 293HEK cells

Reactive oxygen species, OxPhos Sirey et al., 2019

miR-2392 Homo sapiens Multiple types of cancer OxPhos, glycolysis Fan et al., 2019

COX 2 miR-26a Homo sapiens Prostate cancer cells Cell proliferation, apoptosis Zhang et al., 2016

Cytb miR-542-3p Homo sapiens Human skeletal muscle cell line
(LHCN-M2)

Mitochondrial ribosomal stress, muscle
wasting

Garros et al., 2017

miR-151a-5p Mus musculus Spermatocyte cell line (GC-2) Asthenozoospermia, mitochondrial
respiratory activity

Zhou et al., 2015

miR-2392 Homo sapiens Multiple types of cancer OxPhos, glycolysis Fan et al., 2019

ND 2 miR-24 Homo sapiens Lewis lung carcinoma (LLC) cells Mitochondrial dysfunction, growth
inhibition

Michael et al., 2017

miR-762 Homo sapiens Cardiomyocytes Intracellular ATP levels, ROS levels,
apoptosis, myocardial infarction

Yan et al., 2019

ND4 miR-2392 Homo sapiens Multiple types of cancer OxPhos, glycolysis Fan et al., 2019

ND 4L miR-214 Mus musculus Kidney Apoptosis, mitochondrial OxPhos Bai et al., 2019

ND 6 miR-214 Mus musculus Kidney Apoptosis, mitochondrial OxPhos Bai et al., 2019

ATP6 miR-378 Mus musculus Cardiomyocyte cell line (HL-1) Diabetes mellitus Jagannathan et al., 2015

16S rRNA miR-4485 Homo sapiens Breast cancer cells Mitochondrial complex I activity, the
production of ATP, ROS levels,
caspase-3/7 activation, and apoptosis

Sripada et al., 2017

miR-mit3 Homo sapiens skeletal muscles It targets 16S rRNA Shinde and Bhadra, 2015

miR-mit4 Homo sapiens skeletal muscles It targets 16S rRNA Shinde and Bhadra, 2015

Similarly, the level of 5mC at several sites of mtDNA
is negatively correlated with mtDNA copy number in 143B
osteosarcoma cells (Sun et al., 2018a). 5mC in mtDNA D-loop
is low during tumor progression and may potentially contribute
to the increase in mtDNA copy number observed in these tumor
cells, including osteosarcoma and glioblastoma cells (Sun et al.,
2018a). 5mC levels of D-loop also negatively correlate with
ND5 and ND6 transcription during the tumorigenesis of 143B
osteosarcoma cells (Sun et al., 2018a).

However, mtDNA of cancer stem-like cells is also
hypermethylated and the mtDNA copy number is low, which
makes them to use glycolysis for cell proliferation (Lee and St
John, 2015). After sufficient mtDNA is restored in tumors to
initiate tumorigenesis, 5mC in D-loop is increased to restrict
further mtDNA replication (Sun et al., 2018a). That is the
reason why cancer cells have a lower mtDNA copy number to
maintain a “pseudo-differentiated” state and why global DNA
demethylation can induce cellular differentiation and expansion
of mtDNA copy number (Sun et al., 2018a).

However, there are also some studies that do not support
the results above. For instance, colorectal adenomas have a
low-level methylation of specific sites in mtDNA, but it is not
associated with changes of mitochondrial gene transcription
(Morris et al., 2018). Maekawa et al. (2004) showed that
methylation of mtDNA was a rare event in the CpG sites in
cancer cell lines and tissues of gastric and colorectal cancer. Hong
et al. (2013) also confirmed that CpG methylation was absent in
HCT116 colerectal cancer cell lines. van der Wijst et al. (2017)

showed that CpG mtDNA methylation didn’t affect mtDNA gene
expression, whereas 5mC in the GpC context decreased mtDNA
gene transcription.

In conclusion, the relationship between mtDNA methylation
and cancer should be studied further. To solve the problems,
a more precise method to detect the methylated sites of
methylation in mtDNA is needed. A systematic study on mtDNA
methylation in both normal tissues and tumor tissues should
be performed to show differences between them. Finally, the
clinical significance, function and mode of actions of mtDNA
methylation should be further elucidated.

In fact, these explorations will not only benefit the study
of cancer biology, but also would be useful for studying other
mitochondrial diseases. mtDNA methylation is also shown to
be connected with various human diseases, such as Down’s
syndrome and Alzheimer’s disease. The levels of mitochondrial
SAM is downregulated in Down’s syndrome compared to control
cells, suggesting that there is a low level of 5mC level in
the mtDNA of this disease (Infantino et al., 2011). 5mC in
mtDNA D-loop is observed in the blood of patients with
late-onset Alzheimer’s disease patients (Stoccoro et al., 2017).
Besides, 5mC in mitochondrial the transfer RNA phenylalanine
(MT-TF), MT-RNR1 gene while not D-loop region is shown
to be associated with metal-rich particulate matter (PM1)
exposure and mtDNA copy number (Byun et al., 2013). In
umbilical cord blood, 5mC in the 12S rRNA (MT-RNR1) or
the D-loop control region of mtDNA is positively correlated
with the level of free thyroid hormones (FT3 and FT4) and
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mitochondrial DNA copy numbers regulated by these two
hormones (Janssen et al., 2017).

Mitochondrial Nucleoid Modifications in
Cancer
TFAM is the only nucleoid-associated protein that functions as
a histone-like factor. Its expression is shown to be positively
correlated with the progression of multiple cancers, including
melanoma (Araujo et al., 2018), hepatocellular carcinoma
(Qiao et al., 2017), non-small cell lung cancer (Xie et al.,
2016), colon cancer (Lin et al., 2018), bladder cancer (Mo
et al., 2013), epithelial ovarian carcinoma (Gabrielson et al.,
2014), glioma (Lee et al., 2017), and breast cancer (Fan
et al., 2017). These phenomena may be the results of higher
mtDNA copy number that is found in tumors compared to
normal tissues (Sun et al., 2018b), which makes tumor cells
produce more TFAM for sufficient compaction. Otherwise,
mtDNA in cancer cells may be tightly wrapped by more
TFAM, which leads to a lower expression of mtDNA encoding
ETC/OxPhos-related genes, thereby promoting tumor cells to use
aerobic glycolysis.

TFAM can also be regulated by post-translational
modifications including acetylation, phosphorylation and
ubiquitination. However, there is no direct evidence showing
that TFAM modifications are correlated with cancer. Since
post-translational modifications of TFAM significantly affect its
stability or function, and its modifications may also be tightly
associated with tumor progression.

mtRNA Methylation in Cancer
mtDNA is transcribed to produce RNA with continuous
polycistrons, implying that post-transcriptional modulations
are essential for RNA processing. Recently, mtRNA transcripts
were shown to be differently accumulated in tumor tissues
(Stewart et al., 2015). Mutation of mtRNA processing
enzymes, such as ELAC2, which has RNase Z activity and
functions in the maturation of mt-tRNA by removing a
3′-trailer from tRNA precursors to generate 3′ termini of
tRNAs, is associated with prostate cancer incidence (Tavtigian
et al., 2001). mt-tRNAs are heavily post-transcriptionally
modified mtRNAs, mutations within which are also related
to cancer (Brandon et al., 2006). A tRNA-dihydrouridine
synthases, DUS2, which catalyzes the conversion of uridine
residues to dihydrouridine in the D-loop of tRNA, is
also commonly upregulated in pulmonary cancer (Kato
et al., 2005). These results imply that mtRNA processing is
important for cancer.

Recent studies show that mtRNA modifications, which are
essential for mtRNA processing, are also major regulatory
factors in tumors. In tumor tissues across 12 cancer types,
there are remarkable alterations in methylation levels of m1A
and m1G RNA in mitochondrial tRNAs. In normal tissues,
RNA processing pathways are specifically related to mt-tRNAs
methylation levels, however, these connections are lost in
tumors (Idaghdour and Hodgkinson, 2017). High mt-tRNAs
methylation difference predicts a poorer prognosis in a cohort

of patients with kidney renal clear cell carcinoma (Idaghdour
and Hodgkinson, 2017). The level of m1A and m1G methylation
in mtRNAs can significantly affect mitochondria-mediated
metabolism (Hodgkinson et al., 2014). In conclusions, mt-tRNAs
methylation affects their maturation and thus plays emerging
roles in tumorigenesis.

ncRNAsmtDNA in Cancer
There are emerging evidences showing that lncRNAsmtDNA may
be involved in tumorigenesis by promoting cell proliferation and
tumor growth. A lncRNA with an 815 nt inverted repeat (IR) and
a stem-loop structure resistant to RNase A is covalently
linked to the 5′ end of 16S rRNA in human cells. It is
expressed in highly normal proliferating cells while not in
resting cells. The expression of this lncRNA can be induced
in phytohemagglutinin (PHA)-treated resting lymphocytes,
while can be reversibly blocked in aphidicolin-treat DU145
pancreatic cancer cells, in which cell proliferation is also
reversibly inhibited (Villegas et al., 2007). Besides which,
two antisense mtRNA transcripts that contain stem-loop
structures are expressed in normal proliferating cells but
significantly downregulated in tumor cells (Burzio et al., 2009).
Further study shows that a family of mitochondrial ncRNAs
(ncmtRNAs) with stem-loop structures can be divided into
sense (SncmtRNAs) and antisense (ASncmtRNAs) members.
Both of the SncmtRNAs and ASncmtRNAs are expressed
in normal proliferating cells, whereas ASncmtRNAs are
downregulated in various types of tumor cells. ASncmtRNAs
knockdown induces cell cycle arrest and apoptosis via inhibiting
survivin expression in cancer cell lines without impairing
cell viability of normal cells. MicroRNAs generated by
dicing of the double-stranded stem of the ASncmtRNAs
can downregulate survivin. Mechanically, ASncmtRNAs
binds to Dicer to recruit to the 3′-UTR of survivin mRNA,
resulting in degradation of this mRNA (Vidaurre et al.,
2014). Preclinical studies also show that ASncmtRNAs
knockdown blocks tumor growth in melanoma and renal
cancer models (Olavarria et al., 2018). Immortalization of
human keratinocytes with HPV-16/18 downregulates the
expression of the ASncmtRNAs and induces the expression
of SncmtRNA-2. Furthermore, E6 and E7 are shown to
be responsible for SncmtRNA-2 upregulation, whereas E2
oncogene is responsible for ASncmtRNAs downregulation
(Villota et al., 2012).

In addition, some specific lncRNAsmtDNA are highly
upregulated in tumors or cancer patients’ urine and predict
poor prognosis of these diseases. For instance, SncmtRNAs
are upregulated and ASncmtRNAs are downregulated in the
urine of patients with bladder cancer (Rivas et al., 2012). Higher
level of lncRNAmtDNA uc004cox.4 in urine is associated with
poorer recurrence-free survival (RFS) of non-muscle invasive BC
(NMIBC) and act as an independent prognostic factor for RFS of
this disease (Du et al., 2018).

In conclusion, ncRNAsmtDNA are important regulators during
tumorigenesis and can be promising prognostic markers for
cancers. Therefore, it is urgent to identify the mtDNA-encoded
ncRNAs to provide a better understanding of this area.
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ncRNAsnDNA That Target mtDNA
Encoded Genes in Cancer
Emerging evidences also show that ncRNAs derived from
nDNA also act as messengers to regulate mitochondrial
function in cancer cells. For instance, lncRNA MALAT1 can
be transported into mitochondria by RNA-binding protein
HuR and mitochondria transmembrane protein mitochondrial
carrier 2 (MTCH2) in HepG2 hepatocellular carcinoma
cells. Then the 3′-fragment of this lncRNA interacts with
multiple mtDNA loci, including D-loop, COX2, ND3, and
CYTB. MALAT1 knockdown results in low OxPhos, reduced
ATP production, inhibited mitophagy, declined mtDNA
copy number, and upregulated intrinsic apoptotic pathway
(Zhao et al., 2019).

In addition to lncRNAsnDNA, miRNAsnDNA seem to play
roles that are more important in epigenetic regulations of
tumor cells. For instance, miR-24 targets ND2 in human
Lewis lung carcinoma (LLC) cells, resulting in mitochondrial
dysfunction and growth inhibition (Michael et al., 2017). miR-
26a targets COX 2 in human prostate cancer cells, inhibiting cell
proliferation and inducing apoptosis (Zhang et al., 2016). miR-
4485 targets 16S rRNA in human breast cancer cells, leading to
the decrease of mitochondrial complex I activity, the production
of ATP, and inducing high ROS levels that activates caspase-3/7-
dependent apoptosis (Sripada et al., 2017). miR-2392 localizes to
mitochondria, silences mtDNA transcription through an AGO2-
dependent mechanism, thereby inhibiting ND4, CYTB, and
COX1 expression, and promotes cancer cells to chemosensitivity
(Fan et al., 2019).

CONCLUSION AND PERSPECTIVES

The puzzle of mitoepigenetics has been uncovered gradually in
recent years. New findings also significantly alter the concept
of mitoepigenetics. Manev and Dzitoyeva (2013) first proposed
the concept of mitoepigenetics in 2013 referring to all epigenetic
regulations that are related to mitochondria. Ferreira et al.
(2015) also use this concept. According to their definition,
mitoepigenetics is comprised of four levels: (i) epigenetic
controls of expression of nDNA-encoded mitochondrial
genes; (ii) a cell-specific mtDNA content and mitochondrial
activity-determined epigenetic alterations in nuclear genes
expression; (iii) mtDNA variants-influenced nuclear gene
expression patterns and ncDNA methylation levels; (iv)
epigenetic modifications in mtDNA like 5mC and 5hmC
marks. However, Manev and Dzitoyeva (2013) suggested a
restricted usage of mitoepigenetics as the last ones, which also
was used by subsequent researchers such as Sadakierska-Chudy
et al. (2014). However, van der Wijst and Rots (2015) and
Coppede and Stoccoro (2019) used a more restricted definition
of mitoepigenetics as 5mC or 5hmC in mtDNA. The concept
of mitoepigenetics described by Ghosh et al. (2015) includes
5mC/5hmC in mtDNA, mitochondrial modulation of nuclear
DNA methylation and non-coding RNAs regulatory epigenetics
in mitochondria.

In this review, we definite the concept of mitoepigenetics as a
study of molecular modifications occurring in mitochondria that
affect mitochondrial inheritance without involving mtDNA
changes. According to this definition, mitoepigenetics
refers to mtDNA modifications, mitochondrial nucleoid
modifications, mtRNA modifications as well as non-coding
RNAs that affect the translation and function of mtDNA-
encoded genes (Figure 5). This definition is narrower
than the concept defined by Manev and Dzitoyeva (2013),
but is an extension of the concept used by Ghosh et al.
(2015) as it includes mtRNA modifications, mitochondrial
nucleoid modifications and a new definition of non-coding
RNAs-regulated mitoepigenetics. In fact, according to our
definition, all the mitoepigenetic alterations seem to alter
the expression and function of mtDNA-encoded proteins,
which mainly play essential roles in ETC/OxPhos and
participate in mitochondrial cellular metabolism including
glucose, lipid and amino acid metabolism. Therefore,
mitoepigenetics is tightly related to multiple mitochondria-
mediated biological processes, such as intrinsic apoptosis
(Dong et al., 2017), mitophagy (Dong and Cui, 2018; Li
et al., 2019), ROS generation (Kausar et al., 2018), Ca2+

signaling (Bravo-Sagua et al., 2017) and hemoglobin synthesis
(Fleming and Hamza, 2012).

Since dysfunctional mitochondria are tightly related to cancer
initiation and cancer progression (Wallace, 2012; Vyas et al.,
2016), mitoepigenetics can also involve important modulations
that occur in the pathological processes of cancer. 5mC in specific
sites of mtDNA seems to be decreased during tumorigenesis.
This phenomenon suggests that 5mC in these sites may be
prognostic markers for cancers. Besides, since recent report
shows that 5hmC and 5fC contents are decreased significantly
in the very early stage of HCC (Liu et al., 2019), 5hmC
found in mtDNA may also make some senses during cancer
initiation and progression. Besides, TFAM is also shown to be
positively related to malignant progression of multiple cancers,
post-translational modifications that found in this protein may
also be essential modulations in cancer progression. NcRNAs
derived from both the nDNA and mtDNA are also promising
prognostic factors that regulate tumorigenesis. Mitoepigenetic
alterations may be one of the reasons for carcinogenesis,
otherwise they are results of tumorigenesis. These alterations
cannot be a main reason for tumorigenesis, because cancer cells
without mitochondria (ρ0 cells) still can form tumors in vivo
(Magda et al., 2008; Sun et al., 2018b). However, epigenetic
alterations in mitochondrial indeed affect the development
of tumors and mitochondrial Achilles’ heel in cancer can
also be targeted by mitoepigenetic modulation (Hockenbery,
2002). Anyway, these findings about the connections between
cancers and mitoepigenetics may provide some new clues
for the prognosis, prevention and even therapeutic strategies
for these diseases.

Epigenetic regulation is a kind of reversible mode for gene
expression. Until now, there are several epigenetic drugs
(epi-drugs), such as 5-azacytosine, decitabine, guadecitabine,
belinostat, panobinostat, vorinostat, and romidepsin are
approved by FDA in the clinic to treat some diseases including
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FIGURE 5 | Types of Mitoepigenetics and their functions. Mitoepigenetics constitutes with four different types, including mtDNA modifications, nucleoid
modifications, mtRNA modifications, and non-coding RNA modulations. Ac, acetylation; D, Dihydrouridine; f5C, 5-Formylcytosine; 5hmC 5-Hydroxymethylcytosine;
5mC, 5-methylcytosine; i6A, N6-Isopentenyladenosine; m1A, 1-Methyladenosine; m1G, 1-Methylguanosine; m2G, N2-Methylguanosine; m2

2G,
N2,N2-Dimethylguanosine; m3C, 3-Methylcytosine; m4C, N4-Methylcytosine; m5C, 5-Methylcytosine; m5U, 5-Methyluridinep; m6A, N6-Methyladenosine; m6

2A,
N6,N6-Dimethyladenosine; ms2 i6A, 2-Methylthio-N6-isopentenyladenosine; P, phosphorylation; 9, Pseudouridine; Q, Queosine; t6A,
N6-Threonylcarbamoyladenosine; TFAM, Transcription factor A, mitochondrial; τm5U, 5-Taurinomethyluridin; τm5s2U, 5-Taurinomethyl-2-thiouridine, Ub,
Ubiquitination.
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cancers (Jones et al., 2016; Nebbioso et al., 2018). Besides,
other epigenetic drugs such as chidamide, givinostat, quisinostat,
GSK2879552 and MAK683 are on clinical trials (Berdasco and
Esteller, 2019). These studies have opened a new window for the
treatment of cancers. Since mitoepigenetics also plays essential
roles in mitochondrial function and processing, it may open
a new window for cancer therapy. However, there are some
questions need to be further solved. Firstly, mtDNA methylation
should be systemically studied with high-resolution methylation
sequencing. Secondly, core proteins of the nucleoid should be
studied further and the post-translational modifications in TFAM
and their connections with cancers should be validated. Thirdly,
modifications in mtRNAs including mt-rRNAs, mt-tRNAs,
mt-mRNAs and ncRNAsmtDNA should be further explored.
Finally, both ncRNAsmtDNA and ncRNAsnDNA should be further
characterized, their targets should be systemically identified and
their clinical significances should be confirmed.
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RNase H1 is able to recognize DNA/RNA heteroduplexes and to degrade their RNA
component. As a consequence, it has been implicated in different aspects of mtDNA
replication such as primer formation, primer removal, and replication termination, and
significant differences have been reported between control and mutant RNASEH1 skin
fibroblasts from patients. However, neither mtDNA depletion nor the presence of deletions
have been described in skin fibroblasts while still presenting signs of mitochondrial
dysfunction (lower mitochondrial membrane potential, reduced oxygen consumption,
slow growth in galactose). Here, we show that RNase H1 has an effect on mtDNA
transcripts, most likely through the regulation of 7S RNA and other R-loops. The observed
effect on both mitochondrial mRNAs and 16S rRNA results in decreased mitochondrial
translation and subsequently mitochondrial dysfunction in cells carrying mutations
in RNASEH1.

Keywords: mitochondria, mtDNA, mitochondrial disease, RNase H1, transcription, translation, 7S DNA, 7S RNA
INTRODUCTION

Human mitochondrial DNA (mtDNA) encodes 2 rRNAs, 22 tRNAs, and 13 out of 83 proteins that
are subunits of the respiratory chain, while the remaining proteins required for mitochondrial
function are encoded in the nucleus. Indeed, all proteins responsible for mtDNA maintenance,
especially those involved in replication, as well as other proteins necessary for transcription and
translation, are encoded in the nucleus (Gustafsson et al., 2016). Human mtDNA replication
requires several factors that constitute the replisome and that include DNA polymerase subunits
POLG and POLG2, the helicase TWNK, the single-stranded binding protein SSBP1, and DNA
topoisomerases TOP1, TOP2A and TOP2B (Gustafsson et al., 2016). The nucleases MGME1,
DNA2, FEN1, and RNase H1 have been described in mitochondria, and they have been related to
mtDNA replication, especially but not exclusively with regard to primer removal (Kazak et al., 2013;
Uhler and Falkenberg, 2015; Al-Behadili et al., 2018; Posse et al., 2019).

The nuclease RNase H1 can be targeted to both the nucleus and mitochondria, and it is able to
recognize DNA/RNA heteroduplexes and to degrade their RNA component (Suzuki et al., 2010).
The enzyme consists of three domains: a hybrid binding domain and a catalytic domain separated
by a connecting domain (Nowotny et al., 2007). The hybrid binding domain is responsible for the
recognition of the DNA/RNA hybrids, and it also enhances both the specific activity and the
processivity of the enzyme (Nowotny et al., 2008). Despite not being essential, the presence of this
January 2020 | Volume 10 | Article 1393174
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domain results in a protein with greater binding affinity and
positional preference for cleavage than the bacterial counterpart
(Wu et al., 2001). The catalytic domain is very conserved from
bacteria to humans and it contains key residues of the activity
(Nowotny et al., 2007). The connecting domain has been less
characterized, but it has been described to be required for RNase
H activity (Wu et al., 2001).

In the nucleus, RNase H1 activity has been linked to the
removal of R-loops (nascent RNA hybridized to template DNA
with a single-stranded non-template DNA) in rDNA (Shen et al.,
2017) and immunoglobulin sites (Parajuli et al., 2017), Okazaki
fragment processing (Lima et al., 2007), DNA repair (Tannous
et al., 2015; Amon and Koshland, 2016), telomere elongation
(Arora et al., 2014), and hypermutability in the immunoglobulin
locus (Maul et al., 2017). In mitochondria, RNase H1 has been
implicated in different aspects of mtDNA replication such as
replication initiation at origin-specific sites (Posse et al., 2019)
and primer removal at both origins of replication (Holmes et al.,
2015; Reyes et al., 2015; Al-Behadili et al., 2018), segregation of
daughter mtDNA molecules post replication (Akman et al.,
2016), R-loop processing (Reyes et al., 2015; Lima et al., 2016;
Gonzalez de Cozar et al., 2019), and processing of mitochondrial
ribosomal RNA precursor (Wu et al., 2013).

Mutations in genes involved in mitochondrial genome
stability result in mtDNA depletion, large-scale multiple
deletions, or accumulation of point mutations, which, in turn,
can lead to mitochondrial diseases (Almannai et al., 2018;
Rusecka et al., 2018). In the past few years, 15 patients with
mitochondrial diseases have been found to carry mutations in
the RNASEH1 gene, mainly as compound heterozygous c.424G >
A (p.Val142Ile) and c.469C > T (p.Arg157*) (Reyes et al., 2015),
c.424G > A (p.Val142Ile) and c.554C > T (p.Ala185Val) (Reyes
et al., 2015), c.424G > A (p.Val142Ile) and c.442T > C
(p.Cys148Arg) (Bugiardini et al., 2017; Sachdev et al., 2018),
and c.487T > C (p.Tyr163His) and c.258_260del (p.Gln86del)
(Carreno-Gago et al., 2019) but in some cases as homozygous
c.424G > A (p.Val142Ile) (Reyes et al., 2015; Akman et al., 2016).
All mutations mapped in the catalytic domain, except
c.258_260del (p.Gln86del), which mapped in the connecting
domain. Affected individuals presented with adult-onset
chronic progressive external ophthalmoplegia (CPEO), ptosis,
dysphagia, muscle weakness, ataxia, and respiratory impairment.
Mitochondrial DNA depletion and multiple deletions, COX-
deficient fibers and low complex I and IV activities are
characteristic features of the muscle biopsies from the patients
with RNASEH1 mutations (Reyes et al., 2015; Bugiardini et al.,
2017; Sachdev et al., 2018; Carreno-Gago et al., 2019). However,
neither significant mtDNA depletion nor the presence of
multiple deletions have been observed in skin fibroblasts
derived from these patients (Reyes et al., 2015; Akman et al.,
2016; Carreno-Gago et al., 2019). Despite this, RNASEH1mutant
fibroblasts presented lower mitochondrial membrane potential,
reduced oxygen consumption, and slower growth than control
fibroblasts (Reyes et al., 2015; Reyes et al., 2018). Therefore,
RNase H1 may have additional roles not related to mtDNA
maintenance that could be held responsible for this phenotype.
Frontiers in Genetics | www.frontiersin.org 275
In this paper, we show that RNase H1 plays an important role
in mtDNA transcription. Mutant RNASEH1 skin fibroblasts
showed a significant decrease in some mitochondrial
transcripts, e.g., MT-CO2, MT-ND5, and MT-RNR2 (16S
rRNA). Interestingly, the levels of 7S RNA (MT-7S), a small
non-coding mitochondrial transcript, were also upregulated in
the patient fibroblasts. 7S RNA is involved in the primer
synthesis required for mtDNA replication but it has also been
suggested to play a role as a negative regulator of mtDNA
transcription (Cantatore et al., 1988). Hence, the decrease of
transcript levels in the patient fibroblasts could be related to the
increase in 7S RNA, as this may not have been efficiently
removed by the lower levels and activity of mutant RNase H1
in the patient. In addition, a lack of or slow processing of R-loops
in different regions of mtDNA could also affect transcript levels.
A decrease in mitochondrial translation due to a decrease in 16S
rRNA and possible direct interaction of 7S RNA with 12S rRNA
could also explain the mitochondrial dysfunction we detected in
these cells.
MATERIALS AND METHODS

Structural Modeling of Mutant RNase H1
The crystal structure of the human RNase H1 catalytic domain in
a complex with 18-mer DNA/RNA heteroduplex (PDB ID
2QK9) was downloaded from the Protein Data Bank (PDB)
database and loaded onto PyMOL. Conserved residues
previously reported to constitute the active site of the protein
(Nowotny et al., 2007) were manually colored in yellow and
visualized as sticks, while the DNA and RNA components of the
heteroduplex were colored in cyan and magenta, respectively.
The mutagenesis option available in PyMOL was used to replace
Val142 with Ile142. These two residues and the neighboring
residue Trp164 were displayed in different colors and visualized
as sticks in order to highlight the possible effect the mutation
could have on the structure of the protein.

Cell Culture Conditions
Fibroblasts derived from skin biopsy were obtained from a
patient (P) carrying two pathogenic mutations in the
RNASEH1 gene (GenBank: NM_002936.4): c.424G > A
(p.Val142Ile) on the paternal allele and a nonsense mutation,
c.469C > T (p.Arg157*), on the maternal allele (Reyes et al.,
2015). In addition, control fibroblasts were obtained from two
healthy controls (C1 and C2). Fibroblast cell lines were
maintained in high-glucose medium (Gibco) supplemented
with 10% FBS (Gibco) and 1% penicillin-streptomycin at 37°C
in a humidified atmosphere of 5% CO2. Primary skin fibroblasts
were immortalized by lentiviral transduction of pLOX-Ttag-
iresTK (Addgene #12246, Tronolab), as previously described
(Reyes et al., 2018). Briefly, human 293T cells were
cotransfected with transfer vector (pLOX-Ttag-iresTK),
second-generation packaging plasmid (pCMVdR8.74), and
envelope plasmid (pMD2.VSVG) (Naldini et al., 1996).
Infectious lentiviral particles were collected from the medium
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24 h after transfection and used for transduction of all three
fibroblast cell lines. Transduced fibroblasts were grown for at
least six passages in order to make sure immortalized cells were
selected. Changes in cell shape and doubling time were observed
as part of the normal process of immortalization. All
experiments here reported were carried out on immortalized
fibroblasts. When required, high-glucose medium was replaced
by glucose-free medium (Gibco) and supplemented with 50 mM
galactose (Sigma).

Immunoblot Analysis
Protein gel electrophoresis and blotting analyses were performed
on whole cell protein extracts obtained from patient (P) and
control (C1 and C2) fibroblasts. Samples containing 30 mg
protein were separated by denaturing NuPAGE 4%–12% Bis-
Tris gels and transferred to nitrocellulose membrane.
Immunodetection was carried out using primary antibodies
against target proteins: RNase H1 (ab56560, Abcam), POLG
(sc-5931, Santa Cruz), POLG2 (LS-C334882, LSBio), TWNK
(gift from M Falkenberg), SSBP1 (ab74710, Abcam), TFAM (gift
from RJ Wiesner), POLRMT (ab32954, Abcam), LRPPRC
(ab97505, Abcam), SLIRP (ab51523, Abcam), ATAD3 (gift
from JE Walker), bL12 (14795-1-AP, Proteintech), uL11
(SAB2701374, Sigma), MDDX28 (ab70821, Abcam), mS35
(16457-1-AP, Proteintech), mS18b (16139-1-AP, Proteintech),
NDUFS3 (ab110246, Abcam), NDUFB8 (ab110242, Abcam),
SDHA (ab14715, Abcam), SDHB (ab14714, Abcam), UQCRC1
(ab96333, Abcam), UQCRC2 (ab14745, Abcam), MT-CO1
(ab14705, Abcam), MT-CO2 (ab91317, Abcam), COX4l1
(ab14744, Abcam), ATPF1 (ab84625, Abcam), and ATPA1
(ab110273, Abcam), along with GAPDH (ab8245, Abcam),
used as loading control. For quantifications, images were
digitalized and analyzed with ImageJ software, and data
analyses were performed in Microsoft Excel.

DNA Isolation, Gel Electrophoresis, and
Hybridization
Total DNA from patient (P) and control (C1 and C2) fibroblasts
was extracted using Wizard Genomic Purification Kit
(Promega). Total DNA (5 mg) was digested with PvuII (NEB),
and the fragments were resolved in 1% agarose gels. After
electrophoresis and Southern blot, hybridizations with
radiolabelled probes directed against the human mtDNA
(nucleotide positions 16,341-151) and nuclear 18S rDNA were
carried out overnight at 65°C in 7% SDS and 0.25M sodium
phosphate buffer pH 7.4. After washing four times with 1x SSC
(150 mM sodium chloride, 15 mM sodium citrate, pH 7.0) and
twice with 1 x SSC/0.1% SDS, membranes were exposed to
Phosphorimager screens for 0.5 to 10 days. ImageQuant
software was used for the quantification of the signal.

RNA Isolation and Quantitative PCR
(qPCR)
Total RNA from patient (P) and control (C1 and C2) fibroblasts
was extracted using Trizol (Invitrogen). RNA was then treated
with DNase I (DNA-free kit, Ambion) and reverse transcribed
Frontiers in Genetics | www.frontiersin.org 376
with Omniscript reverse transcription kit (Qiagen). Quantitative
polymerase chain reaction (qPCR) analyses were performed with
Life Technologies Gene Expression Assays (Applied Biosystems):
RNase H1 (Hs00268000_m1, Hs01108220_g1 and
Hs01108219_g1 on exons 7-8, 2-3 and 1-2 boundary,
respectively), MT-7S (7S RNA, Hs02596861_s1), MT-RNR1
(12S rRNA, Hs02596859_g1), MT-RNR2 (16S rRNA,
Hs02596860_s1), MT-CO1 (Hs02596864_g1), MT-CO2
(Hs02596865_g1), MT-CO3 (Hs0259866_g1), MT-ND1
(Hs02596873_s1), MT-ND5 (Hs02596878_g1), MT-ND6
(Hs02596879_g1), MT-CYB (Hs02596867_s1), and MT-ATP6
(H s 0 2 5 9 6 8 6 2 _ g 1 ) a nd no rma l i z e d t o l e v e l s o f
GAPDH (Hs02758991_g1).

Mitochondrial Translation
Patient (P) and control (C1 and C2) fibroblast cell lines were
subjected to metabolic labeling of mtDNA encoded proteins.
[35S]-methionine was added to the medium after treatment with
emetine dihydrochloride and labeling was performed for 1 h, as
previously described (Chomyn, 1996). Cells were lysed and
proteins (30 µg) were loaded onto 12% polyacrylamide gels.
Gels were stained with Coomassie blue, dried, and then exposed
to Typhoon phosphor screens, with products visualized and
quantified with ImageQuant software (GE Healthcare).

Oxygen Consumption
Respiration in patient (P) and control (C1 and C2) fibroblasts,
IO2 [pmols·s-1·10-6 cells], was calculated as the negative time
derivate of oxygen concentration as measured by the
OROBOROS Oxygraph-2k on one million cell/ml in a 2-ml
chamber at 37°C. Basal respiration was measured without
substrates, and the proton leak state after the addition of
oligomycin (50nM) was also measured. Oxygen consumption
coupled to ATP production was calculated as the difference
between basal respiration and proton leak. Maximal respiration
was measured by stepwise 1.25 µM titration of CCCP and
inhibition by 2 µM rotenone and 2.5 µM antimycin A for the
final measurement of residual oxygen consumption. Spare
capacity was calculated as the difference between maximal
respiration and basal respiration.

Mitochondrial Membrane Potential
Mitochondrial membrane potential was measured in patient (P)
and control (C1 and C2) untreated fibroblasts and after
treatment with 1 µM FCCP for 5 min at 37°C as the ratio of
the red to the green JC-1 signal using a Nucleo Counter NC-3000
Advanced Image Cytometer.

Statistics
Fibroblasts from a single patient with mutations in RNASEH1
and two non-related healthy individuals were analyzed as
controls. All numerical data are expressed as mean ± standard
deviation of the mean (SD). Student’s unpaired two-tailed t-tests
under the assumption of a normal distribution and unequal
variance were used for statistical analysis combining the data
from both controls against the patient unless specified otherwise.
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Control 1 (C1) fibroblasts were randomly chosen as the reference
for all experiments, the values obtained in the first biological
repeat were arbitrarily assigned as 1 and, subsequently, all other
values were corrected accordingly.
RESULTS

Characterization of the Mutations in
RNASEH1
The two mutations present in the RNASEH1 gene in the patient
were first analyzed in silico. The missense mutation, c.424G > A
(p.Val142Ile), involved a residue in a conserved position of the
b1 strand, close to one of the four key catalytic residues (Figure
1A). Modeling of the mutation on the crystal structure of human
RNase H1 (PDB ID 2QK9) showed that Ile142 is a bulkier residue
than Val142 and therefore could interfere with another bulky
residue nearby, Trp164, causing a change in the orientation of the
Frontiers in Genetics | www.frontiersin.org 477
b1 strand (Figure 1B). This could result in a misalignment of the
four catalytic residues that constitute the active site and/or the
residues involved in the interaction with the DNA/RNA hybrids.
The nonsense mutation, c.469C > T (p.Arg157*), affects a residue
at the N-terminus of the catalytic domain and, as a consequence,
the truncated protein is void of any activity (Reyes et al., 2015).
Nonsense-mediated decay is a conserved quality control
mechanism that selectively degrades the transcripts harboring
premature stop codons (Kurosaki et al., 2019). In order to
investigate if the presence of a nonsense mutation was
triggering nonsense-mediated decay, we checked RNASEH1
transcript levels in human control (C1 and C2) and patient (P)
fibroblasts grown in either glucose- or galactose-containing
medium with probe Hs00268000_m1, spanning exons 7-8
(Figure 1C). RNASEH1 transcript levels were significantly
reduced to at least 50% of controls in both growing conditions.
The same results were obtained when different probes upstream
of the nonsense mutation were used, Hs01108220_g1 and
FIGURE 1 | RNASEH1 mutations, transcript, and protein levels. (A) Domains ofhuman RNAse H1 protein (MTS, mitochondrial targeting sequence; HBD, hybrid
binding domain; CD, connection domain; catalytic domain). RNase H1 protein sequences from representative species,H. sapiens (Hs, NP_002927) M. musculus
(Mm, NP_035405), B. taurus (Bt, NP_001039970), G. gallus (Gg, NP_990329),X. tropicalis (Xt, NP_001096299),D. rerio (Dr, NP_001002659), C. intestinalis (Ci,
F6QPH0), D. melanogaster (Dm, NP_995777), C. elegans (Ce, NP_001040786), S. cerevisiae (Sc, Q04740), were extracted from the database and aligned using
ClustalW2. Conserved residues found mutated in the patient in exon 4 are boxed in red, while residues in the active site and interacting with DNA or RNA are boxed
in yellow and green, respectively. Positions of b strands are marked by blue arrows. (B) Human RNase H1 crystal structure (PDB ID 2QK9) 18 bp DNA(cyan): RNA
(magenta) hybrid is shown respectively. Residues in the active site are colored in yellow. Residues Trp164 (green) and Val142, or the mutated variant Ile142 (red), are
shown as sticks. (C) RNASEH1 transcript levels in control (C1 and C2) and patient (P) fibroblasts grown in either glucose- or galactose-containing medium assessed
by qPCR (probe Hs00268000_m1) and normalized to GAPDH transcript levels. Data are shown as mean ± SD, n = 4, ***p < 0.001. (D) RNASEH1 transcript levels in
control (C1) and patient (P) fibroblasts grown in glucose-containing medium assessed by qPCR with probes Hs00268000_m1 (i), Hs01108220_g1 (ii), and
Hs01108219_g1 (iii) and normalized to GAPDH transcript levels. Data are shown as mean ± SD, n = 3, ***p < 0.001. (E) Western blot analysis of RNase H1 in
control (C1 and C2) and patient (P) fibroblasts grown in either glucose- or galactose-containing medium. GAPDH was used as loading control.
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Hs01108219_g1, spanning exons 2-3 and 1-2, respectively
(Figure 1D), further supporting nonsense-mediated decay. As
a consequence of the decrease in transcript levels, a significant
decrease was also observed at protein levels in patient fibroblasts
(Figure 1E).

Mitochondrial DNA-Related Alterations in
Patient Fibroblasts
Since analysis of muscle biopsy from patients carrying mutations
in RNASEH1 has revealed the presence of multiple deletions and
depletion in mtDNA (Reyes et al., 2015; Bugiardini et al., 2017;
Carreno-Gago et al., 2019), we performed a Southern blot on
genomic DNA extracted from control (C1 and C2) and patient
(P) fibroblasts grown in either glucose or galactose (Figure 2A).
No deletions on mtDNA were detected in the patient fibroblasts,
and the mtDNA copy number was only marginally reduced to
80% compared to controls when the cells were grown in glucose,
with no significant difference observed when cells grew in
galactose (Figures 2A, B). By contrast, 7S DNA, the third
strand of the mtDNA displacement loop, was 10-fold higher in
the patient fibroblasts than in control, both in glucose and
galactose (Figures 2A, C). Furthermore, 7S DNA in controls
appears as a net band, as all the molecules have the same length,
Frontiers in Genetics | www.frontiersin.org 578
while in the patient fibroblasts, there is a smear below the main
band, indicating that some 7S DNA molecules are shorter than
the expected size (Figure 2A). This effect is more pronounced in
glucose than in galactose.

Then we analyzed the steady-state level of mitochondrial
proteins involved in mtDNA maintenance (Figure 2D). Other
than the overall increase in the steady-state level of all proteins
when cells were grown in galactose medium, no significant
differences between patient and control fibroblasts were
observed. These results are in agreement with the observed
minor changes in mtDNA copy number in the patient
fibroblasts (Figure 2A).

Mitochondrial RNA-Related Alterations in
Patient Fibroblasts
Mitochondrial dysfunction has been reported in fibroblasts from
patients carrying mutations in RNASEH1, but neither mtDNA
deletions nor depletion have been observed (Reyes et al., 2015;
Bugiardini et al., 2017; Carreno-Gago et al., 2019). Therefore, we
first investigated whether there was an effect on mitochondrial
transcription. The steady-state levels of 11 transcripts was
analyzed by qPCR and included 7S RNA (MT-7S), the two
ribosomal RNAs MT-RNR1 (12S rRNA) and MT-RNR2 (16S
FIGURE 2 | Mitochondrial DNA maintenance in mutant RNASEH1 fibroblasts. (A) Southern blot of total DNA digested with PvuII from control (C1 and C2) and
patient (P) fibroblasts grown in either glucose- or galactose-containing medium. A radioactive probe against mtDNA was used to detect both linearized mtDNA
(empty arrowhead) and 7S DNA (filled arrowhead and bracket), while a probe against 18S rDNA was used as loading control. (B) Relative mitochondrial DNA copy
number in control (C1 and C2) and patient (P) fibroblasts grown in either glucose- or galactose-containing medium, calculated as the linearized mtDNA/18S rDNA
signal ratio. Data are shown as mean ± SD, n = 4, ***p < 0.001. (C) 7S DNA levels in control (C1 and C2) and patient (P) fibroblasts grown in either glucose- or
galactose-containing medium calculated as the 7S DNA/linearized mtDNA/18S rDNA signal ratio. Data are shown as mean ± SD, n = 4, Student’s unpaired two-tail
t-test, ***p < 0.001. (D) Western blot analysis of mitochondrial proteins involved in mtDNA maintenance in control (C1 and C2) and patient (P) fibroblasts grown in
either glucose- or galactose-containing medium. GAPDH was used as loading control.
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rRNA), and eight protein mRNAs from all four different
oxidative phosphorylation (OxPhos) complexes with
mitochondrially-encoded subunits: CI, CIII, CIV, and CV
(Figure 3). The non-coding 7S RNA is a polyadenylated
transcript of about 200 nt whose 5’ end maps at the light
strand promoter (LSP) and has been implicated in both
mtDNA replication and transcription. Transcript levels of 7S
RNA in galactose medium were lower than in glucose in all cell
lines. Moreover, a two-fold and three-fold increase in 7S RNA
was detected in patient fibroblasts compared to controls grown
in glucose and galactose, respectively. As a result, patient cells
grown in galactose had the same levels of 7S RNA as controls
grown in glucose. For all the other transcripts analyzed, the levels
in control cells growing in galactose medium were always higher
than in glucose medium, suggesting increased mitochondrial
biogenesis. In the case of patient fibroblasts, the results varied
depending on the transcript. The two ribosomal rRNAs showed a
different behavior: a slight decrease in 12S rRNA was observed in
patient cells only when they were grown in galactose medium,
while a significant decrease in 16S rRNA compared to controls
was observed both in glucose and galactose growth (40% and
80% decrease, respectively). The transcripts of both complex IV
(MT-CO1, MT-CO2, MT-CO3) and complex I (MT-ND1, MT-
ND5, MT-ND6) subunits were moderately decreased in patient
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cells grown in glucose medium (28-36% and 17-35% decrease for
complex IV and I, respectively), and culture in galactose medium
did not increase their levels very significantly in most of the cases,
which increased the difference with control cell lines (40-43%
and 35-50% decrease for complex IV and I, respectively). A
completely different trend was observed in transcripts from
complex III (MT-CYB) and complex V (MT-ATP6)
mitochondrial subunits: transcript levels in glucose growth
were higher in the patient fibroblasts than in controls (about
50% increase in both cases), while in galactose growth, they were
lower compared to controls (about 50% decrease in both cases).

Next, we analyzed the steady-state levels of proteins involved
in RNA metabolism and mitochondrial ribosomal proteins
(Figure 4A). Overall, protein levels were higher in galactose
than in glucose medium, suggesting increased mitochondrial
biogenesis. While the mitochondrial RNA polymerase,
POLRMT, was not significantly changed in patient fibroblasts,
other proteins such as LRPPRC, SLIRP, and ATAD3 were
decreased in patient fibroblasts, particularly when grown in
glucose medium. Moreover, mitochondrial ribosomal proteins
from the large 39S subunit (mt-LSU) but not the small 28S
subunit (mt-SSU) were also found to be decreased in patient
fibroblasts growing in glucose medium and, to a lesser extent,
also in galactose medium (Figures 4A, B). As a consequence,
FIGURE 3 | Mitochondrial transcript levels in mutant RNASEH1 fibroblasts. Mitochondrial transcript levels in control (C1 and C2) and patient (P) fibroblasts grown in
either glucose- or galactose-containing medium, assessed by qPCR and normalized to GAPDH transcript levels. Analyzed transcripts included the non-coding 7S
RNA (MT-7S), the two ribosomal RNAs MT-RNR1 (12S rRNA) and MT-RNR2 (16S rRNA), three complex IV protein mRNAs (MT-CO1, MT-CO2 and MT-CO3), three
complex I protein mRNAs (MT-ND1, MT-ND5 and MT-ND6), one complex III protein mRNA (MT-CYB), and one complex V protein mRNA (MT-ATP6). Data are
shown as mean ± SD, n = 4, Student’s unpaired two-tail t-test, **p < 0.01, ***p < 0.001.
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mitochondrial translation was impaired in patient fibroblasts,
with all mitochondrial proteins equally affected (Figure 4C).

Mitochondrial Dysfunction in Patient
Fibroblasts
Fibroblasts from patients carrying mutations in RNASEH1 have
signals of mitochondrial dysfunction (Reyes et al., 2015;
Bugiardini et al., 2017; Carreno-Gago et al., 2019). Indeed, we
have shown that patient fibroblasts have alterations in
mitochondrial transcription and translation that could lead to
mitochondrial dysfunction. Therefore, we first analyzed the
steady-state of the OxPhos constituents of all five complexes
(Figure 5A). Again, overall protein levels were higher in
galactose than in glucose medium, supporting increased
mitochondrial biogenesis. Patient fibroblasts presented lower
steady-state levels of all analyzed subunits of complex I and
complex IV, while no difference was detected for complexes III
and V. These results are in agreement with the data from
mitochondrial transcript levels (Figure 3). Complex II subunits
were slightly increased in patient fibroblasts compared to
controls, most likely as a compensation mechanism. A
consequence of the observed decrease in OxPhos protein levels
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was an alteration in mitochondrial respiration, as measured by
oxygen consumption, IO2. Patient fibroblasts showed significant
lower basal IO2, ATP-dependent, and maximal IO2, both in
glucose and galactose (Figure 5B). Mitochondrial membrane
potential is usually altered in cases of a dysfunctional electron
transport chain and, indeed, we observed a significant decrease in
membrane potential in patient fibroblasts both in glucose and
galactose (Figure 5C). These mitochondrial alterations in the
patient fibroblasts have many consequences at a cellular level,
and a lower growth rate is one of them (Figure 5D).
DISCUSSION

Pathological mutations in RNASEH1 have been described in
patients with mitochondrial depletion and deletion syndromes
characterized by CPEO, cerebellar ataxia, and dysphagia
(Bugiardini et al., 2017). Mutations in RNASEH1 are still rare
and, to date, only 16 patients have been reported (Reyes et al.,
2015; Bugiardini et al., 2017; Sachdev et al., 2018; Carreno-Gago
et al., 2019). Mutations involve six different residues and are not
randomly distributed: four of them are in exon 4, one in exon 5
FIGURE 4 | Mitochondrial translation in mutant RNASEH1 fibroblasts. (A) Western blot analysis of mitochondrial proteins involved in mitochondrial RNA metabolism
(RNA metab.) and mitochondrial large (mtLSU) and small (mtSSU) ribosomal subunits in control (C1 and C2) and patient (P) fibroblasts grown in either glucose- or
galactose-containing medium. GAPDH was used as loading control. GAPDH is from the same blot as Figure1D. (B) Quantification of the Western blots shown in
(A) normalized to GAPDH levels. Data are shown as mean ± SD, Student’s unpaired two-tail t-test, *p < 0.05, **p < 0.01, ***p < 0.001. (C) [35S]-methionine de novo
synthesis of mitochondrially encoded proteins in control (C1 and C2) and patient (P) fibroblasts grown in either glucose- or galactose-containing medium. Newly
synthesized proteins were visualized after exposure of the dried gel to phosphor screens. The coomassie blue (CB) staining shown below was used as loading
control. n = 3.
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(in the N-terminal portion of the catalytic domain), and one in
exon 3 (in the connecting domain). The fibroblasts from the
patient presented here carry two mutations in exon 4: a missense
(c.424G > A, p.Val142Ile) and a nonsense mutation (c.469C > T,
p.Arg157*). Nonsense mutations are often associated with a
decrease in protein level due to nonsense mediated decay
(Kurosaki et al., 2019), and this has been reported not only in
fibroblasts carrying RNASEH1 mutations (Reyes et al., 2015) but
also in fibroblasts with nonsense mutations in other genes such
as PYCR2 (Zaki et al., 2016), TIMM50 (Reyes et al., 2018), and
TAOK1 (Dulovic-Mahlow et al., 2019). Similarly, albeit to a
lesser degree, two missense mutations in RNASEH1 (p.Val142Ile
and p.Gln86del) have also been described to have an effect on
protein stability and therefore to result in a decreased steady-
state level of the protein in cultured fibroblasts (Reyes et al., 2015;
Akman et al., 2016; Carreno-Gago et al., 2019). In addition,
p.Val142Ile mutant RNase H1 activity is only 36-40% of that of
wild-type protein based on in vitro assays (Reyes et al., 2015; Al-
Behadili et al., 2018). With our current knowledge, it is not
possible to ascertain whether it is the amino acid substitution
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itself, the decrease/lack of activity, or a combination of both that
is responsible for the observed protein instability.

Notwithstanding the mtDNA depletion and deletion
observed in muscle biopsies from patients with mutations in
RNASEH1, skin fibroblasts derived from the same patients
display normal to slightly decreased mtDNA content (Reyes
et al., 2015; Akman et al., 2016; Carreno-Gago et al., 2019). Thus,
it not surprising that the levels of proteins involved in mtDNA
maintenance are not markedly affected either. This could be
achieved, on the one hand, by other proteins with similar or
complementary functions, such as MGME1, FEN1, and DNA2,
helping to maintain the minimum requirements for mtDNA
replication, and on the other hand, by changes in the cellular
processes like a slow down of cellular growth that could
compensate for the slower or less active replication in cells
with mutant RNase H1 (Reyes et al., 2015).

Despite the lack of effect on mtDNA, RNASEH1 mutations
have a marked impact on several mitochondrial transcripts in the
patient fibroblasts. Significant decreases in mitochondrially
encoded complex IV (MT-CO1, MT-CO2, MT-CO3) and
FIGURE 5 | Mitochondrial DNA maintenance in mutant RNASEH1 fibroblasts. (A) Western blot analysis of representative components of the mitochondrial OxPhos
complexes I-V in control (C1 and C2) and patient (P) fibroblasts grown in either glucose- or galactose-containing medium. GAPDH was used as loading control.
(B) Oxygen consumption (IO2) measurements in control (C1 and C2) and patient (P) fibroblasts grown in either glucose- or galactose-containing medium. Values of
basal and maximal respiration along with ATP production-dependent, proton leak respiration, and spare capacity are presented. Data are shown as mean ± SD, n =
4, Student’s unpaired two-tail t-test, **p < 0.01, ***p < 0.001. (C) Mitochondrial membrane potential in control (C1 and C2) and patient (P) fibroblasts grown in either
glucose- or galactose-containing medium using JC-1 staining. Data are shown as mean ± SD, n = 4, Student’s unpaired two-tail t-test, ***p < 0.001. (D) Growth
curves of control (C1 and C2) and patient (P) fibroblasts grown in either glucose or galactose. Cell growth was monitored continuously in an Incucyte cell imager
(Essen Bioscience). Data correspond to one of the three independent experiments carried out, and they are shown as the mean of three technical replicates ± SD.
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complex I (MT-ND1, MT-ND5, MT-ND6) transcripts have been
observed in RNASEH1 patient fibroblasts. However, no such
decrease was observed in transcripts from complex III (MT-
CYB) and complex V (MT-ATP6) mitochondrial subunits in
glucose medium. Although this is the first report of transcript
levels in patient fibroblasts, our data are in agreement with recent
reports in a Rnaseh1 liver-specific knockout (KO) mouse model
(Lima et al., 2016) and in Drosophila S2 cell rnh1 knockdown
(KD) (Gonzalez de Cozar et al., 2019). In the Rnaseh1 KOmouse,
a decline was observed in all mitochondrial transcripts over time
from six to 14 weeks of Rnaseh1 ablation (Lima et al., 2016). In
Drosophila rnh1 KD, transcript levels of Cox3 and ND5 were
decreased, while cyt b and ATP8 remained unaltered (Gonzalez
de Cozar et al., 2019). The main difference from our patient
fibroblasts is that in those cases, mtDNA depletion was also
present, making it more difficult to segregate the direct effect of
RNAse H1 on transcription from its secondary effect due to
partial mtDNA depletion. The non-coding 7S RNA is the only
transcript that was increased in the patient fibroblasts in both
glucose and galactose medium. This transcript has been
described to be involved in the synthesis of the 7S DNA
(Gustafsson et al., 2016), and therefore it is not surprising that
7S DNA levels were also increased in the patient fibroblasts,
albeit to a much higher level. Much less is known about its role in
transcription, despite the fact that early studies suggested that 7S
RNA could regulate mitochondrial transcription by preventing
the formation of new transcription initiation events (Cantatore
et al., 1988). More recently, it has been demonstrated for the first
time that RNase H1 is required for the effective removal of 7S
RNA, as the Rnaseh1 KO mouse presents higher levels of 7S
RNA, which results in failure to transcribe mtDNA (Lima et al.,
2016). In our RNASEH1 patient fibroblasts, we detected a
concomitant increase in 7S RNA and a decrease in seven out
of 10 mitochondrial transcripts, supporting the idea that 7S RNA
plays a role in their transcription levels. Not only 7S RNA but
also other transcripts are able to form R-loops throughout the
mitochondrial genome (Brown et al., 2008), and, subsequently,
inefficient removal of these structures could block ongoing
transcription anywhere along the genome. In spite of this, the
mitochondrial degradosome, composed by SUV3 and PNPase,
has also been described to be involved in preventing the
accumulation of pathological R-loops in mtDNA (Silva et al.,
2018), providing a salvage pathway in cells carrying mutations in
RNASEH1. However, two of the mitochondrial protein
transcripts, MT-CYB and MT-ATP6, did not seem to be
affected in the patient fibroblasts. This could be explained by a
differential transcript half-life, as MT-ATP8/6 transcript is
among the longest half-life mitochondrial transcripts in HeLa
cells (Nagao et al., 2008). In certain situations, the stabilization of
some transcripts could be modified by the up- or downregulation
of certain proteins. It has been reported that upon decrease in the
steady-state levels of LRPPRC/SLIRP complexes, some transcript
levels, including MT-CYB, are less prone to degradation (Chujo
et al., 2012). Both LRPPRC and SLIRP were downregulated in
patient fibroblasts and therefore could have an effect on MT-
CYB transcript stability.
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Mitochondrial rRNAs are essential components of the
mitochondrial ribosomes, and alterations in their levels often
result in mitochondrial translation defects (Boczonadi et al.,
2018). The RNASEH1 patient fibroblasts displayed lower levels
of 16S rRNA (MT-RNR2) than controls and, in agreement with
these results, lower levels of mitochondrial ribosomal proteins
associated with the mt-LSU were observed. This is not the case
for 12S rRNA (MT-RNR1) and associated ribosomal proteins,
mt-SSU. As discussed above for mitochondrial mRNAs, the
steady-state levels of mitochondrial rRNAs can also be
modulated by the levels of 7S RNA since this molecule could
impede transcription initiation not only at the light but also at
the heavy strand promoter (LSP and HSP, respectively).
However, this would result in lower levels of both 12S and 16S
rRNAs, and we have only detected a decrease in the levels of 16S
rRNA. RNase H1, along with P32, has been shown to be involved
in the processing of guanosine-cytosine rich mitochondrial
ribosomal RNA precursor (12S/16S rRNA precursor) (Wu
et al., 2013). Downregulation of RNase H1 increases the levels
of the 12S/16S rRNA precursor with one and two species
containing 12S and 16S rRNA, respectively (Wu et al., 2013).
This suggests that processing of the pre-rRNA by RNase H1 is
sequential, originating the mature 12S rRNA in the first step and
after further processing, the mature 16S rRNA. A delay in this
second processing step could result in the degradation of the
partly processed rRNA containing 16S rRNA we observed in the
patient fibroblasts. Lower levels of 16S rRNA would result in a
decrease of mt-LSU ribosomal proteins, leading to decreased
mitochondrial translation. In addition, mitochondrial translation
could also be directly modulated by 7S RNA, since this molecule
contains a region complementary to the 3’ end of 12S rRNA
(Cantatore et al., 1988), and therefore it could alter the structure
of the ribosomal subunit, preventing the formation of the full
ribosome. A decrease in mitochondrial translation has also been
observed in RNASEH1 patient fibroblasts carrying the
p.Val142Ile mutation in homozygosity; however, transcript
levels were not analyzed in that case (Akman et al., 2016). The
mitochondrial topoisomerase IB (TOP1MT) has also been
reported to have a role beyond the resolution of replication
and transcription stress, as it has been found to regulate
mitochondrial translation through protein–protein interaction
with at least one mtSSU ribosomal protein, uS22 (Baechler
et al., 2019).

As a result of the alterations in mitochondrial transcription
and translation, patient fibroblasts showed OxPhos deficiency
with lower oxygen consumption that was not related to mtDNA
depletion and slower growth compared to controls. Previous
studies also reported lower oxygen consumption in RNASEH1
patient fibroblasts carrying the p.Val142Ile mutation (Reyes
et al., 2015; Akman et al., 2016) and a slower cell growth rate
(Reyes et al., 2015; Reyes et al., 2018). However, neither
RNASEH1 patient fibroblasts carrying p.Tyr163His and
p.Gln86del mutations (Carreno-Gago et al., 2019) nor
Drosophila rnh1 KD (Gonzalez de Cozar et al., 2019) showed
any defect on cell growth. This highlights the fact that RNASEH1
mutations are rare and subsequently, the number of patients with
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mutations in this gene is still very low. More comprehensive
analyses, including more patient fibroblasts and different
mutations, will be needed in order to better establish the role
of RNase H1 in mitochondrial transcription and translation and,
in particular, the contribution of 7S RNA to these processes.
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Mitochondrial complex I deficiency is associated with a diverse range of clinical phenotypes
and can arise due to either mitochondrial DNA (mtDNA) or nuclear gene defects. We
investigated two adult patients who exhibited non-syndromic neurological features and
evidence of isolated mitochondrial complex I deficiency in skeletal muscle biopsies. The first
presented with indolent myopathy, progressive since age 17, while the second developed
deafness around age 20 and other relapsing-remitting neurological symptoms since. A
novel, likely de novo, frameshift variant in MT-ND6 (m.14512_14513del) and a novel
maternally-inherited transversion mutation in MT-ND1 were identified, respectively.
Skewed tissue segregation of mutant heteroplasmy level was observed; the mutant
heteroplasmy levels of both variants were greater than 70% in muscle homogenate,
however, in blood the MT-ND6 variant was undetectable while the mutant heteroplasmy
level of the MT-ND1 variant was low (12%). Assessment of complex I assembly by Blue-
Native PAGE demonstrated a decrease in fully assembled complex I in the muscle of both
cases. SDS-PAGE and immunoblotting showed decreased levels of mtDNA-encoded ND1
and several nuclear encoded complex I subunits in both cases, consistent with functional
pathogenic consequences of the identified variants. Pathogenicity of the
m.14512_14513del was further corroborated by single-fiber segregation studies.

Keywords: mitochondrial DNA, muscle biopsy, myopathy, deafness, tissue segregation

INTRODUCTION

Mitochondrial NADH:ubiquinone oxidoreductase (Complex I) is the first and largest (~1 MDa)
complex of the mitochondrial respiratory chain involved in the oxidative phosphorylation
(OXPHOS) pathway and generation of ATP. It comprises 45 structural subunits of which seven
are encoded by mitochondrial DNA (mtDNA), the remaining subunits being encoded by the
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nuclear genome as are the ~20 ancillary proteins required for
assembly and biogenesis (Formosa et al., 2018). As such, genetic
defects in both mitochondrial and nuclear DNA can result in
isolated complex I deficiency.

Complex I deficiency is the most common biochemical defect
associated with mitochondrial disease (Alston et al., 2017).
Identical biochemical defects are associated with phenotypic
heterogeneity, (Kirby et al., 1999; Janssen et al., 2006) ranging
from a tissue specific manifestations such as Leber hereditary
optic neuropathy (LHON), (Man et al., 2002) to devastating,
severe phenotypes including Leigh syndrome, (Distelmaier et al.,
2009) mitochondrial encephalomyopathy, lactic acidosis and
stroke-like episodes (MELAS) syndrome, multi-system disease,
(Alston et al., 2010) and hypetrophic cardiomyopathy and severe
lactic acidosis (Distelmaier et al., 2009). Pathogenic variants have
been identified in all seven mtDNA-encoded subunits of
complex I; however, there is no clear genotype-phenotype
correlation (Distelmaier et al., 2009; Hoefs et al., 2012). While
incomplete penetrance is frequently observed in the
homoplasmic variants associated with LHON, (Man et al.,
2002) the heteroplasmy levels in other pathogenic variants
such as m.13513G > A and m.13094T > C in MT-ND5, both
reported in Leigh Syndrome and MELAS syndrome, show good
correlation with the severity of disease burden (Ng et al., 2018).
Conversely, some de novo pathogenic variants in the MT-ND
(Mitochondrially-encoded NADH:ubiquinone oxidoreductase
core subunit) genes cause slowly progressive, non-syndromic
presentations such as myopathy and exercise intolerance
(Gorman et al., 2015).

In this report, we present two adult patients with complex I
deficiency manifesting with different clinical pictures, one
developing an insidious-onset myopathy while the other
presents with deafness in her 20s and subsequent neurological
symptoms that follow a relapsing-remitting pattern. Novel
variants in the mtDNA-encoded MT-ND6 and MT-ND1
proteins were identified, respectively, and characterized fully to
demonstrate causality.
MATERIAL AND METHODS

Case Reports
Patient 1
A 27-year-old man was referred to a neurology service with a 10-
year history of exercise intolerance and mild muscle weakness. In
addition, the patient also complained of intermittent drooping of
his eyelids and double vision. There was no history of
myoglobinuria, deafness, optic atrophy, or retinitis pigmentosa.
There was no family history of neuromuscular disorder. Clinical
examination revealed very mild proximal lower limb weakness
with MRC grade 4+/5. The upper limb muscle bulk was reduced,
and subtle scapular winging, and an excessive lumbar lordosis
were apparent. The rest of the neurological examination was
normal. Routine laboratory investigations were normal except
for an elevated serum creatine kinase (CK) (1,212 IU/L). He
underwent electromyography (EMG) study which showed
Frontiers in Genetics | www.frontiersin.org 286
polyphasic myopathic units in most muscles sampled. No
myotonia or abnormal decrement was evident. He was found
to have dipstick proteinuria, and a 24-h urine collection
confirmed the presence of microalbuminuria. The following
investigations were either negative or normal: serum lactate
level, anti-acetylcholine receptor and anti-muscle specific
kinase autoantibodies, forearm ischaemic lactate test, serum
alpha-glucosidase levels, cardiac investigations (including
ambulatory electrocardiogram (ECG) and echocardiogram),
renal ultrasound scan, magnetic resonance imaging (MRI) of
the brain, and MRI of the upper and lower limb muscles. He had
a muscle biopsy at the age of 28 years.

Patient 2
This patient presented with painless, sequential visual loss over
four months during pregnancy at the age of 35 years. Her visual
acuity at the nadir was documented to be 6/60 bilaterally with the
presence of relative afferent pupillary defect in one eye. Her
medical history included endometriosis, gestational diabetes and
hearing impairment since her late 20s. Both her mother and
maternal grandmother developed hearing impairment in their
40s. Retrobulbar optic neuritis was initially suspected, however,
her MRI head (including angiography) did not identify any acute
structural changes and the visual evoked potentials (VEP) were
normal. Her vision gradually improved over several months.
Three years later, she developed a gradual-onset, severe
headache. MRI head showed several subcortical T2
hyperintensities. The possibility of raised intracranial pressure
was excluded with normal cerebrospinal fluid (CSF) opening
pressure. CSF constituents were normal, and CSF-restricted
oligoclonal bands were not detected. Her headache settled a
week later. At age 44 years, she presented with left arm weakness.
A CT head scan was normal and the weakness improved
spontaneously a week later. Three months later, she re-
presented with vertigo, poor balance, sensory disturbances on
the left hand, and fatigue. A repeat MRI head showed an increase
in subcortical and periventricular white matter lesions with
sparing of the corpus callosum. However, repeat CSF studies
and VEP remained unremarkable. Her resting serum lactate was
1.2 mmol/L (normal < 2.2 mmol/L). At this point, mitochondrial
disease was considered, and a muscle biopsy was performed. In
the last clinical review at the age of 46, she developed diabetes
mellitus and complained of unsteadiness and fatigue. She had a
mild dysarthric speech and reduced muscle strength in the hip
flexion (MRC grade 4+/5). Her recent cardiac investigations
were normal.

Histochemical and Quadruple
Immunohistochemistry (IHC) Studies of
Diagnostic Muscle Biopsies
Standard histological (modified Gomori trichrome) and
histochemical (individual cytochrome c oxidase (COX),
succinate dehydrogenase (SDH), and sequential COX-SDH)
analyses of skeletal muscle biopsies were performed on fresh-
frozen skeletal muscle sections (10 µm) as previously described (Old
and Johnson, 1989). Quadruple OXPHOS immunofluorescence
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was undertaken on transversely-orientated frozen muscle sections
(10 µm) according to a previously validated protocol to establish
evidence of complex I or complex IV deficiency (Rocha et al., 2015).

Molecular Genetic Analyses
Total DNA was extracted from available tissues including
sketelal muscle, blood, buccal epithelia, and urinary sediments.
In both patients, muscle mtDNA rearrangements were
investigated using several long-range PCR strategies prior to
sequencing of the entire mitochondrial genome as described
elsewhere (Krishnan et al., 2007; Zierz et al., 2019). Analytical
sensitivity for single nucleotide variants present at ≥5%
heteroplasmy is ≥95% (95% confidence intervals).

Assessment of mtDNA Mutation Load by
Quantitative Pyrosequencing
Mutation loads of m.14512_14513del MT-ND6 and m.3761C >
A MT-ND1 variants were determined in homogenate tissue by
quantitative pyrosequencing; quantification of the heteroplasmy
level of each variant was achieved using Pyromark Q24 software
(Grady et al., 2018). For Patient 1 (m.14512_14513del mutation),
we also determined the mutation loads in individual, laser-
microdissected muscle fibers for two groups: COX-positive
reacting fibers and COX-positive, ragged-red fibers showing
marked subsarcolemmal mitochondrial accumulation.

BN–PAGE and Western Blot Analysis of
Patient Muscle
Blue-Native Polyacrylamide Gel Electrophoresis (BN–PAGE)
was performed using mitochondrial proteins isolated from
skeletal muscle samples (25 mg of tissue) as described
previously (Thompson et al., 2016) using antibodies against
COXI (abcam ab14705), SDHA (abcam ab14715), VDAC1
(abcam ab14734), UQCRC2 (abcam ab14745), NDUFB8
(abcam ab110242), and ATP5A (abcam ab14748); all primary
antibodies were used at a dilution of 1 in 1,000. Total protein
extraction from human muscle for sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) and western
blotting was carried out as described (Olahova et al., 2015a)
using the following commercially available antibodies: NDUFB8
(abcam ab110242), NDUFV1 (Proteintech 11238-1-AP),
NDUFS3 (abcam ab110246), SDHA (abcam ab14715),
UQCRC2 (abcam ab14745), COXI (abcam ab14705), ATP5A
(abcam ab14748), and VDAC1 (abcam ab14734), which served
as a loading control. The antibody against ND1 was a kind gift
from Dr Anne Lombès.
RESULTS

Histochemical and Quadruple
Immunohistochemistry (IHC) Studies of
Muscle Biopsy
In Patient 1, the oxidative enzyme reactions (SDH and COX)
revealed numerous fibers with increased activity at the fiber
periphery, confirmed by modified Gomori trichrome staining,
Frontiers in Genetics | www.frontiersin.org 387
which showed subsarcolemmal accumulations typical of
“ragged-red” changes affecting >30% of all fibers (Figure 1A).
Quadruple OXPHOS IHC assay detected >75% of fibers showing
a complete loss of NDUFB8 immunoreactivity, again associated
with preserved COX-I immunoreactivity (Figure 1B). Many of
these fibers showed high porin levels, reflecting enhanced
mitochondrial numbers fibers showing subsarcolemmal
mitochondrial accumulation. A histopathological assessment of
the muscle biopsy from Patient 2 failed to detect significant
mitochondrial changes; a single COX-deficient fiber was noted
following sequential COX-SDH histochemistry, likely as a result
of somatic mtDNA mutation (Figure 1D). However, the IHC
mitochondrial respiratory chain profile shows a loss of NDUFB8
immunoreactivity, associated with preserved COX-I
immunoreactivity, for >60% of all fibers and consistent with
isolated complex I deficiency (Figure 1E).

Identification of Novel Pathogenic MT-ND6
and MT-ND1 Mutations
Long-range PCR assays were used to exclude mtDNA
rearrangements in the muscle from both patients, prompting the
sequencing of the entire mitochondrial genome which identified
candidatepathogenicvariants ingenes encodingstructural subunits
of mitochondrial complex I.We determined the mtDNA sequence
in muscle from both patients identifying novel, candidate
pathogenic MTND mutations. Patient 1 was shown to harbor a
novel m.14512_14513del, p.(Met54Serfs*7) variant, also predicting
the premature truncation of the relevant complex I protein subunit
(ND6). Quantitative pyrosequencing showed that the
m.14512_14513del variant was present at high levels of
heteroplasmy in skeletal muscle (76%); at low levels (10%) in a
urinary sediment-derived DNA sample but undetectable in blood
and buccal epithelial-derived DNA samples. Concurrent studies in
his mother’s blood, urine and buccal epithelial DNA samples failed
to detect the m.14512_14513del variant, strongly implicating a de
novomutation event.

Patient 2 harbored a novel m.3761C > A transversion
(predicting p.(Ser152*) and the premature truncation of the
ND1 protein) which was present at high levels of heteroplasmy
in skeletal muscle (80%), and lower levels in other tissues
including urinary sediment (46%), buccal epithelia (35%),
and blood (12%). Testing of the samples from the patients
clinically-unaffected mother confirmed maternal transmission
of the m.3761C > A variant, with lower levels of mtDNA
heteroplasmy detected in urinary sediments (38%) and
blood (5%).

Neither the m.14512_14513del nor m.3761C > A variants
were reported within online databases of mtDNA variation, nor
did we detect these within our own in-house database of >1,950
human mtDNA sequences. Using quantitative pyrosequencing,
we detected significantly higher levels of the m.14512_14513del
variant in COX-positive ragged-red fibers [90.9 ± 0.74% (n = 21)]
than in COX-positive non-ragged-red fibers [31.7 ± 9.6% (n =
17)] (p < 0.0001, two-tailed Student’s t test), confirming
segregation of the m.14512_14513del genotype with a
histopathological abnormality in Patient 1 (Figure 1C).
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Novel MTND Gene Mutations are
Associated With Impaired Complex I
Assembly and Loss of Immunoreactive
Complex I Subunits
To assess the ability of complex I to assemble in the inner
mitochondrial membrane, a one-dimensional BN-PAGE was
performed with muscle samples isolated from both patients
and two age-matched healthy controls. A band representing
fully assembled complex I (980 kDa) was detectable in both
controls, but Patient 2 showed very weak signal and no signal was
detected in Patient 1 (Figure 2A). However, the assembly of all
other OXPHOS complexes were unchanged between patients
and controls, confirming an isolated complex I defect in skeletal
muscle from both patients. SDS-PAGE and immunoblotting was
performed in skeletal muscle samples from each patient and
showed a decrease in the steady-state protein levels of all
complex I subunits tested (ND1, NDUFV1, NDUFS3, and
Frontiers in Genetics | www.frontiersin.org 488
NDUFB8) (Figure 2B), whereas subunits of complexes II-V
(SDHA, UQCRC2, COXI, and ATP5A, respectively) were
unchanged between patients and controls.
DISCUSSION

Mitochondrial disease presentations that do not exhibit classical
syndromic clinical phenotypes can be difficult to diagnose. Both
patients described in this report have undergone multiple
investigations over several years, with the eventual diagnosis
being underpinned by clear evidence of mitochondrial complex I
deficiency in a diagnostic muscle biopsy.

A heteroplasmic m.14512_14513del MT-ND6 variant was
identified in Patient 1 who presented with exercise intolerance,
mild myopathy, and hyperCKaemia. This novel mtDNA variant
has likely arisen de novo as it is not detectable in several mitotic
tissues of his clinically-unaffected mother although we
FIGURE 1 | Muscle biopsy findings in two patients with isolated complex I deficiency. (A) Histopathological analysis of skeletal muscle sections from Patient 1
showing modified Gomori trichrome staining (i), cytochrome c oxidase (COX) histochemistry (ii), succinate dehydrogenase (SDH) histochemistry (iii), and sequential
COX-SDH histochemistry (iv), highlighting the presence of COX-positive ragged-red fibers (RRF) showing mitochondrial accumulation. Scale bars = 100 µm.
(B) Respiratory chain profile following quadruple oxidative phosphorylation immunofluorescence analysis of cryosectioned muscle from Patient 1, confirming the
presence of numerous fibers lacking complex I (NDUFB8) protein. Each dot represents the measurement from an individual muscle fiber, color coded according to
its mitochondrial mass (blue-low, normal-beige, high-orange, very high-red). Gray dashed lines indicate SD limits for the classification of fibers. Lines next to x- and y-
axes represent the levels (SDs from the average of control fibers after normalization to porin/VDAC1 levels; _z = Z-score, see Methods section of Rocha et al. (2015)
for full description of statistics (Rocha et al., 2015) of NDUFB8 and COX1, respectively (beige = normal (>−3), light beige = intermediate positive (−3 to −4.5), light
purple = intermediate negative (−4.5 to −6), purple = deficient (<−6). Bold dotted lines indicate the mean expression level observed in respiratory normal fibers.
(C) Single fiber PCR analysis shows significant segregation of higher m.14512_14513del, p.(Met54Serfs*7) MTND6 mutation load within COX-positive RRF than
COX-positive fibers not showing obvious subsarcolemmal mitochondrial accumulation. (D) Histopathological analysis of skeletal muscle sections from Patient 2
showing modified Gomori trichrome staining (i), COX histochemistry (ii), SDH histochemistry (iii), and sequential COX-SDH histochemistry (iv). COX-SDH
histochemistry identified a single, COX-deficient fiber which is likely the result of somatic (age-related) mtDNA mutation. (E) Respiratory chain profile following
quadruple oxidative phosphorylation immunofluorescence analysis of cryosectioned muscle from Patient 2, again confirming the presence of fibers lacking complex I
(NDUFB8) protein.
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demonstrate skewed tissue segregation of this variant in the
patient. A novel, m.3761C > A; p.(Ser152*) MT-ND1 variant is
the likely cause of Patient 2’s personal and maternal history of
deafness and her relapsing-remitting neurological presentations.
Both mtDNA variants clearly result in the isolated complex I
deficiency, as identified with the IHC findings of decreased
expression of complex I subunit (NDUFB8), BN-PAGE
showing perturbed assembly of the complex I holoenzyme and
immunobloting showing a decrease in the steady-state protein of
complex I subunits. Moreover, the pathogenicity of the
m.14512_14513del variant is further supported by the single-
fiber segregation analysis confirming higher levels of the variant
are present in ragged-red fibers.

The maternal inheritance of the m.3761C > A in MT-ND1
variant and the observed decrease in ND1 protein levels in skeletal
muscle samples from Patient 2 strongly indicate pathogenicity of
this variant. Skeletal muscle from Patient 1, harboring the
m.14512_14513del variant in MT-ND6, also had decreased ND1
protein levels as well as decreased levels of several nuclear encoded
complex I subunits (NDUFV1, NDUFS3, and NDUFB8). This is
consistent with decreased ND6 levels leading to a complex I
assembly defect and subsequent degradation of many complex I
subunits and is similar to what is seen in Patient 2 due to the loss of
ND1. ND6 could not be directly assessed by immunoblotting due to
the lack of availability of an antibody to ND6. In both patients,
NDUFV1 is the least affected subunit. This is likely due to NDUFV1
being part of the N module of complex I which is assembled
separately to the Q/ND1 and ND2 modules that ND1 and ND6 are
part of respectively (Mimaki et al., 2012; Formosa et al., 2018).

Progressive exercise intolerance and myopathy identified in
Patient 1 are infrequent clinical findings associated with
pathogenic MT-ND variants (Musumeci et al., 2000; Gorman
et al., 2015). The putative link between the mitochondrial
Frontiers in Genetics | www.frontiersin.org 589
complex I defect and glomerular dysfunction is highly
conceivable given no other cause has been identified, and renal
involvement is increasingly recognized as part of the multisystem
manifestation in mitochondrial diseases (O’Toole, 2014).

A retrospective review of the history of bilateral visual
impairment in Patient 2 raised the suspicion of LHON. However,
the details of initial retinal examination were not available and it is
not known whether characteristic acute findings of LHON such as
disc hyperemia, oedema of the peripapillary retinal nerve fiber layer
andretinal telangiectasia were evident . The relapsing-remitting
nature of subsequent neurological presentations mimicked
multiple sclerosis but the radiological, VEP and CSF findings
were not supportive of the diagnosis. While there are some
uncertainties on establishing the causal link between visual
disturbance, white matter changes and the novel MT-ND1
variant, the presence of sensorineural hearing loss, the
development of diabetes mellitus, myopathy and maternal history
of deafness are typical findings in primary mtDNA disease.

Next generation sequencing (NGS) technology has been
increasingly integrated in the diagnostic pathway of a wide range
of genetic disorders including mitochondrial disease (Thompson et
al., 2019). One of the proposed advantages is that NGS could
mitigate the need and the risk of invasive, diagnostic muscle
biopsies, especially in the paediatric population. However, primary
mtDNA mutations account for two-third of the diagnosis of adult
cases, (Gorman et al., 2015) and the skewed segregation of some
mtDNA mutations between non-invasive tissues (e.g., blood) and
post-mitotic tissues (e.g., muscle) could pose a significant challenge
on the interpretation of any variant of unknown significance
detected at low heteroplasmy levels in blood-derived DNA.
Moreover, the expression of some mtDNA mutations is tissue
specific and testing the blood-derived DNA alone could yield a
false negative finding, such as in Patient 1 and other reported cases
FIGURE 2 | Assessing OXPHOS complex assembly and protein levels in patient muscle. (A) BN-PAGE of muscle samples from two age-matched controls (C1 and
C2) and Patients (P1 and P2). Antibodies used were anti-NDUFB8 for complex I (CI), anti-SDHA for complex II (CII), anti-UQCRC2 for complex III (CIII), anti-COX1 for
complex IV (CIV), and anti-ATP5A for complex V (CV). Complex II was used as a loading control. Blots are representative of two technical repeats. (B) SDS-PAGE
and immunoblotting analysis of muscle samples from two age-matched controls (C1 and C2) and Patients (P1 and P2). Antibodies against ND1, NDUFV1, NDUFS3,
NDUFB8 were used as markers of complex I; SDHA for complex II; UQCRC2 for complex III; COXI for complex IV; ATP5A for complex V and VDAC1 as a
mitochondrial mass marker. Blots are representative of two independent experiments.
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(Andreu et al., 1999; Musumeci et al., 2000). Given these diagnostic
caveats listed above, muscle biopsy would retain its crucial role in
establishing the diagnosis of primary mtDNA disease, (Hardy et al.,
2016; Zierz et al., 2019) especially in cases without apparent
maternal history and de novo variants.

In conclusion, isolated complex I deficiency is associated with
an increasingly diverse phenotypic expression of mitochondrial
disease. We highlight two novel mutations causing isolated
complex I deficiency and diverse clinical features. Our findings
also serve to highlight the importance of diagnostic muscle
biopsy in proving the pathogenicity of novel mtDNA variants,
particularly in cases with non-syndromic presentations.
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The regulation of mitochondrial proteome is unique in that its components have origins in
both mitochondria and nucleus. With the development of OMICS technologies, emerging
evidence indicates an interaction between mitochondria and nucleus based not only on
the proteins but also on the non-coding RNAs (ncRNAs). It is now accepted that large
parts of the non‐coding genome are transcribed into various ncRNA species. Although
their characterization has been a hot topic in recent years, the function of the majority
remains unknown. Recently, ncRNA species microRNA (miRNA) and long-non coding
RNAs (lncRNA) have been gaining attention as direct or indirect modulators of the
mitochondrial proteome homeostasis. These ncRNA can impact mitochondria indirectly
by affecting transcripts encoding for mitochondrial proteins in the cytoplasm. Furthermore,
reports of mitochondria-localized miRNAs, termed mitomiRs, and lncRNAs directly
regulating mitochondrial gene expression suggest the import of RNA to mitochondria,
but also transcription from the mitochondrial genome. Interestingly, ncRNAs have been
also shown to hide small open reading frames (sORFs) encoding for small functional
peptides termed micropeptides, with several examples reported with a role in
mitochondria. In this review, we provide a literature overview on ncRNAs and
micropeptides found to be associated with mitochondrial biology in the context of both
health and disease. Although reported, small study overlap and rare replications by other
groups make the presence, transport, and role of ncRNA in mitochondria an attractive,
but still challenging subject. Finally, we touch the topic of their potential as prognosis
markers and therapeutic targets.

Keywords: mitochondria, ncRNA, lncRNA, miRNA, mtDNA, micropeptide
BACKGROUND

Molecular biology has historically described RNA as an intermediate between genetic information
stored in DNA and protein synthesis. The estimated number of protein-coding genes is around
20,000 (Pertea et al., 2018). Classical approaches to classify RNAs with protein-coding potential—
the messenger RNAs (mRNAs)—were typically based on the existence of open reading frame (ORF)
longer than 300 nucleotides (nt), conservation, and/or functional domains (Dinger et al., 2008).
Nevertheless, as protein-coding regions encompass only ∼2% of the human genome, the rest has
been considered as “dark matter”. Detected RNAs not translated into proteins were named non-
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coding RNAs (ncRNA) and initially regarded as a transcriptional
noise or the byproducts of genetic information flow from DNA
to protein. Nevertheless, since the discovery of transfer RNAs
(tRNAs) and ribosomal RNAs (rRNAs), the number and
understanding of new and putative functional ncRNAs have
expanded. Moreover, the boundaries between the coding and
non-coding RNAs have become more blurry. Evidence is
emerging that some RNAs, initially classified as non-coding,
hide small ORFs (sORFs, < 300 nt) encoding for small functional
peptides- micropeptides. Currently, we know dozen of different
ncRNAs, which can be can be classified as housekeeping or
regulatory ncRNS, according to Szymanski et al. (2003).

Housekeeping ncRNAs are constitutively expressed and
mostly well functionally characterized classes of rRNAs,
tRNAs, small nuclear RNAs (snRNAs), small-nucleolar RNAs
(snoRNAs), Ribonuclease P RNA (RNase P), Ribonuclease MRP
RNA (MRP RNase, RNRP), and Telomerase RNA component
(TERC). rRNAs are the most abundant class of RNAs in most
cells, composing around 80% of cellular transcriptome. They
serve as the essential binding site for ribosomal proteins within
the assembled ribosome and contribute to the binding of extra-
ribosomal factors and ribosome-associated proteins, resulting in
the protein translation machinery (Noller et al., 2017; Simsek
et al., 2017). tRNAs provide the interface between nucleic acids
and proteins during translation by carrying an amino acid on its
3′ end and reading the mRNA by base-pairing induced by the
ribosome, which uniquely determines the position of amino
acids in proteins (Schimmel, 2018). snRNAs participate in the
assembly and function of canonical spliceosomes (Wang and
Burge, 2008). snoRNAs are localized to the nucleolus and guide
the methylation and pseudouridylation of rRNAs, tRNAs, and
snRNAs (Maxwell and Fournier, 1995). RNase P has a role in
precursor-tRNA cleavage, RMRP in precursor-rRNA cleavage,
and TERC in telomere synthesis (discussed later).

Regulatory ncRNAs are mostly produced in a cell- or tissue-
specific fashion during certain stages of cell differentiation or
organism development, or as a response to changes in the
environment. They are still poorly understood and a very
heterogeneous group that can act in different ways, from gene
expression regulation to modulation of protein and RNA
distribution within cells (Szymanski et al., 2003). They are
divided based on their length into short (<200 nt) and long
(>200 nt, lncRNAs) RNAs. Short ncRNAs consist of microRNAs
(miRNAs), small interfering RNAs (siRNAs) and Piwi-
associated RNAs (piRNAs). miRNAs are endogenous, single-
stranded, 19-23 nt in length RNAs that can bind to a target
mRNA with a complementary sequence to induce its cleavage,
degradation, or interfere with translation. Similar in size, siRNAs
are exogenous RNAs that undergo processing and function in
post-transcriptional gene silencing (Carthew and Sontheimer,
2009). piRNAs are single stranded, 26-31 nucleotides long RNAs
that form complexes with the piwi family of proteins. These
complexes have a role in RNA and epigenetic silencing of
transposons (Siomi et al., 2011). Longer than 200 nt, lncRNAs
represent the most abundant, yet least understood class of RNAs,
with an average length ~ 1000 nt (Ulitsky and Bartel, 2013). They
Frontiers in Genetics | www.frontiersin.org 293
share some features typical for mRNAs, such as transcription by
the RNA-polymerase II (Pol II) , 5 ′end cap, 3 ′end
polyadenylation and presence of alternative splicing isoforms
(Kopp and Mendell, 2018). However, compared to the mRNAs,
they exhibit lower expression levels, more tissue-specific
expression, and poor sequence conservation (Derrien et al.,
2012; Djebali et al., 2012; Kopp and Mendell, 2018; Fazal et al.,
2019). Although often considered as nucleus-enriched, lncRNAs
exhibit variety of subcellular localization, which often helps to
determine their biological function (Carlevaro-Fita and Johnson,
2019). Finally, circular RNAs (circRNAs) are a special class of
RNAs with the 3′ and 5′ ends covalently linked, generally formed
by alternative splicing of pre-mRNA (Salzman et al., 2012). They
have been proposed to act as miRNAs sponges or even as
templates for protein synthesis (Ragan et al., 2019).

Interest in the ncRNAs has been stimulated by the
development of high-throughput OMICS technologies.
Genome‐, transcriptome‐, translatome- and proteome‐wide
measurements by the whole genome sequencing (WGS), RNA-
sequencing (RNA-seq), ribosome profiling (Ribo-seq) and mass
spectrometry (MS), respectively. In combination, these methods
offer the possibility of a systematic analysis of different stages of
gene expression (Ori et al., 2015; Wang et al., 2019). RNA-seq data
have shown that up to 85% of the genome is transcribed and
identified, among others, novel transcript isoforms, transcripts
arising from intergenic regions, overlapping transcripts, and
transcribed pseudogenes (Consortium, 2012; Djebali et al., 2012;
Hangauer et al., 2013). Ribo-seq has shown widespread and
pervasive translation on cytosolic RNAs, with surprisingly ~40%
lncRNAs being engaged with the ribosome (Ingolia et al., 2009;
Kearse and Wilusz, 2017). Reported ribosomal occupancy of
RNAs indicated on the one side presence of different protein
isoforms and regulatory upstream open reading frames ORFs
(uORFs) from the mRNAs, and on the other, more exciting
side, new ways of translational regulation and possible
micropeptide production from lncRNAs (Morris and Geballe,
2000; Andrews and Rothnagel, 2014). It must be taken into
account that the ribosomal occupancy of transcripts need not
automatically lead to the production of stable, functional
polypeptides, and that further evidence is needed in order to
reclassify transcripts as indeed protein-coding (Guttman et al.,
2013). MS has proven as a useful tool to inspect the postulated
translational event, with developing proteogenomics approaches
confirming the presence of some peptides encoded by previously
non-coding regions (Slavoff et al., 2013; Fields et al., 2015; Wang
et al., 2019). However, in order to omit the possibility of false-
positive findings from MS, further functional studies on revealed
peptides are needed, and these studies remain sparse.

The complexity of gene expression has in most cases been
published on the levels of detection and its functional relevance
remains elusive. Still, it has revealed that the distinguishment
between mRNAs and ncRNAs is more challenging than initially
assumed and that automatic gene annotation systems, although
straightforward across large datasets, can sometimes be
misleading. Traditional arbitrary ORF cutoff can lead to
misclassification of some ncRNAs as mRNAs as they can by
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chance contain putative ORFs. This is especially true for
lncRNAs, such as functionally characterized H19, Xist, Mirg,
Gtl2, and KcnqOT1 (Prasanth and Spector, 2007). Some ncRNAs
have evolved from the protein-coding genes, and so will keep
certain features and homologies to mRNAs (Duret et al., 2006).
For example, Xist has evolved into the ncRNA through the
process of pseudogenization, during which proto-Xist had lost
its protein-coding function and its flanking genes had turned
into pseudogenes (Duret et al., 2006). On the contrary,
micropeptide-encoding regions may be incorrectly classified as
non-coding due to their size (Yeasmin et al., 2018). Next, the
absence of ORF conservation does not guarantee an absence of
protein-coding potential. Indeed, the majority of micropeptide-
encoding regions are not conserved (Ji et al., 2015), suggesting
their role in encoding evolutionary young proteins (Ruiz-Orera
et al., 2014). Finally, some genes are bifunctional, and its
products function independently both as RNAs and proteins.
The first report of such a gene was the human Steroid Receptor
Activator (SRA) (Lanz et al., 1999; Chooniedass-Kothari et al.,
2004). SRA was initially characterized as ncRNA which co-
activates steroid hormone receptors (Lanz et al., 1999) and
Frontiers in Genetics | www.frontiersin.org 394
later was revealed to also encode a functional protein (SRAP),
which seems to modulate SRA activity (Chooniedass-Kothari
et al., 2004).

Emerging discoveries in the ncRNA field have also raised the
possibility that some ncRNAs affect mitochondrial biology.
Mitochondria are crucial organelles for the integration of
several key metabolic processes and the primary powerhouses
in the cell (Spinelli and Haigis, 2018). The control of
mitochondrial protein homeostasis is unique in that its
components have origins in both mitochondria and nucleus
(Figure 1). Mitochondria contain their own circular genome
(mtDNA). In humans, it is 16,569 bp in length and contains 37
genes- encoding for 2 rRNAs, 22 tRNAs, and 13 proteins of the
oxidative phosphorylation (OXPHOS) system (Anderson et al.,
1981) (Figure 2). The rRNA coding sequences and all but one
protein-coding sequences are separated by tRNAs and deprived
of introns. The mtDNA is transcribed entirely from both
strands, named heavy (H) or light (L). Transcription is
initiated from the two H-strand (HSP1/2) and one L-strand
promoter, located in the major non-coding region named
“control region”, resulting in long polycistronic transcripts.
FIGURE 1 | Proposed mitochondrial proteome and transcriptome. Mitochondrial homeostasis is depending on its own gene expression, but also on the import of nuclear-
encoded proteins from the cytoplasm. In recent years, emerging evidence suggests import, but also mtDNA-transcription of different classes of ncRNAs in mitochondria.
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LSP controls the transcription of eight tRNAs and the ND6
gene. HSP1 transcription produces a transcript containing
tRNAPhe, tRNAVal, and the rRNAs, while transcription from
HSP2 generates a transcript that spans almost the entire
genome (Montoya et al., 1983; Chang and Clayton, 1984).
The main proteins controlling the process are the RNA
polymerase (POLRMT), two transcription factors (TFAM and
TF2BM), transcription elongation factor (TEFM), and
transcription termination factor (mTERF1) (Barshad et al.,
2018). The “tRNA punctuation” model (Ojala et al., 1981)
proposes that individual mRNA, rRNAs, and tRNAs are
released from the polycistronic transcripts by the cleavage of
tRNAs, which is in humans performed by endonucleases RNase
P complex and ELAC2 (Holzmann et al., 2008; Brzezniak et al.,
2011). After release, the rRNAs undergo chemical nucleotide
modifications before becoming part of mitoribosome, the
tRNAs undergo chemical nucleotide modifications, CCA
addi t ion at the 3 ′ -end , deadenyla t ion and fina l ly
aminoacylation, and the mRNAs get 3′ end polyadenylated
(D’Souza and Minczuk, 2018). The half-life of mitochondrial
transcripts and the decay of RNA intermediates are mediated
by a complex of polynucleotide phosphorylase (PNPase) and
SUV3 (Borowski et al., 2013). Finally, the mature mRNAs,
Frontiers in Genetics | www.frontiersin.org 495
tRNAs, and the assembled mitoribosome come together in the
translation apparatus, for the synthesis of 13 subunits of
OXPHOS system.

As mtDNA’s coding capacity is very limited, mitochondria
are heavily dependent on the import of about 1,500 nuclear-
encoded proteins. Besides, there have been indications that
mitochondrial homeostasis is maintained not just through
proteins, but also ncRNAs (Figure 1). The presence of
housekeeping mitochondrial nuclear-encoded ncRNAs has
been postulated for decades. These ncRNAs include tRNAs
(tRNALeu

UAA, tRNAGln
UUG, tRNAGln

CUG, tRNALys
CUU), 5S

rRNA, RMRP, and RNase P (Chang and Clayton, 1987a;
Chang and Clayton, 1987b; Kiss et al., 1992; Yoshionari et al.,
1994; Magalhaes et al., 1998; Puranam and Attardi, 2001;
Holzmann et al., 2008). A systematic analysis of mitochondrial
transcriptome further strengthened these claims. RNA-seq from
143B cells mitochondria and mitoplasts revealed the presence of
several nuclear- and mitochondrial-encoded small RNAs and
antisense transcripts (Mercer et al., 2011). Soon afterward,
Rackham et al. (2011) observed by RNA-seq on HeLa cells that
ncRNAs, excluding rRNAs and tRNAs, make up 15% of the
human mitochondrial transcriptome, and identified three
lncRNAs transcribed from the mtDNA. Follow-up studies have
FIGURE 2 | mtDNA map showing heavy (outside circle) and light (inside circle) strand and within them the control region with promoters (HSP1, HSP2, LSP), and
genes encoding for 13 mitochondrial proteins, 2 rRNAs, 22 tRNAs, and recently discovered mitochondria-encoded lncRNAs (mtlncRNAs) (highlighted with red star).
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also reported the presence of ncRNAs encoded by the nuclear
DNA, especially miRNAs and lncRNAs, within mitochondria
across various cell types and tissues, suggesting that these
ncRNAs may play important roles in the mitochondrial
homeostasis (Kim et al., 2017b; Jeandard et al., 2019). The
summary of the proposed nuclear-encoded ncRNAs is given in
Table 1.

Although detection of ncRNAs in mitochondria paved the
way to more extensive research in this field with several examples
of ncRNAs functionally described as directly impacting
mitochondrial biology, these transcripts are far from being well
characterized. It is important to mention that there are (still)
many controversies and debates ongoing about the sole existence
of ncRNA in mitochondria. The main obstacle presents the
technical challenge of truly separating isolated and
uncontaminated mitochondria from other membrane vesicles
(endoplasmic reticulum (ER), the Golgi apparatus, the
endosomes) they are tightly associated within the cell
(Vendramin et al., 2017). Therefore, to assess the purity of
mitochondria or mitoplasts, ER or other membrane vesicles
Frontiers in Genetics | www.frontiersin.org 596
should be used instead of cytosol or nucleus, which was not
always the case. Mitoplasts—rather than mitochondria—should
be subjected to RNase treatment before lysis in order to minimize
the risk of contamination. Unfortunately, these control steps
have not always been performed systematically, so the published
data is to date a complicated topic of many debates (Vendramin
et al., 2017). Moreover, implementation of high sensitive NGS
techniques such as deep sequencing is likely to detect small
amounts of contaminants, leading to data misinterpretation.
Finally, as this field is still very fresh, many studies miss
independent replicates and functional studies are published by
one research group.

Despite these controversies, an increasing body of evidence has
connected ncRNAs and their machinery with mitochondrial
biology. In this review, we focus on classes of ncRNAs described
to be functionally related with and/or localized in mitochondria:
the housekeeping ncRNAs, miRNAs, and lncRNAs. We also take
up the topic of mitochondrial micropeptides, recently discovered
to be encoded within regions initially annotated as non-coding.
Overall, we summarize knowledge on ncRNAs in mitochondrial
TABLE 1 | Nuclear-encoded ncRNAs discovered in mitochondria.

RNA Function in
cytosol/nucleus

Proposed function
in mitochondria

Evidence for mitochondrial
localization

Reference

tRNAs (tRNALeu
UAA,

tRNAGln
UUG, tRNA

Gln
CUG,

tRNALys
CUU)

Translation Translation? RNA-seq Rubio et al., 2008
RT-qPCR Mercer et al., 2011
Enrichment in mitoplasts compared to
crude mitochondria

Gowher et al., 2013

5S rRNA Component of the cytosolic
ribosome

Translation? RT-qPCR and Northern blot Yoshionari et al., 1994
Enrichment in mitoplasts compared to
crude mitochondria

Magalhaes et al., 1998

Import into isolated mitochondria Entelis et al., 2001
RNA-seq Mercer et al., 2011
Fluorescence microscopy Autour et al., 2018
FISH Zelenka et al., 2012

RMRP 5.8S rRNA processing RNA metabolism? Enrichment in mitoplasts compared to
crude mitochondria

Chang and Clayton, 1987a

RT-qPCR Wang et al., 2010
RNA-seq Mercer et al., 2011
Import into isolated mitochondria,
Electron microscopy

Noh et al., 2016

RNASE P Component of RNase P Pre-tRNA processing? RT-qPCR Bartkiewicz et al., 1989
Enrichment in mitoplasts in comparison
to crude mitochondria

Puranam and Attardi, 2001

Import into isolated mitochondria Wang et al., 2010
RNA-seq Mercer et al., 2011

hTERC Component of telomerase Processed and transported to
cytosol?

RT-qPCR Cheng et al., 2018

miRNAs and pre-miRNAs mRNA degradation/
repression of mRNA
translation

Repression or activation of
translation, repression of
transcription

RNA-seq
miRNA-microarray
Northern blot
Enrichment in mitoplasts in comparison
to crude mitochondria
FISH
Immunostaining

Summarized in Table 3

SAMMSON Facilitates p32 targeting to
the mitochondria in
melanoma cells

? RT-qPCR Leucci et al., 2016
FISH Vendramin et al., 2018

SRA Co-activates steroid hormone
receptors

? Computational screen Baughman et al., 2009

MALAT1 Transcriptional regulator Mitochondrial metabolism? FISH Zhao et al., 2019
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biology and discuss their discovery, biosynthesis, import, and
function in the context of both health and disease. Finally, we
touch their potential as prognosis markers and therapeutic targets.
HOUSEKEEPING NCRNAS LOCALIZED IN
MITOCHONDRIA

Several tRNAs, 5S rRNA, RMRP, and RNase P present
housekeeping ncRNAs whose mitochondrial localization,
transport, and function have been discussed for years. For
some of them, their interacting RNA-binding proteins (RBPs)
have been proposed and associated with mitochondrial import
and function (Figure 3, Table 1). However, the exact import
Frontiers in Genetics | www.frontiersin.org 697
mechanism across mitochondrial membranes and the function
of these ncRNAs remain unclear. It is important to note that
reports of these ncRNAs have been sparse and therefore
questionable, so more evidence is needed to confirm/deny their
presence and role in mitochondria.

Nuclear-encoded tRNAs have been observed in mitochondria
across many species, as most eukaryotes lack some of the essential
tRNAs in their mtDNA and must import them (Tarassov et al.,
2007; Schneider, 2011). Even though human mtDNA encodes all
the necessary tRNAs, published data indicate that they are able to
import some of the cytosolic tRNAs through conserved protein
machinery. In vitro experiments have shown that the synthetic
transcripts of yeast tRNAs could be internalized by the isolated
human mitochondria (Kolesnikova et al., 2000; Entelis et al.,
FIGURE 3 | Proposed import mechanisms of tRNAs (A), 5s rRNA (B), and RMRP (C) into human mitochondria. ncRNAs could be targeted by various nuclear-
encoded proteins localized in the nucleus and close or inside the organelle. The mechanism behind translocation across mitochondrial membranes is still unknown,
but RMRP and Rnase P seem to require the PNPase (D).OMM, outer mitochondrial membrane; IMS, intermembrane space; IMM, inner mitochondrial membrane.
February 2020 | Volume 11 | Article 95

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Gusic and Prokisch ncRNAs and Mitochondria
2001). Later, nuclear-encoded tRNAs have been detected in
mitochondria (Rubio et al., 2008; Mercer et al., 2011), namely
tRNALeu

UAA, tRNA
Gln

UUG, and tRNA
Gln

CUG. Gowher et al. (2013)
successfully targeted yeast tRNALys

CUU into human mitochondria
in vivo, suggesting similarities in the tRNA import between the
two species (Figure 3A). The current proposal by Gowher et al.
(2013) is that tRNAs are recruited from the cytosol to the
mitochondria with the precursor pre-KARS2 (mitochondrial
lysyl-tRNA synthetase), helped by ENO2 (glyolitic enlolase). It is
still unclear how the tRNA-pre-KARS2 complex then gets
internalized into the mitochondrial matrix (Gowher et al., 2013;
Kim et al., 2017b). Possible protein import pathway could consist
of the translocase of the outer (TOM) and inner (TIM)
mitochondrial membrane, as in yeast (Tarassov and Martin,
1996). Although the import of tRNA is yet to be fully understood,
it could present a novel concept for therapy for disorders caused by
defects in mtDNA-encoded tRNAs. Successful import of tRNA
compensating the mutated mtDNA could rescue defects in
mitochondrial translation. Rescue of mtDNA mutations by the
import of designed tRNAs to mitochondria has been reported in
vitro and in vivo (Salinas et al., 2008; Wang et al., 2012a), but more
recent reports are missing.

Several studies have suggested that 5S rRNA is imported to the
mammalianmitochondria (Yoshionari et al., 1994;Magalhaes et al.,
1998). Entelis et al. (2001) suggested that mitochondrial 5S rRNA
might substitute for its lost counterpart andbepart ofmitoribosome
large subunit. Smirnov et al. (2008) proposed a model of
mitochondrial 5S rRNA import (Figure 3B), starting with the
recognition and transport of 5S rRNA from the nucleus to the
cytoplasm by TFIIIA (Ciganda andWilliams, 2011). In the cytosol,
5S rRNAwas proposed to interact with pre-MRPL18 (precursor of
mitochondrial ribosomal protein L18). This interaction might
induce a conformational change in 5S rRNA that makes it
recognized and bound by the mitochondrial enzyme Rhodanese,
which helps it possibly translocate intomitochondria through a yet
unknown mechanism. In the matrix 5S rRNA was proposed to
associate with the mature MRPL18 and with mitoribosomes,
affecting mitochondrial translation efficiency (Smirnov et al.,
2010; Smirnov et al., 2011). However, as cryo-electron
microscopy did not detect 5S rRNA within the mammalian
mitoribosome 5S rRNA (Greber et al., 2015), its possible function
in mitochondria remains enigmatic.

RMRP is a part of the RNase MRP, a ribonucleoprotein
complex whose function has been discussed for decades. In the
nucleus, it is involved in the pre-rRNA processing (Schmitt and
Clayton, 1993; Chu et al., 1994; Goldfarb and Cech, 2017). In
mitochondria, it was postulated to cleave RNA complementary
to the light chain near the D-loop sites that mark the transition
from RNA to DNA synthesis (Chang and Clayton, 1987b; Lee
and Clayton, 1997). Three RNA-binding proteins (RBPs- HuR,
PNPase, and GRSF1) have been implicated in the RMRP
transport and role in mitochondria (Figure 3C). In the
nucleus, RMRP is bound to HuR, which promotes its export to
the cytosol in a CRM1-dependent manner (Noh et al., 2016). The
exported RMRP might be then targeted into the mitochondrial
Frontiers in Genetics | www.frontiersin.org 798
intermembrane space through yet unknown mechanisms where
PNPase was suggested to enable its import into the matrix
(Wang et al., 2012b), after which its abundance in the matrix
was reported to be increased through the interaction with GRSF1
(Noh et al., 2016). However, recent studies cast a shadow on the
role of RMRP complex in mitochondria. Agaronyan et al. (2015)
have shown that the RNA primer formation is a result of a
premature arrest of the mitochondrial RNA polymerase after a
G-quadruplex. Moreover, only the 3′ half (~130 nt) of RMRP
could be found in mitochondria, indicating a processing that
would result in a loss of catalytic activity (Esakova and
Krasilnikov, 2010). These reports indicate that RMRP unlikely
acts as an endonuclease in mitochondria. However, its
interaction with GRSF1, an important component of the RNA
granules (Antonicka et al., 2013; Jourdain et al., 2013), might still
make it involved in the RNA metabolism.

RNase P processes the 5′ leader of precursor tRNA, which is a
critical step of processing mitochondrial polycistronic transcripts
(Ojala et al., 1981; Rackham et al., 2016). Two types of RNase P
are known: ribonucleoproteins RNases P containing RNase P and
protein-only RNases P (PRORP) (Lechner et al., 2015; Klemm
et al., 2016). In the majority of species, including humans, it is
assumed that the ribonucleoprotein RNase P acts in the nucleus
and PRORP in mitochondria (Holzmann et al., 2008; Lechner
et al., 2015). Strengthening this assumption, studies have
reported that mammalian mitochondrial RNAse P does not
require the catalytic RNA component for catalysis (Rossmanith
et al., 1995; Holzmann et al., 2008). Nevertheless, RNase P was
partially purified from HeLa cells mitochondria. Detected
“mtRNase P”, together with the observed sensitivity of RNAse
P to the nuclease treatment, suggested that RNAse P acts as a
ribonucleoprotein also in mitochondria (Doersen et al., 1985). In
addition, several groups indicated that mtRNase P is imported
into the mitochondrial matrix through interaction with PNPase
(Wang et al., 2010; Mercer et al., 2011; Noh et al., 2016) (Figure
3D). However, as so far functional RNase P ribonucleoprotein
has not been reported in mitochondria, the existence ofmtRNase
P remains controversial (Jeandard et al., 2019).

hTERC is the RNA component of the human telomerase,
where it serves as a sequence template for the telomere
replication (Gall, 1990). As its sequence contains a region
similar to an RMRP and RNase P short stem-loop that was
proposed to enable their entry into mitochondria (Wang et al.,
2010), hTERC was also proposed to be mitochondria-localized
(Cheng et al., 2018). It was detected by the RT-PCR in purified
mitoplasts, but as as a shorter, 195 nt-long transcript, which was
termed TERC-53. Zheng et al. (2019) demonstrated that TERC-
53 is mostly localized in the cytosol, where it regulates cellular
senescence and is involved in cognition decline in mice
hippocampus without affecting telomerase activity or
mitochondrial functions. Having this in mind, the authors
hypothesized that TERC-53 is exported from the mitochondria
back to the cytosol (Cheng et al., 2018; Zheng et al., 2019).
However, this hypothesis indicates hTERC processing occurring
within the mitochondria, which has so far not been reported.
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MICRORNAS

Vertebrate genomes contain thousands of miRNAs: according to
MiRBase catalog, with the human genome containing 2,654 mature
sequences (Kozomara et al., 2019). The biogenesis and biological
functions of miRNAs have been widely studied in eukaryotic cells
(Bartel, 2009) (Figure 4). In short, miRNAs are transcribed from the
intergenic regions or in antisense orientation to coding regions as
the primary miRNA transcript (pri-miRNA). pri-miRNA is
processed in the nucleus by Drosha and/or DiGeorge syndrome
chromosomal region 8 (DGCR8). This results in premature miRNA
(pre-miRNA) which is then bound by exportin 5 (XPO5). XPO5,
along with RanGTP, enables the export of the pre-miRNA through
the nuclear pore into the cytosol. There RNase Dicer (DICER1 in
humans) cleaves it, producing mature double-stranded miRNA.
From two strands, the “passenger strand” undergoes RNA
degradation while the remaining “guide strand” associates with
argonaute 2 (AGO2) and becomes part of a multiprotein RNA-
induced silencing complex (RISC) (Han et al., 2006). The main
function of miRNA within RISC is post-transcriptional gene
regulation by promoting mRNA degradation or translational
repression by sequence-specific binding to the target mRNA.
mRNA degradation is achieved via AGO2 (Carthew and
Sontheimer, 2009; Chekulaeva and Filipowicz, 2009).
Translational control is mediated by GW182 (Czech and
Hannon, 2011; Iwakawa and Tomari, 2015). Moreover, miRNAs
Frontiers in Genetics | www.frontiersin.org 899
have also been implicated in some non-canonical functions, such as
direct transcription and chromatin state regulation in the nucleus,
and even translational promotion (Vasudevan, 2012; Yao et al.,
2019). Each miRNA can target multiple genes, enabling them to
regulate the expression of over 60% of the human genes and
therefore moderate any part of cellular biology (Bartel, 2009;
Friedman et al., 2009). Focusing on mitochondria, based on their
localization and genetic origin, three different classes of
mitochondria-related miRNAs can be distinguished
(1) cytoplasmic, nuclear-encoded miRNAs targeting
mitochondria-related transcripts; (2) mitochondrial, nuclear-
encoded miRNAs; and (3) mitochondrial, mtDNA-encoded
miRNAs (Bandiera et al., 2013) (Figure 4). The two latter classes,
termed mitomiRs, are yet to be functionally deciphered.

Cytoplasmic miRNAs With Impact on
Mitochondria
As about 1,500 nuclear-encoded proteins are imported into
mitochondria and involved in diverse mitochondrial functions,
many miRNAs have been described as directly targeting their
mRNAs in the cytoplasm. By downregulating transcripts
encoding for proteins involved in a variety of mitochondrial
processes, reported miRNAs can indirectly influence
mitochondrial biology and homeostasis. A summary of
miRNAs reported to target nuclear-encoded mitochondrial
transcripts is given in Table 2.
FIGURE 4 | miRNA biogenesis, function in the cytoplasm within RISC, and proposed transport/presence in mitochondria. RISC, RNA-induced silencing complex.
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TABLE 2 | miRNAs and their target genes across mitochondrial functions.

miRNA Target Reference

(A) TCA cycle
miR-148a CS Tibiche and Wang, 2008
miR-148b CS Tibiche and Wang, 2008
miR-299-5p CS Tibiche and Wang, 2008
miR-19a-3p CS Tibiche and Wang, 2008
miR-19b-3p CS Tibiche and Wang, 2008
miR-122a CS Tibiche and Wang, 2008
miR-421 CS Tibiche and Wang, 2008
miR-494 CS Tibiche and Wang, 2008
miR-183 IDH2 Vohwinkel et al., 2011
miR-743a MDH2 Shi and Gibson, 2011
miRNA-26a PDHX Chen et al., 2014
miR-210 SDHD Puissegur et al., 2011
miR-147b SDHD Zhang et al., 2019
miR-124 SUCLG2 Wang and Wang, 2006
(B) OXPHOS
miR-101-3p ATP5B Zheng et al., 2011
miR-127-5p ATP5B Willers et al., 2012
miR-338-5p ATP5G1 Aschrafi et al., 2012
mitomiR-378 ATP6 Jagannathan et al., 2015
miR-181c COX1 Das et al., 2014
miR-338 COX4 Aschrafi et al., 2008
miR-34a CYC Bukeirat et al., 2016
miR-210-5p ISCU, COX10 Chan et al., 2009; Chen

et al., 2010
miR-210 SDHD Puissegur et al., 2011
miR-147b SDHD Zhang et al., 2019
miR-663 UQCC2 Carden et al., 2017
(C) Fatty acid metabolism
miR-204-5p ACACB Civelek et al., 2013
miR-224-5p ACSL4 Peng et al., 2013
miR-122 Aldoa Esau et al., 2006
miR-212 CACT Soni et al., 2014
miR-132 CACT Soni et al., 2014
miR-370 CPT1A Iliopoulos et al., 2010
miR-33b CPT1A Rottiers and Naar, 2012
miR-378, miR-378* CRAT Carrer et al., 2012
miR-33a CROT Gerin et al., 2010
miR-107 PANK Wilfred et al., 2007
miR-103 PANK Wilfred et al., 2007
miR-29a-3p PPARd Kurtz et al., 2014
miR-199a-5b PPARd el Azzouzi et al., 2013
(D) Aminoacid metabolism
miR-29b DBT Mersey et al., 2005
miR-23a-3p GLS Gao et al., 2009
miR-23b-3p GLS Gao et al., 2009
miR-193b SHMT2 Leivonen et al., 2011
(E) Nucleotide metabolism
miR-502 DHODH Zhai et al., 2013
miR-940 MTHFD2 Xu et al., 2019
miR-149 MTHFR Wu C. et al., 2013
miR-125 MTHFR Stone et al., 2011
miR-22 MTHFR Stone et al., 2011
(F) Mitochondrial transport
miR-15b Arl2 Nishi et al., 2010
miR-16 Arl2 Nishi et al., 2010
miR-195 Arl2 Nishi et al., 2010
miR-424 Arl2 Nishi et al., 2010
miR-25 Mitochondrial

calcium uniporter
Marchi et al., 2013

miR-155 SLC25A19 Kim et al., 2015
miR-132 SLC25A20 Soni et al., 2014
miR-212 SLC25A20 Soni et al., 2014

(Continued)
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miRNA Target Reference

miR-184 Slc25a22 Morita et al., 2013
miR-141 Slc25a3 Baseler et al., 2012
(G) Mitochondrial dynamics
miR-30a-5p DRP1 Li et al., 2010
miR-483-5p Fis1 Fan et al., 2015
miR-484 Fis1 Wang K. et al., 2012
miR-499 Fnip1, Calcinurin van Rooij et al., 2009; Wang

et al., 2011; Liu L. et al., 2016
miR-9/9* GTPBP3, MTO1,

TRMU
Meseguer et al., 2015

miR-27 MFF Tak et al., 2014
miR-761 MFF Long et al., 2013
miR-593 MFF Fan et al., 2015
miR-200a-3p MFF Lee et al., 2017
miR-140 MFN1 Guan et al., 2016
miR-19b MFN1 Li X. et al., 2014; Joshi et al.,

2016
miR-382-5p MFN1, MFN2,

OPA, SIRT1,
PGC1-a

Dahlmans et al., 2019

miR-214 MFN2 Bucha et al., 2015
miR-106a MFN2 Zhang et al., 2016
miR-195 MFN2 Zhou et al., 2016
miR-30 family P53 Li et al., 2010
miR-149 PARP-2 Mohamed et al., 2014
miR-23a PGC1-a Russell et al., 2013
miR-696 PGC1-a Aoi et al., 2010
miR-27 PHB Kang et al., 2013
miR-494 TFAM Yamamoto et al., 2012
miR-23b-5p TFAM Jiang et al., 2013
miR-590-3p TFAM Wu et al., 2016
miR-155-5p TFAM Quinones-Lombrana and

Blanco, 2015
miR-200a TFAM Yao et al., 2014
miR-26 UCP1 Karbiener et al., 2014
miR-15a UCP2 Sun et al., 2011
miR-133a UCP2 Chen et al., 2009
miR-7 VDAC1 Chaudhuri et al., 2016
(H) Autophagy, mitophagy and ROS
miR-146a Bcl-2 Rippo et al., 2014
miR-181a Bcl-2 Rippo et al., 2014
miR-195 Bcl-2 Singh and Saini, 2012
miR-24-2 Bcl-2 Singh and Saini, 2012
miR-365-2 Bcl-2 Singh and Saini, 2012
miR-497 Bcl-2 Yadav et al., 2011
miR-146 Bcl-2 Zhang et al., 2017
miR-15a Bcl-2 and Mcl-1 Cimmino et al., 2005
miR-16 Bcl-2 and Mcl-1 Cimmino et al., 2005
miR-9 BCL2L11 Li Y. et al., 2014
miR-30a Becn-1 Zhu et al., 2009
miR-17-92 Bim Molitoris et al., 2011
miR-92a Bim Tsuchida et al., 2011
miR-145 BNIP3 Du et al., 2017
miR-101 Mcl-1 Frankel et al., 2011
miR-29 Mcl-1 Mott et al., 2007
miR-181 Mcl-1, Bcl-2 Ouyang et al., 2012
miR-137 NIX, FUNDC1 Li W. et al., 2014
miR-504 P53 Hu et al., 2010
miR-125b P53, Bak Le et al., 2009; Sun et al.,

2013
miR-21 PTEN Meng et al., 2007; Zhang

et al., 2010
miR-128 SIRT1 Adlakha et al., 2013

(Continued)
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TCA Cycle
The tricarboxylic acid (TCA) cycle is a central pathway in the
metabolismof sugars, lipids, andaminoacids. SeveralmiRNAshave
been described to directly target transcripts of enzymes involved in
its chemical reactions (Figure 5, Table 2A). For example,miR-26a
targets subunit X of pyruvate dehydrogenase (PDH). As PDH
catalyzes a crucial reaction before acetyl-coA enters the TCA
cycle, its repression is leading to the decreased levels of acetyl-coA
and the accumulation of pyruvate (Chen et al., 2014). In cancer
research,miRNAshavebeendiscovered tohave a role indeveloping
drug tolerance. Altered miR-147b initiates a reversible state of
tolerance to osimertinib in lung cancer cells by binding SDHD
(Zhang et al., 2019). Pretreatment with a miR-147b inhibitor
delayed osimertinib-associated drug tolerance, providing a
promising target for preventing tumor relapse (Zhang et al., 2019).

Oxidative Phosphorylation System (OXPHOS)
OXPHOS system is composed of five protein complexes in the
inner mitochondrial membrane that through oxidoreductase
reactions generate a proton gradient, ultimately driving ATP
Frontiers in Genetics | www.frontiersin.org 10101
synthesis. Several miRNAs have been described as directly
targeting the OXPHOS subunits or assembly factors (Figure 6,
Table 2B). It was shown that miR-663 positively regulates
OXPHOS subunit and assembly factor protein levels by direct
stabilization of complex III assembly factor UQCC2 (Carden
et al., 2017). In breast cancer cell lines, mitochondrial
dysfunction downregulates miR-663 through hypermethylation
of its promoter, which leads to decreasing OXPHOS proteins
levels and enzymatic activity and stability of supercomplexes,
which promotes tumorigenesis (Carden et al., 2017).

Fatty Acid Metabolism
Fatty acidmetabolism includes catabolic and anabolic processes that
involve triglycerides, phospholipids, steroid hormones, and ketone
bodies. Several miRNAs have been described as regulators of these
processes (Table 2C). As fatty acid oxidation defects have been
linked to the obesity and the development of insulin resistance
(Kusunoki et al., 2006), these miRNAs could serve as potential
therapeutic targets. As an example, PPARGC1B encodes for PGC-
1b, a transcriptional coactivator that promotes mitochondrial
biogenesis. Interestingly, this locus can also encode for miR-378
and miR-378*, which counterbalance the effect of PGC1-b by
targeting carnitine-O-acetyltransferase (CRAT) (Carrer et al.,
2012). miR-378/378* knockout (KO) mice showed significantly
greater mitochondrial function and oxidative capacity.

Amino Acid Metabolism
The main steps of breakdown and synthesis of amino acids occur
in mitochondria. Several miRNAs have been connected to amino
TABLE 2 | Continued

miRNA Target Reference

miR-335 SOD2, TXNRD2 Bai et al., 2011;
miR-34a SOD2, TXNRD2,

Bcl-2, SIRT1
Yamakuchi et al., 2008; Bai
et al., 2011; Rippo et al.,
2014

miR-17* SOD2, TXNRD2,
GPX2

Xu et al., 2010
FIGURE 5 | miRNAs targeting transcripts encoding proteins involved in the TCA cycle. Red arrows present the repressing effect of miRNA on its target mRNA.
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acid metabolism (Table 2D). Most of the published work is
focused on the regulation of glutaminase (GLS), which catalyzes
the conversion of glutamine to glutamate. miR-23a and miR-23b
participate in targeting glutaminase and thereby contribute to the
mitochondrial amino acid metabolism (Gao et al., 2009).

Nucleotide Metabolism
Parts of the nucleotide and one-carbon metabolism are occurring
in mitochondria. Various miRNAs can influence these processes
(Desler et al., 2010) (Table 2E). For example, miR-149, miR-125,
and miR-22 have been found to target MTHFR (Stone et al.,
2011; Wu C. et al., 2013).

Mitochondrial Transport
Many mitochondrial transporter and carrier proteins enable the
import and export of molecules across the mitochondrial
membranes. By targeting the transcripts encoding for these
proteins, miRNAs are able to influence mitochondrial biology
(Table 2F). It has been shown that the miR-15/16 cluster,
composed of miR-15b, miR-16, miR-195, and miR-424, target
Arl2 (Nishi et al., 2010).

Mitochondrial Dynamics
Mitochondria are constantly changing their size, shape, and
number to maximize the capacity for OXPHOS and answer
the cell needs. This is achieved through the coordinated
processes of biogenesis, fission, and fusion (Tilokani et al.,
2018). Several miRNAs have been shown to be involved in the
regulation of mitochondrial dynamics by directly or indirectly
targeting these key factors (Figure 7, Table 2G). miR-149
indirectly promotes mitochondrial biogenesis by inhibiting
Frontiers in Genetics | www.frontiersin.org 11102
PARP-2, which increases the NAD+ levels and SIRT-1 activity,
finally leading to the increased activity of PGC-1a, the master
regulator of mitochondrial biogenesis. Skeletal muscles from a
high fat diet-fed obese mice have low levels of miR-149 and
present with mitochondrial dysfunction, which might be due to
miR-149-induced SIRT-1/PGC-1a pathway dysregulation.
Noteworthy, miRNAs have been implicated in the
mitochondria-mediated transition of skeletal muscle fiber
types. miR-499 directly targets Fnip1, a negative regulator of
AMPK, a known activator of PGC-1 a, and thereby triggers a
muscle mitochondrial oxidative metabolism program (Liu L.
et al., 2016). The miR-30 family, highly expressed in heart, was
reported to regulate mitochondria fission and apoptosis by
directly targeting p53, a transcriptional activator of Drp1 (Li
et al., 2010). In addition, Drp1 is indirectly regulated bymiR-499,
which targets Drp1 activator dephosphatase calcinurin (van
Rooij et al., 2009; Wang et al., 2011). Finally, miR-499
transcription is regulated by p53 on the transcript level (Wang
et al., 2011).

MELAS syndrome is caused by mutations in mtDNA
affecting tRNALeu

UUR. One of the phenotypes of MELAS
patients is the increased oxidative stress. In addition, mutant
tRNAsLeuUUR have reduced levels of the taurine-containing
chemical modification at the wobble uridine (U34). Meseguer
et al. (2015) reported that elevated oxidative stress in mutant cells
leads to induction of miRNA-9/9*, which then act as post-
transcriptional repressors of the tRNA-modification enzymes
GTPBP3, MTO1, and TRMU. Downregulation of these
enzymes disrupts the chemical modification at U34 of non-
mutant tRNAs and contributes to mitochondrial dysfunction
(Meseguer et al., 2015).
FIGURE 6 | miRNAs targeting transcripts encoding proteins involved in the OXPHOS. Red arrows present the repressing effect of miRNA on its target mRNA.
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Autophagy, Mitophagy, and Reactive Oxygen
Species (ROS) Production
Autophagy is a catabolic process which prevents cell damage and
promotes the cell survival by degrading and/or recycling
dysfunctional components during cellular stress (Dikic and
Elazar, 2018). Mitophagy is a form of autophagy that removes
faulty or superfluous mitochondria, regulating their number to
match the cellular needs (Pickles et al., 2018). miRNAs are also
involved in the mitochondria-mediated apoptosis (Figure 7,
Table 2H). Moreover, they are frequently dysregulated in
human cancers, where they may function as potent oncogenes
or tumor suppressors (Peng and Croce, 2016). Since
mitochondrial dysfunction is one of the hallmarks of cancer
(Wallace, 2012), miRNAs targeting apoptosis-related transcripts
could be important in the development of cancer therapies. miR-
101 (Frankel et al., 2011), miR-30a (Zhu et al., 2009), miR-15a,
and miR-16 (Cimmino et al., 2005) have been reported to target
oncogenic Bcl-2 and Mcl-1, and are frequently deleted or
decreased in chronic lymphocytic leukemia. miR-21 levels have
been shown to be significantly increased, leading to reduced
expression of PTEN in human lung and hepatocellular
carcinomas (Meng et al., 2007; Zhang et al., 2010).

mitomiRs
MitomiRs are defined as miRNAs with mitochondrial localization
(Bandiera et al., 2011). Themajority ofmitomiRs were suggested to
Frontiers in Genetics | www.frontiersin.org 12103
originate from the nuclear genome, but also there were reports of
mtDNA-encoded miRNAs. Different experimental approaches
across mammalian tissues and cell lines indicated the
mitochondrial presence of miRNAs, but also proteins involved in
miRNAs biogenesis and function, suggesting miRNAs import,
transcription, and/or processing and function within
mitochondria themselves. Intriguingly, mitomiRs have some
unique features which distinguish them from conventional
cytosolic miRNAs (Bandiera et al., 2011; Barrey et al., 2011). Most
of the nuclear-encoded mitomiRs loci are located within
mitochondrial gene clusters or close to mitochondrial genes, and
their transcriptions are often coregulated (Baskerville and Bartel,
2005; Bandiera et al., 2011). Their size slightly differs (between 17
and 25 nt instead of the average 22 nt), and they contain short 3′
overhangs, stem-loop secondary structures, and unique
thermodynamic features (Vendramin et al., 2017). They lack 5′
cap and most were predicted in silico to target multiple mtDNA
sites. It has thus been speculated that at least some of these features
could present a signal for entry into mitochondria (Bandiera et al.,
2011; Barrey et al., 2011).

mitomiRs have been found via different approaches (from
miRNA microarray and RT-qPCR to deep sRNA-sequencing)
and across various tissues and organisms. To begin with,
sequence analysis of cDNA libraries from mice mitochondrial
RNA identified clones mapping to four nuclear-encoded
miRNAs and three regions within the D-loop (Lung et al.,
FIGURE 7 | miRNA targeting transcripts encoding proteins involved in the mitochondrial dynamics, autophagy, mitophagy and ROS production. Red arrows present
inhibitory effect of miRNA on its target mRNA or repressive effect of protein on its interaction partners, and green arrows present the activating effect of protein on its
interaction partner.
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2006). Other reports on miRNAs localized in mammalian
mitochondria have expanded in the past decade (Kren et al.,
2009; Bandiera et al., 2011; Barrey et al., 2011; Mercer et al., 2011;
Sripada et al., 2012; Jagannathan et al., 2015), as summarized in
Table 3. For example, Kren et al. (2009) reported by miRNA
microarray 15 nuclear-encoded miRNAs from highly purified rat
liver mitochondria and further strengthened their findings with
Northern blot and stem-loop RT-qPCR analyses. Barrey et al.
(2011) in silico predicted 33 pre-miRNAs and 25 miRNAs
targeting mtDNA and experimentally confirmed localization of
pre-mir302a, let-7b, and mir-365 to isolated mitochondria from
the human myotubes. Mercer et al. (2011) detected 31
mitochondria-encoded small RNAs in human 143B mitoplasts
by sRNA-seq, the majority (84%) derived from mt-tRNA genes.

The presence of miRNA-associated proteins in the
mitochondria was only recently recognized (summarized in
Table 4). Wang et al. (2015a) and Vargas et al. (2016) reported
Dicer in the rat brain, but it was reported as absent in the
mitochondria isolated from the heart (Chen et al., 2010; Das
et al., 2012; Jagannathan et al., 2015). So far, only one
colocalization of pre-miR-338 and Dicer in rat brain
mitochondria has been published (Vargas et al., 2016). If
indeed true, the presence of Dicer could indicate that mature
Frontiers in Genetics | www.frontiersin.org 13104
miRNA are formed from the precursors in mitochondria, from
where they could directly affect the mitochondrial transcripts or
even be exported to act in the cytosol (Bienertova-Vasku et al.,
2013). However, mitochondrial localization of Dicer, Drosha,
and DGCR8 has not yet been validated by other groups. Several
studies have documented the presence of RNA-interference
components, most notably AGO2, in the mitochondria,
implying the functional importance of mitomiRs. As an
example, Ago2 immunoprecipitated with miRNA from
mitochondria in rat cardiac myocytes (Das et al., 2012). In
addition, FXR1, a postulated RISC subunit, has been found
together with Ago2 in the mitochondrial matrix of mouse
cardiomyocytes (Jagannathan et al., 2015). However, an
important factor for miRNA-mediated translational repression-
GW182 has not been detected in any studies (Ro et al., 2013;
Zhang et al., 2014). Finally, the presence of Dicer and AGO2 in
mitochondria need not necessarily imply processing and
function of mitomiRs, as these enzymes are involved also in
other, miRNA-independent, processes (Janowski et al., 2006;
Song and Rossi, 2017).

Although protein transport across mitochondrial membranes
is well described, the translocases for RNA transport across
mitochondrial membranes remain speculative. Several
TABLE 3 | miRNAs detected in mitochondria, mitomiRs.

mitomiR Tissue Method of detection Reference

Mt-1; Mt-2; Mt-3; Mt-4; let7f-;, let-7g; 122a; 101b Mouse liver and kidney cDNA library Lung et al., 2006
130a; 130b; 140; 290; 320; 494; 671; 202; 705; 709; 721; 761; 763; 198;
765

Rat liver miRNA microarray, Northern
blot, RT-qPCR

Kren et al., 2009

690; 122; 451; 720; let-7f; let-7b; let-7g; 29a; 26a; 192; 101; 22; 805; 29c;
7a; 98; 26b; 30b; 7c; 709

Mouse liver miRNA microarray, RT-qPCR Bian et al., 2010

1973; 1275; 494; 513a-5p; 1246; 328; 1908; 1972; 1974;638;
1977;1978;1201

HeLa cells miRNA microarray, RT-qPCR Bandiera et al., 2011

pre-mir302a; pre-let-7b; 365; 720; 133b; 1974; 24; 133a; 125a-5p; 1979;
103; 125b; 103; 221; 23a; let-7b; 423-3p; 106a; 23b; 92a; 193b; 93; 532-
3p; 20a; 149; 181a; 503; 210; 107; 574-3p; 34a; let-7g; miRPlus-D1033;
19b; 197; 324-3p; 127-3p; 324-5p; 484; 151-5p; 486-5p; 542-5p; 199a-
5p; 501-3p; 675*; 134; 490-3p; 598

Human myotubes FISH, RT-qPCR Barrey et al., 2011

103-3p; 146a-5p; 16-5p 143B cells sRNA-seq Mercer et al., 2011
181c-5p Rat cardiac myocytes miRNA microarray,

immunostaining, RT-qPCR
Das et al., 2012

107; 181a-5p; 221-5p; 320a; let-7b; let-7g HEK293 and HeLa cells sRNA-seq, RT-qPCR Sripada et al., 2012
1 C2C12 cells CLIP-seq, miRACE, RT-

qPCR
Zhang et al., 2014

143-3p; 378a-3p; 146a-5p; 181c-5p; 501-3 143B and 206 r° cells sRNA-seq, RT-qPCR Dasgupta et al., 2015
let-7d-5p; let-7b-5p; let-7c-5p; let-7f-5p; mghv-M1-7-3p; 1187; 1224-5p;
125a-3p; 125b-5p; 126-3p; 130a-5p; 133a-3p; 133a-5p; 133b; 135a-1-
3p; 139-3p; 1-3p;144-3p; 149-3p; 149-5p; 188-5p; 1894-3p; 1895; 1897-
5p; 1904; 1934-3p; 1982-5p; 211-3p; 2137; 21a-5p; 22-3p; 23a-3p; 23b-
3p; 24-3p; 26a-5p; 27a-3p; 27b-3p; 2861; 29a-3p; 29b-3p; 29c-3p;
3072-3p; 3081-5p; 3082-5p; 3085-3p; 3092-3p; 3095-3p; 3098-5p; 30a-
5p; 30c-1-3p; 30d-5p; 30e-5p; 3102-5p; 3102-5p.2-5p; 3470a; 378a-5p;
451a; 466b-3p; 466i-5p; 483-5p; 486b; 494-3p; 497-5p; 574-5p; 652-5p;
671-5p; 680; 705; 709; 712-5p; 721; 877-3p; 99a-5p

Mouse heart, HL-1 cells Microarray, RT-qPCR, CLIP-
seq, sRNA-seq

Jagannathan et al., 2015

142-5p; 142-3p; 146; 150a Rat hippocampus, rat
astrocytes

RT-qPCR Wang et al., 2015a

Has-mit-miR-1; Has-mit-miR-2; Has-mit-miR-3; Has-mit-miR-4; Has-mit-
miR-5; Has-mit-miR-6

Human skeletal muscle
myoblasts

Northern blot, RT-qPCR Shinde and Bhadra, 2015

pre-miR-338 Rat SCG neurons qRT-PCR, co-localisation Vargas et al., 2016
371a-5p; 1246; 664b-3p; 513b; 4271; 2392; 4462; 1290; 4449; 3934-
5p1268a

TSCCs miRNA microarray, RT-qPCR Fan et al., 2019
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mechanisms of miRNAs transport into the mitochondria have
been proposed. As shown in Figure 8, the potential players are
AGO2, processing bodies (P-bodies), polynucleotide
phosphorylase (PNPase) and voltage-gated ion channels
(VDAC). AGO2 has been proposed as an important factor in
the subcellular localization of miRNAs. Zhang et al. (2014) have
shown an association of miR-1 with Ago2 in mitochondria and
proposed their mechanism of action. At the baseline, miR-1 is
found in the cytoplasm within RISC with 3′UTR of HDAC4.
However, during myogenesis, GW182 detaches and HDAC4
loses 5′cap and poly(A) tail, suggesting that loss of GW182
alone or in combination with changes in HDAC4 facilitates the
transport of Ago2:miR-1 into mitochondria (Figure 8A). Still, it
remains unclear if AGO2 and miRNA translocate together as a
complex (Figure 8B) or separately (Figure 8C) into the
mitochondria and by which mechanism. Another hypothesis
involves P-bodies, as they interact with mitochondria and can
regulate mRNA decay, mRNA storage, and possibly miRNA
import into different cellular compartments (Huang et al., 2011;
Bandiera et al., 2013; Luo et al., 2018). Activation of several
pathways and phosphorylation at the Ago2 Ser387 site has been
shown to separate the Ago2/miRNA complex from the RISC and
activate its intake into the P-body (Huang et al., 2011; McKenzie
et al., 2016) (Figure 8D). As GW182 is also a P-body subunit
(Liu et al., 2005), it might still have significance for the Ago2-
miRNA import. PNPase is another candidate, as it has already
been postulated to recognize specific structures of the
housekeeping ncRNAs and help RNA fold properly to migrate
through the mitochondrial membranes and return to its original
conformation when they arrive in the mitochondrial matrix
Frontiers in Genetics | www.frontiersin.org 14105
(Wang et al., 2010; Wang et al., 2012a) (Figure 8E). Several
pre-miRNAs share the specific stem-loop structure that PNPase
could recognize and enable import (Wang et al., 2010; Barrey
et al., 2011; Lin et al., 2012). PNPase levels were reported to affect
mitomiR-378 mitochondr i a l l o ca l i z a t i on and co-
immunoprecipitation showed Ago2 association with PNPase,
suggesting that PNPase can bind to the miRNA within the
complex with Ago2 (Shepherd et al., 2017). Transport across
mitochondrial membranes could occur via TOM/TIM
complexes (Figure 8F). Still, additional studies are needed to
prove whether and how Ago2 can go through such small pores,
even if facilitated by PNPase. Finally, it has been demonstrated
that VDAC, the most abundant outer mitochondrial membrane
protein in plants, could help transport of tRNAs across the outer
mitochondrial membrane in plant cells (Salinas et al., 2006)
(Figure 8G). This mechanism is yet to be tested in the
animal systems.

Although many have been detected, very few mitomiRs were
functionally described to impact mitochondria (Baradan et al.,
2017). Das et al. (2012) found miR-181c, Ago2, and COX1 in
mitochondrial co-immunoprecipitate, suggesting that mature
miR-181c could translocate to mitochondria and together with
Ago2 repress the translation of this mitochondrial transcript.
Overexpression of miR-181c seems to lead to a loss of COX1 and
an increase COX2 and COX3, resulting in complex IV
remodeling. miR-378 has been proposed to bind ATP6 in
mitochondria in the presence of Ago2 and FXR1, leading to a
decrease of ATP6 in mouse type 1 diabetic heart (Jagannathan
et al., 2015). miR-1, specifically induced during myogenesis, is
able to promote translation of COX1 and ND1 within Ago2-
miRNA complex in mitochondria, while, on the contrary,
suppressing its target transcripts in the cytosol (Zhang et al.,
2014). However, the binding of miR-1 to mitochondrial
transcripts has been suggested only by Ago2 CLIP
experiments, and to date, miR‐1 is the only example of this
non-canonical mitomiR function. Nevertheless, as many
mitochondrial diseases are caused by defects in mitochondrial
translation (Pearce et al., 2013), the upregulation of
mitochondrial translation via miRNAs may be a new
therapeutic route for these diseases which currently have no
cure and few treatment options. Finally, a recent report reveals
the role of mitomiRs in mitochondrial transcriptional regulation.
mitomiR-2392, together with Ago2, was reported to recognize
target sequences in the H-strand and partially inhibit
polycistronic mtDNA transcription in a tongue squamous
cell carcinoma (TSCC) cells, leading to downregulation of
oxidative phosphorylation and upregulation of glycolysis (Fan
et al., 2019).

To summarize, the identification of a miRNA inside
mitochondria has, without a doubt, raised the interest in
studying mitomiRs. However, mitomiRs are far from being
well recognized. It is initially crucial to prevent any
contamination during mitochondrial/mitoplast isolation to
certain their mitochondrial localization. Furthermore, the
mechanisms of their import, including interaction factors and
TABLE 4 | miRNA biogenesis and RISC proteins detected in mitochondria.

Protein Tissue Method of detection Reference

DICER Rat hippocampus Western blot,
immunoprecipitation

Wang et al.,
2015a

Rat total brain, SCG
neurons

Western blot,
immunostaining

Vargas et al.,
2016

AGO2 Mouse liver Western blot Bian et al., 2010
HeLa cells Western blot,

immunostaining,
immunoprecipitation

Bandiera et al.,
2011

Rat cardiac myocytes Immunoprecipitation Das et al., 2012
HeLa cells Immunostaining Sripada et al.,

2012
C2C12 cells Western blot,

immunoprecipitation
Zhang et al.,
2014

143B and 206 r° cells Western blot Dasgupta et al.,
2015

Mouse cardiomyocytes,
HL-1 cells

Western blot,
immunoprecipitation

Jagannathan
et al., 2015

Rat hippocampus Western blot,
immunoprecipitation

Wang et al.,
2015a

TSCC Western blot Fan et al., 2019
AGO3 HEK293 cells Immunostaining Sripada et al.,

2012
FXR1 Mouse cardiomyocytes Western blot,

immunoprecipitation
Jagannathan
et al., 2015
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important sequence features, and functions in mitochondria are
yet to be elucidated. One should be aware that mitomiRs
reported across various cell types and species show a very poor
overlap. This could reflect species and cell type-specific
expression of mitomiRs (Geiger and Dalgaard, 2017). On the
other hand, such low reproducibility raises urgent questions
regarding the techniques used in the published studies
(Vendramin et al., 2017). Although several hypotheses
concerning miRNA import into mitochondria have been
proposed, it remains without convincing experimental
validation. Finally, mitomiRs mode of action in mitochondria
is largely enigmatic. On the one hand, only AGO2 from RISC has
Frontiers in Genetics | www.frontiersin.org 15106
been proposed to reside in the mitochondria and on the other
hand, mitochondrial mRNAs contain no or very small 3′ UTRs,
questioning if they can function as canonical miRNAs.
LONG NON-CODING RNAS

The number of lncRNA genes in mammals varies broadly between
different sources, from less than 20,000 to more than 100,000 in
humans (Zhao et al., 2016; Kopp andMendell, 2018). According to
noncode.org, they are encompassing ∼144 000 loci in humans
(Zhao et al., 2016). Intriguingly, although nucleus-enriched,
FIGURE 8 | Proposed import mechanisms of miRNAs to mammalian mitochondria. A detachment of AGO2 and miRNA from RISC or just GW182 due to AGO2
phosphorylation or some other signal activation (A) could promote their translocation together (B) or separately (C) into the mitochondria. This process could be
stimulated by P-bodies (D). Translocation across mitochondrial membranes is unknown but suggested to be promoted by PNPase (E) and occur within TOM/TIM
complexes (F). Alternatively, miRNAs could rely on VDAC (G) at the OMM, as proposed for tRNAs in plants. OMM, outer mitochondrial membrane; IMS,
intermembrane space; IMM, inner mitochondrial membrane; TOM/TIM, translocases of OMM/IMM; VDAC, voltage-gated ion channels.
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lncRNAs have been observed in different cell compartments,
including mitochondria (Dong et al., 2017). Their biological
activities are highly influenced by their localization in the cell
(Mercer and Mattick, 2013; Fatica and Bozzoni, 2014). lncRNAs
have been suggested to regulate cellular biology via transcriptional
regulation, organization of nuclear domains, and bindings to
proteins or other RNAs (Ulitsky and Bartel, 2013; Kopp and
Mendell, 2018). It is therefore not surprising that their disruption
has been associated with different diseases (Briggs et al., 2015;
Huarte, 2015; Uchida and Dimmeler, 2015).

lncRNAs can be functionally classified into those that act in
cis, and those that act in trans (Kopp and Mendell, 2018). In cis,
the lncRNA locus can regulate chromatin or gene expression of
nearbye genes in at least three potential mechanisms: (1) DNA
elements within the lncRNA promoter or locus carry the
regulatory function, which is not related to the lncRNA or its
production; (2) the act of transcription and/or splicing of the
lncRNA affects nearby genes, irrespective of the transcribed
lncRNA sequence; and (3) the lncRNA transcript alone affects
the nearby genes, most commonly leading to the establishment
of repressive or activating chromatin states. Some lncRNAs
function in trans throughout the cell in, again, at least three
potential mechanisms: (1) lncRNAs affect chromatin states and
gene expression of distant genetic regions, (2) lncRNAs take part
in the nuclear structure and organization (for example, as parts
of speckles and paraspeckles), and (3) lncRNAs interact with
proteins and/or other RNA molecules and modulate their
expression and function (Lee, 2012; Rinn and Chang, 2012).
Moreover, some transcripts initially annotated as lncRNAs are
not non-coding, but actually encoding for biologically active
micropeptides (Anderson et al., 2015; Matsumoto et al., 2017;
Kopp and Mendell, 2018).

Over twenty lncRNAs have been described so far to affect the
mitochondrial biology directly or indirectly. Some act in the
cytosol, by regulating mitochondria-associated genes, often in
interaction with miRNA, thus creating a complex mRNA-
ncRNA regulation network. Other nuclear-encoded lncRNAs
have been described to localize and act in mitochondria. As their
transport mechanism into mitochondria is unknown their
presence remains questionable. Finally, several lncRNAs have
been discovered to be transcribed from mtDNA. These two latter
mitochondria-localized, but origin-different lncRNAs could be
refered to as nuclear-transported mitochondria-associated
lncRNAs (ntmtlncRNAs) and mitochondria-encoded lncRNAs
(mtlncRNAs) (Zhao et al., 2018).
Cytoplasmic lncRNAs With Impact on
Mitochondria
Several lncRNAs, some previously well described in the non-
mitochondrial function, have been associated with mitochondrial
metabolism. As in the case of miRNAs, these lncRNAs were
proposed to impact a variety of mitochondrial functions by
directly targeting or indirectly influencing mitochondrial-related
genes/transcripts/proteins. It should be noted that most of these
studies report an indirect effect of lncRNAs perturbations on
mitochondria function. Besides, most of these lncRNAs were
Frontiers in Genetics | www.frontiersin.org 16107
reported in the context of complex systems such as cancer.
Nevertheless, they could present possible treatment strategies (De
Paepe et al., 2018). A summary of these findings is given inTable 5,
with several examples given below.

Cerox1 (cytoplasmic endogenous regulator of oxidative
phosphorylation 1) has been described as the first direct lncRNA
modulator of OXPHOS. It has been reported to positively regulate
the levels of at least 12 complex I transcripts in miRNA-dependent
fashion, by binding miR-488-3p and blocking its post-
transcriptional repression of these transcripts and enabling
translation. Cerox1 knockdown was shown to decrease the
enzymatic activities of complex I and IV. Accordingly, its
overexpression was shown to increase their enzymatic activities
and halve the cellular oxidative stress (Sirey et al., 2019).

Long et al. (2016) havedescribedTug1 as a regulator ofPGC-1a
transcription in diabetic nephropathy (DN). Tug1-binding site was
identified upstream of the Ppargc1a promoter region. Tug1
interaction with this region recruited PGC-1a to promote its own
gene transcription. Tug1 expression was significantly repressed in
the podocytes of diabetic mice and its overexpression lead to
improved mitochondrial bioenergetics (Long et al., 2016).

Li et al. (2017) proposed the pro-oncogenic role of lncRNA
UCA1 in bladder tumors. UCA1 is supposed to regulate
mitochondrial function through upregulating ARL2, a direct
target of miR-195. In this way, it inhibits the miR-195 signaling
pathway, leading to a tumor growth (Li et al., 2017).

Nuclear-Transported Mitochondria-
Associated lncRNAs (ntmtlncRNAs)
Several nuclear-encoded lncRNAs have been reported in
mitochondria and proposed to regulate their biology
TABLE 5 | Nuclear-encoded lncRNAs affecting mitochondria-related genes.

lncRNA Target Reference

AK055347 Cyp450, ATP synthase,
MSS51

Chen G. Y. et al., 2016

ANRIL PARP, Bcl-2 Zhu et al., 2015; Liu B.
et al., 2016

CARL PHB2 Wang et al., 2014
BATE1 hnRNPU Alvarez-Dominguez et al.,

2015
CCAT2 GLS Redis et al., 2016
Cerox miR-488-3p Sirey et al., 2019
ENSMUST00000136025 BIM Chen X. et al., 2016
FAL1 DRP1 Liu et al., 2019
GAS5 BAX, BAK Gao et al., 2015
HOTAIR MICU1, UQCRB Kong et al., 2015; Zheng

et al., 2015
H19 VDAC1 Li et al., 2016
HOTTIP GLS Ge et al., 2015
MEG3 Bcl-2 Wang et al., 2015b; Liu B.

et al., 2016
MPRL miR-483-5p Tian et al., 2019
Pvt1 c-Myc, Lipe, Cpt1a Alessio et al., 2019
Tug1 PGC1-a Long et al., 2016
UCA1 ARL2, miR-16, GLS Li et al., 2015; Li et al.,

2017
UIHTC PGC1-a Zhang et al., 2018
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(Vendramin et al., 2017; Zhao et al., 2018). However, due to a
very limited number of publications and unresolved import
mechanism, the presence and role of these lncRNAs are yet to
be confirmed.

SAMMSON is predominantly expressed in aggressive
melanomas, where it was described as a promoter of cell
growth (Leucci et al., 2016; Vendramin et al., 2018). It has
been proposed to bind to CARF and promote its binding to
p32 in the cytosol (Vendramin et al., 2018). p32 is a
mitochondrial and cytosolic protein that is required for the
maturation of mitochondrial rRNAs (Wu H. et al., 2013), but
also described as an important player in tumor metabolism
(Fogal et al., 2010). Its interaction with CARF via SAMMSON
promotes its mitochondrial targeting, where it increases protein
synthesis, leading to an increased tumor cell growth (Vendramin
et al., 2018). Knockdown of SAMMSON was shown to impair the
p32 targeting to the mitochondria, resulting in mitochondrial
protein synthesis defects and increased apoptosis, which could be
of therapeutical potential (Leucci et al., 2016). As a fraction of
SAMMSON was found to co-localize and co-purify with
mitochondria, Leucci et al. (2016) proposed that it is
accompanying p32 to the mitochondria.

The steroid receptor RNA activator (SRA) is an important
coactivator of nuclear hormone receptors and a target for several
RBPs, namely SHARP and SLIRP (Colley et al., 2008). By
interaction with SRA, SHARP represses SRA-augmented
estrogen-induced transactivation (Shi et al., 2001). SLIRP binds
to the complex of SRA and SHARP and interferes with the
repressing activity of SHARP. However, SLIRP is predominantly
localized to the mitochondria (Colley et al., 2008; Pagliarini et al.,
2008), where it regulates the expression, processing, and stability
of mRNAs (Baughman et al., 2009; Dong et al., 2017). SRA and
SLIRP were found in mitochondria, but their import and roles
are yet to be explained (Dong et al., 2017).

Metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) is one of the most-studied lncRNAs, mostly
associated with cancer and metastasis (Wu et al., 2015; Sun
and Li, 2019). Recently, Zhao et al. (2019) discovered that
MALAT1, although normally enriched in the nucleus, to be
also enriched in the mitochondria collected from HepG2 cells.
MALAT1-deficient HepG2 cells produced less ATP and had
impaired cell invasion, suggesting a role of this lncRNA in the
mitochondrial metabolism (Zhao et al., 2019).

Mitochondria-Encoded lncRNAs
(mtlncRNAs)
Sets of lncRNAs have been reported to be transcribed from the
mtDNA (Figure 2). Surprisingly, it has been noted that some of
these lncRNAs seem to operate in the nucleus. However, their
trafficking raises questions far beyond the current knowledge
(Dietrich et al., 2015; Vendramin et al., 2017). Up to this date, the
existence and functional relevance of these lncRNAs are still
debatable. Mitochondria-encoded lncRNAs are divided into
three categories:

1. Simple antisense mitochondrial DNA-encoded lncRNAs
Frontiers in Genetics | www.frontiersin.org 17108
Antisense transcripts arising from the ND4 and ND6 loci
were initially detected in cDNA libraries of mice mitochondria,
but Northern blot failed to confirm their presence (Lung et al.,
2006). Later, strand-specific RNA-seq of purifiedmitochondria
identified lncND5, lncND6, and lncCytb as antisense transcripts
(Mercer et al., 2011). Rackham et al. (2011) confirmed existence
of these transcripts by RNA-seq and RT-qPCR, additionally
revealing that they are 58%, 34% and 14% as abundant as their
mRNA counterparts, respectively. These antisense RNAs create
RNA-RNA duplexes with their complementary mRNAs,
suggesting their role in mRNAs expression and stability
(Rackham et al., 2011). Interestingly, Zhao et al. (2019)
discovered that lncCytB is aberrantly transported to the
nucleus in hepatoma HepG2 cells as compared with normal
hepaticHL7702 cells, suggesting a new function of this lncRNA
as a mitochondria-nuclear communicator in cancer.
Furthermore, Gao et al. (2018) discovered within the PacBio
full-length transcriptome dataset the lncRNA MDL1, which
covers the tRNAPro antisense gene and the entireD-loop region,
and its antisense transcriptMDL1AS.

2. Chimeric mitochondrial DNA-encoded lncRNAs
The first member of this class was discovered in mouse

cells, comprised of the 16S rRNA linked to a 121 nucleotide
5′-leader sequence deriving from its complementary strand
(Villegas et al., 2000). Afterward, similar transcript, called
sense mitochondrial ncRNA (SncmtRNA), was identified in
humans, and in this case, the mitochondrial 16S rRNA is
linked to an 815 nucleotide 5′-leader sequence from its
complementary strand (Villegas et al., 2007). SncmtRNA
forms an 820 bp, double-stranded structure with a 40
nucleotide loop (Dietrich et al., 2015). Interestingly,
SncmtRNA was only detected in the proliferating tumor but
not in resting cells, suggesting that it might serve as a marker
of cell proliferation (Villegas et al., 2007). Later, two antisense
lncRNAs, called ASncmtRNA-1 and ASncmtRNA-2 were
discovered. Here, the antisense mitochondrial 16S rRNA is
linked to a 310 or 545 nucleotide 5′-leader sequence deriving
from the complementary sense strand (Burzio et al., 2009).
These two transcripts also form distinct double-stranded
structures with a nucleotide loop. In contrast to SncmtRNA,
they were detected mainly in normal cells and were much less
expressed in proliferating tumor cells, suggesting their role as
tumor suppressors (Burzio et al., 2009). Later, they were
reported to be present in the nucleus associated with
heterochromatin (Landerer et al., 2011). However, more
data is needed to support this claim. It has been postulated
that ASncmtRNA-2 gets transported into the nucleus, where
it presents a precursor of two miRNAs (hsamiR-4485 and
hsa-miR-1973), which could potentially regulate survivin, an
inhibitor of apoptosis (Vidaurre et al., 2014; Bianchessi et al.,
2015). Indeed, knockdown of ASncmtRNAs promoted
apoptotic cell death due to the survivin downregulation at
the translational level (Vidaurre et al., 2014).

3. Putative mitochondrial DNA-encoded lncRNAs
These lncRNAs have been identified in the heart disease

studies (Kumarswamy et al., 2014; Yang et al., 2014; Dietrich
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et al., 2015). RNA-seq revealed a high relative abundance
(over 70%) of these transcripts in the total lncRNA
population from patients with a severe heart failure (Yang
et al., 2014). The most significant lncRNA has been named
long intergenic noncoding RNA predicting CARdiac
remodeling (LIPCAR). Aligning the LIPCAR sequence to
the human mtDNA revealed that the 5′ half aligns to the
lncCytb, while the 3′ half aligns to the antisense region of
COX2 (Dorn, 2014). As its circulating levels were increased in
the late stages of left ventricular remodeling and patients with
chronic heart failure, LIPCAR could be used as a prognostic
biomarker (Kumarswamy et al., 2014; Dietrich et al., 2015).

To conclude, lncRNAs are slowly but surely drawing
attention with their complex mechanisms behind gene
regulation. However, the physiological relevance of lncRNAs in
mitochondria is still enigmatic. The crucial issue is the
investigation of transport of the nuclear- or mtDNA-encoded
lncRNAs to mitochondria and even to the nucleus.
Unfortunately, there is no published data on the topic so far.
Finally, the questions of specific lncRNAs mechanisms of gene
regulation remain to be solved.

LNCRNA-ENCODED MICROPEPTIDES

Micropeptides are a class of small peptides encoded by a sORFs,
without N-terminal signaling sequence and as such are released
into cytoplasm immediately after translation. Due to their sORF
that escapes automatic gene annotation, they tend to be
overlooked and therefore misannotated as non-coding. Indeed,
lncRNAs and TUFs (transcripts of unknown function) represent
the greatest source for sORFs (Yeasmin et al., 2018). Although
numerous ribosome profiling studies have reported substantial
ribosome occupancy of the lncRNA transcripts, the MS and the
proteogenomic approaches have confirmed only a small portion
of them, numbers ranging from less than 100 to up to 1600 (van
Heesch et al., 2019). With a lack of consensus in the datasets, the
true coding potential of lncRNAs currently remains open to
speculation. Several in-depth investigations have characterized
lncRNA-derived micropeptides with important roles in the ion
channel modulation (Anderson et al., 2015), cell signaling
(Matsumoto et al., 2017) and RNA regulation (D’Lima et al.,
2017). It is important to state that the mammalian mitochondrial
proteome is surprisingly enriched in micropeptides, accounting
for 5% of its proteins (Calvo et al., 2016). In recent years, several
micropeptides within lncRNA were discovered and characterized
with a role in mitochondria, some even encoded by the mtDNA
(Kim et al., 2017a). Termed mitochondrial-derived peptides
(MDPs) (Kim et al., 2017a), these mtDNA-encoded peptides-
humanin, MOTS-c, and SHLPs were described as potential
mitochondrial bioenergetics and metabolism regulators.

Mitoregulin (MOXI, MPM) has been discovered by four
different groups recently as a muscle- and heart-enriched 56-
amino acids inner mitochondrial membrane micropeptide
encoded within LINC00116. It has a role in mitochondrial
respiratory chain supercomplexes support, fatty acids
Frontiers in Genetics | www.frontiersin.org 18109
oxidation, and Ca2+ dynamics (Makarewich et al., 2018; Stein
et al., 2018; Chugunova et al., 2019; Lin et al., 2019). Lin et al.
(2019) highlighted its importance in the muscle tissue, finding it
upregulated during myogenic differentiation and knockout mice
exhibiting smaller skeletal muscle fibers, worse muscle
performance, and slower regeneration.

Humanin is a 24-amino acids micropeptide whose sORF is
embeded within the 16S rRNA of mtDNA (Yen et al., 2013). It
was initially discovered in the surviving cells of Alzheimer’s
disease brain (Hashimoto et al., 2001), suggesting its
neuroprotective and cytoprotective role that has later been
investigated and acknowledged across various diseases
(Hashimoto et al., 2001; Muzumdar et al., 2009; Bachar et al.,
2010; Oh et al., 2011; Gong et al., 2014; Kim et al., 2018). It was
shown to block apoptosis, improve insulin sensitivity, decrease
inflammation, and reduce oxidative stress during aging (Guo
et al., 2003; Muzumdar et al., 2009; Zhao et al., 2013; Sreekumar
et al., 2016). Its effects are yet to be assessed for therapeutic
purposes, especially in the treatments of diabetes and
neurodegenerative disorders.

MOTS-c (mitochondrial open reading frame of the 12S rRNA
type-c) is a 16-amino acids micropeptide with an sORF within
the 12S rRNA mtDNA and reported to act in the cytoplasm (Lee
et al., 2015). The micropeptide was found to target the
methionine-folate cycle and de novo purine biosynthesis
pathway, increase AICAR levels, and activate AMPK, by which
it increases glucose utilization, fatty acid oxidation, and changes
nucleotide metabolism. MOTS-c has been proposed as a
biomarker for metabolic function, as it correlates with markers
of insulin resistance and obesity (Du et al., 2018). In high fat diet-
induced obese mice, it prevented obesity, fat accumulation, and
hyperinsulinemia, making it a possible therapeutic target (Lee
et al., 2015).

SHLPs (small humanin-like peptides) are a group of 6
peptides discovered by an in silico approach to be encoded in
the 16S rRNA region of mtDNA in mice (Cobb et al., 2016). Each
peptide is 20-38 amino acids long, and their names were given
due to similar biological effects as Humanin. Each SHLP showed
a unique expression pattern across different tissues. Incubation
of each synthetic SHLP with cells affected cell viability,
proliferation, and apoptosis differentially, suggesting a specific
role of each. Moreover, SHLP2 and SHLP3 induced oxygen
consumption rate (OCR) and increased cellular ATP levels,
which indicated them as mitochondrial modulators (Cobb
et al., 2016). Indeed, the administration of SHLP2 to a cellular
model of macular degeneration rescued its defects in the
OXPHOS and the mtDNA copy number, and induced anti-
apoptotic effects, indicating its therapeutic potential (Nashine
et al., 2018). In addition, an intracerebral infusion of SHLP2
increased glucose uptake and suppressed hepatic glucose
production (Cobb et al., 2016). Further supporting their role as
insulin sensitizers, both SHLPs promoted pre-adipocyte
differentiation (Cobb et al., 2016). Similarly to humanin, the
circulating levels of MOTS-c and SHLP2 declined with age,
indicating that they are potential regulators of aging (Lee et al.,
Lee et al., 2015; Cobb et al., 2016).
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CONCLUDING REMARKS

Development of high-throughput OMICS techniques, especially
the next-generation sequencing, has shed new light on the non-
coding fraction of the genome. Transcription of the majority of
the eukaryotic genome generates not only mRNAs but a much
bigger fraction of different ncRNA species that show complex
structure, patterns of expression and regulation. It is now
becoming apparent that RNAs are not important for cell only
in the context of mRNAs as intermediates between DNA and
protein, but also as powerful players themselves by affecting
basically any stage of gene expression. The now expanding RNA
field highlights the importance of bioinformatics analysis in
order to predict and examine existence, evolution, structure,
and function of non-coding regions and transcripts. Focusing on
mitochondria, dozens of ncRNAs acting in the cytosol have been
described to indirectly influence mitochondrial biology, usually
by targeting mitochondria-related, nuclear-encoded transcripts.
More surprisingly, recent research indicated that the
mitochondrial transcriptome could represent a mixture of the
intrinsic transcriptome and complemented by some extrinsic
RNA, implying RNA import (Figure 1). Although dozens of
papers reported ncRNAs in mitochondria, their existence is still
under a question mark. Further research will need to identify
their interacting partners and elucidate the molecular
mechanisms behind their synthesis, transport, and function.
Housekeeping ncRNAs have been proposed to have a
mitochondrial localization even for decades, however, recent
deeper insights into the mitochondrial biology have cast a
shadow on their hypothesized role. It is clear that the re-
evaluation of their presence and especially function in
mitochondria is needed. Focusing on miRNA, they are well-
described fine-modulators of gene regulation in the cytosol. It is
not surprising that they can impact mitochondria by targeting its
transcripts in the cytosol. Additionally, recent discoveries of
mitomiRs suggest an attractive, even closer interplay of
miRNAs and mitochondria occurring in mitochondria
themselves. Yet, these findings are still a topic of many debates
and therefore should be handled with caution. On the one side,
the discovery of mitomiRs across different tissues and cell types
by different techniques promises they are more than a false-
positive finding. However, on the other side is the poor overlap
between datasets that raises doubts concerning methods used.
Focusing on lncRNAs, although they are among the least well-
understood of these transcript species, they are slowly but surely
emerging as important components of gene regulatory networks.
Although the field of lncRNAs has just started to expand,
published reports indicate that they influence mitochondria in
different ways. Moreover, mtDNA seems to encode some lncRNAs
itself. However, this field is still very fresh and further confirmation
is needed, especially in the case of mitochondria-imported lncRNAs.
Of clinical relevance, ncRNAs dysregulation has been noted in
various mitochondria-related diseases, mostly cancer. Their
association with tumorigenesis has been increasingly demonstrated.
Frontiers in Genetics | www.frontiersin.org 19110
As ncRNAs often exhibit cancer-type-specific expression patterns
(Iyer et al., 2015), targeting them could prove as a very selective and
specific approach. Notably, they can be targeted by the antagomiRs or
antisense oligonucleotides (ASOs) (reviewed by Matsui and Corey,
2017). Indeed, several pre-clinical studies have already demonstrated
the therapeutic benefits of ncRNA inhibition. For example, inhibition
of SAMMSON inmelanoma xenografts suppressed the tumor growth
(Leucci et al., 2016). ASOs targeting ASncmtRNA reduced the
progression of renal adenocarcinoma and melanoma metastases in
mice (Lobos-Gonzalez et al., 2016; Borgna et al., 2017). Finally,
ncRNA-derived micropeptides, although biologically active as
peptides, are especially interesting in terms of their discovery. As
many ribosomal-profiling studies report significant ribosomal
occupancy of non-coding transcripts, it is evident that further
confirmation of these findings by mass spectrometry is needed in
order to recognize the importance of these reported translational
activities. Discoveries of mitochondrial-derived peptides and
enrichment of the mammalian mitochondrial proteome in
micropeptides suggest the organelle as an evolutionary playground
for small proteins, either due to still unknown localization signals or
import system or simply driven by the size or amino acid (positive
charge) composition (vanHeesch et al., 2019). This also promises that
there could be many micropeptides hidden in the non-coding region,
awaiting discovery and characterization. Of clinical interest,
discovered mitochondria-derived micropeptides have exhibited a
variety of cyto- and neuroprotective effects, and promising results
of both in vitro and in vivo studies further strengthen their therapeutic
potential. Overall, ncRNAs in mitochondria present a thought-
provoking, but unfortunately still neglected field of study. It raises
many interesting, but also challenging questions whose answers
might be of clinical importance. It may reveal some enigmatic
biological mechanisms (such as the RNA import in mitochondria)
and eventually lead to the development of new therapeutic strategies
for mitochondria-related diseases. However, before the field of
ncRNA truly expands, there are still a lot of experimental
approaches to be optimized and biological mechanisms to be
deciphered to conclude their importance for mitochondria.
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FIGURE 5 | miRNAs targeting transcripts encoding proteins involved in the TCA cycle. Red arrows present the repressing effect of miRNA on its target mRNA.
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FIGURE 6 | miRNAs targeting transcripts encoding proteins involved in the OXPHOS. Red arrows present the repressing effect of miRNA on its target mRNA.
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Fojtová M, Fajkus J, Coomber E,
Watt S, Soranzo N, Preiss M and

Rektor I (2020) No Evidence of
Persistence or Inheritance of

Mitochondrial DNA Copy Number in
Holocaust Survivors and

Their Descendants.
Front. Genet. 11:87.

doi: 10.3389/fgene.2020.00087

BRIEF RESEARCH REPORT
published: 03 March 2020

doi: 10.3389/fgene.2020.00087
No Evidence of Persistence or
Inheritance of Mitochondrial DNA
Copy Number in Holocaust Survivors
and Their Descendants
Na Cai1,2*, Monika Fňašková3,4, Klára Konečná5,6, Miloslava Fojtová5,6, Jiří Fajkus5,6,
Eve Coomber1, Stephen Watt1, Nicole Soranzo1, Marek Preiss3 and Ivan Rektor3*

1 Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom, 2 European Bioinformatics Institute
(EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom, 3 Neuroscience Centre, CEITEC, Masaryk University,
Brno, Czechia, 4 1st Neurology Department, Hospital St Anne and School of Medicine, Masaryk University, Brno, Czechia,
5 Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czechia, 6 National Centre for
Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia

Mitochondrial DNA copy number has been previously shown to be elevated with severe
and chronic stress, as well as stress-related pathology like Major Depressive Disorder
(MDD) and post-traumatic stress disorder (PTSD). While experimental data point to likely
recovery of mtDNA copy number changes after the stressful event, time needed for full
recovery and whether it can be achieved are still unknown. Further, while it has been
shown that stress-related mtDNA elevation affects multiple tissues, its specific
consequences for oogenesis and maternal inheritance of mtDNA has never been
explored. In this study, we used qPCR to quantify mtDNA copy number in 15
Holocaust survivors and 102 of their second- and third-generation descendants from
the Czech Republic, many of whom suffer from PTSD, and compared them to controls in
the respective generations. We found no significant difference in mtDNA copy number in
the Holocaust survivors compared to controls, whether they have PTSD or not, and no
significant elevation in descendants of female Holocaust survivors as compared to
descendants of male survivors or controls. Our results showed no evidence of
persistence or inheritance of mtDNA changes in Holocaust survivors, though that does
not rule out effects in other tissues or mitigating mechanism for such changes.

Keywords: mitochondrial DNA, posttraumatic stress disorder, copy number variation, quantitative PCR, Holocaust-
psychic trauma
INTRODUCTION

Mitochondrial DNA (mtDNA) occurs in hundreds to thousands of copies in each cell. The levels of
mtDNA is tissue-specific (Robin and Wong, 1988; Falkenberg et al., 2007; Kelly et al., 2012), and
dependent on genetic factors (Scarpulla, 2008; Cai et al., 2015a; Kukat et al., 2015) and
environmental stimuli. Increase in mtDNA copy number has been found to be associated with a
wide range of psychological stress, including childhood parental loss, maltreatment (Tyrka et al.,
March 2020 | Volume 11 | Article 871122
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2016; Ridout et al., 2019), sexual abuse (Cai et al., 2015b) and a
wide range of stressful events over one’s lifetime (Cai et al.,
2015b). As such, alterations to mitochondrial function are
increasingly investigated as a key mechanism underlying
stress-related conditions (Zhang et al., 2006; Manoli et al.,
2007; Su et al., 2008). An increase in mtDNA levels obtained
from blood samples has been reported in recurrent Major
Depressive Disorder (MDD) (Cai et al., 2015b; Edwards et al.,
2016) and a decreased in mtDNA levels has been shown in
moderately severe post-traumatic stress disorder (PTSD)
(Bersani et al., 2016). Other reports showing conflicting results.
The former has been shown to be more pronounced in those
experiencing an episode of MDD than those with a history of it,
and are reversible upon cessation of the stressful stimuli in
animal models (Cai et al., 2015b), demonstrating both disease
state-dependence and potential for recovery. Among individuals
with a history of severe recurrent MDD, chronicity of disease
state was positively associated with mtDNA levels (Edwards et
al., 2016), suggesting complete recovery may not be achieved or
requires a long time.

Stress-related changes in mtDNA may be mediated by an
alteration of hypothalamic–pituitary–adrenal (HPA) axis
reactivity (Cai et al., 2015b), likely partly accounting for
mtDNA changes seen in both MDD (Holsboer, 2000; Kloet
et al., 2005) and PTSD (van Zuiden et al., 2012). Other
biological processes have been proposed as mechanisms for
stress-related changes in mtDNA, including mitochondrial
biogenesis mediated by stress-induced increase in reactive
oxygen species (ROS) (St-Pierre et al., 2006; Scarpulla et al.,
2012), and mtDNA damage induced apoptosis and release of
mtDNA (Lindqvist et al., 2018). A range of broad, converging or
co-existing pathways may explain inconsistencies between
studies primarily capturing effects of different pathways
(Kageyama et al., 2018; Tymofiyeva et al., 2018; Verhoeven
et al., 2018; Wang et al., 2018; Tsujii et al., 2019; Czarny et al.,
2019), an increasing number of conditions associated with
changes in mtDNA levels (Carew et al., 2004; Lan et al., 2008;
Malik et al., 2009), and tissue-specificity of mtDNA changes (Cai
et al., 2015b).

The mechanism of intergenerational transmission of trauma
is not understood. One possibility is that the transmission is
based on social mechanisms, another is it is mediated by genetic
or epigenetic changes. While animal models have shown that
stress-related mtDNA changes likely affect multiple tissues
including the ovary (Cai et al., 2015b), it is unknown if stress
has an effect on mtDNA in mature oocytes in females, and if such
changes may be inherited. It is widely recognized that there is an
mtDNA bottleneck during the development of primordial germ
cells in female human embryos (Giles et al., 1980), followed by a
gradual thousand-fold expansion (Cotterill et al., 2013) of
mtDNA during oogenesis (Jenuth et al., 1996; Reynier et al.,
2001; Barritt et al., 2002; Cree et al., 2008; Wai et al., 2008).
However, little is known of whether maternal stress in the
prenatal or gestational period would affect the mtDNA
bottleneck or mtDNA expansions during oogenesis. Though
placental mtDNA levels at birth has been found to be inversely
Frontiers in Genetics | www.frontiersin.org 2123
correlated with maternal prenatal negative events, PTSD,
depressive symptoms and lifetime stress (Brunst et al., 2017), it
remains unclear whether maternal stress has any lasting effect on
mtDNA levels in descendants and their health and fertility
(Reynier et al., 2001; Santos et al., 2006).

In this study, we investigate whether mtDNA increases during
a stressful life event may persist throughout one’s lifetime and
affect the mtDNA levels of one’s descendants, and whether that is
dependent on the development of a persistent stress-related
pathology. We assess the relative levels of mtDNA obtained
from peripheral blood mononuclear cells (PBMC) of Holocaust
survivors in Czech Republic, most of them from the Jewish
communities of Brno and Prague, and of two generations of their
descendants, many of whom suffer from PTSD, with age-
matched individuals from the same generations who were not
exposed to this extreme circumstance and its consequences
(Konečná et al., 2019). The Holocaust survivors represent a
group of people who have gone through extreme physical and
psychological trauma early in life, and have lived to a relatively
old age. We took the unique opportunity to examine this specific
group of people in this study.
RESULTS

Holocaust Survivors and Their
Descendants
We obtained DNA samples from peripheral blood mononuclear
cells (PBMCs, see Methods) from 235 individuals recruited for
this study, 196 of which passed DNA quality control and were
successfully analysed with quantitative polymerase chain
reaction (qPCR) for mitochondrial DNA (mtDNA) copy
number (Methods) and used for all analysis in this manuscript.
Seventy seven of these individuals were men and 119 women.
One hundred seventeen of them were first generation (G1)
Holocaust survivors or their second (G2) and third generation
(G3) descendants (n = 15, 60 and 42 for G1–3 respectively) and
79 (n = 22, 37, 20 for G1–3 respectively) were controls from all
three generations (Figure 1A). Using this sample, we have 0.8
statistical power to find effect sizes of Holocaust survivor status
on mtDNA copy number that are larger than 0.48, 0.29 and 0.32
in G1 to G3 using linear regression respectively. We will not have
adequate power to detect effects smaller than this.

Holocaust survivors and their descendants are not
significantly different in terms of age from the controls as a
whole cohort (t-test P = 0.148, Figure 1B), in individual
generations (t-test P = 0.048, 0.982 and 0.105 respectively for
G1–3), or in each sex (t-test P = 0.095 and 0.855 in males and
females respectively, Figure 1C). While there are different
numbers of men and women in each generation, there is no
significant difference by sex between the number of controls and
Holocaust survivors and their descendants across generations
(Fisher’s exact test P = 0.768) or within individual generations
(G1 Fisher’s exact test P = 1; G2 Fisher’s exact test P = 0.27; G3
Fisher’s exact test P = 0.59, Figure 1D).
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mtDNA Copy Number Is Associated With
Age and Sex
mtDNA copy number was quantified using qPCR on 196
individuals across three batches and 17 plates, each with a
different threshold quantification cycle (CT threshold). As
individuals were randomized across the plates, there was no
significant difference between the plates on sex (Chi-squared test
P value = 0.856), holocaust experience (Chi-squared test P value =
0.396), or PTSD status (Chi-squared test P value = 1). In addition
to normalizing the raw mtDNA copy number measured in each
plate using measures from a reference DNA sample of constant
concentration (resulting in DDCT values representing raw
measures of mtDNA copy number, Methods), we further
corrected the raw mtDNA copy number measure for the
following: CT threshold across plates (ANOVA P value < 10−16,
variance explained = 0.45, Figure 2A), PCR batch (ANOVA P
value = 1.26 × 10−4, variance explained = 0.05, Figure 2B), and
concentration of DNA extracted from PBMC before dilution for
qPCR (P value = 0.01, variance explained = 0.01, Figure 2C).
These capture plate effects, batch effects due to difference in
reagent batches, and experimental error in dilution respectively.
Frontiers in Genetics | www.frontiersin.org 3124
We then quantile normalized the residuals across all individuals to
obtain our final measure of mtDNA copy number for analysis.

As both sex and age have previously been shown to contribute
to variations in mtDNA copy number, we first asked if we can
observe previously found trends among the controls. While
mtDNA copy number is not significantly associated with age
in the whole cohort (linear regression P = 0.58, beta = −0.002,
se = 0.004), it significantly decreases with age in G2, the single
generation with the largest age range (30–73, P = 0.05, beta =
−0.02, se = 0.01, Figure 2D) where no individuals had personally
experienced holocaust. This is consistent with previous reports
demonstrating decrease of mtDNA levels with age (Mengel-
From et al., 2014). We also observed significantly higher levels
of mtDNA in males in the whole cohort (linear regression P =
0.01, beta = 0.37, se = 0.14, Figure 2E), as well as in the youngest
generation G3 (age range 15–48, 35 males/27 females, linear
regression P = 0.02, beta = 0.51, se = 0.21). We found no
interactions between age and sex effects on mtDNA copy
number in the whole cohort (interaction P value = 0.67,
Figure 2F) or any individual generations (interaction
P values = 0.985, 0.258 and 0.448 for G1–3 respectively).
FIGURE 1 | Study participants. (A) Schematic diagram showing relationships between generation 1 (G1) Holocaust survivors and controls with generations 2 and 3
(G2 and G3) descendants. Males are depicted as squares and females as circles; Holocaust survivors and their descendants are depicted colored solid navy, blue
and cyan squares and circles for G1, G2 and G3 respectively, and controls of each generation are depicted as squares and circles filled with slanted dashes.
Numbers of those individuals without first degree relationships with other individuals in this study are written for each generation. All Holocaust survivors and their
descendants are encircled by a dark red rectangle, while all controls are encircled by a pink rectangle. Numbers of Holocaust survivors or their descendants and
controls are written for each generation. (B) Boxplot of the age of Holocaust survivors and their descendants (in dark red), and controls (in pink), for each generation.
(C) Boxplot of age of female and male Holocaust survivors and their descendants (in dark red) and controls (in pink) for each generation. (D) This figure shows the
number of female and male Holocaust survivors and their descendants (in dark red) and controls (in pink) participating in this study with mtDNA successfully
quantified through qPCR.
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Low Variation in mtDNA Copy Number
Among Haplogroups
As all Jewish individuals in Czech Republic were persecuted and
experienced the Holocaust during World War II, one of the
confounding factors in this study is the controls are not of the
same origin as the Holocaust survivors, and may not have the
same mtDNA Haplogroups as them. If mtDNA haplogroups
have an effect on mtDNA copy number, systematic differences in
mtDNA haplogroups between Holocaust survivors and controls
can lead to spurious findings. We therefore investigated whether
mtDNA copy number differ between Haplogroups in an
independent sequencing dataset, in order to assess how likely a
mismatch in mtDNA Haplogroups can lead to spurious findings.
We obtained mtDNA copy numbers (Methods) from whole-
genome sequencing of lymphoblastic cell lines (LCLs) of
individuals in Phase 3 of the 1000 Genomes Project
(Consortium and 1000 G. P. and The 1000 Genomes Project
Consortium, 2015) (1000G) for this investigation (Figure 3A).
To obtain the Haplogroups of each individual in 1000G, we called
Frontiers in Genetics | www.frontiersin.org 4125
homoplasmic variants from the mtDNA using HaplogroupCaller
in GATK v4 (Methods), and called Haplogroups using these
variants with Haplogrep v2 (Consortium and 1000 G. P. and
The 1000 Genomes Project Consortium, 2015; Weissensteiner
et al., 2016) (Figure 3B, Methods).

Figure 3C shows the relative mtDNA copy number in
different Haplogroups represented in 1000G. Testing each
haplogroups against all others for association with mtDNA
copy number (Table 1), we found that mtDNA copy number
is significantly higher in Haplogroup L (beta = 0.38, se = 0.05, P =
9.43 × 10−15), and lower in Haplogroups A (beta = −0.50, se =
0.10, P = 3.14 × 10−7), B (beta = −0.54, se = 0.09, P = 6.32 ×
10−10), C (beta = −0.53, se = 0.15, P = 3.16 × 10-4), D (beta =
−0.38, se = 0.0.10, P = 9.31 × 10−5), and F (beta = −0.49, se = 0.12,
P = 2.11 × 10−5), none of which occur at high frequencies in
Europe (Torroni et al., 2000; Simoni et al., 2000). As such, it is
unlikely that Haplogroup differences between Holocaust
survivors and their descendants and controls, if any, would
lead to spurious associations with mtDNA copy number.
FIGURE 2 | Effects of technical and biological covariates on mtDNA copy number measurements. (A) Relationships between DDCT values, representing raw mtDNA
copy number measures from qPCR, and the threshold CT values for each qPCR run. (B) Boxplot of DDCT values from each qPCR batch. (C) Relationship between
DDCT values and starting DNA concentration (before dilution) of each sample. (D) Relationship between normalized mtDNA copy number measure (after correcting
for threshold CT values, qPCR batch and starting DNA concentration) and age in individuals from G1, G2 and G3 in navy, blue and cyan respectively. (E) Boxplot of
normalized mtDNA copy number in female and male individuals from G1, G3 and G3 in navy, blue and cyan respectively. (F) Relationship between normalized
mtDNA copy number and age in females (in black) and males (in grey) respectively.
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Platelet Levels in Whole Blood Sample
Affect mtDNA Copy Number in Extracted
PBMC
A subset of 70 individuals had their whole blood counts assessed on
their blood sample prior to extraction of PBMCs and DNA
(Methods). While there is variation among individuals in all blood
measures, we found no significant effect of Holocaust, probable
PTSD diagnosis, or age on individual quantile-normalized blood cell
counts after multiple-testing correction (P threshold = 0.05/80 =
2.63 × 10−4). We did find significant effects of sex (being male) on
red blood cell count (RBC, P = 1.47 × 10−4, beta = 0.86, se = 0.21),
haemoglobin levels (HGB, P = 5.57 × 10−7, beta = 1.09, se = 0.20),
haematocrit levels (HCT, P = 6.16 × 10−7, beta = 1.07, se = 0.19) and
monocyte percentage (MONO_Percent, P = 2.32 × 10−6, beta =
0.95, se = 0.21). All results are summarized in Table 2. We
performed hierarchical clustering on all independent quantile-
normalized blood measures and found no clustering by
experience of Holocaust, probable PTSD diagnosis, sex and
generation (Figure 3D).

We tested for effects of all blood cell count measures on
mtDNA copy number jointly, after controlling for age and sex.
Only platelet levels showed significant effects on mtDNA copy
number (PLT, P = 0.043, beta = −5.45 × 10−3, se = 2.61 × 10−3).
Of note, we have specifically chosen to use DNA extracted from
TABLE 1 | Effect of mtDNA Haplogroups on mtDNA copy number.

Haplogroup Beta SE P value

W 0.735 0.242 2.46e−03
R 0.444 0.159 5.25e−03
L 0.381 0.049 9.43e−15*
U 0.263 0.089 3.29e−03
T 0.110 0.152 4.70e−01
H 0.072 0.056 2.03e−01
M 0.001 0.080 9.87e−01
K −0.064 0.187 7.32e−01
J −0.104 0.156 5.03e−01
V −0.104 0.277 7.07e−01
Y −0.112 0.705 8.74e−01
X −0.144 0.333 6.65e−01
G −0.194 0.243 4.24e−01
I −0.304 0.408 4.55e−01
N −0.368 0.224 1.01e−01
Z −0.368 0.377 3.29e−01
D −0.375 0.096 9.31e−05*
F −0.495 0.116 2.11e−05*
A −0.505 0.098 3.14e−07*
C −0.535 0.148 3.16e−04*
B −0.549 0.088 6.33e−10*
This table shows the effect (Beta) of each mtDNA Haplogroup in 1000 Genomes Phase 3
on mtDNA copy number quantified through whole-genome sequencing, ordered by their
effects. The ones with significant effect after multiple testing correction for 21 Haplogroups
(P value threshold = 0.0024) on mtDNA copy number are marked with asterisk (*).
FIGURE 3 | Effects of mtDNA haplogroup and blood cell count on mtDNA copy number measurements. (A) Left and middle panel show the sequencing coverage over
mtDNA and nuclear DNA in Blood (light blue) and lymphoblastic cell lines (LCL, blue) in the 1000 Genomes Phase 3 project, and the right panel shows the ratio between
them. (B) The left panel shows the number of SNP variants called per minor allele frequency (MAF) on the log10 scale from sequencing of mtDNA in LCL samples of
1000 Genomes Phase 3 individuals; the middle panel shows the distribution of all individuals by their first two principle components computed from mtDNA SNPs
(mtDNA PC1, mtDNA PC2), colored by their mitochondrial haplogroups. Individuals of Haplogroup L (mostly of African origin) contribute the greatest mtDNA diversity as
shown in the middle panel, and removing these individuals from the principle component analysis gives greater resolution for visualization of the mtDNA diversity among all
other Haplogroups, as shown in the right panel. (C) Boxplot of effect of mtDNA Haplogroups on mtDNA copy number, estimated using the ratio of mtDNA and nuclear
DNA sequencing coverage. All Haplogroups with significant effects on mtDNA copy number (L, A, B, C, D, F) are rare in European populations. (D) Heatmap and
clustering of normalized blood cell count measures obtained from 70 individuals in this study.
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PBMCs instead of whole blood for this study to remove DNA
contribution from platelets—platelets contain only mtDNA and
no nuclear DNA, as variation in platelet levels will confound
measurements of mtDNA copy number relative to nuclear DNA
copy number (Hurtado-Roca et al., 2016).

mtDNA Copy Number Does Not Index
Previous Holocaust Experience or
Potential PTSD Diagnosis
Having controlled for technical and biological confounding
factors, we asked if mtDNA copy number was significantly
different between controls and Holocaust survivors and their
descendants. We first examined the generation who has
personally experienced Holocaust. In G1, we do not have
adequate sample size to detect significantly higher mtDNA
copy number (beta > 0.48) in Holocaust survivors than
controls, after controlling for age and sex as covariates in a
linear regression model at our sample size (Methods, P = 0.60,
beta = 0.07, se = 0.14, Figure 4A). The same is true if the analysis
was conducted separately among males and females, controlling
for age as a covariate (females: P = 0.48, beta = 0.13, se = 0.19;
males: P = 0.97, beta = −0.009, se = 0.22). While this is
inconsistent with our hypothesis that there will be an increase
in mtDNA copy number due to chronic stress during the
Holocaust in Holocaust survivors, it is consistent with previous
reports of the dynamic nature of mtDNA copy number increase
in response to chronic stress and their reversing to normal levels
with time.

As it was previously shown that persistent mtDNA copy
number increase was dependent on the depressive state (Cai et
al., 2015a), we asked if this is also true for PTSD. All but 10
individuals were screened for markers of PTSD were evaluated
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using the 17-item civilian version of the PCL questionnaire
(PCL-C, Methods), where individual items are scored 0 to 5,
and total scores range from 0 to 85. A cutoff of 30 was used to
indicate potential diagnosis of PTSD. Among the 15 G1
Holocaust survivors, seven has a potential diagnosis of PTSD.
We found no significant differences in mtDNA copy number in
Holocaust survivors with potential diagnosis of PTSD when
compared to those without a potential diagnosis of PTSD after
correcting for age and sex (P = 0.67, beta = −0.08, se = 0.17) or
controls (P = 0.80, beta = −0.07, se = 0.26).

We found significantly more Holocaust survivors and their
descendants with PTSD (Fisher’s exact test P = 8.71 × 10−5, OR =
3.56, 95% CI = 1.80–7.31) than controls in the whole cohort
without accounting for the different generations, in both females
(Fisher’s exact test P = 0.021, OR = 2.57, 95% CI = 1.09–6.38) and
males (Fisher’s exact test P = 8.39 × 10−4, OR = 6.04, 95% CI =
1.85–23.78). Interestingly, this trend is observed in both G1
(Fisher’s exact test P = 0.017, OR = 8.18, 95% CI = 1.21–97.32)
and G2 (Fisher’s exact test P = 0.010, OR = 3.35, 95% CI = 1.23–
9.92), but not in G3 (Fisher’s exact test P = 0.278, OR = 2.02, 95%
CI = 0.60–7.27, Figure 4B). We do not find significant
associations between mtDNA copy number with potential
diagnosis of PTSD in G1 (P = 0.54, beta = −0.30, se = 0.50),
G2 (P = 0.69, beta = 0.09, se = 0.22) or G3 (P = 0.74, beta = 0.06,
se = 0.19, Figure 4C).

No Evidence of Inheritance of Elevated
PBMC mtDNA Levels in Descendants of
Holocaust Survivors
Finally, we tested if potential previous elevation of mtDNA copy
number in Holocaust survivors could be inherited by their
children. Eight G2 and six G3 participants are identified as
TABLE 2 | Effect of covariates on blood cell counts.

Blood cell count Age Sex Holocaust survivor status Probable PTSD

Beta SE P value Beta SE P value Beta SE P value Beta SE P value

WBC_x10.9_per_L −0.001 0.006 8.98E−01 −0.302 0.234 2.01E−01 0.571 0.218 1.08E−02 0.351 0.233 1.37E−01
RBC_x10.12_per_L −0.009 0.006 1.30E−01 0.857 0.213 1.47E−04 0.273 0.226 2.31E−01 0.424 0.231 7.11E−02
HGB_g_per_L 0.000 0.006 9.66E−01 1.087 0.197 5.58E−07 −0.008 0.228 9.71E−01 0.184 0.235 4.37E−01
HCT_L_per_L 0.002 0.006 6.90E−01 1.067 0.194 6.17E−07 −0.205 0.223 3.62E−01 0.281 0.230 2.27E−01
MCV_fL 0.018 0.005 1.18E−03 0.087 0.237 7.13E−01 −0.751 0.210 6.35E−04 −0.371 0.233 1.16E−01
PLT_x10.9_per_L −0.001 0.006 9.13E−01 −0.820 0.215 3.02E−04 0.004 0.228 9.87E−01 −0.056 0.237 8.15E−01
MCH_pg 0.014 0.006 1.41E−02 0.228 0.235 3.35E−01 −0.506 0.220 2.45E−02 −0.473 0.230 4.33E−02
MCHC_g_per_L −0.007 0.006 2.52E−01 0.269 0.234 2.53E−01 0.524 0.219 1.92E−02 −0.102 0.236 6.67E−01
RDW_percent 0.004 0.006 4.69E−01 −0.409 0.232 8.20E−02 0.137 0.228 5.48E−01 −0.130 0.236 5.84E-−01
MPV_fL −0.006 0.006 2.71E−01 0.142 0.236 5.50E−01 −0.077 0.228 7.37E−01 0.128 0.236 5.90E−01
NEU_percent 0.001 0.006 8.56E−01 −0.241 0.238 3.16E−01 0.027 0.230 9.05E−01 0.194 0.237 4.15E−01
LYM_percent −0.002 0.006 7.64E−01 −0.105 0.240 6.62E−01 0.147 0.229 5.25E−01 −0.037 0.238 8.78E−01
MONO_percent −0.004 0.006 4.86E−01 0.955 0.210 2.32E−05 −0.339 0.226 1.39E−01 −0.351 0.234 1.39E−01
EOS_percent 0.007 0.006 2.23E−01 0.636 0.227 6.63E−03 0.028 0.230 9.04E−01 −0.435 0.232 6.45E−02
BASO_percent 0.008 0.006 1.71E−01 0.033 0.238 8.89E−01 −0.216 0.227 3.43E−01 −0.196 0.235 4.08E−01
NEU_x10.9_per_L 0.000 0.006 9.79E−01 −0.286 0.237 2.33E−01 0.441 0.224 5.30E−02 0.345 0.234 1.45E−01
LYM_x10.9_per_L 0.000 0.006 9.70E−01 −0.311 0.237 1.94E−01 0.519 0.221 2.20E−02 0.228 0.236 3.39E−01
MONO_x10.9_per_L −0.004 0.006 4.41E−01 0.549 0.230 2.00E−02 0.227 0.228 3.23E−01 0.094 0.237 6.93E−01
EOS_x10.9_per_L 0.005 0.006 3.50E−01 0.482 0.232 4.16E−02 0.254 0.227 2.67E−01 −0.231 0.236 3.31E−01
BASO_x10.9_per_L 0.006 0.006 2.52E−01 −0.211 0.232 3.66E−01 −0.103 0.224 6.48E−01 −0.154 0.231 5.08E−01
Marc
h 2020 | V
olume 11
This table shows the effect (Beta) of each covariate (age, sex, holocaust survivor status, and probable PTSD diagnosis) on each blood cell type assessed through linear regression, its
standard error (SE) and its P value. The significant effects after multiple testing correction are highlighted in bold.
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children and grandchildren of G1 Holocaust survivor
participants in the study, and a further 17 G3 participants are
children of 12 G2 Holocaust survivor descendant participants.
Similarly, six G2 and one G3 participants are identified as
children and grandchildren of G1 control participants in the
study. This is summarized in Figure 1A.

Using all known parent–child relationships in the dataset, we
found that parents’ mtDNA copy number does not significantly
correlate with children’s mtDNA copy number, after controlling
for age and sex of both parents and children (P = 0.30, beta =
0.47, se = 0.41). This is true when performed just in Holocaust
survivors and their descendants (P = 0.07, beta = 0.32, se = 0.17,
Figure 4D), and we do not have enough data points to perform
this analysis in controls. However, we found that G1 Holocaust
experience does have a significant impact on their G2
descendants’ mtDNA copy number after controlling for age
and sex of both parents and children (P = 0.01, beta = −1.18,
se = 0.32, Figure 4E). In other words, we found lower mtDNA
copy number in children of G1 Holocaust survivors than in
Frontiers in Genetics | www.frontiersin.org 7128
children of G1 participants who did not experience Holocaust.
We get a similar result performing this analysis in only female G1
participants and their G2 descendants (P = 0.06, −1.17, se =
0.44), though the effect of parental Holocaust experience is no
longer significant. We are unable to perform this analysis on
their G3 participants’mtDNA copy number, as none of them are
children or grandchildren of G2 and G1 controls in the study.

Using all participants, including those without records of
relationships with one or more other participants in the study,
we found that G2 and G3 descendants of Holocaust survivors do
not differ significantly in their mtDNA copy number from
controls in their generations after controlling for age and sex
(G2: P = 0.97, beta = 0.007, se = 0.21, G3: P = 0.15, beta = 0.33,
se = 0.23). Further, in both G2 and G3, mtDNA copy number is
not significantly different in descendants of female G1 Holocaust
survivors than other individuals in their generations, after
controlling for age and sex in a linear regression model (G2:
P = 0.45, beta = −0.18, se = 0.23, G2: P = 0.22, beta = 0.40, se =
0.33, Figures 4F).
FIGURE 4 | mtDNA copy number is not significantly different between HS and controls. (A) Boxplot of the normalized mtDNA copy number in holocaust survivors
and their descendants (HS, in dark red) and controls (in pink) in G1–3. (B) Number of HS and controls with and without potential PTSD diagnosis from PCL-C in
G1–3. (C) Boxplot of normalized mtDNA copy number in HS and controls who have a probable PTSD diagnosis and those who do not in each generation.
(D) Relationship between normalized mtDNA copy number in G1/2 parents and that in their G2/3 children who are also participants in the study. (E) Boxplot of
normalized mtDNA copy number in G2 HS and controls who are sons or daughters of G1 HS and controls in this study. Controls have significantly higher normalized
mtDNA copy number. (F) Boxplot of normalized mtDNA copy number in all G2 and G3 HS and controls with and without maternal HS lineage, including those who
are not children or grandchildren of G1 and G2 HS and controls.
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DISCUSSION

Holocaust was one of the most horrific periods of the twentieth
century. The Holocaust survivors experienced varied forms of
persecution during WWII. For all of them, it was six years lasting
humiliation, deprivation of basic human rights, deportation,
imprisonment in the concentration or death camps or in hiding,
under false identities or in mountains or combating in partisans
groups. All of them were under threat to be assassinated. Those
who survived this psychological and physical ordeal continued to
experience trauma due to the murdering of their families, friends
and community after the war.

In this study mtDNA copy number in PBMCs obtained in HS
were compared to controls without Holocaust experience. While
it was impossible to determine levels of mtDNA immediately
following the Holocaust experience, our study assumed that they
would have been increased in Holocaust survivors, consistent
with previous reports of elevated mtDNA after severe and
chronic stress. Under this assumption, we asked whether their
mtDNA copy number remained elevated decades after their
experience, and whether it could be inherited by their
descendants. After accounting for variation in mtDNA copy
number that may be due to technical between qPCR runs and
biological differences between individuals, we investigated the
mtDNA copy number differences between G1 Holocaust
survivors, their G2 and G3 descendants, and controls from G1
to G3. Bearing in mind we are limited in statistical power by the
small sample size of our cohort, and we would not be able to
account for effect sizes smaller than beta = 0.29, we found no
significant difference in mtDNA copy number or their age-
related dynamic in Holocaust survivors as compared to
controls in any generation. This is consistent with findings of
no significance difference in telomere length and their age-
related dynamics in Holocaust survivors from the same cohort
(Konečná et al., 2019), as mtDNA copy number was previously
shown to be negatively correlated with telomere length in
chronic stress (Cai et al., 2015b; Edwards et al., 2016).

There are several explanations for the lack of difference in
mtDNA copy number in G1 Holocaust survivors as compared to
controls. First, any elevated mtDNA copy number due to the
experience may have reversed with time (Cai et al., 2015b). In
particular, if release of mtDNA from apoptotic cells rather than
intra-cellular mtDNA increase can explain the increase in
mtDNA copy number observed in chronic stress and MDD
(Lindqvist et al., 2018), discontinuation of apoptotic reaction
upon removal of stressful stimuli may lead to complete recovery
of elevation in mtDNA copy number, and explain why it cannot
be observed decades later. Second, persistent mtDNA copy
number changes may be dependent on MDD or other disease
states (Cai et al., 2015b). While we were able to perform this test
using mtDNA copy number in G1 Holocaust survivors with
PTSD only, it is possible PTSD does not have the same molecular
signature as MDD, or we do not have enough statistical power to
identify it at current sample sizes. Third, Holocaust survivors
may consist of highly resilient individuals who were able to
survive both prolonged physical and psychological trauma. It
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was previously shown that Holocaust survivors have higher life-
expectancy as compared to those who did not go through the
same experience, potentially due to selection during the
Holocaust (Sagi-Schwartz et al., 2013), and a genetic basis to
this resilience was proposed (Lindqvist et al., 2018; Konečná et
al., 2019). Genetic factors contributing to this resilience may
contribute to recovery of elevated mtDNA copy number and
maintaining telomere length (Konečná et al., 2019), though it is
unclear if the same factors confer protection against PTSD and
other disorders. Fourth, we may not be observing the right tissue
for lasting molecular changes in Holocaust survivors. While an
increase of mtDNA due to chronic stress was shown in multiple
tissues including saliva, blood and liver in animal models (Cai et
al., 2015b), a post-mortem study on suicide completers showed
opposite changes in mtDNA levels in blood and dorso-lateral
prefrontal cortex (Otsuka et al., 2017). As such, a lack mtDNA
copy number difference between Holocaust survivors and
controls in blood cells with rapid turnovers does not exclude
lasting changes in mtDNA copy number in other tissues that
may have important consequences on health and disease. Finally,
other factors may influence and confound differences in mtDNA
copy number between groups in our sample, including disease,
epigenetic factors and ageing. While we were able to account for
some of them using blood cell counts as proxy, an exhaustive
assessment of these other factors are needed to fully account for
their effects on mtDNA copy number.

Interestingly, we found that Holocaust experience of G1
Holocaust survivors was associated with lower mtDNA copy
number in their children who also participated in this study.
This cannot be completely accounted for by current mtDNA copy
number of the G1 Holocaust survivors, and may be mediated
through other biological or environmental factors that may be
specific to descendants of Holocaust survivors. However, we found
no replication of the effect of parental Holocaust experience on
children’s mtDNA copy number in our whole cohort, where many
participants did not indicate direct familial relationships with
other participants. Whether this can conclusively dismiss the
effect of parental Holocaust experience (or other traumatic
experiences) in one’s mtDNA levels needs to be further
investigated, ideally using a study design where all members of
the family participate. This may no longer be possible with
Holocaust survivors, many of whom have already passed away.

Finally, we observed higher rates of PTSD in G2 Holocaust
survivor descendants than controls, consistent with previous
findings (Yehuda et al., 1998), but not in G3, suggesting single
generational inheritance of certain risk factors for PTSD, though
we have no evidence mtDNA copy number elevation is one of
them.While our results do not show evidence of maternal stress or
PTSD effects on mtDNA copy number in their descendants, they
do not rule out changes in mtDNA replication dynamics in oocyte
development due to prenatal and gestational stress, and only
targeted analysis on the relevant tissues may answer this question.

In summary, we did not find conclusive evidence of persistent
mtDNA copy number changes or differences in age-related
dynamics and inheritance of mtDNA in Holocaust survivors as
compared to controls, and mtDNA copy number cannot be used
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as a marker for PTSD in Holocaust survivors or explain the
inheritance of risk for PTSD in their descendants. This study is,
to the best of our knowledge, the first comprehensive study of
effect of stress and PTSD on mtDNA copy number dynamics and
inheritance among Holocaust survivors and their descendants.
METHODS

Participants in This Study
The study was conducted at Central European Institute of
Technology (CEITEC), Masaryk University in Brno, Czech
Republic. A part of DNA samples was obtained with the
cooperation of the National Institute of Mental Health,
Klecany, Czech Republic. All of the volunteers were Czechs or
Slovaks (people with a similar geopolitical background).
Participants had no brain trauma injury history or cognitive or
mental impairment. While all Holocaust survivors and their
descendants were fully or partially of Jewish origin, none of the
controls were due to lack of Jewish persons without the
Holocaust history in Czech Republic.

Informed Consent and Ethical Approval
All participants were recruited through voluntarily responding
positively to a public appeal presented by Masaryk University
and Czech national media (Konečná et al., 2019), with the
cooperation of the Jewish community of Brno and Prague.
Written informed consent was obtained from all participants,
except for in the cases of participants below the age of 16, where
written informed consent was obtained from the next of kin/legal
guardian. The study was conducted in accordance with the
Declaration of Helsinki, and the protocol was approved by the
Ethics Committee of Masaryk University, Brno, Czech Republic
(project NV18-04-00559).

Experience of Chronic Trauma in the
Participants
G1 Holocaust survivors suffered from the extreme and chronic
stress during the World War II, inclusive and often a
combination of long-term humiliation, deprivation of basic
human rights, life threating internment in prisons, death
camps, hiding, false identities, fighting as partisans and
assassination of family members. For participants in G2 and
G3 generations, we obtained their relationships to G1 Holocaust
survivors. For the participants in the control group, none were
exposed to similar extreme and chronic stress.

Evaluation of Post-Traumatic Stress
Disorder (PTSD)
Markers of PTSD were evaluated using the 17-item civilian version
of the PCL questionnaire (PCL-C), a general civilian version that is
not linked to a specific event but to “a stressful experience from the
past”, rather than PCL-M which is used in the case of military
experiences and PCL-S for specific stressful events. Each item is
rated 1 to 5 indicating the degree to which a participant has been
affected by the item in the past month; a cut-off score of 30 was used
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to indicate a diagnosis of probable PTSD. The same questionnaire
was administered to all participants by trained professionals.

Isolation of Peripheral Blood Mononuclear
Cells (PBMC) and DNA
A blood sample were collected from every participant in the
years 2016 to 2019. Full blood count was performed on 136
participants using this blood sample. Peripheral blood
mononuclear cells (PBMC) were isolated from whole blood
samples using ficoll (Histopaque, Sigma) density gradient
centrifugation. Genomic DNA was purified from PBMC
samples by proteinase K (Roth) treatment, chloroform
extraction, and isopropanol precipitation, as previously
described. Quality and concentration of DNA were analyzed
by agarose electrophoresis and spectrophotometrically using
Thermo Fisher Scientific Nanodrop 2000.

Quantification of mtDNA Copy Number
Using Quantitative Polymerase Chain
Reaction (qPCR)
qPCR was carried out using the TaqMan®Universal PCRMaster
Mix, No AmpErase® UNG. A nuclear genomic fragment was
amplified from the RNase P gene using the TaqMan® RNase P
Detection Reagents Kit, and a fragment of the mitochondrial
genome (positions 14747-15887) was amplified from the
Cytochrome B (CYB) gene using TaqMan® Gene Expression
Assays—Hs02596867_s1—MT-CYB. qPCR was performed
under the following conditions: incubation at 50°C for 2 min,
denaturation at 95°C for 10 min, followed by 40 cycles of 15 s at
95°C and 1 min at 60°C. qPCRs of were carried out on 96-well
plates; all samples were randomized for the plate they were
analyzed on and their positions on the plates, a reference DNA
sample was analyzed in triplicates across all plates, and all
samples were run in duplicates. Threshold quantitation cycle
(CT) was obtained of each sample including the reference DNA
samples (REF); we obtain the difference between the mean CT
(DCT) at for both genes between each sample and REF to correct
for plate effects, before obtaining the difference between the CT
of the two genes (DDCT) as an estimate of mtDNA copy number.
PCR runs were discarded if they failed to meet the following
criteria: no template control (NTC) with a quantitation cycle
(CT) > 38 cycles, sample with a CT <30 cycles.

Quantification of mtDNA Copy Number
From Whole-Genome Sequencing in
1000G Samples
We extracted reads mapping to the rCRS mitochondrial
reference genome (NC_012920) from WGS in 2,558
individuals in Phase 3 of the 1000 Genomes Project (1000G).
Reads mapping to chr20 and mtDNA with the following SAM
flags are removed with –F 3852 using samtools (Li et al., 2009) to
ensure unique and high quality mapping to chr20 and mtDNA
reference genomes respectively: read unmapped (0 × 4), mate
unmapped (0 × 8), not primary alignment (0 × 100), read fails
platform/vendor quality checks (0 × 200), read is PCG or optical
duplicate (0 × 400), and supplementary alignment (0 × 800). We
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quantified total read depth across all positions across chr20 and
mtDNA and obtained mean coverage for each, and obtained a
mtDNA copy number by correcting mean coverage over mtDNA
with mean coverage over chr20. We then quantile normalized
the measure to obtain a normalized mtDNA copy number.

Haplogroup Calling Using mtDNA Variants
Obtained From WGS of 1000G Individuals
We called mtDNA variants from WGS in 2,558 individuals in
Phase 3 of the 1000 Genomes Project (1000G) using GATK v4
(McKenna et al., 2010; DePristo et al., 2011), obtaining 3,779 high
quality biallelic SNPs. We use all 3,779 SNPs for assigning
Haplogroups to each individual in 1000G using Haplogrep v2
(Weissensteiner et al., 2016). We built a genetic related matrix of
all 1000G samples using all 3,779 mtDNA SNPs using LDAK
(Speed et al., 2017) with options –ignore-weights YES –power -1 –
hwe-stand NO, such that each mtDNA SNP contribute the same
to the genetic covariance between individuals regardless of their
minor allele frequencies, and are not standardized according to
Hardy–Weinberg Equilibrium as if they were diploid. We then
performed principal component analysis (PCA). As 626 SNPs are
private to the 657 individuals with Haplogroup L, and within-
Haplogroup diversity in Haplogroup L is greater than diversity
across all other Haplogroups combined, we performed PCA on
3,153 mtDNA SNPs in the remaining 1,903 individuals to obtain
PCs that show clus ter ing of indiv iduals by the ir
mtDNA Haplogroups.
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Background: Mitochondrial genome has been used across multiple fields in research,

diagnosis, and toxicogenomics. Several compounds damage mitochondrial DNA

(mtDNA), including biological and therapeutic agents like the human immunodeficiency

virus (HIV) but also its antiretroviral treatment, leading to adverse clinical manifestations.

HIV-infected and treated patients may show impaired mitochondrial and metabolic

profile, but specific contribution of viral or treatment toxicity remains elusive. The

evaluation of HIV consequences without treatment interference has been performed

in naïve (non-treated) patients, but assessment of treatment toxicity without viral

interference is usually restricted to in vitro assays.

Objective: The objective of the present study is to determine whether antiretroviral

treatment without HIV interference can lead to mtDNA disturbances. We studied clinical,

mitochondrial, and metabolic toxicity in non-infected healthy patients who received HIV

post-exposure prophylaxis (PEP) to prevent further infection. We assessed two different

PEP regimens according to their composition to ascertain if they were the cause of

tolerability issues and derived toxicity.

Methods: We analyzed reasons for PEP discontinuation and main secondary effects

of treatment withdrawal, mtDNA content from peripheral blood mononuclear cells and

metabolic profile, before and after 28 days of PEP, in 23 patients classified depending on

PEP composition: one protease inhibitor (PI) plus Zidovudine/Lamivudine (PI plus AZT +
3TC; n = 9) or PI plus Tenofovir/Emtricitabine (PI plus TDF + FTC; n = 14).

Results: Zidovudine-containing-regimens showed an increased risk for drug

discontinuation (RR = 9.33; 95% CI = 1.34–65.23) due to adverse effects of

medication related to gastrointestinal complications. In the absence of metabolic

disturbances, 4-week PEP containing PI plus AZT + 3TC led to higher mitochondrial
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toxicity (−17.9 ± 25.8 decrease in mtDNA/nDNA levels) than PI plus TDF + FTC

(which increased by 43.2 ± 24.3 units mtDNA/nDNA; p < 0.05 between groups).

MtDNA changes showed a significant and negative correlation with baseline alanine

transaminase levels (p < 0.05), suggesting that a proper hepatic function may protect

from antiretroviral toxicity.

Conclusions: In absence of HIV infection, preventive short antiretroviral treatment

can cause secondary effects responsible for treatment discontinuation and subclinical

mitochondrial damage, especially pyrimidine analogs such as AZT, which still rank as the

alternative option and first choice in certain cohorts for PEP. Forthcoming efforts should

be focused on launching new strategies with safer clinical and mitotoxic profile.

Keywords: ART, HIV, mitochondria, mtDNA, PEP

HIGHLIGHTS

- PEP regimens are metabolically safe.
- PEP antiretrovirals, in absence of HIV infection, is able
to induce mitochondrial toxicity. Currently recommended
PEP regimens show less mitochondrial toxicity than the
old ones containing pyrimidine analogs such as AZT and

GRAPHICAL ABSTRACT| Post-exposure prophylaxis (PEP) myotoxicity.

3TC. However, AZT is still used in certain clinical and
geographical settings.

- AZT-containing regimens showed a higher risk of
drug discontinuation.

- Reduction of mitochondrial toxicity of PEP
regimens may improve tolerability and
toxicity issues.
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- Current and forthcoming efforts to elaborate global policy
guidelines should consider mitochondrial toxicity of PEP as an
important issue for compliance and patient care.

- PEP-treated patients convey an outstanding opportunity to
assess antiretrovirals toxicity in vivo.

- mtDNA is confirmed as the gold standard for mitochondrial
toxicogenomics in antiretroviral management.

INTRODUCTION

Mitochondria are the energy and heat power plants of the
cell (Nunnari and Suomalainen, 2012). These organelles harbor
their own enzymatic machinery and all the structures required
for the transcription and translation of their own genome, the
mitochondrial DNA (mtDNA) (Anderson et al., 1981). Any
disbalance in mitohormesis can lead to disease (Boczonadi and
Horvath, 2014; Suomalainen and Battersby, 2017; Eisner et al.,
2018). Thus, genetic but also epigenetic modifications in the
mitochondria can be associated with a variety of metabolic
modifications described in a multitude of adverse conditions,
including cancer and neurodegenerative diseases as well as
biological processes as aging (Moosavi and Motevalizadeh
Ardekani, 2016; Weinhouse, 2017; Raimundo and Krisko, 2019).
Moreover, the study of mitochondrial genome has been used in
fields as population genetics, forensic science, clinical diagnosis,
and toxicogenomics (Castro Antönia and Ramon, 1998; Budowle
et al., 2003; Chinnery and Hudson, 2013).

A multitude of evidence demonstrates that any toxic agent
interfering at genetic or epigenetic level with mtDNA can
potentially disrupt mitochondrial function and induce metabolic
disturbances and their associated clinical consequences (Alston
et al., 2017; Matilainen et al., 2017).

Historically, several compounds have been found to damage
mtDNA, including biological and therapeutic agents. This is the
case with both the human immunodeficiency virus (HIV) and
its antiretroviral treatment (ART) (Miro et al., 2005; Margolis
et al., 2014; Smith et al., 2017). HIV induces mitochondrial-
driven apoptosis, indirectly reducing mtDNA content (Mbita
et al., 2014). Moreover, ART—especially nucleoside reverse
transcriptase inhibitors analogs (NRTIs)—interferes with the
replication of the viral genome, but secondarily by off-targeting
the replication of the mtDNA through the inhibition of mtDNA-
polymerase-γ (Brinkman et al., 1999; Kakuda, 2000; Nolan and
Mallal, 2004; Feeney et al., 2010; Zhang et al., 2014). This
process subsequently triggers mtDNA depletion and derived
mitochondrial and cell dysfunction, which has been postulated as
the basis for associated clinical toxicity (Carr and Cooper, 2000;
Lim and Copeland, 2001).

Zidovudine (AZT), the prototype NRTI class drug, is
a pyrimidine analog linked to long-term secondary effects.
Included in this group, and combined with AZT is Lamivudine
(3TC), with lesser harmful effects (World Health Organization,
2018). Both of these drugs in long-term usage result in different
secondary effects such as myelosuppression or myopathy, among
others (Kinloch-de Loës et al., 1995; Quercia et al., 2018).

To avoid these adverse effects, other NRTIs such as Tenofovir
(TDF) emerged (Scherzer et al., 2012; Margolis et al., 2014;
Yap et al., 2019). TDF in combination with Emtricitabine
(FTC), another NRTI, constitutes the main 2xNRTI combination
included in the ART proposed by the main institutions (Centers
for Disease Control Prevention, 2016; Battegary et al., 2018;
World Health Organization, 2018). FTC is a dideoxycytidine
analog with a structure similar to 3TC, being considered as
bioequivalent drugs even from the toxic point of view (Birkus
et al., 2002; Margolis et al., 2014).

In vitro studies have ranked the potencies of these four
NRTIs to inhibit mtDNA synthesis as follows: Zidovudine
> Lamivudine = Emtricitabine = Tenofovir (Kakuda, 2000;
Birkus et al., 2002). Therefore, mtDNA quantification has been
established as the hallmark of antiretroviral toxicity and the gold
standard for assessing mitochondrial toxicity even in new ART
regimens (Margolis et al., 2014).

Current guidelines associate two different NRTIs with
other antiretroviral families such as integrase inhibitors or,
alternatively, with protease inhibitors (PI), which have also
been associated with metabolic alterations (Mallon et al., 2005;
Domingo et al., 2010; Hammond et al., 2010). To control
these subclinical events, a glucose, lipid, and hepatic profile is
usually monitored in clinical settings to manage chronic HIV-
infected and treated patients aiming to avoid further clinical
manifestations (AIDSinfo, 2018).

Although ART has dramatically reduced acquired immune
deficiency syndrome (AIDS) development, major concerns have
been ascribed to its mitochondrial and metabolic toxicity,
especially primary ART (Martinez et al., 2001; Garrabou et al.,
2009; Hargreaves et al., 2016). Despite current available drugs
and regimens are almost free from toxicity, some of these
primary antiretrovirals, including AZT, are still used in certain
geographic or clinical settings (World Health Organization,
2018). Both mitochondrial and metabolic disturbances caused
by the virus and its ART were postulated as one of the bigger
etiological bases of adverse events including hyperlactatemia,
hepatic failure, decreased bone mineral density, neuropathy,
myopathy, lipodystrophy, and metabolic syndrome (Brinkman
et al., 1999; Carr and Cooper, 2000; Pfeffer et al., 2009; Caron-
Debarle et al., 2010; Hammond et al., 2010; Güerri-Fernández
et al., 2018). However, the contribution of each one of these
entities (the virus or its treatment) to associated adverse clinical
manifestations is difficult to elucidate in HIV-infected and
treated patients. While viral consequences without therapeutic
interference have been historically evaluated in naïve patients
(Miró et al., 2004), assessment of isolated ART toxicity without
viral interference usually requires in vitro assays (Kakuda, 2000).
Therefore, the in vivo consequences for ART for mitochondrial
and metabolic toxicity in an HIV-free environment requires
novel experimental approaches and cohorts of patients that have
been scarcely evaluated to date.

Despite the main goal of ART being the treatment of
HIV infection, these drugs may also be used to prevent
vertical mother-to-child transmission or can also be administered
as pre-exposure or post-exposure prophylaxis (PrEP or PEP,
respectively, Yap et al., 2019). PEP involves counseling,

Frontiers in Genetics | www.frontiersin.org 3 May 2020 | Volume 11 | Article 497136

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Bañó et al. Post-exposure Prophylaxis (PEP) Mitotoxicity

assessment of risk of exposure to the infection, HIV testing, and
the prescription of a 1-month course of antiretroviral drugs with
appropriate support and follow-up (Katz and Gerberding, 1997;
Chauveau et al., 2019). While the necessity of PEP is undeniable,
it is still limited by a low-adherence, non-negligible secondary
effect and some tolerability issues of unknown etiology (Beymer
et al., 2017; Chauveau et al., 2019), showing worse tolerability
than the ART prescribed for long-term HIV-infected patients
under chronic treatment (Rabaud et al., 2005). Such diversity
of secondary effects and differential level of mitotoxicity has
been attributed to different PEP regimens depending on their
composition, but there is little molecular data supporting such
differential safety/toxic profile (Groener et al., 2011).

This toxicity has prompted clinical organizations to gradually
change the composition of PEP regimens. Between 2008
(Ibarguren et al., 2008) and 2014 (Azkune et al., 2011; World
Health Organization, 2013), the PEP regimen consisting of PI
plus AZT + 3TC was replaced by a new regimen containing
PI plus TDF + FTC. This change in PEP policies offered the
perfect occasion to compare these two regimens, which still rank
as first-choice treatments in certain patients’ cohorts or countries
(Supplementary Table 1).

Due to HIV prevalence, the use of PEP is highly advisable
when an acknowledged risk of HIV transmission is detected, and
there is the need for understanding the secondary or toxic effects
of this treatment. PEP-treated patients offer an outstanding
opportunity to determine the short-term mitochondrial and
metabolic effects of PEP in vivo, without viral interference.
Hence, we designed the present study to assess whether the
28-day PEP regimens can cause clinical, mitochondrial, or
metabolic toxicity and whether there are any variances between
the different PEP regimens, thus confirming the usefulness of
mitochondrial toxicogenomics for antiretroviral management.

MATERIALS AND METHODS

Design, Criteria, and Participants
We performed a multicentric observational study in HIV-1-
exposed and uninfected patients to evaluate mitochondrial and
metabolic disturbances before and after a 28-day PEP treatment
comparing two different regimens: PI plus AZT + 3TC (n = 9)
or PI plus TDF+ FTC (n= 14).

Patients were recruited in two hospitals: the Hospital Clinic
of Barcelona (Barcelona, Spain) and the Hospital of Granollers
(Granollers, Spain).

All participants initiated their PEP regimen within 48 h
after a non-occupational sexual exposure to HIV and provided
informed consent to be enrolled in the study, which was approved
by the Ethical Committee of our institutions.

The inclusion criteria were adults over 18 years old
with no clinical evidence of primary mitochondrial disease,
or concomitant treatment with potential toxic drugs for
mitochondria (antipsychotics, statins or antibiotics, among
others) and the full completion of the 28-day treatment (per-
protocol analysis).

Although the initial sample of the study included a total
of 30 participants, 7 of them were lost or excluded from the

study. These excluded participants requiered changes of their
PEP regimen due to the manifestation of intolerability recorded
during the clinical interview.

Epidemiological, virological, and therapeutic characteristics
of the HIV-exposed participants were equivalent in both PEP
arms. There were no statistically significant differences between
both groups with respect to gender and age distribution. These
treatment groups were composed by men exclusively, with mean
age ranging from 33 to 34 years. The duration of treatment was
consistent in both groups, as all patients received full-length PEP
regimen and, once concluded, all participants were negative for
HIV antibody testing.

Epidemiological, Clinical, and Metabolic
Data
As aforementioned, epidemiological, virological, and therapeutic
parameters including age, gender, HIV antibody (ELISA), PEP
regimen, and treatment intervention were gathered during the
study. Similarly, data regarding tolerability, adherence, and
reasons for PEP discontinuation were collected in the follow-up
on account of clinical interviews.

Glucose, lipid, and hepatic profile data included information
about blood glucose (measured using the glucose-oxidase
method), triglycerides, and total cholesterol (by enzymatic
approaches), as well as aspartate and alanine aminotransferase
hepatic enzymes (AST and ALT), which were quantified by
atomic absorption spectrophotometry (Siemens Diagnostics R©,
New York).

Collection of Blood Samples
Fasting samples of 20ml of venous blood were collected in
VacutainerTM EDTA tubes. For each subject of the study (and
for both groups), two sets of samples were obtained, one
just after HIV exposure and before PEP, and another after
a 28-day course of treatment. Blood was first centrifuged at
room temperature for 15min at 1,500g to reduce platelet
contamination through plasma removal. Peripheral blood
mononuclear cells (PBMCs) were immediately isolated by
means of Ficoll density gradient centrifugation procedure
(Histopaque R©-1077, Sigma Diagnostics, St. Louis, MO)
(Cossarizza, 2003; Mallone et al., 2011). After isolation, PBMCs
were resuspended in phosphate-buffered saline and stored frozen
at−80◦C until analysis.

Nucleic Acid Isolation From PBMC and
Quantification of mtDNA
An aliquot of PBMC was used for extracting total DNA
using a standard phenol-chloroform procedure. For mtDNA
quantification, a fragment of the mitochondrial conserved
gene mt12SrRNA and the nuclear constitutive gene nRNAseP
were amplified simultaneously and in duplicate by multiplex
quantitative Real-Time PCR. We used Applied Biosystems
technology (CA, USA) in a 96-well plate and results were
expressed in relative units as the ratio between mtDNA to
nuclear DNA (mt12SrRNA/nRNaseP), as previously validated
(Côté et al., 2011) and reported by our group (Moren et al., 2015;
Catalán-García et al., 2016; Barroso et al., 2019) and other groups
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FIGURE 1 | Non significant differences in mtDNA content were observed within each therapeutic group intervention (before and after each treatment), but significant

differences were found between the different PEP regimens (PI plus AZT + 3TC vs. PI plus TDF + FTC). Results were expressed as the ratio of mitochondrial

12SrRNA gene with respect to the constitutive nuclear RNAseP gene.

(Villarroya et al., 2011; Navarro-Sastre et al., 2012; Carreño-Gago
et al., 2019).

Statistical Analysis
Results were expressed as mean ± standard error of the mean
(SEM) or in percentage of change ± SEM with respect to
the baseline measurement. Longitudinal differences between
both study time points (in each treatment arm) and cross-
sectional differences between treatment intervention groups (PI
plus AZT + 3TC vs. PI plus TDF + FTC) were determined
with the non-parametric Kolmogorov–Smirnov test for paired
and independent measures, respectively. Correlation analysis
between all quantitative parameters was determined using the
non-parametric Spearman test. Statistical analysis was performed
using the Statistical Package for Social Sciences version 23.0
(SPSS, Chicago, Illinois, USA). Statistical significance was set at
a p < 0.05.

RESULTS

As previously stated, from the initial 30 participants of the
study, 7 discontinued PEP before 4 weeks due to gastrointestinal
secondary effects including bloating, diarrhea, nausea, and/or
vomiting. Consequently, longitudinal mitochondrial and
metabolic toxicity profile could not be assessed in these 7
patients due to lack of follow-up. From these patients, 6
were treated with PI plus either AZT + 3TC and 1 with a
PI plus TDF + FTC (relative risk or RR for PI plus AZT +
3TC vs. PI plus TDF + FTC discontinuation = 9.33; 95%
CI= 1.34–65.23).

After 6 months of HIV exposure, all subjects that continued
the study (n = 23) remained uninfected and blood analysis for
HIV antibodies were all confirmed as negative.

There were no statistically significant intragroup differences
between initial and final mtDNA levels within each PEP regimen:

baseline 133.5± 19.8 mtDNA/nDNA copies vs. final 115.7± 22.4
levels for PI plus AZT + 3TC regimen and initial 136.5 ± 20.9
vs. final 177.3 ± 22.8 copies for PI plus TDF + FTC regimen.
However, when comparing differences between groups, mtDNA
content was significantly reduced in the PI plus AZT + 3TC
regimen vs. the PI plus TDF + FTC group: −17.9 ± 25.8% vs.
43.2± 24.3%, respectively, p < 0.05 (Figure 1).

There were no statistically significant differences before and
after treatment in glucose, lipid, or hepatic metabolic profiles
in both groups, either concerning glucose, triglycerides,
total cholesterol, AST, or ALT levels, regardless of the
PEP regimen followed, as summarized in Table 1 and
Supplementary Figures 1, 2.

Some metabolic parameters were correlated, showing
their strong dependence to maintain physiologic homeostasis
(Supplementary Table 2). In addition, mtDNA levels after
treatment were negatively correlated to initial ALT levels
(R2 = 0.090 and p < 0.05) regardless of the PEP regimen
(Figure 2).

DISCUSSION

HIV infection and ART toxicity (especially of NRTIs) have been
postulated as the etiopathological basis of several side effects in
HIV-infected and chronically treated patients (Carr and Cooper,
2000; Kohler and Lewis, 2007). Both have been demonstrated
to induce mtDNA depletion and derived mitochondrial and
metabolic dysfunction (Garrabou et al., 2009; Margolis et al.,
2014) even after short periods of treatment (Carr, 2000; Pilon
et al., 2002). However, the differential contribution of each agent
(HIV or ART) to the observed mitochondrial toxicogenomic
profile that is present in HIV-infected patients under ART
is difficult to elucidate. Isolated HIV-induced mitochondrial
damage has been studied in HIV-infected and untreated
individuals (naïve), but ART-related mitochondrial toxicity has
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TABLE 1 | Glucose, lipid, and hepatic profile of all participants before and after PEP treatment.

HIV-exposed patients

PEP regimen with PI plus AZT + 3TC (n = 9) PEP regimen with PI plus TDF + FTC (n = 14)

Before After Before After P-value

Glucose (mg/dl) 93.4 ± 5.4 86.5 ± 3.8 79.5 ± 3.2 94.6 ± 10.0 NS

Triglycerides (mg/dl) 98.5 ± 24.5 106.5 ± 20.8 135.9 ± 19.0 122.6 ± 22.0 NS

Total cholesterol (mg/dl) 181.5 ± 15.9 180.3 ± 17.3 155.3 ± 6.7 181.3 ± 16.4 NS

AST (U/L) 31.4 ± 3.1 30.9 ± 3.6 20.7 ± 1.4 21.6 ± 2.3 NS

ALT (U/L) 29.4 ± 4.8 32.0 ± 5.4 19.7 ± 1.1 27.9 ± 4.7 NS

No differences were observed in metabolic parameters after the therapeutic intervention or between regimens. All values are expressed as mean ± SEM. ALT, alanine transaminase;

AST, aspartate transaminase; AZT, Zidovudine; FTC, Emtricitabine; HIV, human immunodeficiency virus; NS, non-significant; PEP, post-exposure prophylaxis; PI, protease inhibitor; SEM,

standard error mean; TDF, Tenofovir; 3TC, Lamivudine.

FIGURE 2 | Spearman Rho coefficient was significant and showed a negative

correlation for basal levels of ALT and mitochondrial DNA after treatment

intervention in both PEP groups (PI plus AZT + 3TC or PI plus TDF + FTC),

suggesting that proper basal hepatic function protects from further drug

toxicity (p-value = 0.015). ALT a, Alanine transaminase baseline levels; AZT,

Zidovudine; mtDNA b, mitochondrial DNA after treatment; PEP, post-exposure

prophylaxis.

been poorly explored in uninfected subjects on account of
ethical concerns.

HIV-exposed patients subjected to PEP prophylaxis convey
a unique opportunity to test ART toxicity without HIV
interference. Additionally, we took advantage of the use of
different PEP regimens to compare different clinical, metabolic,
and mitochondrial ART toxicity profiles.

Regarding PEP efficacy, all tested alternative treatments
showed identical immunotherapeutic efficacy in preventing HIV
infection, both in the present study and in the literature (Sultan
et al., 2014).

Regarding clinical manifestations and despite its short
length (28 days according to up-to-date guidelines), serious
complications were raised: the low compliance, the appearance

of several secondary or toxic effects, and the little commitment
of some patients led to further discontinuation of AZT-
containing regimens, herein demonstrated. As previous reported,
the main secondary effects for both of these regimens that
led to discontinuation were gastrointestinal symptoms (Chowta
et al., 2018). These clinical side effects make PEP prone to
become a difficult treatment to be fully completed. However, few
toxicological studies have been done to assess molecular causes of
differential safety/toxic profile of PEP regimens or antiretroviral
toxicity in human subjects without HIV interference.

With respect to mitochondrial toxicity, a previous study
performed in 18 individuals reported a decrease in the
mitochondrial transmembrane potential over a 4 weeks of
HIV-PEP, suggesting that PEP toxicity may be confirmed in
larger cohorts (Groener et al., 2011). We herein tested the
mitochondrial target of nucleoside analog toxicity, considered
the gold standard for monitorization of antiretroviral toxicity,
that is mtDNA content.

According to our findings, when comparing PEP regimens
including PI plus AZT + 3TC with respect PI plus TDF + FTC,
subclinical mtDNA depletion was higher in those receiving AZT
+ 3TC. This confirms previous reported higher mitochondrial
toxicity for these older drugs derived from in vitro (Kakuda,
2000) or ex vivo studies in HIV-infected and long-term treated
individuals (Gardner et al., 2013; Sun et al., 2014).

Despite that the use of pyrimidine analogs in PEP regimens,
and particularly AZT, is being reduced in developed countries,
it still ranks as the alternative option in the CDC, WHO,
and EACS guidelines for certain patients (Centers for Disease
Control Prevention, 2016; World Health Organization, 2018).
Specifically, (i) it is the alternative treatment in subjects over
13 years old with renal dysfunction (creatinine clearance ≤59
ml/min); (ii) it is the alternative treatment for children aged
2–12 years; or (iii) it is the preferred treatment for children
aging 4 weeks to 2 years old; and (iv) it is the alternative
choice of treatment in adults (Battegary et al., 2018). In these
cases, AZT is chosen with 3TC. Furthermore, in numerous
developing countries, AZT administration in PEP regimens is
still the treatment of choice.

These results, among others (Morén et al., 2012; Margolis
et al., 2014), give light to the capacity for antiretrovirals to target
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and disrupt mtDNA expression even after short treatments.
Translating all these findings into emerging fields such as
epigenetics opens new gates in research to elucidate whether
these changes into gene expression can cause drug resistance,
metabolic disturbances, and different secondary effects that can
lead to drug discontinuance and its subsequent treatment failure
(Nyce et al., 1993; Lucarelli et al., 1996; Bozzi et al., 2008;
Koczor et al., 2015). It has been shown that some miRNAs
that participate in the regulation of mitochondrial translation
are mitochondrial-genome-encoded miRNAs (Stimpfel et al.,
2018). Consequently, mtDNA depletion produced by NRTIs,
as AZT by itself, may reduce miRNA content, thus having
effects in mitoepigenetics (Koczor et al., 2015). Additionally,
some studies propose a possible surrogate effect in neonates
under AZT-containing regimens, as they show an altered nuclear
heterochromatin organization that persisted after the treatment
was terminated (up to 9 years of age) (Senda et al., 2007; Zuena
et al., 2013; García-Otero et al., 2019). Whether all these levels of
regulation of mtDNA expression are additionally influencing the
toxicity of tested PEP regimens in our work should be addressed
in further studies.

Finally, the metabolic profile of PEP-treated patients did not
show any differences either in basal or endpoint levels between
groups, indicating that in a 28-day interval, there are no visible
effects on glucose, lipid, or hepatic enzyme levels regardless of
PEP composition. Interestingly, lower initial ALT levels have
been associated with higher content in mtDNA after PEP in
both groups. While all patients had standard liver enzyme levels,
these results point out the association between mitochondrial
toxicity and hepatic function, probably because proper basal
liver function protects from further drug toxicity by promoting
hepatic drug detoxification.

Noticeably, this study has several constraints. The most
relevant limitation may be its small sample size. Because of
the singularity of these individuals, the lack of compliance,
and the need for fast sample processing (to immediately isolate
fresh PBMC), it was difficult to gather all the participants for
the study in a short period of time. In fact, we needed to
perform a multicenter study to include the minimum sample
size required to reach our aim. However, we cannot discard
a type II error due to the small sample size of the cohorts
herein tested, which may be bypassed in further studies with
bigger sample sizes and controlled designs. Additionally, the
fact that male patients exclusively composed our sample may
be considered as the second limitation of the study. However,
in current clinical settings, this characteristic may reflect the
differences in prevalence of HIV infection according to gender in
general population and eradicates potential gender interference
in observed results. Regarding the source of sample, we
acknowledge that mitochondrial parameters may be exacerbated
in more energy-dependent tissues than PBMCs. Likewise, we
are aware that assessing specific PBMC composition would be
of interest to assess potential interference of cell populations in
observed findings, as well as preventing platelet contamination
(Tin et al., 2016; Sun et al., 2018). However, we should take
into consideration that PBMCs have been demonstrated to be
a reliable and non-invasive model to perform mitochondrial
studies and that is the present gold standard for mitochondrial

toxicity evaluation (Garrabou et al., 2009; Moren et al., 2015;
Barroso et al., 2019). Additionally, the potential follow-up of
patients for an extended period of time over PEP administration
and additional measures for evaluation of mitochondrial toxicity
or specific cell toxicity profiling may be of interest for
further approaches.

CONCLUSIONS

The results herein presented indicate that, first, short-term ART
in the absence of HIV infection can inducemitochondrial toxicity
and, second, in the context of HIV-PEP, new antiretrovirals
regimens including PI plus TDF + FTC show less mtDNA
depletion and therefore are less harmful to mitochondria than
the old ones with PI plus AZT + 3TC. The latter regimen also
showed a higher risk of drug discontinuation due to a lack
of tolerance, while capable of maintaining identical therapeutic
activity. Whether mitochondrial toxicity relies at the base of
adverse PEP effects has to be further demonstrated. However,
considering the reported association between mitochondrial
toxicity and clinical adverse effects in chronic antiretrovirals-
treated HIV individuals, these results should be considered to
elaborate guidelines to potentially reduce tolerability and toxicity
issues of PEP.

Fortunately, efforts are being raised to elaborate global policy
makers and coordinate program managers, researchers, and
activists around the world at a moment of a paradigm shift of
the global response to HIV (24), where toxicity of PEP regimens
should be considered and AZT should be discouraged.

PEP-treated patients convey an outstanding opportunity to
assess antiretroviral toxicity in vivo and mtDNA is confirmed
as the gold standard for mitochondrial toxicogenomics in
antiretroviral management.
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There is evidence of a purifying filter acting in the female germline to prevent the
expansion of deleterious mutations in the mitochondrial DNA (mtDNA). Given our poor
understanding of this filter, here we investigate the competence of the mouse embryo
to eliminate dysfunctional mitochondria. Toward that, mitochondria were damaged by
photoirradiation of NZB/BINJ zygotes loaded with chloromethyl-X-rosamine (CMXRos).
The resultant cytoplasm was then injected into C57BL/6J zygotes to track the
levels of NZB/BINJ mtDNA during the preimplantation development. About 30% of
NZB/BINJ mtDNA was present after injection, regardless of using photoirradiated
or non-photoirradiated cytoplasmic donors. Moreover, injection of photoirradiated-
derived cytoplasm did not impact development into blastocysts. However, lower
levels of NZB/BINJ mtDNA were present in blastocysts when comparing injection of
photoirradiated (24.7% ± 1.43) versus non-photoirradiated (31.4% ± 1.43) cytoplasm.
Given that total mtDNA content remained stable between stages (zygotes vs.
blastocysts) and treatments (photoirradiated vs. non-photoirradiated), these results
indicate that the photoirradiated-derived mtDNA was replaced by recipient mtDNA in
blastocysts. Unexpectedly, treatment with rapamycin prevented the drop in NZB/BINJ
mtDNA levels associated with injection of photoirradiated cytoplasm. Additionally,
analysis of mitochondria-autophagosome colocalization provided no evidence that
photoirradiated mitochondria were eliminated by autophagy. In conclusion, our findings
give evidence that the mouse embryo is competent to mitigate the levels of
damaged mitochondria, which might have implications to the transmission of mtDNA-
encoded disease.

Keywords: mitochondria, embryo, mitochondrial DNA, mtDNA, mouse, cytoplasmic transfer, NZB,
photosensitization

INTRODUCTION

Mitochondria play a central role in cellular energy production (i.e., ATP), besides being involved
in several other functions including Ca2+ buffering, innate immunity, biogenesis of iron-sulfur
clusters and apoptosis (Wallace and Chalkia, 2013). Most proteins needed for mitochondrial
function are encoded in the nucleus and imported by the organelle (Wallace and Chalkia, 2013).
Yet, the mitochondrion also relies on 37 genes (13 mRNAs, 22 tRNAs, and two rRNAs) encoded
by its own genome, the mitochondrial DNA (mtDNA). The importance of these genes is revealed
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by mutations in mtDNA, which can result in mitochondrial
dysfunction and severe pathologies in humans (Stewart and
Chinnery, 2015). Manifestation of these pathologies is difficult
to predict though as it depends on the level of mutant mtDNA.
Multiple copies of mtDNA are present in each cell and mutations
commonly coexist with wild-type molecules, a condition termed
heteroplasmy (Schon et al., 2012; Burr et al., 2018). Given that
most mtDNA mutations are recessive, wild-type molecules can
complement the mutation defect. A threshold level of mutant
mtDNA is needed to impair mitochondrial function (i.e., 60–
80%), but this threshold level varies for different mutations and
tissues (Schon et al., 2012; Burr et al., 2018).

Due to the lack of efficient methods to treat mitochondrial
disease, much attention has been given to prevent its transmission
to the next generation. Yet, the non-Mendelian pattern of
mtDNA inheritance makes difficult to predict transmission
of such disease (Stewart and Chinnery, 2015). Despite few
exceptions (Luo et al., 2018), autophagic elimination of paternal
mitochondria shortly after fertilization assures mtDNA to be
exclusively inherited from the mother (Rojansky et al., 2016;
Wei et al., 2020). In addition, in case of heteroplasmy, several
mechanisms take place during germline development toward
reestablishing homoplasmy (i.e., existence of a single mtDNA
genotype, regardless of mutant or wild-type). For instance, the
mitochondrial genetic bottleneck allows for quick changes in
mtDNA genotype frequency (Jenuth et al., 1996; Cree et al., 2008;
Wai et al., 2008; Floros et al., 2018; Latorre-Pellicer et al., 2019).
Also, there is increasing evidence in support of purifying selection
acting in the female germline to prevent deleterious mutations
(i.e., non-synonymous) in mtDNA from accumulating in the
population (Burr et al., 2018).

One of the most consistent evidence of purifying selection
first came from the work by Stewart et al. (2008). Using a
mouse model with a burden of randomly generated mtDNA
mutations, the authors found that synonymous mutations in
protein-coding genes are preferentially transmitted to offspring
than non-synonymous mutations. In addition, mutations in
tRNA and rRNA genes were more often present in offspring than
mutations in protein-coding genes (Stewart et al., 2008). Similar
findings have been reported in mice and humans (Sato et al.,
2007; Fan et al., 2008; Freyer et al., 2012; Sharpley et al., 2012; Li
et al., 2016; Floros et al., 2018; Latorre-Pellicer et al., 2019; Wei
et al., 2019). However, the mechanism underpinning purifying
selection is currently unclear (Burr et al., 2018). Here we provide
evidence that early embryos mitigate the levels of photoirradiated
mitochondria introduced by cytoplasmic transfer (CT), which
suggests they are virtually competent to tackle dysfunctional
mitochondria harboring deleterious mtDNA mutations.

MATERIALS AND METHODS

All chemical and reagents were purchased from Sigma–Aldrich
Chemical Co. (St. Louis, MO, United States), unless otherwise
stated. All experiments were performed in compliance with the
regulations and policies of the National Council for Control of
Animal Experimentation (CONCEA, Brazil) and were approved

by the Animal Care and Use Committee at Universidade de São
Paulo (USP—protocol number 13.1.1832.74.8).

Source of Mouse and Embryos
Mice containing mtDNA of NZB/BINJ (NZB) origin were
obtained by backcrossing NZB females to C57BL/6J (B6) females
for five generations. Thereafter, females with NZB mtDNA in
a ∼100% B6 background were maintained by brother–sister
mating (Machado et al., 2015). Mice containing mtDNA of B6
origin were obtained from F1 females from a cross of B6 females
with males of CBA origin. Mice with mtDNA of NZB or B6 origin
are hereafter termed NZB and B6, respectively.

To obtain pronuclear zygotes, females were intraperitoneally
injected with 5 I.U. of equine chorionic gonadotropin (eCG;
Folligon, MSD Animal Health, Summit, United States) and
5 I.U. of human chorionic gonadotropin (hCG; Chorulon, MSD
Animal Health), given 46–47 h apart. Immediately after the hCG
injection, females were paired with B6 males and inspected for
the presence of vaginal plug in the next morning. Pronuclear
zygotes were collected from the oviduct (ampulla) of plugged
females ∼18 h after the hCG injection using HEPES-buffered
KSOM medium (Erbach et al., 1994; Nagy et al., 2003; Machado
et al., 2015). Viable zygotes were denuded of cumulus cells by
vigorous pipetting in the presence of 0.3% hyaluronidase in
HEPES-buffered KSOM. Groups of 20 zygotes were cultured
in vitro under mineral oil in a 40 µl drop of KSOM. After 96 h
of culture in an incubator (set at 37◦C, maximum humidity, and
5% CO2 in air), embryos were assessed as for the blastocyst rate
(Nagy et al., 2003; Machado et al., 2015).

Induction of Mitochondrial Damage
Chloromethyl-X-rosamine (CMXRos; MitoTracker Red;
ThermoFisher Scientific, Waltham, MA, United States) is
a mitochondrion-selective fluorescent probe with a strong
photosensitizing action (Minamikawa et al., 1999; Lum et al.,
2002; Palermo et al., 2002; Lum and Nagley, 2003; Takeuchi
et al., 2005). Under photoirradiation, CMXRos absorbs light,
leading to excitation of the outer shell electrons and generation
of reactive species such as hydroxyl radicals and singlet oxygen
within the mitochondrion. These reactive species may damage
mitochondrial structures, with evidence of organelle swelling
and membrane depolarization (Minamikawa et al., 1999;
Lum et al., 2002; Palermo et al., 2002; Lum and Nagley, 2003;
Takeuchi et al., 2005).

To induce mitochondrial damage, NZB zygotes at the
pronuclear stage were incubated for 30 min with 500 nM
CMXRos in HEPES-buffered KSOM at 37◦C. Next, based on
a previous report (Takeuchi et al., 2005), zygotes were rinsed
three times in HEPES-buffered KSOM and photoirradiated for
either 0, 2.5, 5, 10, 20, or 60 s. Photoirradiation was performed
in groups of 20 zygotes using an inverted microscope (Eclipse
TS 100, Nikon Instruments Inc., Tokyo, Japan) equipped with
an epifluorescence attachment (50-W mercury burner) with a
Texas Red filter (excitation wavelength, 540–580 nm; emission
wavelength, 600–660 nm) at 200x magnification (Minamikawa
et al., 1999; Lum et al., 2002; Palermo et al., 2002; Takeuchi et al.,
2005). Control zygotes were photoirradiated for either 0 or 60 s
without prior loading with CMXRos.
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Cytoplasmic Transfer
Five experimental groups were considered during CT
experiments: control B6 embryos not subjected to either
CMXRos loading or photoirradiation—termed “B6-
control”; NZB embryos subjected to CMXRos loading and
photoirradiation (P) for either 0 or 20 s—termed “NZB-P0” and
“NZB-P20,” respectively; and, B6 embryos subjected to CT using
cytoplasm from either NZB-P0 or NZB-P20—termed “CT-P0”
and “CT-P20,” respectively.

Micromanipulation was performed using an inverted
microscope (Leica DMI RB, Leica, Wetzlar, Germany) equipped
with micromanipulators and microinjectors (Narishige, Tokyo,
Japan), as previously reported (Machado et al., 2015). Briefly,
pronuclear zygotes were incubated for 15 min in HEPES-buffered
KSOM medium containing 5 µg/ml cytochalasin and 5 µg/ml
nocodazole. Next, ∼30% of cytoplasm was removed from B6
zygotes (calculated as previously reported; Chiaratti et al., 2010),
followed by injection in the perivitelline space of a similar
amount of cytoplasm derived from NZB zygotes. Pronuclei were
always visualized during the micromanipulation procedure to
prevent their unintended removal. After micromanipulation,
zygotes were placed in an electrofusion solution (0.28 M
mannitol, 0.1 mM MgSO4, 0.5 mM HEPES, and 0.05% BSA) and
subjected to a single electrical pulse of 1 kV/cm (DC) for 45 µs
(Multiporator, Eppendorf, Hamburg, Germany) to induce fusion
of the NZB cytoplast with the B6 recipient zygote. Successfully
fused zygotes were cultured in vitro as described above. When
applicable, embryos were cultured in the presence of 250 nM
rapamycin (Lee et al., 2011; Gilkerson et al., 2012). After 96 h of
in vitro culture, the blastocyst rate was assessed.

Evaluation of NZB Levels and
Mitochondrial DNA Copy Number
Embryos used for molecular evaluation were sampled
immediately before (at the pronuclear stage) or after (at the
blastocyst stage) in vitro culture. These were rinsed three times
in phosphate buffer solution (PBS) containing 0.1% polyvinyl
pyrrolidone (PVP) and stored individually in 1 µl PBS plus 0.1%
PVP in 0.2 ml tubes at−20◦C. Embryos were lyzed for 3 h at 55◦C
in 50 mM KCl, 10 mM Trix-Cl (pH 8.3), 2 mM MgCl2, 0.1 mg/ml
gelatin, 0.45% Igepal CA-630, 0.45% Tween 20, and 125 µg/ml
proteinase K (ThermoFisher Scientific). Following, lysates were
incubated at 95◦C for 10 min for proteinase K inactivation,
diluted with 45 µl ultrapure H2O, and centrifuged at 10,000 × g
for 5 min. The supernatant was finally used for analysis of NZB
levels and mtDNA copy number (Machado et al., 2015).

The levels of NZB mtDNA in zygotes and blastocysts were
assessed by quantitative PCR (qPCR) as previously reported by
Machado et al. (2015). Briefly, two set of primers were used to
amplify either a 118-bp fragment of NZB mtDNA or a 146-bp
fragment of B6 mtDNA. Reactions consisted of a final volume of
15 µl containing 5 µl of sample lysate, 200 nM of each primer,
and 1x Power SYBR Green Master Mix (ThermoFisher Scientific).
Amplifications were performed using the 7500 Fast Real-Time
PCR System (ThermoFisher Scientific) and the following cycling
conditions: 95◦C for 10 min, followed by 40 cycles of 95◦C for

15 s, and 62◦C for 1 min. SYBR Green fluorescence was read at
the end of each extension step. The percentage of NZB mtDNA
was calculated in relation to the sum of NZB and B6 mtDNA, as
reported by Machado et al. (2015).

Total mtDNA copy number (sum of NZB and B6 mtDNA)
in zygotes and blastocysts was assessed as reported by Machado
et al. (2015). Toward that aim, a 736-bp fragment of B6 mtDNA
was cloned into a plasmid vector (pCR2.1-TopTA; ThermoFisher
Scientific). Part of this construct (at concentration of 107, 106,
105, 104, and 103 copies/reaction) was amplified by qPCR in
parallel with zygote and blastocyst samples. Conditions of qPCR
were the same described above, except for the use of non-
discriminative primers that amplify a common fragment (148 bp)
from both NZB and B6 mtDNA. The number of mtDNA copies
was calculated as reported by Machado et al. (2015).

Analysis of
Mitochondria-Autophagosome
Colocalization
Embryos at the two-cell stage (21 h of culture) were fixed in 3.7%
paraformaldehyde in PBS with 0.5% Triton X-100 and 0.1% PVP
for 15 min at room temperature. Next, embryos were rinsed three
times in PBS with 0.1% PVP, and incubated for 1 h at room
temperature with a primary antibody (anti-MAP1LC3B raised
in rabbit; Cat# L7543, Sigma–Aldrich). Afterward, embryos were
rinsed in PBS with 0.1% PVP, and incubated for 1 h at room
temperature with an Alexa Fluor 488-tagged secondary antibody
raised against rabbit (Cat# A11008, ThermoFisher Scientific).
Both antibodies were diluted 1:200 in PBS with 0.1% PVP.
Finally, embryos were thoroughly washed in PBS with 0.1%
PVP, and mounted on slides with coverslips using Prolong
Gold (ThermoFisher Scientific). Embryos were evaluated by
confocal microscopy (LSM 780, Zeiss, Oberkochen, Germany)
at 1000x magnification. Autophagosomes were visualized at
495 and 519 nm, respectively, for excitation and emission.
NZB mitochondria (previously stained with CMXRos for
the photosensitization treatment) were visualized at 543 and
580–650 nm, respectively. Images were analyzed using the
ZEN lite (Zeiss).

Statistical Analyses
Statistical analyses were performed using SAS v.9.3 (SAS/STAT,
SAS Institute Inc., Cary, NC, United States). When necessary,
data were transformed to fit a normal distribution. Data were
analyzed by one-way or two-way ANOVA followed by Tukey’s
post hoc test. Values are reported as mean ± standard error
of the mean (SEM).

RESULTS

Photoirradiation of CMXRos-Loaded
Zygotes Prevents Development Into
Blastocysts
Aiming to set up photosensitization conditions, zygotes were
loaded with CMXRos and photoirradiated for either 0, 2.5, 5,
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FIGURE 1 | Photoirradiation of CMXRos-loaded zygotes prevents
development into blastocysts. Percentage of NZB zygotes that developed into
blastocysts after 96 h of in vitro culture. Zygotes were either loaded or not
with CMXRos prior to photoirradiation. Bar insets represent the number of
blastocysts in relation to total number of cultured zygotes. Different letters
over bars depict statistical difference (P < 0.05).

10, 20, or 60 s before in vitro culture and analysis of blastocyst
development. Zygotes photoirradiated for either 0 or 60 s,
without prior incubation with CMXRos, were used as controls.
As a result, photoirradiation of non-loaded zygotes for 60 s did
not impact blastocyst rate in comparison with zygotes that were
neither incubated with CMXRos nor photoirradiated (Figure 1).
Likewise, no effect was seen when CMXRos-loaded zygotes were
photoirradiated for 0 or 2.5 s (Figure 1). Yet, photoirradiation
for 5 s or more progressively impacted on blastocyst rate
(P < 0.05); a photoirradiation period of 20 or 60 s was sufficient to
completely prevent blastocyst formation (Figure 1). In summary,
these findings show a linear impact of photoirradiation time on
blastocyst rate, which relied on the prior loading with CMXRos.

Photoirradiated Mitochondria Injected
Into Zygotes Are Selected Against
During Early Embryogenesis
To investigate whether damaged mitochondria are selectively
eliminated during early embryogenesis, donor zygotes
(containing NZB mtDNA) were loaded with CMXRos and
photoirradiated for either 0 or 20 s. We chose a 20-s exposure
time given this was the shortest period that completely precluded
development into blastocysts (Figure 1). To validate our
system, we first assessed in recipient zygotes (CT-P0 and
CT-P20) the levels of NZB mtDNA following CT. As a result,
comparable levels (P > 0.05) of NZB mtDNA were present
in CT-P0 (30.8 ± 1.73) and CT-P20 (30.6 ± 1.73) zygotes
(Figure 2A). Similarly, mtDNA copy number (sum of B6 and
NZB mtDNA) was not different (P > 0.05) between CT-P0
(365,022 ± 33,062) and CT-P20 (365,704 ± 33,314) zygotes
(Figure 2B). These zygotes also presented similar mtDNA copy
number (P > 0.05) compared with zygotes not subjected to CT:
B6-control (348,850 ± 23,696), NZB-P0 (375,461 ± 33,388),
and NZB-P20 (359,852 ± 23,132). In summary, neither

photoirradiation nor CT altered the levels of NZB and total
mtDNA in pronuclear zygotes.

We next sought to assess the levels of NZB mtDNA after
development of CT-derived zygotes into blastocysts. Toward this,
CT-P0 and CT-P20 embryos were cultured in vitro for 96 h,
reaching the blastocyst stage with similar rates (CT-P0 = 92.3% vs.
CT-P20 = 83.8%) when compared to that of B6-control (84.5%)
and NZB-P0 (77.9%) embryos. In comparison, only 5.8% of NZB-
P20 zygotes developed into blastocysts (P < 0.05). In regard of
the levels of CT-derived mitochondria, similar (P > 0.05) levels
of NZB mtDNA were found between blastocysts (31.4% ± 1.43)
and zygotes (30.8% ± 1.73) of the CT-P0 group (Figure 2A).
Conversely, the levels of NZB mtDNA in CT-P20 embryos
dropped (P = 0.008) from 30.6%± 1.73 in zygotes to 24.7%± 1.43
in blastocysts (Figure 2A). The levels of NZB mtDNA also
proved to be lower (P < 0.05) in CT-P20 than CT-P0 blastocysts
(Figure 2A). On the other hand, mtDNA copy number remained
stable (Figure 2B) between groups at the blastocyst stage (CT-
P0 = 336,497 ± 14,551 vs. CT-P20 = 371,063 ± 20,054). This
was also true when compared with NZB-P0 (352,179 ± 15,704)
and B6-control (366,065 ± 11,322) blastocysts. Therefore, these
findings provide evidence that photoirradiated mitochondria
introduced into zygotes were eliminated during development
into blastocysts.

Rapamycin Treatment Precludes
Elimination of Photoirradiated
Mitochondria During Early
Embryogenesis
To investigate whether autophagy was linked with the drop
in the levels of photoirradiated mitochondria in blastocysts,
zygotes subjected to CT were cultured in the presence of
rapamycin—an autophagy agonist (Lee et al., 2011; Gilkerson
et al., 2012; Dai et al., 2014). As a result, the rapamycin
treatment precluded elimination of photoirradiated-derived
mtDNA, resulting in similar (P > 0.05) levels of NZB and total
mtDNA between CT-P0 and CT-P20 blastocysts (Figures 3A,B).
Additionally, analysis of CT-derived embryos (at the two-
cell stage) provided no evidence of increased mitochondria-
autophagosome colocalization, regardless of the rapamycin
treatment (Figure 4). Taken together, these results do not support
a link between autophagy and elimination of photoirradiated-
derived mitochondria during early embryogenesis.

DISCUSSION

Our present findings provide new evidence that damaged
mitochondria are eliminated during early embryogenesis through
an autophagy-independent mechanism.

After absorption of light, certain biocompatible
photosensitizers are capable of generating reactive species
(i.e., hydroxyl radicals and singlet oxygen), which may
damage neighboring biomolecules such as membrane
unsaturated lipids, proteins, and DNAs (Foote, 1968).
Given that some photosensitizers accumulate in specific
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FIGURE 2 | Photoirradiated mitochondria injected into zygotes are selected against during early embryogenesis. CMXRos-loaded zygotes containing mtDNA of NZB
origin were photoirradiated for either 0 (P0) or 20 (P20) s to induce mitochondrial damage. Mitochondria from these zygotes were injected by cytoplasmic transfer
(CT) into B6 zygotes, resulting in CT-P0 and CT-P20 groups, respectively. CT-derived embryos were assessed at zygote and blastocyst stage as for the levels of NZB
(A) and total (B) mtDNA. Different letters over bars depict statistical difference within group (P < 0.05). *Statistical difference within stage (P = 0.008).

FIGURE 3 | Rapamycin treatment precludes elimination of photoirradiated mitochondria during early embryogenesis. CMXRos-loaded zygotes containing mtDNA of
NZB origin were photoirradiated for either 0 (P0) or 20 (P20) s to induce mitochondrial damage. Mitochondria from these zygotes were injected by cytoplasmic
transfer (CT) into B6 zygotes, resulting in CT-P0 and CT-P20 groups, respectively. CT-derived blastocysts were assessed as for the levels of NZB (A) and total (B)
mtDNA. No statistical difference (P > 0.05).

subcellular compartments, damage can be efficiently targeted
to mitochondria (Gabrielli et al., 2004; Oliveira et al., 2011;
Hammerer et al., 2018; Taba et al., 2018). In this respect, CMXRos
has been shown, both in cultured cells and mouse oocytes, to
be a potent mitochondrial photosensitizer (Minamikawa et al.,
1999; Lum et al., 2002; Palermo et al., 2002; Lum and Nagley,
2003; Takeuchi et al., 2005). Hence, we have used CMXRos and
photoirradiation to specifically induce mitochondrial damage
in mouse zygotes. As a result, we found that either CMXRos
or photoirradiation alone have no effect on development
into blastocysts. Yet, photoirradiation of CMXRos-loaded
zygotes for 5 s or more led to a linear decline (up to 20 s) on
blastocyst rate. These results corroborate previous findings that
photosensitization of oocytes leads to mitochondrial dysfunction
and developmental arrest after fertilization (Palermo et al., 2002;
Thouas et al., 2004, 2006; Takeuchi et al., 2005).

Given the time-depend effect of photoirradiation, we
decided to photoirradiate NZB zygotes, loaded with CMXRos,
for either 0 or 20 s. Next, their cytoplasm was transferred
into B6 zygotes aiming to track injected mitochondria
in blastocysts. Injected and recipient mitochondria were
distinguished based on mtDNA origin, respectively, NZB
and B6. Importantly, ∼30% of NZB mtDNA were present in
zygotes, regardless of the photoirradiation treatment. However,
the levels of NZB mtDNA dropped in blastocysts only when
photoirradiated-zygotes were used as cytoplasmic donors.
Once zygotes injected with either photoirradiated or non-
photoirradiated cytoplasm developed into blastocysts with
similar rates, this drop cannot be attributed to an impact
of CT on embryogenesis. Moreover, mtDNA copy number
remained stable between stages (zygotes vs. blastocysts) and
treatments (photoirradiated vs. non-photoirradiated), indicating
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FIGURE 4 | Autophagy is not linked with elimination of photoirradiated mitochondria in early embryos. CMXRos-loaded zygotes were photoirradiated for either 0 (P0)
or 20 (P20) s to induce mitochondrial damage. Mitochondria from these zygotes were injected by cytoplasmic transfer (CT) into recipient zygotes, resulting in CT-P0
(A-D and I-L) and CT-P20 (E-H and M-P) groups, respectively. CT-derived zygotes were cultured in vitro for 24 h in either absence (A–H) or presence (I–P) of
rapamycin. Autophagosomes in two-cell embryos were detected by immunofluorescence using a primary antibody against MAP1LC3B (green; B,F,J,N). Injected
mitochondria were visualized based on CMXRos fluorescence (red; A,E,I,M). Pictures were merged to assess mitochondria-autophagosome colocalization
(C,G,K,O,D,H,L,P). Bars in (A–C,E–G,I–K,M–O), and M–O correspond to 10 µm, while in (D,H,L,P), they correspond to 2 µm.

that photoirradiated-derived mtDNA was replaced by recipient
mtDNA in blastocysts.

There is mounting evidence in support of purifying selection
acting in the female germline to prevent the accumulation of
deleterious mtDNA mutations (Sato et al., 2007; Fan et al., 2008;
Stewart et al., 2008; Freyer et al., 2012; Sharpley et al.,
2012; Li et al., 2016; Floros et al., 2018; Lieber et al.,
2019; Wei et al., 2019). Among other stages of germline
development, purifying selection may take place during early
embryogenesis as reported by Lee et al. (2012) and Latorre-
Pellicer et al. (2019). In agreement with these reports, our
present data indicate that the levels of NZB mtDNA dropped in
blastocysts only when it derived from photoirradiated cytoplasm.
Given that photoirradiation leads to mitochondrial damage
(Minamikawa et al., 1999; Lum et al., 2002; Palermo et al., 2002;
Lum and Nagley, 2003; Takeuchi et al., 2005), including on
mtDNA (Battogtokh et al., 2018), we argue that photoirradiated
mitochondria were targeted for destruction in preimplantation
embryos (Wang et al., 2012). This hypothesis is in keeping
with autophagic elimination of paternal mitochondria following

fertilization (Rojansky et al., 2016), suggesting that a similar
mechanism might be involved with elimination of dysfunctional
mitochondria inherited from the oocyte.

To address the hypothesis that photoirradiated mitochondria
were destroyed by autophagy, injected embryos were cultured in
the presence of rapamycin. We expected with this treatment to
enhance the drop in the levels of NZB mtDNA as rapamycin is
a canonical inducer of macroautophagy; by inhibiting mTORC1,
rapamycin induces autophagosome formation and degradation
of cellular components such as dysfunctional mitochondria
(Kim et al., 2002; Narendra et al., 2008; Twig et al., 2008;
Suen et al., 2010; Gilkerson et al., 2012; Dai et al., 2014). In
opposite to our prediction, rapamycin prevented the drop in NZB
mtDNA associated with injection of photoirradiated cytoplasm.
Although difficult to explain, we propose that rapamycin
mitigated mitochondrial damage induced by photoirradiation.
This hypothesis is supported by a previous report showing that
rapamycin upregulates DNA repair enzyme OGG1 (Habib et al.,
2010). Thus, rapamycin might have countered mitochondrial
damage by enhancing mtDNA repair on photoirradiated-derived
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mitochondria. In addition, embryos were assessed as for
colocation between injected mitochondria and autophagosomes.
Two-cell embryos were used as an autophagic wave takes place at
this stage (Tsukamoto et al., 2008), coinciding with destruction of
paternal mitochondria in mice (Rojansky et al., 2016). However,
no skewed colocalization of photoirradiated mitochondria and
autophagosomes was seen, even when considering the rapamycin
treatment. Together, these data do not implicate autophagy in the
elimination of photoirradiated-derived mitochondria.

Our current findings support the hypothesis that damaged
mitochondria are destroyed during early embryogenesis,
suggesting that the same mechanism might take place to counter
expansion of deleterious mtDNA mutations. Such mechanism
is in accordance with the “Muller’s ratchet” theory, which
proposes that uniparental inheritance of mtDNA in the absence
of recombination would lead to accumulation and fixation
of deleterious mutations (Muller, 1964). In fact, few highly
deleterious mutations in mtDNA have become fixed in the
human population, lending further support to purifying selection
(Rand and Kann, 1996; Elson et al., 2004; Rand, 2008; Wei
et al., 2019). Considering that deleterious mtDNA mutations
may impact mitochondrial function, mutations might be selected
against at the organelle level (Burr et al., 2018). In support of this
notion, previous reports have provided evidence that autophagy
acts to eliminate dysfunctional mitochondria with deleterious
mtDNA mutations (Narendra et al., 2008; Twig et al., 2008; Suen
et al., 2010; Gilkerson et al., 2012; Dai et al., 2014). Although our
findings do not support a link between autophagy and the lower
levels of photoirradiated-derived mitochondria in blastocysts,
this requires further investigation as it might be a rapamycin-
independent mechanism (Yamamoto et al., 2014) or take place at
a different embryonic stage (Tsukamoto et al., 2008).

CONCLUSION

The preimplantation embryo is competent to mitigate the
levels of damaged mitochondria. This finding is of relevance
for the transmission of mitochondrial disease as a similar
mechanism might take place during early embryogenesis to
counter expansion of deleterious mtDNA mutations. Limitation
of the study: lack of mtDNA sequencing data. Further
studies are needed to show whether the lower levels of

damaged mitochondria in blastocysts are linked with elimination
of potentially deleterious mtDNA mutations derived from
photoirradiation.
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Ribosomal RNA (rRNA) from all organisms undergoes post-transcriptional modifications 
that increase the diversity of its composition and activity. In mitochondria, specialized 
mitochondrial ribosomes (mitoribosomes) are responsible for the synthesis of 13 oxidative 
phosphorylation proteins encoded by the mitochondrial genome. Mitoribosomal RNA is 
also modified, with 10 modifications thus far identified and all corresponding modifying 
enzymes described. This form of epigenetic regulation of mitochondrial gene expression 
affects mitoribosome biogenesis and function. Here, we provide an overview on rRNA 
methylation and highlight critical work that is beginning to elucidate its role in mitochondrial 
gene expression. Given the similarities between bacterial and mitochondrial ribosomes, 
we focus on studies involving Escherichia coli and human models. Furthermore, we highlight 
the use of state-of-the-art technologies, such as cryoEM in the study of rRNA methylation 
and its biological relevance. Understanding the mechanisms and functional relevance of 
this process represents an exciting frontier in the RNA biology and mitochondrial fields.

Keywords: mitochondria, RNA, ribosome, methylation, methyltransferases, epigenetics

EPIGENETIC MODIFICATIONS OF rRNA

RNA modifications are present in all living organisms and play important roles in RNA 
metabolism. The number of experimentally identified RNA modifications is growing, and to 
date, more than 170 RNA modifications have been reported (Boccaletto et  al., 2018). RNA 
modifications are predominantly found in transfer RNA (tRNA), with modifications identified 
in up to 20% of nucleotides (Jackman and Alfonzo, 2013). Although not as common as in 
tRNA, human cytosolic ribosomal RNA (rRNA) contains 14 distinct types of post-transcriptional 
modifications in 228 sites (Taoka et al., 2018), while Escherichia coli rRNAs contain 36 modified 
nucleotides (Sergiev et al., 2011). Among the different types of rRNA modifications, 2′-O-methylation 
of the ribose followed by pseudouridylation is the most common (for a review on this abundant 
RNA modification see Charette and Gray, 2000).

In bacteria, most of the methylated nucleotides in the small subunit (SSU) of the ribosome 
are located on the surface and are introduced during the late stages of ribosome assembly, 
while nucleotide modifications in the large subunit (LSU) occur during early stages of 
assembly  (Siibak and Remme, 2010). In eukaryotes, the introduction of rRNA modifications 
is closely linked to rRNA processing events and coupled to various stages of ribosome assembly 
(Armistead  et  al., 2009; Bourgeois et  al., 2015; Zorbas et  al., 2015).
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In most cases, the precise role of rRNA modifications remains 
unclear. Some rRNA modifications are located on highly conserved 
nucleotides and cluster in functionally important areas of the 
ribosome, including the peptidyl transferase center and decoding 
site (Decatur and Fournier, 2002; Polikanov et  al., 2015). This 
suggests that they may play important roles, including alteration 
of ribosomal active sites and stabilization of the rRNA scaffold 
(Demirci et  al., 2010b; Polikanov et  al., 2015). Furthermore, 
the presence of partial modifications, including 2′-O-methylation 
in a subset of rRNAs, indicates that nucleotide modifications 
may play additional roles under different physiological conditions 
(Krogh et al., 2016). Alterations in rRNA modification patterns 
have also been described during development (Blanco and Frye, 
2014), in response to environmental changes (Schwartz et  al., 
2014) and in disease (Armistead et  al., 2009). While it remains 
unclear how rRNA modifications affect overall cellular function, 
it is becoming evident that rRNA modifications are dynamic 
factors in the regulation of gene expression and may contribute 
to the fine-tuning of translation regulation.

METHYLATION OF rRNA IN BACTERIA 
AND THE EUKARYOTIC CYTOSOL

Universally Conserved rRNA Methylation 
Sites
Methylation of rRNAs is a ubiquitous feature in all living 
organisms, and the presence of methylated rRNA residues at 
corresponding sites in prokaryotes and eukaryotes indicates 
that it is evolutionarily conserved. There are two universally 
conserved methylated residues in the SSU, N6-dimethylated 
adenines m6

2A1518 and m6
2A1519 (E. coli 16S rRNA numbering) 

located in helix 45 (Poldermans et  al., 1979). Methylation at 
these sites facilitates contact between helices 44 and 45 near 
the decoding center of the ribosome through the formation 
of a hydrogen-bonding network that stabilizes this contact site 
(Wimberly et  al., 2000; Demirci et  al., 2010b). Absence of this 
dimethylation results in the rearrangement of the ribosomal 
decoding center and decreases fidelity of translation initiation 
and elongation (Demirci et  al., 2010b). Methylation at these 
sites is introduced by KsgA, a highly conserved methyltransferase 
present in almost all living organisms (Poldermans et al., 1979; 
Formenoy et  al., 1994). DIMT1L, the mammalian homolog of 
KsgA, is responsible for dimethylation in helix 45 and also 
plays a role in the assembly of the small ribosomal subunit 
through its independent function in pre-rRNA processing 
(Zorbas et  al., 2015). In mitochondria, corresponding 
modifications are introduced by TFB1M, described in detail 
in the “mt-SSU Methyltransferases” section below.

The LSU contains two universally conserved modified 
nucleotides, Gm2251 and Um2552 (E. coli 23S rRNA numbering), 
located in the P-loop and A-loop (helices 80 and 92, respectively; 
Kiss-László et al., 1996; Lövgren and Wikström, 2001). Structural 
analyses indicate that the Um2552 methylation intercalates between 
the adjacent bases G2553 and U2554, thus preserving the active 
conformation of the G2553 base, which is  directly  involved in 
accommodating the aminoacyl-tRNA (Polikanov et  al., 2015).  

Similarly, the 2′-O-methyl group of Gm2251 forms hydrophobic 
contacts with C2065 and U2449 that maintain the active 
conformation of the nucleotides involved in base pairing with 
P‐ and A-site tRNAs (Polikanov et  al., 2015). While the absence 
of Gm2251  in E. coli has no phenotypic effects (Lövgren and 
Wikström, 2001), the lack of Um2552 results in a significant 
accumulation of assembly intermediates of the LSU (Tan 
et  al.,  2002). In bacteria, Gm2251 and Um2552 are introduced 
by the methyltransferases RlmB and RlmE, respectively (Caldas 
et  al., 2000; Lövgren and Wikström, 2001), while the human 
cytoplasmic equivalents, Gm4196 and Um4498, are catalyzed 
via a small nucleolar RNA (snoRNA)-guided mechanism 
(Kiss-László et al., 1996) and an unknown mechanism, respectively. 
In mitochondria, modifications corresponding to Gm2251 and 
Um2552 are introduced by mitochondrial rRNA methyltransferase 
1 (MRM1) and MRM2 respectively (described below in “mt-LSU 
Methyltransferases” section).

Enzymes Responsible for Methylation of 
rRNA
Methylation of rRNAs takes place during ribosomal biogenesis 
either by enzymes guided by an antisense snoRNA or by 
conventional protein enzymes. All enzymes responsible for 
known rRNA methylation sites in E. coli and the yeast, 
Saccharomyces cerevisiae, have now been identified (Sharma 
and Lafontaine, 2015). However, the enzymes responsible for 
the modification of nucleotides Um4498, Gm4499, and 
m3U4530  in humans remain to be  identified.

In eukaryotes, the most common rRNA modifications, 2′-O 
methylation and pseudouridylation, are catalyzed by small 
nucleolar ribonucleoprotein (snoRNP) particles that consist of 
snoRNA and proteins and occur simultaneously with the 
processing of rRNA precursors (Phipps et  al., 2011). snoRNAs 
act as guides for snoRNPs via sequence complementarity with 
their respective rRNA target sequence (Reichow et  al., 2007). 
Most snoRNPs fall into two large categories, C/D and H/ACA 
snoRNPs; C/D snoRNPs mediate 2′-O methylation, while H/ACA 
snoRNPs are responsible for pseudouridylation modifications 
(for a review see Watkins and Bohnsack, 2012). Other 
modifications are catalyzed by methyltransferases that modify 
specific rRNA nucleotides and do not require the participation 
of snoRNPs. To date, 57 RNA methyltransferases have been 
identified in humans (Schapira, 2016). With rare exceptions 
(Lesnyak et al., 2006; Kimura et al., 2012), each methyltransferase 
is responsible for the methylation of one rRNA nucleotide only.

In addition to methylation, several rRNA methyltransferases 
are involved in other aspects of ribosomal biogenesis, including 
pre-rRNA processing (Armistead et  al., 2009). Interestingly, it 
has been shown that the role of some methyltransferases in 
pre-rRNA processing may be  more critical to cellular function 
than their role in modifying rRNA. This is likely explained by 
the fact that eukaryotic 5.8S, 18S, and 28S rRNAs are encoded 
by a single, long polycistronic transcript that requires extensive 
processing by multiple assembly factors, including RNA-modifier 
enzymes, to release mature rRNAs (Kressler et  al., 1999a). The 
existence of pre-rRNA processing enzymes that also function 
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as methyltransferases may thus reflect a quality control mechanism, 
whereby methylation of certain rRNA nucleotides is dependent 
upon the generation of mature rRNAs.

BIOLOGICAL SIGNIFICANCE OF rRNA 
METHYLATION

Numerous studies have shown that methylation of rRNA may 
have important implications for human health. This is primarily 
due to its role in antibiotic resistance, a potential role in cancer 
development, and because of genetic diseases caused by mutations 
in the rRNA methylation machinery components.

Antibiotic Resistance
Most ribosome-targeting antibiotics interact exclusively with bacterial 
rRNA. Bacteria have evolved several mechanisms of resistance 
to antibiotics, including through the methylation of specific rRNA 
nucleotides that prevents the binding of protein synthesis inhibitors 
to their target sites on the bacterial ribosome. For instance, N1 
methylation of A1408 in the bacterial 16S rRNA confers resistance 
against aminoglycosides (Kanazawa et al., 2017). Loss of methylation 
can also decrease antibiotic sensitivity. A classic example of this 
is the lack of methylation at A1518 and A1519  in 16S rRNA 
by KsgA, which confers resistance to kasugamycin (Poldermans 
et al., 1979). Similarly, the loss of m2A2503 in 23S rRNA, catalyzed 
by RlmN, confers resistance to antibiotics that target the peptidyl 
transferase center of the ribosome (Stojković et  al., 2016). These 
examples highlight the important role of methylation in regulating 
the response to antibiotics.

Cancer
There is increasing evidence linking messenger RNA (mRNA) 
or tRNA methylation and cancer. For instance, the m6A modification 
in mRNAs is associated with tumor proliferation in endometrial 
cancer (Liu et  al., 2018), while m5C methylation of tRNAs by 
NSUN2 in skin cancer cells has been associated to tumorigenesis 
(Blanco et  al., 2016). Similarly, altered ribosome biogenesis has 
been associated with the development of various cancers (Truitt 
and Ruggero, 2016). Evidence linking rRNA methylation and 
cancer comes from the inactivation of the tumor-suppressor gene 
p53, which resulted in an altered rRNA methylation pattern 
(Marcel et  al., 2013). Future studies may elucidate the role of 
individual rRNA modifications in cancer. This is of particular 
interest given that modulation of ribosome biogenesis may also 
provide an alternative mechanism to arrest cell proliferation and 
delay tumor formation (Brighenti et  al., 2015).

Pathogenic Mutations in Methyltransferases
There is a growing list of human genetic disorders named 
ribosomopathies that are caused by mutations in genes 
encoding  ribosomal proteins or ribosome biogenesis cofactors, 
including  those involved in the rRNA methylation machinery. 
For instance, a point mutation in the EMG1 methyltransferase 
causes Bowen-Conradi syndrome, a ribosomopathy characterized 
by severe developmental delay and growth failure that often 

leads to early infant death (Armistead et al., 2009). Prader-Willi 
syndrome, a neurological disease characterized by intellectual 
disability, obesity, and muscle hypotonia is caused by deletions 
in the locus 15q11–q13, which contains a cluster of snoRNAs  
involved in RNA 2′-O-methylation (Sahoo et al., 2008). Similarly, 
mutations in the family of NOL1/NOP2/sun (Nsun) domain- 
containing genes encoding RNA methyltransferases in humans 
are associated with neurodevelopmental disorders (Blanco and 
Frye, 2014). However, due to the dual role of some methyl 
transferases in pre-rRNA processing, the exact contribution of 
impaired rRNA methylation to the pathology of these disorders 
requires further investigation.

MITOCHONDRIAL RNA EXPRESSION

Evolutionarily originated from α-proteobacteria that were engulfed 
by a primitive cell (Roger et  al., 2017), mitochondria retain 
their own circular double-stranded DNA along with their own 
protein translational machinery. Mammalian mitochondrial DNA 
(mtDNA) is 16,569  bp and is maternally inherited (Kaneda 
et al., 1995). It encodes a total of 37 genes, including 2 rRNAs, 
22 tRNAs, and 13 polypeptides of the oxidative phosphorylation 
(OxPhos) system (Anderson et  al., 1981). mtDNA exists as 
compactly-packed nucleoid structures of ~100  nm with 
mitochondrial transcription factor A (TFAM)  being the core 
packaging factor (Brown et  al., 2011; Kukat et  al., 2011).

Unlike their cytosolic counterparts, mitochondrial RNAs 
(mt-RNAs) are transcribed as long polycistronic transcripts 
and require endonucleolytic cleavage for individual transcripts 
to be released. Processing of mitochondrial transcripts flanked 
by mitochondrial tRNAs (mt-tRNAs) involves cleavage by 
Ribonuclease P (RNaseP) complex and ElaC Ribonuclease Z 2 
(ELAC2; Holzmann et al., 2008; Brzezniak et al., 2011; Sanchez 
et  al., 2011), while mitochondrial transcripts that are not 
flanked by mt-tRNAs require additional protein factors for 
processing, including FASTKD4, FASTKD5, and GRSF1 
(Jourdain et  al., 2013, 2017). Similar to their cytosolic 
counterparts, mt-RNAs also are polyadenylated; however, the 
poly(A) tails are shorter, with an average length of 45–55 
nucleotides, while the ND6 transcript is not polyadenylated 
at all (Temperley et  al., 2010). Polyadenylation of the 3′ end 
of mt-RNAs is essential for the completion of stop codons 
of several mitochondrial transcripts and, therefore, for correct 
translation of their open-reading frames. Mutations in poly(A) 
polymerase (mtPAP) have been linked to neurodegenerative 
disease (Crosby et  al., 2010).

Mitochondria maintain their own ribosomes (mitoribosomes) 
and translation system. The mammalian mitoribosome consists 
of RNA and proteins, with 16S mitoribosomal rRNA (mt-rRNA) 
and a mt-tRNA belonging to the mitoribosome large subunit 
(mt-LSU), and 12S mt-rRNA belonging to the mitoribosome small 
subunit (mt-SSU). There are 82 mitoribosomal proteins (Table 1), 
36 of which are mitochondria-specific, while many proteins with 
homologs in bacteria have mitochondria-specific extensions.

Although mitoribosomes are similar to their bacterial 
counterparts, there are some key differences. For instance, while 
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the RNA:protein ratio in bacterial ribosomes is 2:1, it is 1:2  in 
mitoribosomes, due to the large rRNA reductions and recruitment 
of new proteins stabilizing the mitoribosomal structure (Mears 
et al., 2006). Structural studies of the mammalian mitoribosome 
revealed that 5S rRNA is absent from the central protuberance 
of the mt-LSU. Instead, a mitochondrially-encoded tRNAVal was 
detected in human and tRNAPhe in porcine mitoribosomes 
(Amunts et  al., 2015; Greber et  al., 2015). Another significant 
adaptation of mitoribosomes is the presence of mitochondria-
specific proteins with highly hydrophobic amino acid residues 
facing the ribosomal exit tunnel, due to the hydrophobic nature 
of the mtDNA-encoded OxPhos subunits (Amunts et al., 2015; 
Greber et  al., 2015).

RNA MODIFICATIONS IN MITOCHONDRIA

Numerous nuclear-encoded enzymes have been shown to 
introduce a wide range of modifications on mt-tRNAs. To 
date, 15 different types of modifications have been detected 
at 118 positions in mt-tRNAs, some of which occur within 
the anti-codon loop and are important for tRNA decoding, 
while others are important for the stabilization of tRNA structures 
and their recognition by aminoacyl-tRNA synthetases (reviewed 
in Suzuki and Suzuki, 2014). In contrast, while recent findings 
reported the presence of multiple pseudouridine and m1A sites 
in mt-mRNAs (Carlile et  al., 2014; Antonicka et  al., 2017; Li 
et al., 2017; Safra et al., 2017), their importance in the regulation 
of mitochondrial gene expression still needs to be  elucidated.

The total number of modifications mapped to mammalian 
mt-rRNAs is significantly lower than that for bacterial and 
cytoplasmic rRNAs. There are 10 modifications identified to 
date in mt-rRNAs, including three 2′-O-ribose methylations, 
six base methylations, and one pseudouridylation (Figure  1 
and Table 2). The majority of these modifications were identified 
around 40  years ago by Dubin and colleague in hamster cells 
(Dubin, 1974; Dubin and Taylor, 1978; Baer and Dubin, 1980, 
1981). Since then, new modifications have been uncovered, 
and the enzymes responsible for all thus far identified 
modifications have been described. The roles of mitochondrial 
methyltransferases and their mt-rRNA targets are discussed below.

MITOCHONDRIAL rRNA 
METHYLTRANSFERASES

mt-SSU Methyltransferases
TFB1M (m6

2A936/m6
2A937)

TFB1M is a homolog of the universally conserved methyltransferase 
KsgA (also known as RsmA). Structural analyses of bacterial 
KsgA in complex with the 30S subunit indicated that the enzyme 
binds to the inactive conformation of the SSU with helix 44  in 
a displaced conformation (O’Farrell et al., 2004; Boehringer et al., 
2012). This binding blocks the interaction between helices 44 
and 45, which form the decoding center in the mature ribosomal 
subunit. Once the 30S platform and helix 45 reach a near mature 
conformation, KsgA methylates helix 45, which leads to its 
dissociation. The release of KsgA is required for helix 44 to 
assume its native position in the 30S subunit and for 17S rRNA 
processing (Boehringer et al., 2012). KsgA’s role in the formation 
of the translationally active 30S subunit conformation may explain 
its conservation across all domains of life.

Initially, mitochondrial TFB1M was considered to function 
as a transcription factor alongside TFB2M. However, it was instead 
shown to be a dimethyltransferase responsible for m6

2A modification 
of the 12S rRNA (Cotney and Shadel, 2006; Liu et  al., 2019). 
This modification occurs within two adjacent adenines, A936 
and A937 (human mtDNA position: m.1583A and m.1584A, 
respectively), located in the tetraloop “GGAA” of helix 45 at the 
3′-end of the mt-12S rRNA, which is extremely conserved in 
both sequence and structure (McCulloch et  al., 2002). TFB1M 
binds S-adenosylmethionine (SAM), the methyl-donating substrate 
of methyltransferase enzymes, and can functionally complement 
KsgA ablation by restoring the dimethylation of the conserved 
stem-loop (McCulloch et  al., 2002; Seidel-Rogol et  al., 2003).

Studies in the fly Drosophila melanogaster (Dm) demonstrated 
that the Dm-TFB1M ortholog is mainly involved in translation 
regulation, while Dm-TFB2M is involved in transcription 
(Matsushima et  al., 2004, 2005). This is consistent with studies 
showing that human TFB1M has a greater rRNA methyltransferase 
activity compared to TFB2M (Cotney and Shadel, 2006). The 
importance of the m6

2A modification has been subsequently 
highlighted in an in vivo study, showing that mouse Tfb1m 
knock-out is embryonic lethal, while heart conditional knock-out 
causes loss of mt-12S rRNA dimethylation, affecting the stability 
of the mt-SSU and leading to altered  mitoribosome assembly 
and mitochondrial translation (Metodiev et  al., 2009).

Recently, the crystal structure of TFB1M in complex with 
helix 45 and SAM has revealed its unique properties compared 
to its paralogue TFB2M (Liu et  al., 2019). Notably, TFB1M has 
a clear acid-active pocket, which accommodates SAM, while 
the same region in TFB2M is highly positively charged, thus 
facilitating interaction with DNA molecules. Furthermore, A937 
has been recognized as the first adenine to be  methylated and 
G934 is necessary for this methylation, since it brings A937 
into the active center where SAM is sheltered (Liu et  al., 2019).

Interestingly, two mt-SSU assembly factors, the human ribosome-
binding factor A (RBFA) and Era-like 12S mitochondrial rRNA 
chaperone 1 (ERAL1), have been identified to interact with the 
hairpin at the 3′-terminus of mt-12S rRNA, where dimethylation 

TABLE 1 | Composition of eukaryotic and prokaryotic small and large ribosomal 
subunits.

Ribosome Monosome 
sedimentation 
rate

Small subunit Large subunit

Eukaryotic 80S 40S: 18S rRNA and 
33 ribosomal 
proteins (mammals)

60S: 5S, 5.8S, and 28S 
(mammals) rRNAs and 
47 ribosomal proteins 
(mammals)

Prokaryotic 70S 30S: 16S rRNA and 
22 ribosomal 
proteins

50S: 5S and 23S rRNAs 
and 34 ribosomal 
proteins

Mitochondrial 55S 28S: 12S rRNA and 
30 ribosomal 
proteins

39S: mitochondrially-
encoded tRNA, 16S 
rRNA, and 52 ribosomal 
subunits
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by TFB1M occurs (Dennerlein et al., 2010; Uchiumi et al., 2010; 
Rozanska et  al., 2017). RBFA was observed to bind directly the 
dimethylation site of mt-12S rRNA and RBFA knock-down 
resulted in a reduced level of modification, suggesting that RBFA 
helps to expose adenines for subsequent methylation by TFB1M 
(Rozanska et  al., 2017). Future studies are necessary to describe 
the molecular details of RBFA involvement in this process.

TRMT2B (m5U429)
Although methyl-5-uridine (m5U) is one of the most abundant 
RNA modifications (Boccaletto et  al., 2018), it remains poorly 
characterized. Bacterial RlmD, which modifies m5U1939 of the 
23S rRNA in E. coli, is considered to be  the ancestral m5U 

RNA methyltransferase (Auxilien et  al., 2011). Due to gene 
duplication and specialization, RlmC and TrmA enzymes have 
evolved in addition to RlmD. RlmC modifies m5U747 of the 
23S rRNA (Madsen et  al., 2003), and TrmA introduces m5U 
at position 54  in the T-loop of several tRNAs (Ny and Björk, 
1980). In S.  cerevisiae, Trm2 catalyzes this tRNA modification 
(Nordlund et  al., 2000). Sequence homology analysis identified 
two mammalian proteins, TRMT2A and TRMT2B, as m5U 
methyltransferase candidates (Carter et  al., 2019). TRMT2A  
was identified as the enzyme responsible for m5U54  in the 
cytosol (Carter et  al., 2019; Powell and Minczuk, 2020), while 
TRMT2B was suggested to methylate tRNAs in mitochondria 
(de Crécy-Lagard et  al., 2019).

FIGURE 1 | Distribution of ribosomal RNA (rRNA) methylation sites on human mitoribosome and bacterial ribosomes. The location of rRNA-methylation sites on 
ribosomal small subunit (red) and large subunit (blue) are displayed on the structure of human mitoribosome (left, PDB: 3J9M) and Escherichia coli (right, PBD: 
4YBB). The ribosomal proteins are colored gray and the rRNA is in yellow.

TABLE 2 | Mitochondrial rRNA methyltransferases, corresponding bacterial homologs, and modified RNA residues.

Homo sapiens 
Enzyme

H. sapiens 
rRNA

Reference E. coli Enzyme E. coli rRNA Reference

TFB1M m6
2A936 

m6
2A937

(Cotney and Shadel, 2006; Liu et al., 2019) KsgA/RsmA m6
2A1518 

m6
2 A1519 

16S rRNA

(Helser et al., 1972; 
Poldermans et al., 1979; 
Formenoy et al., 1994)

NSUN4 m5C841 (Metodiev et al., 2014) RsmF m5C1407 

16S rRNA

(Demirci et al., 2010a)

TRMT2B m5U429 (Laptev et al., 2019) RlmD m5U1939 

23S rRNA

(Madsen et al., 2003; 
Auxilien et al., 2011)

METTL15 m4C839 (Haute et al., 2019) RsmH m4Cm1402 

23S rRNA

(Kimura and Suzuki, 2010)

MRM1 Gm1145 (Lee et al., 2013; Lee and Bogenhagen, 2014) RlmB Gm2251 

23S rRNA

(Lövgren and Wikström, 
2001)

MRM2 Um1364 (Lee et al., 2013; Lee and Bogenhagen, 2014; 
Rorbach et al., 2014)

RlmE Um2552 

23S rRNA

(Caldas et al., 2000)

MRM3 Gm1370 (Lee et al., 2013; Lee and Bogenhagen, 2014; 
Rorbach et al., 2014)

No homolog

TRMT61B m1A947 (Bar-Yaacov et al., 2016) TrmI m1A58 tRNA (Droogmans et al., 2003)
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A recent study by Laptev et al. showed that Trmt2b knock-out 
in mouse cells leads to a lack of m5U425 methylation (mouse 
numbering, equivalent to human m5U429, mtDNA position: 
m.1076T) in mt-12S rRNA as well as of U54  in certain 
mitochondrial tRNAs, indicating that TRMT2B might act as a 
dual tRNA/rRNA methyltransferase (Laptev et  al., 2019). At the 
same time, Powell and Minczuk showed that TRMT2B is located 
in human mitochondria and plays an essential role in methylation 
of both tRNAs and 12S rRNA (Powell and Minczuk, 2020). 
Similar to yeast Trm2 (Nordlund et  al., 2000), no apparent 
impairment of mitochondrial tRNA stability, mitoribosome 
integrity, or mitochondrial protein synthesis was detected upon 
TRMT2B loss in human cells (Powell and Minczuk, 2020). 
Interestingly, while the rate of protein synthesis was also not 
affected in mouse Trmt2b knock-out model, a small, but statistically 
significant, decrease in the activity of OxPhos complexes I, III, 
and IV was detected, which may be  explained by a reduction 
of protein synthesis fidelity (Laptev et  al., 2019).

The mild phenotype upon TRMT2B loss is in contrast to a 
detrimental effect on mitochondrial translation observed upon the 
loss of other mt-rRNA modifying enzymes, including for example 
TFB1M (Metodiev et al., 2009) or NSUN4 (Metodiev et al., 2014). 
The exact role of the modification introduced by TRMT2B and 
its contribution to mitochondrial function in different environmental 
conditions and/or specific tissues requires further investigation.

NSUN4 (m5C841)
NSUN4 is a mitochondrial rRNA methyltransferase that belongs 
to the m5C methyltransferase family and introduces m5C911 
modification of mt-12S rRNA in mice (human m5C841, mtDNA 
position: m.1488C; Metodiev et  al., 2014).

In Thermus thermophilus, the corresponding residue (position 
C1404) is modified by the methyltransferase RsmF, which also 
modifies C1400 and C1407. All three m5C residues modified 
by RsmF in T. thermophilus 16S rRNA are clustered around 
the decoding center, close to sites of contact with tRNA, mRNA, 
and elongation factor G. The T. thermophilus RsmF null mutants 
were shown to be  thermosensitive. In vitro, RsmF methylates 
C1404 to  around 35% with naked 16S rRNA as a substrate 
and to 100% in the context of 30S subunit, suggesting that 
this modification is likely to be  introduced at the later stages 
of SSU biogenesis (Demirci et  al., 2010a)

In mice, knock-out of Nsun4 results in defective embryonic 
development, while heart conditional knock-out causes an OxPhos 
impairment, leading to severe cardiomyopathy (Metodiev et  al., 
2014). Sucrose gradient centrifugation analysis revealed that 
NSUN4 ablation leads to the accumulation of free mt-SSU and 
mt-LSU, preventing monosome formation (Metodiev et al., 2014).

Interestingly, NSUN4 has been shown to form a stable 
heterodimeric complex with MTERF4 that is targeted to the 
mt-LSU and plays an essential role in mt-LSU assembly, independent 
of the methylation activity of NSUN4 (Cámara et  al., 2011). 
NSUN4 lacks RNA binding domains; instead, structural studies 
revealed that a positively charged surface forms an RNA binding 
path from MTERF4, along NSUN4, all the way into its active 
site, suggesting that both proteins contribute to RNA recognition 
(Spahr et  al., 2012). In vitro methylation experiments showed 

that MTERF4 strongly stimulates the specificity of NSUN4; 
however, the monomeric NSUN4 is still able to methylate the 
substrate albeit with lower specificity (Yakubovskaya et al., 2012).

METTL15 (m4C839)
Recently, METTL15, from the methyltransferase-like (METTL) 
family, was reported to be  involved in m4C839 (human mtDNA 
position: m.1486C) modification of human 12S rRNA (Haute 
et  al., 2019; Chen et  al., 2020). An equivalent position in bacteria 
(C1402) has two modifications, N4 and 2′-O-methylations (m4Cm), 
introduced by RsmH and RsmI, respectively (Kimura and Suzuki, 
2010), while in the human mitoribosome 2′-O-methylation at 
C839 is not conserved. In vitro, recombinant E. coli RsmH and 
RsmI reconstitute m4Cm1402 on the 30S subunit, but not on the 
naked 16S rRNA, suggesting that these modifications are formed 
at a late step during 30S assembly. Moreover, RsmH prefers 2′-O-
methyl cytosine as a substrate and, therefore, m4C in bacteria 
likely occurs subsequent to the 2′-O-methylation. Modified 
m4Cm1402 interacts directly with the P-site codon of the mRNA 
and the lack of N4 methylation increases the efficiency of non-AUG 
initiation and decreases the rate of UGA read-through, implying 
that m4Cm1402 plays a role in fine-tuning the ribosomal decoding 
center, thus increasing decoding fidelity (Kimura and Suzuki, 2010).

In human cells, METTL15 localizes to mitochondria, and the 
lack of this enzyme leads to mitochondrial dysfunction. METTL15 
was shown to interact with the mt-SSU, and knock-out of METTL15 
results in significantly decreased m4C839 levels in 12S rRNA 
(Haute et al., 2019; Chen et al., 2020). Loss of m4C839 modification 
leads to aberrant assembly of the mt-SSU and accumulation of 
late-stage assembly intermediates, suggesting an important role 
of this modification in the 12S rRNA folding and, consequently, 
interaction with the mitoribosomal proteins. Importantly, both 
published reports detected reduction in the m5C841 modification 
catalyzed by NSUN4 (Metodiev et  al., 2014) concomitant to 
decreased m4C839 modification, revealing a potential crosstalk 
between modifications of these two nearby residues.

Interestingly, Shi et al. have recently identified another member 
of the METTL family, METTL17, to modulate m4C839 modification 
(Shi et al., 2019). METTL17 localizes to mitochondria and associates 
with the mt-SSU. Loss of METTL17 leads to around 70% reduction 
of m4C840 and 50% reduction of m5C842 of 12S mt-rRNA, 
severely compromising integrity of the mt-SSU and mitochondrial 
protein translation (Shi et al., 2019). Collectively, these data suggest 
an important role for METTL17  in mitochondrial function, 
although further work is needed to assess potential interdependence 
of METTL15 and METTL17  in m4C839 methylation.

mt-LSU Methyltransferases
MRM1 (Gm1145)
Human mitochondrial 16S rRNA contains three 2′-O-ribose 
methylation sites: Gm1145, Um1364, and Gm1370 (human 
mtDNA positions: m.2815G, m.3039T, m.3040G, respectively). 
These methylations reside in highly conserved sites found within 
the peptidyl transferase center (Decatur and Fournier, 2002).

The peptidyl transferase region of 16S rRNA involved  
in the binding of tRNA in the P-site (referred to as peptidyl- 
transferase loop, P-loop) undergoes 2′-O-ribose methylation 
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at G1145 by MRM1. This modification is highly conserved across 
ribosomes of different species and seems to play a direct role in 
peptidyl-tRNA recognition (Sergiev et  al., 2018). In yeast, the 
equivalent modification, Gm2270, on mitochondrial 21S rRNA 
is catalyzed by Pet56p/MRM1 (Sirum-Connolly and Mason, 1993). 
The loss of Pet56p in S. cerevisiae leads to a defect in the maturation 
of the mt-LSU with an accumulation of slower sedimenting particles 
by sucrose gradient (Sirum-Connolly and Mason, 1993). Interestingly, 
a variant of Pet56p with an amino acid substitution in the SAM 
pocket that abolishes its methyltransferase activity does not alter 
the formation of fully functional mitoribosomes (Lövgren and 
Wikström, 2001). This suggests that the role of Pet56p in ribosome 
assembly is independent of its methyltransferase activity.

In bacteria, Gm2251 of 23S rRNA is catalyzed by RlmB (Lövgren 
and Wikström, 2001). The crystal structure of RlmB revealed the 
presence of an N-terminal domain connected via a linker to a 
catalytic C-terminal domain, responsible for the dimerization of 
RlmB in solution (Michel et al., 2002). A strong similarity between 
the N-terminal domain and the ribosomal proteins L7 and L30 
was observed; in particular, the presence of conserved residues 
that are essential for binding of L30 to RNA suggested that the 
N-terminal domain might be important for RlmB interaction with 
the 23S rRNA (Michel et  al., 2002). Interestingly, in contrast to 
Pet56p, no effect on growth rate or ribosome assembly was 
observed upon RlmB depletion (Lövgren and Wikström, 2001).

Human methyltransferase MRM1 was shown to localize in 
mitochondria in close proximity to mtDNA nucleoids  
(Lee et  al., 2013) and was found to co-sediment with the 
mt-LSU through gradient sedimentation experiments. Primer 
extension and DNAzyme-mediated RNA cleavage assays were 
used to assign the 2′-O-ribose methylation of Gm1145 to 
MRM1 (Lee et  al., 2013; Lee and Bogenhagen, 2014). Further 
studies are essential to understand the role of MRM1 and 
Gm1145 modification in mitoribosome biogenesis and function.

MRM2 (Um1369)
MRM2 is a uridine 2′-O-methyltransferase that modifies U1369 
position of the mitochondrial 16S rRNA. This highly conserved 
modification is located in the peptidyl transferase center and is 
implicated in the interaction of the ribosome with an 
aminoacyl(A)-site tRNA. Human MRM2 is closely related to yeast 
MRM2p and bacterial FtsJ/RlmE (Lee et al., 2013). Both MRM2p 
and FtsJ/RlmE have been extensively studied and their ablation 
has been shown to lead to severe growth defects and thermosensitive 
phenotypes (Caldas et  al., 2000; Pintard et  al., 2002b).

In S. cerevisiae mitochondria, Mrm2p was shown to co-sediment 
with 21S rRNA by sucrose gradient centrifugation analysis and 
to methylate, both in vitro and in vivo, U2791 of 21S rRNA in 
the context of the LSU, but not naked rRNA (Pintard et  al., 
2002a). Alignment analysis with its putative bacterial ortholog 
FtsJ/RlmE showed high similarities between the two proteins. 
The ftsJ gene in E. coli was originally identified as a heat-inducible 
gene (Richmond et  al., 1999), and subsequently FtsJ was  
shown to be  a SAM-dependent methyltransferase responsible 
for 2′-O-methylation of U2552 in 23S rRNA (Caldas et al., 2000).

RlmE depletion was shown to cause striking defects in the 
ribosome assembly process, leading to an accumulation of 

intermediates of the 30S and 45S particles, and a decrease of 
the 70S particles and polysomes (Bügl et  al., 2000; Caldas 
et  al., 2000; Arai et  al., 2015). Initially, RlmE was thought to 
methylate the 23S rRNA in the context of the 50S subunit 
rather than the 45S intermediates that accumulate upon its 
depletion (Bügl et  al., 2000). However, it was later shown that 
45S, the precursor of the 50S subunit, is the real substrate of 
RlmE and that methylation of U2552 triggers the formation 
of the 50S subunit (Arai et  al., 2015). Intriguingly, expression 
of two GTPases, EngA and ObgE, restored the defective 
phenotypes caused by RlmE ablation despite the absence of 
the U2552 modification, suggesting an interesting link between 
GTPase activity and RNA methylation (Tan et  al., 2002).

As for MRM1, primer extension assay and DNAzyme-mediated 
RNA cleavage analysis allowed to identify MRM2 to be responsible 
for modification of Um1369 (Lee et al., 2013; Lee and Bogenhagen, 
2014; Rorbach et al., 2014). Silencing of MRM2 in cultured human 
cells led to decreased mitochondrial translation and OxPhos 
impairment, while immunoprecipitations and sucrose gradient 
centrifugation analyses revealed an interaction between MRM2 
and the mt-LSU (Rorbach et  al., 2014). Upon MRM2 silencing, 
the steady-state levels of mt-LSU were found to be  decreased, 
without affecting the mt-SSU levels, confirming that Um1369 is 
important for the biogenesis of the mt-LSU. Furthermore, MRM2 
downregulation resulted in a partial decrease in Gm1370 
modification, alongside Um1369, with the former modification 
being introduced by MRM3. This suggests an interdependence 
between methylation of U1369 and G1370 and implies that MRM2 
may act at an earlier stage of mitoribosome biogenesis than MRM3.

MRM3 (Gm1370)
MRM3 is responsible for methylation of G1370, adjacent to 
Um1369  in the A-loop of the mt-LSU. The equivalent residue in 
E. coli 23S, G2553, pairs with C75 of the aminoacyl tRNA in the 
bacterial ribosomal A-site (Kim and Green, 1999). In E. coli, G2553 
is not modified, and neither is the yeast equivalent in mitochondrial 
21S rRNA (G2792). Interestingly, yeast cytosolic LSU 25S rRNA 
has 2′-O-methylguanosine modifications in the analogous site 
(Gm2922) introduced by nucleolar protein Spb1p (Kressler et  al., 
1999b). Modification of G2922 is a late event occurring on the 
27S ribosome intermediate and is essential for ribosome biogenesis 
(Lapeyre and Purushothaman, 2004). In human cytoplasmic 28S 
rRNA, the corresponding site is G4499 and it is 2′-O-methylated 
via a snoRNA-guided mechanism (Sergiev et  al., 2018).

Human MRM3 associates with the mt-LSU, as revealed by 
co-immunoprecipitation and sucrose gradient sedimentation analyses 
(Lee et  al., 2013). MRM3 silencing reduced Gm1370 methylation 
and, consequently, mitochondrial translation and OxPhos function. 
Moreover, downregulation of MRM3 expression resulted in the 
accumulation of species consistent with mt-LSU pre-ribosomal 
particles, suggesting that methylation of G1370 likely occurs during 
the late-stage of mitoribosome assembly (Rorbach et  al., 2014).

TRMT61B (m1A947)
TRMT61B is a dual function methyltransferase that modifies 
both mt-tRNA (Chujo and Suzuki, 2012) and mt-rRNA (Bar-Yaacov 
et  al., 2016). The conserved residues of its bacterial homolog, 
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TrmI, are well characterized for their catalytic function (Barraud 
et  al., 2008) and contribution to binding of SAM (Dégut et  al., 
2016). TrmI is responsible for SAM-dependent N1-methylation 
of adenosine 58 in the T-loop of many tRNAs and its inactivation 
in the hyperthermophilic bacterium T.  thermophilus results in 
a thermosensitive phenotype (Droogmans et  al., 2003).

Initially, TRMT61B was found to act as a mitochondrial 
tRNA methyltransferase responsible for m1A58 of tRNALeu(UUR), 
tRNALys, and tRNASer(UCN) (Chujo and Suzuki, 2012). However, 
a more recent study identified TRMT61B as the enzyme responsible 
for the m1A modification at position 947 (mtDNA: m.2617A) 
of the mt-16S rRNA (Bar-Yaacov et al., 2016). This was supported 
by siRNA experiments coupled with primer extension assay 
and RNA sequencing analyses showing a hypomethylation of 
m1A947 upon TRMT61B depletion. In vitro methylation assays 
further confirmed the ability of TRMT61B to modify naked 
mt-16S rRNA, suggesting a possible role for TRMT61B in the 
early stages of mt-LSU maturation (Bar-Yaacov et  al., 2016).

The m1A947 modification of the 16S rRNA occurs in most 
vertebrates and is enriched in the mature mammalian 
mitoribosome (Bar-Yaacov et  al., 2016). Mapping of m1A947 
into the 55S monosome structure revealed that the modification 
is located in helix 71 of the mt-LSU, in proximity to the 
intersubunit bridge B3, where interaction with the mt-SSU occurs 
(Figure 1). Phylogenetic studies show that this region is structurally 
conserved in bacterial and cytoplasmic ribosomes, where the 
same position is evolutionarily occupied by an unmodified 
guanine and an unmodified uracil, respectively (Yusupova and 
Yusupov, 2014; Greber et  al., 2015; Noeske  et  al.,  2015).

In mitoribosomes, helix 71 seems to form an interdomain 
interaction with helix 92 and to stabilize a tertiary interaction 
with helix 64 via an electrostatic bond. Notably, in vivo substitution 
of the unmodified guanine in bacterial ribosomes with an 
unmodified adenine led to an alteration of protein synthesis 
and slower growth rates, while no effect was detected in the 
presence of an unmodified uracil (Bar-Yaacov et  al., 2016). 
This data corroborates the hypothesis that methylation of A947 
is essential for the maintenance and stabilization of the 
mitoribosome structure, as the unmodified adenine lacks the 
positive charge needed to bind the negatively charged backbone 
of helix 64. In contrast, in bacteria, the unmodified guanine 
can interact with the 23S rRNA via a hydrogen bond, while 
in the cytoplasm the unmodified uracil can interact via a water 
molecular bridge with the rRNA. It is intriguing to notice how 
vertebrate mitochondrial ribosomes diverged from their bacterial 
ancestors by replacing an unmodified nucleotide with an rRNA 
modification that requires the recruitment of a nuclear-encoded 
rRNA methyltransferase. Although the exact function of m1A947 
still needs to be  elucidated, it is clear that this modification 
is important for the stabilization of the mitoribosome structure.

Mitochondrial rRNA Methyltransferases 
and Disease
Our current knowledge of the pathological role of mitochondrial 
rRNA-modifying enzymes is limited. A patient manifesting 
symptoms of mitochondrial encephalopathy, lactic acidosis, and 

stroke-like episodes (MELAS) syndrome was found to carry a 
mutation in MRM2 (Garone et  al., 2017). While the patient 
fibroblasts did not exhibit the same phenotypes ascertained in 
MRM2 knock-down experiments (Rorbach et  al., 2014), 
complementation of the MRM2 knock-out yeast model with the 
patient MRM2 variant could not rescue the respiration defect 
detected, thus supporting the pathogenicity of MRM2 mutation 
in MELAS syndrome (Garone et  al., 2017). To date, MRM2 is 
the only rRNA modifying enzyme in mitochondria with a pathogenic 
mutation directly linked to a primary mitochondrial disorder.

TFB1M was initially linked to aminoglycoside antibiotic-
induced deafness because studies using TFB1M transgenic mice 
showed activation of pro-apoptotic factor E2F1 caused by TFB1M-
hypermethylation of mt-12S rRNA (Raimundo et  al., 2012). 
However, patients carrying the mt-DNA mutation m.A1555G, 
previously identified as a cause of deafness and located in 
proximity to the two adenines methylated by TFB1M, did not 
manifest changes in mt-12S rRNA methylation levels compared 
to controls, thus putting into question the role of TFB1M in 
the pathogenesis of this disorder (O’Sullivan et  al., 2015). 
Interestingly, another study found a common variant of TFB1M 
to be  associated with reduced insulin secretion and increased 
risk of type 2 diabetes in Tfb1m-deficient mice (Koeck et al., 2011). 
Similar observations were documented for a mouse model with 
beta cell-specific knock-out of Tfb1m that resulted in lower 
insulin secretion, mitochondrial dysfunction, and eventual 
development of type 2 diabetes (Sharoyko et  al., 2014).

TRMT61B transcript expression was altered in total RNA 
extracted from astrocytes of Alzheimer’s disease patients 
compared to controls (Sekar et  al., 2015). In a separate study, 
functional and expression quantitative trait loci analyses linked 
TRMT61B to estrogen receptor-negative breast cancer (Couch 
et  al., 2016). Further research is needed to clarify the potential 
role of TFB1M or TRMT61B, as well as other rRNA modifying 
enzymes, in human disease.

FUTURE PROSPECTS: EMERGING 
TECHNOLOGIES TO INVESTIGATE RRNA 
METHYLATION

Although there has been significant progress in the detection 
of mt-RNA modifications and corresponding enzymes, the 
complete landscape of mt-rRNA methylations and the specific 
roles of these modifications remain to be  fully elucidated. 
Several cytosolic rRNA modifications exist at very low levels 
and only recent technical advances have enabled their detection 
(Taoka et  al., 2018). Furthermore, there is increasing evidence 
that ribosomal modifications are dynamic, and their levels can 
be  regulated under different physiological conditions (Erales 
et  al., 2017). Further studies are needed to assess if the same 
is true for mt-rRNA modifications.

Due to the numerous types of RNA modifications, there 
is no universal technique to identify all of them simultaneously. 
Some recent approaches include nuclease protection assays and 
reversed-phase high-performance liquid chromatography (Yang 
et  al., 2016) or sequencing profiling to measure reverse 
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transcriptase drop-off rates coupled to mass spectrometry (Enroth 
et  al., 2019). Transcriptome-wide next-generation sequencing 
and mass spectrometry methods have also been used to estimate 
the abundance of individual RNA modifications (Zhang 
et  al.,  2019). Alternative approaches use immunoprecipitation 
and next-generation sequencing in pooled samples to gain 
insights into the stoichiometry of modified nucleotides while 
preserving sequence information (Dominissini et  al., 2013). 
Additionally, emerging technologies aim to detect RNA 
modifications at the single-cell level (Ranasinghe et  al., 2018).

Among the 172 RNA modifications reported to date, more 
than 40% involve the methyl-group (Boccaletto et  al., 2018). 
Recent reviews have highlighted various approaches, including 
immunochemical, methylation-sensitive enzymes, hybridization, 
and high-throughput sequencing technologies to identify specific 
RNA methylations (Li et al., 2016; Ovcharenko and Rentmeister, 
2018), while biochemical approaches have enabled mapping 
of modifications that do not interfere with Watson–Crick base 
pairing, including m6A (Hartstock et  al., 2018). Furthermore, 
a transcriptome-wide, single-base resolution method based on 
the modification of RNA bisulfite sequencing was reported to 
simultaneously detect m5C, pseudouridylations, and m1A 
modifications (Khoddami et  al., 2019).

Despite these advancements, the aforementioned techniques 
often do not cover the mt-RNA modifications efficiently, partially 
due to the lower abundance of mt-RNA in comparison to the 
cytosolic RNA pool. Nevertheless, the suitability of these 
methodologies for mitochondrial studies is promising, and the 
enrichment of mitochondria by standard isolation methods 

from cultured cells or tissues (for example, Mercer et al., 2011) 
can be  introduced in the adapted protocols to yield explicit 
and deeper coverage on mt-RNA modifications.

Advances in the field of cryoEM have significantly contributed 
to the characterization of ribosomes, providing structural insights 
at atomic resolution. Progress in the cryoEM field has enabled 
the detection of rRNA modifications by detecting the positions 
of extra densities in electron density maps (Liu et  al., 2017). 
Recently, a high-resolution cryoEM 3D structure of the human 
80S ribosome identified 136 rRNA modification sites, including 
60 2′-O methylations, 25 pseudouridylation sites, and 51 other 
base modifications, all located in or close to functionally 
important sites within the ribosome (Natchiar et  al., 2017). 
Some discrepancies between the data obtained by cryoEM 
studies (Natchiar et al., 2017) and other quantitative techniques 
detecting modifications (Taoka et  al., 2018) illustrate the need 
for complementary techniques to elucidate the entire 
epitranscriptome map of rRNA modifications.

Our preliminary analysis of the already available high-
resolution maps of mt-SSU (Khawaja et  al., 2020) allowed us 
to identify densities corresponding to all five methylations of 
the 12S rRNA (Figure  2), proving that cryoEM is indeed a 
great tool to investigate mt-rRNA modifications. There is no 
doubt that the same will be  achieved soon for 16S rRNA  
and can be  expanded to mitoribosomes isolated from  
different tissues, thanks to the continuous improvements in 
cryoEM methodology.

As mitochondria are a central organelle critical for a variety 
of cellular processes, an in-depth understanding of RNA 

FIGURE 2 | Methylated 12S mitoribosomal rRNA (mt-rRNA) residues in the human mitoribosomal small subunit as revealed by cryoEM. The structure of human 
28S (PDB: 6RW4) reveals the distribution of 12S rRNA methylation sites (red). The proteins of the 28S are colored gray and the 12S mt-rRNA is in yellow. The zoom-
in panel displays the methylated rRNA residues with corresponding density maps. Chemical groups that are added enzymatically through the action of specific 
enzymes are highlighted in orange.
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modifications, including methylation within mitochondria, will 
improve our understanding of mitochondrial gene expression 
regulation and its link to human pathophysiology.
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