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Editorial on the Research Topic

System Biology Methods and Tools for Integrating Omics Data

With the rapid evolution of sequencing technologies, it becomes more and more easy for
researchers to analyze the expression level of molecules or variations in the genome, transcriptome,
and proteome in wet labs. These technological innovations have advanced the life science
community in terms of revealing disease risk factors such as gene variations or expressions, clinical
phenotypes, etc. Accompanied by technological advances, significant amounts of sequencing data
have been generated in the field to then be interpreted using novel data integration methods.

To this end, it is urgent to develop methods and tools to better utilize omics datasets in disease
studies. One way would be to evaluate the associations between different diseases or sub-types
by analyzing omics datasets across individual laboratories. e.g., LncRNAs biomarkers, associated
with clinical sub-types and the prognosis of diffuse large B-cell lymphoma, were discovered and
validated by re-annotating the probes and analyzing the data of multiple microarray platforms.
Another way would be to reveal potential characteristics of diseases by integratingmulti-level omics
data. Gene targets of complex diseases could, for example, be predicted by integrating summary
data from GWAS and eQTL studies. Integration of omics data by exploring computational tools
is likely to be challenging for most biologists, as most tools require a certain level of computing
knowledge one the part of the users to be operated optimally. It is consequently of great import
to establish automated pipelines that combine these tools. In summary, the current challenge for
understanding complex disease is to mine novel and precise characterization through the fusing of
multi-level omics data using system biology approaches. Here, we organized a Research Topic on
“System Biology Methods and Tools for Integrating Omics Data.” In total, 22 outstanding works
were presented in this thematic issue, six of which have been highlighted as follows.
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• Zhao et al. integrated GWAS and eQTL of brain data to
identify SNPs and genes that are related to four types of strokes
(ischemic stroke, large artery stroke, cardioembolic stroke, and
small vessel stroke). They explored the genetic pathogenesis
based on the loci, genes, gene expression, and phenotypes.
There, 38 SNPs that affect expression of 14 genes were found
to be associated with stroke. Among them, one gene was
found for large artery stroke, six genes for cardioembolic
stroke, and eight genes for small vessel stroke. To explore
the effects of environmental factors on stroke, they further
identifiedmethylation susceptibility loci associated with stroke
using mQTL. A total of 31 of the 38 eQTLs were also
identified as mQTLs. In a short, this study explored the genetic
pathogenesis of strokes.

• Zhou et al. carried out a comprehensive analysis of single-cell
genomic copy number variations (CNVs) in VHL/PBRM1-
negative Clear-cell renal cell carcinoma (ccRCC). Through
functional enrichment analysis, they found that the amplified
genes are significantly associated with cancer-related signaling
transduction pathways. Besides, receptor protein tyrosine
kinase (RTK) genes also showed widespread CNVs in cancer
cells. In short, their studies indicated that the genomic
CNVs in RTK genes and downstream signaling transduction
pathways may be involved in VHL/PBRM1-negative ccRCC
pathogenesis and progression.

• Hong and Wang designed a novel method, Frin, for
studying genome evolutionary history. Phylogenetic
tree and phylogenetic network are state-of-art ways for
understanding the process of biological evolution. Since
each taxon in a phylogenetic tree could have more than one
parent, phylogenetic trees cannot capture the complexity
of evolutionary information implicit in phylogeny. Hong
and Wang presented a phylogenetic network-based method
Frin to express genome evolutionary histories. Unlike the
previous methods heavily relying on the order of input data,
Frin unified the different input orders as the same dataset for
different networks.

• Han et al. explored lncRNAs of Multiple Sclerosis (MS)
by integrating the RNA-seq data from multiple studies.
lncRNAs were deemed as important regulatory factors in
MS pathogenesis. Current research has been limited by small
sample sizes or heterogeneity among various tissues. RNA-seq
has become a powerful approach to quantify the abundances of
lncRNA transcripts. The authors collected MS-related RNA-
seq data from a variety of previous studies, and integrated
the data using an expression-based meta-analysis to identify
differentially expressed lncRNA between MS patients and
controls in all samples and sub-groups. Results showed that
a potential important function of lncRNAs may be involved
in the regulation of ribonucleoproteins and TNF cytokines
receptors in MS.

• Gan et al. proposed a new approach, TriPCE, introducing a
tri-clustering strategy to integrative pan-cancer epigenomic

analysis. TriPCE can identify coherent patterns of various
epigenetic modifications across different cancer types.
To validate its capability, they applied TriPCE to analyze
six important epigenetic marks among seven cancer
types and identified significant cross-cancer epigenetic
similarities. The results highlighted specific epigenetic
patterns among the investigated cancers. The functional
gene analysis further demonstrated strong relevance of
studied gene sets with cancer development and revealed
a consistent risk tendency among these investigated
cancer types.

• Zeng et al. developed a hybrid deep neural network
framework 4mcDeep-CBI, aiming to identify 4mC sites.
Preliminary extracted features were fed to the Convolutional
Neural Network (CNN) and Bidirectional Long Short Term
Memory network (BLSTM) to generate advanced features.
Taking the advanced features as input, they designed an
integrated algorithm to improve feature representation.
Experimental results on a large new dataset showed that
4mcDeep-CBI could achieve generally better performances
when identifying 4mC sites compared to other state-of-
art predictors.

Each study in the special issue was peer reviewed by two
or three external reviewers. We would like to thank all the
authors for contributing their work to our hot thematic issue
and all the reviewers for their time and efforts. Finally,
we would like to thank the Chief Editor and Editorial
Office of Frontiers in Genetics for their support during the
whole processes.
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Systems Chemical Genetics-Based
Drug Discovery: Prioritizing Agents
Targeting Multiple/Reliable
Disease-Associated Genes as Drug
Candidates
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1Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China,
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Genetic disease genes are considered a promising source of drug targets. Most

diseases are caused by more than one pathogenic factor; thus, it is reasonable to

consider that chemical agents targeting multiple disease genes are more likely to have

desired activities. This is supported by a comprehensive analysis on the relationships

between agent activity/druggability and target genetic characteristics. The therapeutic

potential of agents increases steadily with increasing number of targeted disease

genes, and can be further enhanced by strengthened genetic links between targets

and diseases. By using the multi-label classification models for genetics-based drug

activity prediction, we provide universal tools for prioritizing drug candidates. All of

the documented data and the machine-learning prediction service are available at

SCG-Drug (http://zhanglab.hzau.edu.cn/scgdrug).

Keywords: drug discovery, disease associated genes, drug targets, systems chemical genetics, machine learning

INTRODUCTION

Finding novel drugs or new uses for old drugs is one of the most important motivations of life
sciences. Drug development is a costly process. The rich knowledge accumulated by modern life
sciences is, thus, highly expected to reduce the attrition rate during drug development. From
a chemical viewpoint, drugs exert therapeutic effects by inhibiting or activating one or more
of the target genes/proteins associated with certain diseases. Therefore, gene-disease association
information is crucial for drug discovery (Brinkman et al., 2006; Sanseau et al., 2012; Wang Z. Y.
et al., 2012; Plenge et al., 2013; Okada et al., 2014; Nelson et al., 2015).

In life sciences, genetics is best dedicated to revealing gene-disease links. Thus, genetics
makes great contributions to the pharmaceutical industry. For example, disease-associated genes
identified by medical genetics constitute a promising source of drug targets (Brinkman et al., 2006;
Sanseau et al., 2012; Wang Z. Y. et al., 2012; Plenge et al., 2013; Okada et al., 2014; Nelson et al.,
2015). Moreover, the pathogenesis revealed by genetics is also of high value for drug discovery. If
a disease arises from gain of function (GOF) mutation of a target gene, the corresponding drugs
must be antagonists or inhibitors; while for a disease induced by loss of function (LOF) mutation
of a gene, the targeted drugs must be agonists (Wang and Zhang, 2013).
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Thousands of disease-associated genes have been identified by
traditional Mendelian genetics and recently developed genome-
and phenome-wide association studies (GWAS and PheWAS,
respectively). However, nearly all studies attributed diseases to
variations at a single genetic locus. Most diseases are caused
by multiple pathogenic factors (Yildirim et al., 2007; Hopkins,
2008; Guney et al., 2016); thus, a majority of the identified links
between diseases and single genetic variations are not strong
enough to have therapeutic value. For example, only ∼5% of the
drug-disease associations derived from PheWAS are supported
by clinical evidence (Rastegar-Mojarad et al., 2015). Thus, to
utilize the medical genetic information more efficiently in drug
development, we should aim at multiple genes associated with
certain diseases rather than a single pathogenic factor to identify
potential drugs. To test this hypothesis, we retrieved the genes
responsible for various disorders and collected the chemical
agents targeting these genes. A comprehensive analysis on
the relationships between agent activity/druggability and target
genetic characteristics revealed that the agents targeting multiple
pathogenic factors were more likely to show desired medicinal
activities and to be clinically approved. The therapeutic potential
of agents can be enhanced with the consolidation of genetic links
between targets and diseases. These observations allowed us to
predict agent activities using machine learning methods, which
are definitely helpful to prioritize drug candidates.

RESULTS

Data Preparation and Validation
The information for agent-target interaction was obtained
through retrieving Drug-Gene Interaction database (DGIdb)
(Wagner et al., 2015), Therapeutic Target Database (TTD) (Qin
et al., 2014), and DrugBank (Law et al., 2014). Only the clinically
supported or approved activities of the agents were used in
the present study, which were derived from DrugBank, TTD,
and ClinicalTrials (Zarin et al., 2011; Law et al., 2014; Qin
et al., 2014). The disease-associated gene information was derived
from the following eight databases: Genetic Association Database
(GAD) (Becker et al., 2004), Online Mendelian Inheritance
in Man (OMIM) (Hamosh et al., 2005), Clinvar (Landrum
et al., 2014), Orphanet (http://www.orpha.net/consor/cgi-bin/
index.php), DisGeNET (Piñero et al., 2015), INtegrated TaRget
gEne PredItion (INTREPID) (Chen and Tian, 2016), GWASdb
(Nelson et al., 2015), and The Human Gene Mutation Database
(HGMD) (Wang X. et al., 2012) (Figure 1).

To facilitate the present analysis, a natural language
processing tool MetaMap was used to convert disease terms
of genes and indication annotations of agents to Unified
Medical Language System (UMLS) concepts (Aronson, 2001),
where the Medical Subject Headings (MeSH) thesaurus was
selected as the vocabulary source of UMLS (Liu et al.,
2014). Using the disease classes provided by pharmaprojects
(Similarity threshold: 0.75) (Mcinnes et al., 2009), the chemical
agents were indicated for treating 667 disease classes and
the disorder-related genes were associated with 703 disease
classes (Figure 1). All of the data are freely available at SCG-
Drug (http://zhanglab.hzau.edu.cn/scgdrug).

Data validation was performed by the following analyses.
First, we assessed the reliability of the gene-disease pairs by
examining whether similar diseases cover similar gene sets.
The disease similarity was measured using UMLS::similarity
(Mcinnes et al., 2009); the disease gene set distance was
calculated using the Tanimoto coefficient (see Methods). As
shown in Figure 2A, a definite correlation exists between
disease similarity and gene set distance. That is, if two diseases
exhibit similar symptoms, then these diseases tend to involve
similar genes, validating the identified gene-disease pairs. Then,
we used a similar method to evaluate the quality of agent-
disease pairs. A good correlation was observed between disease
similarity and agent set distance (Figure 2A), supporting the
reliability of agent-disease pairs. Therefore, one can infer
the activities of agents through their target-associated genetic
diseases, provided the agents and the targets are truly linked.
As illustrated in Figure 2B, for the agents in TTD, DGIdb,
and DrugBank, 4.1, 4.7, and 5.3% of their genetics-implicated
activities are supported by clinical trials, respectively, comparable
with the PheWAS-based activity prediction efficiency (Rastegar-
Mojarad et al., 2015). However, if the agents were randomly
assigned with targets (for 10,000 times), the clinically supported
activities derived from genetic predictions are significantly
rarer than those from real agent-target pairs (Figure 2B,
P < 10−4). This 10,000-permutation test validates the agent-
target associations.

Dependence of Agent Activity/Druggability
on Target Quantity
Based on the validated data, we can investigate how the agent
activity/druggability depends on the target characteristics. As
illustrated in Figure 3, for the agents targeting a single disease
gene, 3.0% of genetics-derived activities are supported by clinical
test and only 0.6% are clinically approved (Table S1). For
agents targeting two disease-associated genes, 4.1% of genetics-
implicated activities are clinically supported, and 1.5% have been
introduced to the market (Table S1). The clinically active ratio of
agents culminates to 26.7%, and the approval ratio is up to 11.4%,
when the agents targeting tens of disorder genes. Together, the
therapeutic potential of agents increases steadily with increasing
number of targeted disease genes (Figure 3).

Drug action is usually considered a specific process. It
is thus of apparent interest to investigate the molecular
mechanisms underlying the promiscuity of the multi-target
agents. Considering the fact that human genes generate a large
number of paralogs during evolution, a primary explanation
is that the multiple targets covered by the agents have similar
sequences and functions. Indeed, the sequences for target pairs
hit by the agents are more similar than those randomly selected
from the target set (P = 2.20 × 10−16, Wilcoxon rank-
sum test) (Figure 4A), where the needle program of EMBOSS
package (Rice et al., 2000) was used to do pairwise alignments.
Furthermore, it was found that the target pairs covered by the
agents are significantly enriched with paralogs (4.72% (2,602 of
55,110), derived from Ensemble database), compared with the
randomly combined target pairs (0.10% (4,029 of 3,955,078), P
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FIGURE 1 | Pipeline for data processing. Disease-associated genes were derived from eight databases. Agent activities were obtained from TTD, DrugBank, and

ClinicalTrials. The disease terms of genes and the indication annotations of agents were uniformed to UMLS concepts using MetaMap. Using the disease classes

provided by pharmaprojects (Similarity threshold: 0.75), 703 types of diseases for 19,233 genes were identified, resulting in 914,190 gene-disease pairs. Through

searching DGIdb, TTD, and DrugBank, 3,346 genes were targeted by 14,558 agents. 3,346 targets were associated with 703 diseases, resulting in 359,101

gene-disease pairs; 5,759 agents were indicated for treating 667 diseases, resulting in 74,902 agent-disease pairs.

∼ 0, hypergeometric test). Besides, the GO-based Czekanowski–
Dice distances (Ovaska et al., 2008) of the gene pairs targeted
by the agents are evidently smaller than those of randomly
selected target pairs (P = 2.20 × 10−16, Wilcoxon rank-sum
test) (Figure 4B). These observations not only support the
evolutionary explanation to the molecular basis of multi-target
drug action, but also provide useful clues to addressing the
concerns about the side effects of promiscuous agents.

Despite the achievements of multi-target strategy for drug
discovery, questions concerning security remain, as the tendency
to act on multiple genes may increase the probability of inducing
adverse effects. The present analyses indicate that these agents
prefer to target genes with similar sequences and functions,
namely paralogs, which means that the agent-targeting process
is not so random that it will constrain the agent activities into a
relatively narrow range. This is definitely beneficial to alleviate
the side effects of multi-target agents and thus helpful to enhance
their druggability.

Furthermore, we analyzed the chemical genetic data recorded
in connectivity map (cMap) (Lamb et al., 2006). The cMap
comprises 7,056 gene expression profiles for five human cell lines
treated with 1,309 agents. Using the biclustering approach FABIA
(factor analysis for bicluster acquisition), we have generated 49
gene modules for cMap data, establishing links between gene
modules and chemical agents (Xiong et al., 2014). Therefore,

each agent has a gene module profile, and the promiscuity of the
agent increases with the increasing number of modules the agent
covers. As shown in Figure 5A, with the increase of targets, the
agents indeed cover more gene modules, supporting the opinion
thatmulti-targeted agents have a higher risk of yielding unwanted
effects. However, the druggability analysis indicated that with the
increasing number of targets, the drug approval ratio does not
decrease but rather increases slightly (Figure 5B). Moreover, if
only disease-associated genes are considered, the drug approval
ratio increases evidently with the increase of targeted gene
number (Figure 5C). This observation strongly suggests that
despite the enhanced risk in side effects, multi-targeted agents are
still very promising in drug development.

Dependence of Agent Activity/Druggability
on Target Quality
Besides the quantity of agent targets, their quality also influences
the medicinal potential of agents in principle. Our prior study
has revealed that the agents targeting “top genes” have higher
therapeutic potential (Quan et al., 2018), where “top genes”
were defined as those tightly associated with certain diseases.
Four disease-gene databases, i.e., AlzGene (Bertram et al., 2007),
SzGene (Allen et al., 2008), PDGene (Lill et al., 2012), and
MSGene (Lill et al., 1994), provide “top genes” annotations for
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FIGURE 2 | Validation of gene-disease pairs, agent-disease pairs and

agent-target pairs. (A) Correlations between disease similarity and disease

gene set distance or drug set distance. The disease similarity was measured

using the UMLS::similarity, and the disease gene set or drug set distance was

characterized by Tanimoto coefficient. (B) Clinically active ratios of

genetics-implicated agent activities. The red, brown, and green vertical dashed

lines indicate the clinically active ratios derived from real agent- target pairs in

TTD, DGIdb, and DrugBank, respectively. The curves show the clinically active

ratio frequency distributions for 10,000 random permutations of agent-target

pairs.

Alzheimer’s disease, schizophrenia, Parkinson’s disease, multiple
sclerosis, respectively. From DGIdb, TTD and DrugBank, we
retrieved 3,692 agents targeting the genes including “top genes”
contained in these four databases (Table S2). As illustrated in
Figure 6, multi-target agents exhibit higher medicinal potential
than single-target counterparts, consistent with the above
observations. Next, for the agents covering “top genes,” their
genetics-derived activities are more likely to be supported by
clinical evidence and be clinically approved (Figure 6 and
Table S2), indicating the importance of target quality in genetics-
based drug discovery.

However, only a few genetic databases contain quality
information for disease genes. Considering the above finding
that multi-target agents usually hit paralogs, we speculated
that ohnolog genes, i.e., paralogs generated by whole genome
duplication, may be used as “top genes” instead. Ohnolog
genes have been recognized to significantly enrich disease genes,
compared with other paralog genes, because of their strong
dosage balance (Makino and Mclysaght, 2010; McLysaght et al.,
2014; Xie et al., 2016; Sekine and Makino, 2017).

FIGURE 3 | Dependence of agent activity/druggability on target quantity.

Therapeutic potential of agents increases with increasing number of targeted

disease genes.

As illustrated in Figure 7, the agents covering disease-
associated ohnolog genes indeed exhibit higher approved
potential (P < 1.09 × 10−61, hypergeometric test), suggesting
that disease-associated ohnolog genes can be regarded as “top
genes” to some extent. This finding is very useful in establishing
the machine-learning models for drug activity prediction (see
below for details).

Target Quality Evaluation and Druggability
Score of Disease Genes
Eight disease gene databases (including Clinvar, OMIM, HGMD,
Orphanet, GWASdb, INTREPID, GAD, andDisGeNET) are used
in the present study. The target quality of each database must be
different, which stimulated our interest to do an evaluation by
comparing the clinically supported ratio of genetics-implicated
agent activities derived from eight databases. The results showed
that target genes of Clinvar have the highest quality, in which
16.52% of genetics-based activity predictions are supported by
clinical test. The target quality (measured by clinically active
ratio) of other databases declines in the order: OMIM (15.01%),
HGMD (14.09%), Orphanet (13.62%), GWASdb (10.53%),
INTREPID (7.08%), GAD (5.75%), and DisGeNET (4.14%)
(Figure 8 and Table S3). This observation inspired us to propose
a parameter for quantitatively measuring the druggability of
disease genes. First, the genes derived from different databases
were given different quality scores, with the highest-quality
database (i.e., Clinvar) being assigned with the highest score
(eight points), while the lowest (i.e., DisGeNET) with the lowest
score (one point). Then, the scores were summed up for each
disease gene to define its druggability (see Methods). The higher
the score is, the more druggable the disease gene. Apparently, a
gene may have different scores for different diseases.

This scoring system is validated by the following observations.
First, for the disease genes with higher druggability scores, the
genetics-implicated activities of agents are more possible to
be clinically supported and approved (Figure 9 and Table S4).
Considering the correlation between gene druggability and
pathogenicity (Plenge et al., 2013; Quan and Zhang, 2016),
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FIGURE 4 | Sequence similarity and GO distances of gene pairs targeted by the multi-target agents. (A) The sequences for target pairs hit by the agents are more

similar than those randomly selected from the target set (P = 2.20 × 10–16, Wilcoxon rank-sum test). (B) The GO-based Czekanowski–Dice distances of the gene

pairs targeted by the agents are evidently smaller than those of randomly selected target pairs (P = 2.20 × 10–16, Wilcoxon rank-sum test).

it is inferred that druggability score is also appropriate for
characterizing gene-disease links. Indeed, the “top genes” derived
from AlzGene, SzGene, PDGene, and MSGene, which are tightly
connected with diseases, exhibit much higher druggability scores
than other genes with the same pathogenic annotations (P= 2.51
× 10−52, Wilcoxon rank-sum test) (Figure 10). Therefore, each
disease can be characterized by the corresponding scored genes,
constituting a gene profile pertinent to the disease. Different
diseases can be compared through calculating Spearman’s rank
correlation between their gene profiles. It is interesting to notice
that the diseases exhibiting similar gene profiles display similar
symptoms measured by UMLS::similarity (Figure 11), validating
the scoring system in characterizing gene-disease links. Together,
it is concluded that druggability score can be used to measure
target quality and genetic links between genes and diseases,
which is of great value in drug activity prediction by machine-
learning models.

Agent Activity Prediction With Multi-Label
Classification Model
The above analysis implied that it is possible to establish drug-
activity prediction models based on the genetic information of
drug targets. Since a drug is usually associated with multiple
activities for diseases and a disease could be treated by multiple
drugs, drug-activity prediction problem can be considered as a
multi-label classification task. In this paper, we adopted a method
of multi-label k-nearest neighbor (MLKNN) which can construct
high-accuracy multi-label prediction models for drug-activity
prediction (Zhang and Zhou, 2007; Wen et al., 2015).

First, we investigate a variety of features to represent the
characters of druggability. Considering that various features may
bring diverse information as well as noise, we adopt ensemble
learning method to select suitable features to build the models

(Lee and Soo, 2013; Yang et al., 2014; Zhang et al., 2015).
Considering that agents targeting multiple disease genes, in
particular “top disease genes” and genes with high druggability
scores, tend to show high therapeutic potential (Figures 3, 6,
7, 9), we rationally selected four parameters to build the models.
The first parameter characterizes the overall score of genes
responsible for certain diseases within drug targets, and the
second parameter is the normalized average value of the overall
score. The third and fourth parameters describe the absolute
number and relative ratio of ohnologous disease genes (serving
as “top genes”) within drug targets, respectively (see Methods).

Representation of drug labels is a crucial step in multi-label
learning. An agent-disease pair was regarded as a positive, if the
drug hits one or more disease genes and is indicated for treating
this disease. An agent-disease pair was regarded as a negative, if
the drug targets one or more disease genes but is not annotated
for controlling this disease. As a result, a total of 74,902 positives
covering 5,759 agents and 667 diseases, and 3,778,517 negatives
were selected.

Given a dataset of n drugs denoted as
{(

xi, yi
)}n

i=1
, xi and yi

are the p-dimensional feature vector and q-dimensional disease
vector for the ith drug, respectively. Our goal is to build
the functional relationship Y = F (X) : 2p → 2q between
exploratory variables (feature vector) and target values (agent-
activity vector) for multi-label learning.

First, four MLKNN models were constructed based on four
features. Then, each model was evaluated by the internal 5-fold
cross validation on the training data. As a result, five MLKNN
models were built based on five internal folds and selected
features. The final prediction result is the average and standard
deviation scores of outputs by five MLKNN models. At last, we
used the ensemble learning method to combine four features and
generate high-accuracy prediction models (see Methods).
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FIGURE 5 | Relationships between druggability and target number of agents

derived from cMap. (A) With the increasing number of targets, the agents

cover more gene modules (ANOVA: P = 1.94 × 10−9). (B) With the increasing

number of targets, the drug approval ratio increases slightly. (C) If only

disease-associated genes are considered, the drug approval ratio rises

evidently with the increase of targeted gene number.

The performance of assembled classifier for agent-activity
prediction is shown in Figure 12. For a 5-fold stratified cross-
validation with a 1,000 repeat, MLKNN displays the best
performance (Table S5). By inputting the 5,759 original agents
and associated targets into the models (where the threshold of
predictive value was set to 0.5), 11,649 activities were predicted.
67.01% of the predicted activities are supported by clinical trials,
and 14.52% have been approved, which are much higher than the
overall ratio of genetics-implicated clinical activity and approved
indication (3.96 and 1.16%, respectively).

To examine for which kind of diseases the predictions are
most relevant, we compared the clinically active/approval ratio

FIGURE 6 | Effects of top genes on the clinically active/approval ratio of

agents. The top genes were derived from AlzGene, SZGene, PDGene, and

MSGene. From DGIdb, TTD and DrugBank, we retrieved 3,692 agents

targeting the genes contained in the four databases, of which 726 targeted at

least one top gene. The results show that for the agents covering top genes,

their genetics-implicated activities are more likely to be supported by clinical

trials and to be clinically approved (P-values were calculated using the

hypergeometric test).

FIGURE 7 | Effects of disease-associated ohnolog genes on the clinically

active/approval ratio of agents. A total of 7,294 ohnolog genes were obtained

from Makino and Mclysaght’s work31, in which 5,265 genes were

disease-associated. Searching DGIdb, TTD and DrugBank revealed that 4,058

agents targeted 1,164 of the 5,265 ohnolog genes. The results show that for

the agents covering disease-associated ohnolog genes, their genetics-derived

activities are more likely to be supported by clinical evidence and be clinically

approved (P-values were calculated using the hypergeometric test).

of the predicted results for various diseases. It was found that,
leukemia and lymphoma have the most predictions (Table S6).
To demonstrate the usefulness of the present method, we tested
the predicted anti-leukemia agents by cytotoxicity experiment.
Using our models, 809 agents were predicted to have anti-
leukemia potential, of which 550 (67.99%) have been validated
by prior clinical tests. Thus, it is intriguing to examine the
anti-leukemia potential of the rest 259 agents. 14 of 259 agents
are commercially available, which were evaluated by K562
(chronic myeloid leukemia-derived cancer cell line) cytotoxicity
assays. The results show that 10 agents (71.43%) can inhibit
the growth of K562 efficiently (Figure 13) (Table S7), with
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FIGURE 8 | Clinically active ratio of genetics-implicated agent indications

derived from different disease gene databases.

FIGURE 9 | Dependence of agent activity/druggability on target quality. With

the increase of druggability scores of target genes, the therapeutic potential of

corresponding agents also increases.

IC50 values ranging from 0.106 (saracatinib) to 111.2µM
(veliparib) (Table S7).

To facilitate the use of the machine-learning prediction
models, we developed a web server SCG-Drug (Systems
Chemical Genetics-Drug, http://zhanglab.hzau.edu.cn/scgdrug)
that allows a quick and intuitive access to the background
information and predicted results. Currently, SCG-Drug
contains 5,759 agents, 703 diseases and 19,233 genes derived
from various databases. By inputting the target information
of any agents into SCG-Drug, one can use the established
machine-learning models to predict the potential activities
of the agents. The SCG-Drug web interfaces allow users to
explore medicinal information related to a given drug, disease
or gene through four interfaces in “Analysis” page: “Drug”,
“Batch prediction,” “Disease,” and “Gene.” The “Drug” interface
allows users to submit a single drug to retrieve target genes and
potential activities of the query drug. For example, when a user
submits a single drug that was shown in the dropdowns, the
drug will be searched in the database directly. If it is unable to
find any matches for the search term, the user will be asked
to input the corresponding target genes of the drug. Then,
the system will call the prediction module. Alternatively, the
system allows the user to upload a file on the “Batch prediction”
interface, in which an agent and corresponding targets are in

FIGURE 10 | Comparison of druggability scores for top genes derived from

AlzGene, SzGene, PDGene, MSGene, and ordinary genes with the same

pathogenic annotations. The top genes exhibit evidently higher scores than

other genes (P = 2.51 × 10–52, Wilcoxon rank-sum test).

a single row and the terms in each row are separated by tabs,
along with an email address to which the predicted activities of
the agents will be sent. Offline prediction automatically starts,
and the predicted results will be sent to the user via e-mail.
The “Disease” interface allows users to obtain relevant disease
genes with druggability score, and database source by querying
standardized disease descriptions of MeSH. The “Gene” interface
allows users to explore gene-related diseases (with druggability
score) and drugs only by submitting a gene name or an Entrez
ID, which have been documented in the server. In addition,
users can obtain the information for documented drugs (with
normalized indications) and targets/genes (with normalized
disease descriptions) from “Download” page. The data and the
machine-learning models will be updated regularly.

DISCUSSION

Selecting agents with desired activities and high druggability
from an infinite chemical space is a fundamental task for drug
development. Previous studies have revealed that genetic disease
genes can provide valuable clues for drug activity prediction
and druggability assessment (Brinkman et al., 2006; Sanseau
et al., 2012; Wang Z. Y. et al., 2012; Plenge et al., 2013; Wang
and Zhang, 2013; Okada et al., 2014; Nelson et al., 2015).
However, these studies are limited to single-drug-single-target
paradigm. Because most complex diseases are caused by multiple
pathogenic factors, it is reasonable to speculate that targeting
multiple disorder factors will better navigate the drug space.
In this study, by a comprehensive analysis, we clearly indicate
that aiming at multiple disease genes is helpful to prioritize
drug candidates with promising activities and high druggability.
Additionally, the strengthened genetic links between target genes
and diseases are helpful to improve the medicinal potential
of drug candidates. The drug-gene interaction information is
expected to be rapidly accumulated through emerging techniques
in chemical biology. However, the identification of reliable
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FIGURE 11 | Efficiency of druggability scoring system in characterizing gene-disease links. Diseases exhibiting similar gene profiles, calculated by Spearman’s rank

correlation, display similar symptoms measured by UMLS::similarity. The number of disease pairs is shown in the box. The color exhibits enrichment of the number in

each row, with red representing the strong enrichment and blue representing the weak.

FIGURE 12 | Agent activity prediction with machine-learning models. (A) Workflow for the machine-learning model establishment. (B) Sketch view for the rationale of

agent activity prediction. (C) The overall performance of the ensemble classifier.

genetic links between genes and diseases depends on progress in
medical genetics.

A number of systems genetics methods have been developed
for enriching and screening the driver genes underlying
complex traits in the post-GWAS era. For example, Zhu

et al. identified 126 genes related to human complex traits
through the integration of summary-level GWAS results
and eQTL data (Zhu et al., 2016). Based on the exome
sequencing, array copy number and RNA sequencing (RNA-seq)
data from 3,281 samples across 12 cancer types, Leiserson
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FIGURE 13 | Cytotoxicity of 14 predicted anti-leukemia agents. K562 cells were treated with (A) Amuvatinib, (B) Aspirin, (C) Brivanib, (D) Crenolanib, (E) Gossypol

acetic acid, (F) Masitinib, (G) Motesanib, (H) Niraparib, (I) RGB-286638, (J) Saracatinib, (K) Tandutinib, (L) Trametinib, (M) Veliparib, (N) Vemurafenib. The results

show that 10 agents (Amuvatinib, Brivanib, Crenolanib, Masitinib, Motesanib, Niraparib, Saracatinib, Tandutinib, Veliparib, Vemurafenib) (71.43%) can efficiently inhibit

the growth of K562.

et al. performed a pan-cancer analysis of mutated networks
utilizing a HotNet2 (HotNet diffusion-oriented sub-networks)
algorithm, by which they identified 16 significantly mutated
subnetworks containing 147 genes. Many of these genes have
been validated to play a critical role in cancer pathogenesis
(Leiserson et al., 2015). Gamazon et al. proposed a gene-
based association method called PrediXcan that directly
tests the molecular mechanisms through which genetic
variation affects phenotype (Gamazon et al., 2015). Greene
et al. introduced a Network-guided GWAS Analysis method
called NetWAS, which integrated tissue-specific networks and
nominally significant P-values in GWAS to identify biologically
important disease-gene associations (Greene et al., 2015).
Although these methods are helpful to identify reliable genes
associated with a complex disease trait, the complex application
procedures hinder their convenient use. In this study, we
endorsed the possibility of using ohnolog genes as a source
of “top disease genes.” The high accessibility of ohnologs will
facilitate the identification of disease driver genes and the
genetics-based drug discovery.

The above discoveries inspired us to establish systems
chemical genetic models for predicting drug activities. Because
drug repurposing is a hot spot in the pharmaceutical industry,
a number of theoretical methods, including cheminformatics-
based, bioinformatics-based and systems biology-basedmethods,
have been proposed to predict drug activities (Jin and Wong,
2014). However, most of these methods were derived from
parameters trained using large datasets, suggesting that these
methods may be sensitive to datasets and poor in generalization
capabilities. The identification of the genetic determinants of
drug activities facilitates the rational selection of parameters to
establish machine-learning models for drug activity prediction.
Because this model was built on the fundamental principle
of drug activity determination, it is expected to be robust
when generalized to different datasets and explainable to
certain extent. Moreover, to maximize the convenience for
researchers, a user-friendly online service (SCG-Drug) was
provided for drug-activity prediction and data retrieval as
well. These systems chemical genetics methods are of high
value in prioritizing drug candidates, also highlighting the
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importance of modern genetics in facilitating the paradigm shift
of pharmaceutical industry.

MATERIALS AND METHODS

Data Sources and Pre-processing
Agent Information
We collected agents and agent-target associations from three
databases: DrugBank, TTD, and DGIdb (Law et al., 2014; Qin
et al., 2014; Wagner et al., 2015). By integrating the 6,841
agents covering 3,692 targets from DrugBank, the 5,208 agents
covering 569 targets from TTD, and the 10,941 agents covering
3,090 targets from DGIdb, we obtained 35,860 agent-target
associations, comprising 16,021 agents and 4,613 target genes.
The indication information for the agents were collected from
DrugBank, TTD, and ClinicalTrials (Zarin et al., 2011; Law et al.,
2014; Qin et al., 2014). Totally, we obtained 80, 90 agents with
corresponding target genes and pharmacological activity records.
Using the disease classes provided by Pharmaprojects (similarity
threshold: 0.75, for more details see the Disease standardization
section), we finally acquired 5,759 agents covering 667 types of
diseases and 2,813 target genes.

Disease-Associated Genes
Eight databases were used to collect disease-related genes,
including the Genetic Association Database (GAD, https://
geneticassociationdb.nih.gov/) (Becker et al., 2004), Online
Mendelian Inheritance in Man (OMIM, http://omim.org/)
(Hamosh et al., 2005), Clinvar (http://www.ncbi.nlm.nih.gov/
clinvar/) (Landrum et al., 2014), Orphanet (http://www.
orpha.net/consor/cgi-bin/index.php), DisGeNET (http://www.
disgenet.org/web/DisGeNET/menu/rdf) (Piñero et al., 2015),
INtegrated TaRget gEne PredItion (INTREPID) (Chen and Tian,
2016), GWASdb (http://jjwanglab.org/gwasdb) (Nelson et al.,
2015) and The Human Gene Mutation Database (HGMD, http://
www.hgmd.cf.ac.uk/ac/index.php) (Wang X. et al., 2012). A total
of 19,233 disease-associated genes were collected for use in the
present analysis. Genes that could not be mapped to an Entrez ID
were excluded. The available URLs, version information, access
dates, and number of records from the above eight databases are
provided in Table S8.

Disease Standardization
We used the Unified Medical Language System (UMLS), which
provides a comprehensive set of medical concepts, to standardize
disease annotations of genes, and agents. UMLS is a medical
terminology system that has been developed by the National
Library of Medicine for more than 20 years and contains a
large number of standardized medical concepts. The natural
language processing program MetaMap was used to convert
disease annotations to the corresponding disease concepts
(Aronson, 2001). We selected Medical Subject Headings (MeSH)
as the vocabulary, and limited the semantic type to “Pathologic
Function,” “Injury or Poisoning,” and “Anatomical Abnormality”
to obtain the disease-related concepts (Liu et al., 2014). We
processed all gene-related phenotypes and agents’ indications
using the UMLS concept. As MeSH defines disease concepts

using a hierarchical system, it classifies each disease to a narrow
disease type; for example, “Alzheimer disease 15” is a subtype
of “Alzheimer disease.” The latter is simply a broader term
for the former. In our work, all subtype disease concepts were
converted to the appropriate broader term using a Perl module
UMLS::Interface. Disease annotations that could not be mapped
to any disease concept were excluded from subsequent analyses.
Using the disease classes provided by Pharmaprojects (similarity
threshold: 0.75) (Mcinnes et al., 2009), we obtained 914,190
gene-disease pairs (involving 703 types of diseases) and 74,902
agent-disease pairs (involving 667 types of diseases).

Sequence Similarity Analysis
The needle program of EMBOSS package (Version: 6.6.0.0) (Rice
et al., 2000) was employed to perform sequence similarity analysis
of agent-targeted proteins, because of its accurate production of
Needleman-Wunsch global pairwise alignments.

Gene Ontology (GO) Terms Similarity Measurement
We used the GO-based Czekanowski–Dice distance to evaluate
the GO terms similarity of the target pairs. The Czekanowski–
Dice functional distance was calculated using a previously
described method (Ovaska et al., 2008). The GO term
information of the gene pairs was obtained from the Ensembl
database (version 72).

“Top Genes” and Ohnolog Genes
The AlzGene database contains 650 genes for Alzheimer’s disease
(Bertram et al., 2007); the SzGene database contains 937 genes for
schizophrenia (Allen et al., 2008); the PDGene database contains
571 genes for Parkinson’s disease (Lill et al., 2012); and the
MSGene database contains 675 genes for multiple sclerosis (Lill
et al., 1994). From these databases, 44, 43, 31, and 43 genes
strongly associated with Alzheimer’s disease, schizophrenia,
Parkinson’s disease and multiple sclerosis, respectively, were
identified. These genes were termed “top genes,” meaning that
relatively reliable associations have been established between
these genes and certain diseases. In addition, the ohnologs served
as an alternative source of “top disease genes,” because ohnologs
are significantly enriched with disease genes due to their strong
dosage balance (Makino and Mclysaght, 2010; McLysaght et al.,
2014). FromMakino et al.’s work (Makino and Mclysaght, 2010),
we extracted 9,057 ohnolog pairs covering 7,295 genes from the
human genome.

Druggability Score of Disease Genes
Based on clinically active ratio of genes from eight disease
databases (Clinvar, OMIM, HGMD, Orphanet, GWASdb,
INTREPID, GAD, and DisGeNET), we proposed a parameter
named druggability score for quantitatively measuring the
druggability of disease genes. First, the genes derived from
different databases were given different scores, with the highest-
clinically active ratio database (i.e., Clinvar) being assigned with
the highest score (eight points), the disease genes obtained from
the second-ranked database of the clinically active ratio (i.e.,
OMIM) was given seven points, and so on, from HGMD was
given six points, from Orphanet was given five points, from
GWASdb was given four points, from INTREPID was given
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three points, from GAD was given two points, while the lowest
clinically active ratio (i.e., DisGeNET) with the lowest score (one
point) (Table S3). Then, if a disease gene is recorded in multiple
databases, the scores of the corresponding multiple databases
were summed up for this disease gene to define its druggability:

Druggability score =
∑k

j=1
scoreij (1)

where scoreij denotes the assigned score of a pathogenic gene i in
the jth database (Table S3); i = 1, 2, ..., m; j = 1, 2, ..., k, where
m is the number of disease genes, k is the number of databases
(k= 8 in this study).

Statistical Analysis
Disease Similarity Measurement
First, the disease terms of genes and indication annotations of
agents were converted to the standardized medical concepts of
UMLS by a natural language processing tool MetaMap. Then,
through using the disease classes provided by pharmaprojects
(Similarity threshold: 0.75), the disease similarity was measured
using UMLS::similarity. Lin, which is calculated using the
information content and path of concepts, shows good
performance for disease similarity measurement (Nelson et al.,
2015). In this study, we used the Lin to evaluate the disease term
similarity of all disease concepts. The Lin is calculated using the
following equation:

Lin =
IC(lcs)

IC
(

concept1
)

+ IC(concept2)
(2)

where IC is the negative log of the probability of the concept,
the probability is pre-calculated by the Perl module by summing
the probability of the concept occurring in some text plus the
probability of its descendants occurring in some text, and lcs is
the least common subsuming concept of concept1 and concept2.

Tanimoto Coefficient Calculation
To assess the correlations between disease concepts and their
corresponding causal genes or drugs, we characterized the
distance between disease gene sets or drug sets using the
Tanimoto coefficient. The Tanimoto coefficient (TC) is calculated
using the following equation:

TC =
NAB

NA + NB − NAB
(3)

where NA is the number of disease A-related genes or drugs, NB

is the number of disease B-related genes or drugs, and NAB is the
number of common genes or drugs for disease A and disease B.

Permutation Test
To evaluate the quality of agent-target pairs, we did a 10000-
permutation test on the three sets of agent-target pairs derived
from DGIdb, TTD and DrugBank (Law et al., 2014; Qin
et al., 2014; Wagner et al., 2015), respectively. The agents were
randomly assigned with targets and the clinically active ratio
of agents was calculated. This random shuffling procedure was
repeated for 10,000 times.

Machine-Learning Modeling
Feature Generation
We rationally selected four parameters to build the model. The
first parameter characterizes the overall druggability score of the
pathogenic genes within drug targets. The second parameter is
the average value of the first parameter and is normalized by
36 (namely 8∼). For example, if an agent targets two related
disease genes derived from Clinvar and DisGeNET, respectively,
the first parameter will be 9 (8 + 1), and the second parameter
will be 0.125 (9/2× 36). The third and fourth parameters are the
absolute number and relative ratio of ohnologous disease genes
within drug targets, respectively.

Positive Sample Generation
An agent-disease pair was regarded as a positive, if the drug
hits one or more disease genes and is indicated for treating this
disease. The positive samples were generated as 74,902 agent-
disease pairs.

Negative Sample Generation
An agent-disease pair was regarded as a negative, if the drug
targets one or more disease genes but is not annotated for
controlling this disease. The negative samples were generated as
3,778,517 pairs. In the web server SCG-Drug (http://zhanglab.
hzau.edu.cn/scgdrug), the model with all samples is provided.

MLKNN
Given the training set

{(

xi, yi
)}n

i=1
, xi is the ith instance (drug),

and yi is the corresponding disease vector. yi
(

l
)

= 1. If the ith
instance can treat the lth disease, otherwise yi

(

l
)

= 0, l =

1, 2, . . . , q. The k nearest neighbors (in training set) of instance
xi are denoted by N (xi) , i = 1, 2, . . . , n. Thus, based on lth
disease of these neighbors, a membership counting vector can be
denoted as:

Cxi

(

l
)

=
∑

a∈N(xi)

ya
(

l
)

, l = 1, 2, . . . , q (4)

where Cxi

(

l
)

counts the number of neighbors of xi treating the
lth disease, and 0 ≤ Cxi

(

l
)

≤ k.
For a test drug t, MLKNN identifies its k nearest neighbors

in the training set and calculate Ct

(

l
)

. Let Hl
1 be the event that a

drug has lth disease andHl
0 be the event that a drug does not treat

lth disease. Let Elj be the event that a drug just has j neighbors with

lth disease in its k nearest neighbors. For the instance t, its label
for lth disease yt

(

l
)

is determined by the following principle:

yt
(

l
)

= argmaxb∈{0,1}P
(

Hl
b|E

l
Ct(l)

)

, l = 1, 2, . . . , q (5)

Using the Bayesian rule, above Equation (5). can be rewritten as:

yt
(

l
)

= argmaxb∈{0,1}

P
(

Hl
b

)

P
(

El
Ct(l)

|Hl
b

)

P
(

El
Ct(l)

)

= argmaxb∈{0,1}P
(

Hl
b

)

P
(

El
Ct(l)

|Hl
b

)

(6)
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In the predictionmodel, P
(

Hl
b

)

and P
(

El
Ct(l)

|Hl
b

)

are calculated

based on the training set. The prior probabilities are calculated.

P
(

Hl
1

)

=

(

s+
∑n

i=1 yi
(

l
))

(s× 2+ n)
and P

(

Hl
0

)

= 1− P
(

Hl
1

)

(7)

Then, the posterior probabilities P
(

El
Cxi(l)

|Hl
0

)

, P
(

El
Cxi(l)

|Hl
1

)

are calculated by following equations,

P
(

Elj|H
l
1

)

=

(

s+ c
[

j
])

(

s×
(

k+ 1
)

+
∑k

i=0 cl [i]
) (8)

P
(

Elj|H
l
0

)

=

(

s+ c′
[

j
])

(

s×
(

k+ 1
)

+
∑k

i=0 cl
′ [i]

)

l = 1, 2, . . . , q, j = 1, 2, . . . , k (9)

where s is the smooth factor. cl [i] is the number of instances
which just has i neighbors with lth disease in their k nearest

neighbors; c
′

l [i] is the number of instances which just has
i neighbors without lth disease in their k nearest neighbors
(Zhang and Zhou, 2007).

Cross-Validation
We used 5-fold stratified cross-validation with 1,000 repeats to
avoid arbitrariness.

Ensemble Learning Method
In this paper, an ensemble learning method was designed to
combine various features and develop high-accuracy prediction
models (Lee and Soo, 2013; Yang et al., 2014; Wen et al., 2015).
Previous studies have shown that combining predictions from
different methods could achieve better and more robust results
than using one algorithm alone. In this study, an ensemble
classifier was generated using the linear weighted sum of outputs
from classifiers based on four features.

Given m features, we build m individual feature-based
MLKNN models, and use them as base predictors. Since
features may make different contributes, it is natural to adopt
weighted scoring ensemble strategy, which assigns m base
predictors with m weights {w1,w2, . . . ,wm}. For a testing
instance, the ith predictor will give scores for q diseases, denoted
as Si =

{

s1i , s
2
i , . . . , s

q
i

}

, i = 1, 2, . . . ,m
.
The final prediction

produced by the ensemble model is the linear weighted sum of
outputs from base predictors.

Ensemble Score = [w1,w2, . . . ,wm]×









S1
S2
. . .

Sm









(10)

= [w1,w2, . . . ,wm]×







S11 · · · S
2
1S

q
1

...
. . .

...

S1mS
2
m · · · S

q
m






(11)

Tuning weights for base predictors are critical for the ensemble
models. The weights are non-negative real values between 0 and

1, and the sum of weights equals 1. We adopt the internal 5-CV
AUPR on training data is used as the fitness score (Lee and Soo,
2013; Yang et al., 2014; Wen et al., 2015).

Performance Evaluation
In the agent-activities prediction, the predicted scores for
activities were usually merged for evaluation, and the metrics
for ordinary binary classification were often adopted. The area
under ROC curve (AUC) and the area under the precision-recall
curve (AUPR) can be used to evaluate models regardless of any
threshold. However, there are much more negative labels than
positive labels in the agent-activities prediction, and machine-
learning methods are likely to produce overestimated AUC
scores. Since AUPR takes into account recall as well as precision,
it is used as the most important metric.

We used the following evaluation metrics to evaluate the
performance of machine-learning models: Precision, Accuracy
(ACC), Recall, Specificity, Mathew’s correlation coefficient
(MCC) (12–16). These metrics can be calculated by the number
of true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN).

Precision =
TP

TP + FP
(12)

ACC =
TP + TN

TP + FN + TN + FP
(13)

Recall =
TP

TP + FN
(14)

Specificity =
TN

TN + FP
(15)

MCC =
TP × TN − FP × FN

√

(TP + FP) × (TP + FN) × (TN + FP)× (TN + FN)

(16)

Several metrics were designed for multi-label classification, i.e.,
Hamming loss, one-error, coverage, ranking loss and average
precision. Hamming loss is the fraction of the wrong labels to
the total number of labels. The one-error evaluates the fraction
of examples whose top-ranked label is not in the relevant label
set. The coverage evaluates how many steps are needed, on
average, to move down the ranked label list so as to cover all the
relevant labels of the example. The average precision evaluates
whether the average fraction of relevant labels ranked higher than
a particular label. Therefore, we adopt AUPR, average precision,
one-error, coverage, ranking loss and hamming loss for the agent-
activities prediction.

Cytotoxicity Assays
Cell Culture and Reagents
K562 cells were purchased from Shanghai Cell Bank, Chinese
Academy of Sciences. Cells were cultured in RPMI-1640
(Procell, China) with 10% FBS (Biowest, France) and 1%
penicillin/streptomycin (Procell, China) at 37◦C, in 5% CO2

humidified atmospheric air. All agents were purchased from
TargetMol and dissolved in dimethyl sulfoxide (DMSO).
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Cytotoxicity Assays
The effects of agents on K562 were determined using CellTiter-
Glo R© Luminescent Cell Viability Assay (Promega). Cells were
seeded in 96-well plate at a density of 2 × 103 cells/well and
treated with different agents for 72 h together. An equal volume of
CellTiter-Glo reagents was added to the cells in 96-well plates and
mixed for 2min on an orbital shaker and incubated for a further
10min at room temperature. The luminescence of each well was
measured by FlexStation3(Molecular Devices). The IC50 values
were calculated using Graphpad Prism software. All experiments
were performed in triplicate.

Web Server Implementation
Systems Chemical Genetics-Drug (SCG-Drug, http://zhanglab.
hzau.edu.cn/scgdrug) was built in Java, JavaScript, and Bootstrap
with MySQL as the primary data store. The site is served with
nginx on a server running CentOS 7.2. Two modules are used:
the searchmodule and the predictionmodule. The searchmodule
was implemented by an entry-name matching algorithm. By
using this module, the server will return a list of partially matched
terms and shows them in the dropdowns when users type only the
starting characters of a gene, disease or drug in the search field.
In the prediction module, there are two steps: data preprocessing
and drug indication prediction. In the data preprocessing step, a
Python script was used to produce the parameters matrix. In the
drug indication prediction step, an R script was used to generate
the result by calling the prediction model.

Code and Data Availability
The R and Python scripts used to process the data and conduct
the analyses described herein are available upon request. All of
the intermediate data are available from the authors by request.

DATA AVAILABILITY

Publicly available datasets were analyzed in this study. This data
can be found here: http://zhanglab.hzau.edu.cn/scgdrug.

AUTHOR’S NOTE

Finding novel drugs or new uses for old drugs is a costly
process. Previous studies have shown that genetics, which is

best dedicated to revealing gene-disease links, makes great
contributions to the pharmaceutical industry. On the other hand,
most diseases are caused by multiple pathogenic factors. In this
paper, we proposed that aiming at multiple genes associated
with certain diseases rather than a single pathogenic factor
is more efficient in identifying potential drugs. In addition,
our results demonstrated the therapeutic potential of agents
can be enhanced with the consolidation of genetic links
between targets and diseases. In other words, simultaneously
increasing the quantity and quality of target-disease associations
can significantly increase the activity/druggability of agents.
According to the above theories, we have established a
drug-activity predictor with multi-label classification model
based on the genetic information of drug targets (online
service is freely available at SCG-Drug, http://zhanglab.
hzau.edu.cn/scgdrug), which is of high value in prioritizing
drug candidates.
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Gene set analysis is commonly used in functional enrichment and molecular pathway

analyses. Most of the present methods are based on the competitive testing methods

which assume each gene is independent of the others. However, the false discovery

rates of competitive methods are amplified when they are applied to datasets with high

inter-gene correlations. The self-contained testing methods could solve this problem,

but there are other restrictions on data characteristics. Therefore, a statistically rigorous

testing method applicable to different datasets with various complex characteristics

is needed to obtain unbiased and comparable results. We propose a self-contained

and competitive incorporated analysis (SCIA) to alleviate the bias caused by the limited

application scope of existing gene set analysis methods. This is accomplished through a

novel permutation strategy using a priori biological networks to selectively permute gene

labels with different probabilities. In simulation studies, SCIA was compared with four

representative analysis methods (GSEA, CAMERA, ROAST, and NES), and produced the

best performance in both false discovery rate and sensitivity under most conditions with

different parameter settings. Further, the KEGG pathway analysis on two real datasets

of lung cancer showed that the results found by SCIA in both of the two datasets are

much more than that of GSEA and most of them could be supported by literature.

Overall, SCIA promisingly offers researchers more reliable and comparable results with

different datasets.

Keywords: GSA, competitive method, self-contained method, topology-based method, functional enrichment

analysis

INTRODUCTION

In recent years, gene set analysis (GSA) has become the most common method in functional
genomics studies, because evaluating a single p-value for a gene set is statistically more powerful
than genewise tests. Typically, by choosing gene sets that represent biological pathways, GSA can
help to bring insights into biological mechanisms, cellular functions, and disease states (Kanehisa
et al., 2012). Various statistical procedures for gene set testing have been proposed and can be
divided into three generations roughly in chronological order (Khatri et al., 2012; Zyla et al., 2017).
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The first generation of GSA used over-representation analysis
(ORA), where the first step is to define differentially expressed
genes (DEGs) and non-DEGs in the input gene list by a certain
threshold (Beissbarth and Speed, 2004). Then, the proportion of
DEGs between a given functional gene set and the background
gene set are tested by hypergeometric, binomial, or chi-square
distribution. This comparison of the DEG proportions is the
original theory of competitive testing. ORA has been reported
with minor variations by many different authors (Khatri and
Draghici, 2005). Even though the ORAmethod seems simple and
effective, there are two serious drawbacks. First, the information
about the strength of gene expression is lost by gene binarization.
Second, the assumption of inter-gene independence needed by
the testing methods is not satisfied in most cases.

The second generation of GSA, known as functional class
sorting (FCS), was proposed to avoid these deficiencies. Instead
of defining genes as DEGs and non-DEGs, different univariate
gene-level statistics such as t-statistic (Al-Shahrour et al., 2005;
Tian et al., 2005), Q-statistic (Goeman et al., 2004), signal-
to-noise ratio (Subramanian et al., 2005), fold change score
and Z-score (Kim and Volsky, 2005), or their trans-formations
(Tian et al., 2005; Ackermann and Strimmer, 2009) are used
to measure DEGs and overcome the first problem of ORA.
Then, a gene-set-level statistic is aggregated by these gene-level
statistics. Aggregation approaches can be sum, mean, median
of the gene-level statistics (Jiang and Gentleman, 2007), or
calculating statistics such as the Kolmogorov-Smirnov statistic
(Mootha et al., 2003; Subramanian et al., 2005), Wilcoxon rank
sum (Barry et al., 2005), or the max-mean statistic (Efron and
Tibshirani, 2006). Because the distributions of gene-set-level
statistics are usually unknown, permutation procedures are used
to complete FCS tests. According to different null hypotheses
and corresponding permutation objects, FCSs can be classified
as competitive or self-contained methods.

Assuming that all the input genes are independent of each
other, competitive methods usually permute gene labels but lose
the inter-gene information, which causes the false discovery rate
(FDR) to be uncontrolled when the inter-gene correlations are
high. Self-contained methods test each gene set independently
by permuting sample labels but lose all the information outside
the given gene set, which causes the FDR to be uncontrolled
when the percentage of DEGs in the background genes is high.
Irrespective of the prerequisites for the permutation procedure,
the ORA methods can be considered as generalized competitive
methods, whereas the classical methods based on multiple linear
regression (Mansmann and Meister, 2005; Kong et al., 2006), by
definition, are special cases of self-contained methods.

To address the second problem of ORA, some competitive
FCS methods that take account of the correlations among genes
have been proposed. The method of Nam (2010) removed the
bias caused by the inter-gene correlations, while the method
of Wu and Smyth (2012) alleviated the problem by estimating

Abbreviations: GSA, gene set analysis; ORA, over-representation analysis; DEGs,

differentially expressed genes; FCS, functional class sorting; FDR, false discovery

rate; CSSPN, condition-specific shortest-path network; SCIA, self-contained and

competitive incorporated analysis.

the variance inflation factor. However, the information of inter-
gene correlations is partially neglected in these procedures, which
causes reduced sensitivity or uncontrolled FDR. Self-contained
FCS methods seem to be more powerful than competitive ones
and do not assume that all the genes are independent, but
their null hypothesis is usually over restrictive (Goeman et al.,
2004; Tian et al., 2005; Khatri et al., 2012). They assume that
the gene set does not contain any genes with expression levels
that are associated with different experimental conditions. Under
this hypothesis, a few DEGs may cause a given pathway to
be defined as a significant differential pathway (Khatri et al.,
2012). Although the method of Wu et al. (2010) moderated
this hypothesis using a Monte Carlo based testing method, the
parameter describing the least proportion of DEGs in a pathway
is given arbitrarily instead of calculated by the expression of
genes outside the gene set. Even though competitive methods
are overwhelmingly more commonly used than self-contained
methods in the genomic literature (Gatti et al., 2010), information
is still lost during the permutation procedures. Thus, the collision
of applicable scopes between self-contained and competitive
methods remains unsolved.

The third generation of GSA, known as the pathway
topology (PT)-based approach, is based on the large amount
of publicly available pathway knowledge. Mitrea et al. (2013)
introduced dozens of PT-based methods with different principles
and applicable conditions. Most of these methods consider
topological information as a weight that measures the centrality
of nodes but ignores the spatiotemporal specificity of topological
information and changes in the topological structure between
different experimental conditions (Fang et al., 2012; Gu et al.,
2012; Dona et al., 2017). On this basis, the method of Yuan
et al. (2016) proposed a novel statistic that combines node (gene
expression) changes with edge (inter-gene correlation) changes.
The utilization of biological information greatly improved the
performance of PT-based methods, however, the testing methods
of them are essentially the same as FCS methods in that they
perform the same pipeline (Mitrea et al., 2013). Therefore,
the above defects of FCS methods are not solved by PT-
based methods.

Here, we propose a new GSA method with less information
loss that can alleviate the bias of self-contained and competitive
methods caused by their limited applicability. First, to capture all
the information within a given gene set like other self-contained
methods, a powerful multivariate statistic C is developed to
test node changes and edge changes simultaneously. We chose
Hotelling’s T2, a self-contained statistic with the ability to
penalize gene collinearity (Ackermann and Strimmer, 2009),
for node testing because of its suitability for overcoming the
limitation of competitive methods, and linear regression to test
the edge changes among genes. Because of the additivity of chi-
square distributed variables, these two statistics are transformed
to the chi-square scale and summed up to get the C statistic.
Second, we developed a novel permutation procedure based on
a condition-specific shortest-path network (CSSPN, proposed
by Dezso et al., 2009). The genes in the CSSPN are selectively
permuted instead of permuting the whole gene labels as usual.
This procedure does not disrupt inter-gene correlations but uses
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inter-pathway information from a priori biological networks,
which creates a platform for the incorporation of self-contained,
competitive, and PT-based methods. The whole pipeline is called
self-contained and competitive incorporated analysis (SCIA),
which has been implemented in an R package “SCIA” available on
GitHub https://github.com/YiqunLiHIT/SCIA. Results from this
study showed that the sensitivity and FDR of SCIA outperform
four other commonly used GSA methods in most conditions in
simulated datasets and the results are more stable with different
real datasets of lung cancer.

STATISTICAL MODELS AND METHODS

Notations and Background Network
The main objective of SCIA is to detect gene sets that are
differentially expressed under different experimental conditions.
Here, we consider the gene set as pathway P for one experimental
condition and P′ for another. N1 and N2 are the sample size for P
and P′, respectively. For convenience, we assumed that P and P′

are under linear models:

X1
β1
→X2

β2
→ . . . . . . Xn−1

βn−1
−→Xn

X
′

1

β1
′

→X2
′ β2

′

→ . . . . . .X′
n−1

β ′
n−1

−→ X
′

n

with n nodes and n − 1 edges, where βi (1 ≤ i < n)
represent the regression coefficient of Xi and Xi+1. Let U =
(

X1 − X1
′, X2 − X2

′, . . . . . . , Xn − Xn
′
)

denote the vector of
difference in the means of two groups. S and S′ are the covariance
matrices of P and P′, respectively. These notations are also used
in the simulation studies.

We chose the background network of CSSPN as the
Human Protein Reference Database (HPRD) network (Library
et al., 2009), a centralized platform to visually depict and
integrate information pertaining to do-main architecture, post-
translational modifications, interaction networks, and disease
associations for each protein in the human proteome. Other
comprehensive networks, such as the integrated network of seven
common used networks in Edge Set Enrichment Analysis (Han
et al., 2015) can also be used as the background network of SCIA.

C Statistic
The C statistic is proposed to measure the difference of a given
gene set in different experimental conditions. It consists of two
parts, the node difference model and the edge difference model.
The node difference model is based on Hotelling’s T2 method:

T2 =
N1N2

N1 + N2
UTS−1

c U

where,

Sc =
(N1 − 1) S+ (N2 − 1) S′

N1 + N2 − 2

Under the self-contained null hypothesis H0: U = 0, T2 follows
a chi-square distribution with degrees of freedom equal to n
representing genes in the given pathway with a sufficient sample

size. This allows Hotelling’s T2 statistic to be combined with
other statistics that also follow a chi-square distribution, because
chi-square distributions are additive on the freedoms. There are
many transformations of Hotelling’s T2 statistic which show its
different characteristics. It can be transformed as:

F =
N1 + N2 − n− 1

(N1 + N2 − 2)n
T2

following an F distribution with the degree of freedom of n and
N1 + N2 − n − 1 under a relatively small sample size. This
allows Hotelling’s T2 statistic to be used alone when the sample
size is insufficient. Typically, Hotelling’s T2 test is not only a
node testing method but is related to the Pearson correlation
coefficient. For convenience, assuming n = 2 and N2 is big
enough, the estimated value Xi

′ (1 ≤ i ≤ 2) can be considered
as constants µi (1 ≤ i ≤ 2), then Hotelling’s T2 statistic can be
transformed as:

T2 =
t21 + t22 − 2ρt1t2

1− ρ2

where t1 and t2 denote the t-statistics for the two component
genes, and ρ represents the Pearson correlation coefficient

between X1 and X2. If t1 = t2, Hotelling′s T2 statistic can be
simplified to:

T2 =
2t21

1+ ρ

This transformation of T2 indicates that when X1 and X2

are positively correlated and have similar changes in different
experimental conditions, there would be a penalty on the Pearson
correlation coefficient, which can avoid the disadvantages of the
competitive methods. When X1 and X2 are negatively correlated
but both have positive changes in different experimental
conditions, which indicates that the correlation of X1 and X2 has
changed in different experimental conditions, the T2 statistic is
would be more sensitive.

Although Hotelling’s T2statistic only slightly considers the
correlations between genes, a statistically rigorous edge testing
statistic is still needed. Based on the linear regression method,
a Z-score-like statistic is combined with Hotelling’s T2 statistic
in the C statistic. β̂i and β̂i

′ can be estimated by the least square
method. Then the Z-score-like B statistic can be written as:

Bi =
β̂i − β̂i

′

√

var
(

β̂i

)

+ var
(

β̂i
′
)

under the null hypothesis H0: β̂i = β̂i
′, Bi follows a standard

normal distribution the same as the Z-score, and B2i follows a
chi-square distribution and can be combined with Hotelling’s T2

statistic. Thus, we obtained the C statistic as:

C = T2 +

n−1
∑

i=1

B2i
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which follows a chi-square distribution with the degrees of
freedom equal to n+(n−1), and can be used to test node changes
and edge changes simultaneously. Notably, when the sample size
is very small, T2 and B2i will not obey the chi-square distribution,
the parameter of SCIA about the correlation test should be set
as “FALSE.”

CSSPN-Based Permutation Procedure
To avoid the shortcoming of self-contained methods and utilize
additional inter-pathway information from a priori biological
networks, a CSSPN is built by SCIA. First, a set of DEGs should
be selected as the terminal genes of CSSPN, and a set of initial
genes can usually be selected in the same way. For each pair of
genes (Xi , Xt), where Xi is in the initial gene set and Xt is in the
terminal gene set, all the shortest pathways are searched under
a background network, such as HPRD (see section Notations
and Background Network). When the results are not unique,
the pathway with the highest C score will be chosen for a sub-
pathway permutation procedure. In this procedure, 1,000 nodes
are selected randomly as the initial gene set for each Xt , which
is the only terminal gene in this procedure. Assuming there are
x shortest pathways, built by the randomly selected genes and
Xt , that have higher C scores than the given gene pair (Xi, Xt),
the permutation p-value of the sub-pathway (Xi, Xt) is x/1,000.
The permutation p-value andC statistic p-value are both adjusted
using the method of Benjamini and Hochberg (1995), and only
if the two p-values are <0.05, the sub-pathway is defined as
a statistically significant pathway. Then, all the significant sub-
pathways among the initial gene set and the terminal gene set
are used to build the CSSPN. All the genes in the CSSPN can
be considered as DEGs with edges and can be used in classical
functional enrichment analysis.

In SCIA, background genes are used selectively in the
CSSPN-based permutation procedure. Essentially, the selection
of background genes means the information from the a priori
biological network is utilized, because all the genes neighboring
DEGs in the background network are used at a higher probability
to establish the CSSPN. Additionally, because the permutation
procedure does not destroy any inter-gene or inter-pathway
structures, almost no information is lost in SCIA.

RESULTS

Simulated Data and Scenarios
Simulated Data
The simulated data were generated under a linear model
(Formula 1). Firstly, we generated the initial node X1 of a given
pathway P from the normal distributionN

(

µ1, σ1
2
)

. And then,
the neighbor node X2 = β1X1 + ε1, X3 = β2X2 + ε2
. . . . . . Xn = βn−1Xn−1 + εn were generated in the same way.
Where εi ∼ N

(

0, τi
2
)

(1 < i ≤ n) was the residual error

term. Similarly, we generated X1
′ ∼ N

(

µ1
′, σ1

′2
)

, Xi
′ =

βi−1
′Xi−1

′+ εi
′ with εi

′ ∼ N
(

0, τi
′2

)

(1 < i ≤ n)representing

the pathway P′under another experimental condition. Under the
H0 hypothesis that there is no change in nodes and edges between
different experimental conditions, we set the default simulating

parameters as:µ1 = µ1
′ = 1, σ1

2 = σ1
′2 = 1,τi

2 =

τi
′2 = 1, and βi = βi

′ = 0.5. In most of the following
simulations without mentioned specially, the gene number n in
a pathway was set as 5, the sample sizes N1 and N2 of different
experimental conditions were both set as 100, and the simulations
were repeated 1,000 times.

Scenarios
Four scenarios and 16 conditions were used to simulate different
data structures and prove the extensive applicability of SCIA.
The H0 hypothesis condition was designed to evaluate the FDR
and the H1 hypothesis condition was designed to evaluate the
sensitivity. The basic setting for the H1 hypothesis is node or
edge changes, with three additional conditions: sample size, inter-
gene correlation, and percentages of DEGs in background genes
that are outside the given pathway. In each scenario, only one
additional condition is set as different values to highlight the
robustness of SCIA. Thus, the four scenarios are:

(1) Node change, 0% background DEGs, different correlations,
and fixed sample size.

(2) Node change, 10% background DEGs, different correlations,
and fixed sample size.

(3) Node change, different percentages of background DEGs,
fixed correlations, and fixed sample size.

(4) Edge change, 0% background DEGs, fixed correlations, and
different sample sizes.

Scenarios 1 and 2 were designed to simulate datasets with
different inter-gene correlations, scenario 3 was designed
to simulate datasets with different percentages of DEGs in
background genes, and scenario 4 was designed to simulate
datasets with edge changes under different sample sizes. Details
of the parameter settings under these scenarios are listed in
Supplementary Data Section 1.

Evaluation of SCIA Performance With
Simulated Data
To evaluate its performance, SCIA was compared with two
powerful self-contained approaches, ROAST and NES, and
two commonly used competitive approaches, CAMERA and
GSEA (More details about these methods are stated in
Supplementary Data Section 2). The application scope of these
methods is quite different, so we compared SCIA with them
under corresponding application conditions. As shown in
Table 1, only competitivemethods are suitable for scenario 3, and
only self-contained methods are suitable for scenario 4.

SCIA Successfully Controls the FDR Under Different

Inter-gene Correlations in Simulated Datasets
First, we compared SCIAwith self-containedmethods in scenario
1 under different inter-gene correlations in simulated datasets.
The FDRs were well-controlled by all the three methods
(Table 2), and Figure 1 clearly shows the sensitivities of the
three methods were quite similar, indicating the C statistic
allowed SCIA to match the advantages of the self-contained
methods. Noticeably, ROAST had high sensitivity under the
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TABLE 1 | Application scope of the different methods evaluated in this study.

Conditions SCIA Self-contained Competitive

NES ROAST CAMERA GSEA

High

intergene

correlations

√ √ √ √
×

High prop. of

background

DEGs

√
× ×

√ √

Correlation

changes

testing

√ √
× × ×

“
√
” indicates the method was designed for the condition; “×” indicates the method was

not designed for the condition and may have problems in sensitivity or FDR.

TABLE 2 | FDR is well-controlled by SCIA similar to other self-contained methods

under different inter-gene correlations in simulated datasets.

Correlations SCIA NES ROAST

0.0 0.048 0.056 0.052

0.3 0.046 0.045 0.046

0.6 0.056 0.049 0.061

0.9 0.044 0.082 0.038

FIGURE 1 | SCIA produces sensitivities similar to those for the self-contained

methods under different inter-gene correlations in simulated datasets.

high inter-gene correlation. However, high sensitivity with inter-
gene correlations close to 1 is not useful for combination with
competitive approaches because a small percentage of highly
correlated DEGs may produce unreasonable significant results.

Second, we compared SCIA with competitive methods under
scenario 2. Table 3 clearly shows that the FDR of GSEA lost
control, which is common for competitive methods due to the
correlation between genes, whereas CAMERA adjusted the high

FDR only under a moderate inter-gene correlation of all genes
but failed to control the FDRs under high inter-gene correlations.
SCIAwas themost robust methodwith well-controlled FDRs and
similar sensitivities as CAMERAwith comparable FDRs. Because
there were no randomly selected DEGs in the given pathway,
the SCIA results in scenarios 1 and 2 are comparable, which
indicated that the information of background genes outside the
given gene set was well-utilized by SCIA. A notable question is
that the intersection ratio of the results obtained from SCIA and
GSEA is decreasing with the increasing of inter-gene correlation,
because GSEA is more sensitive in finding significant pathways
with less but consistent expression changes. This result indicated
that SCIA and GSEA could find different types of differentially
expressed gene sets.

SCIA Has Higher Sensitivity and Lower FDR Than

Two Competitive Methods Under High Percentages

of DEGs in Background Genes
When the percentages of DEGs in background genes are high,
there are likely to be relatively high overlaps between a given gene
set and backgroundDEGs. Therefore, self-containedmethods are
invalid in scenario 3 and SCIA was compared with competitive
methods. Table 4 shows that SCIA had higher sensitivity than
the other two methods and, interestingly, the FDR was negatively
correlated with the percentage of DEGs in background genes.
These results are reasonable and reflect the incorporation of
different GSAmethods in SCIA. Like other competitive methods,
when the percentage of DEGs in background genes was high,
SCIA assigned a competitive penalty of the significance to the
given pathway, and when the percentage of DEGs in background
genes was low, SCIA assumed only a few percentages of the
DEGs would produce a significant result for the given pathway
because there was no other explanation for these DEGs. Notably,
in complex diseases such as cancer, DEGs usually account for
more than 40% of the genes in a dataset, under which condition
SCIA was the best method both in sensitivity and FDR.

SCIA Has Higher Sensitivity Than the Two

Self-Contained Methods in Testing Changes of

Inter-gene Correlations
Most competitive methods cannot simultaneously test node and
edge changes; hence, we compared SCIA with self-contained
methods under scenario 4 with the sameH0 hypothesis and FDRs
(Table 2) as scenario 1. The influence of different sample sizes
was measured at the same time. Figure 2 shows that SCIA had
the highest sensitivity and the slowest drop in sensitivity with
decreasing sample sizes. However, when the sample size was 10
pairs, the sensitivity of SCIA dropped sharply because of the
approximation of chi-square distribution (see method), which
needs sample sizes of 15–30 pairs. Unsurprisingly, ROAST had
the lowest sensitivity because it was not designed for this purpose.
Besides, although the edge testing modules of SCIA and NES are
quite similar, SCIA was more sensitive because edge changes are
also considered by Hotelling’s T2 (see method), indicating SCIA
does not simply superpose node testing and edge testing methods
like NES.
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TABLE 3 | SCIA has lower FDRs than the competitive methods under different inter-gene correlations in simulated datasets.

Pearson correlation

coefficients

FDR Sensitivity

SCIA CAMERA GSEA SCIA CAMERA GSEA

0.0 0.016 0.048 0.042 0.286 0.183 0.126

0.3 0.018 0.065 0.112 0.257 0.287 0.304

0.6 0.029 0.104 0.216 0.256 0.442 0.529

0.9 0.033 0.381 0.424 0.304 0.821 0.297

TABLE 4 | SCIA has higher sensitivity than the competitive methods under

different percentages of DEGs in background genes.

Proportion FDR Sensitivity

SCIA CAMERA GSEA SCIA CAMERA GSEA

0.2 0.157 0.124 0.188 0.760 0.580 0.507

0.4 0.112 0.138 0.161 0.788 0.559 0.513

0.6 0.093 0.151 0.169 0.816 0.528 0.413

Evaluation of SCIA Performance With Real
Datasets
We applied SCIA to recover differentially expressed genes and
pathways involved in lung squamous cell carcinoma (LUSC), a
common type of non-small-cell lung cancer using two datasets,
one from the NCBI’s GEO (Gene Expression Omnibus) and one
from TCGA (The Cancer Genome Atlas) database. The GEO
dataset (Series Accession: GSE103512, Brouwer-Visser et al.,
2017) contains 23 LUSC sub-type cancer samples and 9 normal
samples. The LUSC dataset from TCGA contains 502 LUSC
samples and 51 normal samples.

The two LUSC datasets were used as input to compare the
sensitivity and robustness of SCIA and GSEA. In the CSSPN-base
permutation procedure of SCIA, all the genes were mapped to
the HPRD network, then the top 2% of DEGs (about 200 in each
dataset) were defined as the initial and terminal genes of CSSPN
(see method). All the nodes in the CSSPN were used for classical
functional enrichment analysis based on a hypergeometric test.
Unlike the simulation studies, the adjustment of permutation p-
values (see method) should be moderate here. This is because,
under the H0 hypothesis of simulation studies, there is no
relation between the background network and the given gene set,
whereas, in real organisms, hundreds of genes in the background
network will differentially expressed in response to the DEGs
in the given gene set. Due to the C statistic p-values of all the
single pathways were already Benjamini and Hochberg (1995)
adjusted, we did not adjust the permutation p-value in the
following analysis, indicating there are approximate 500 genes
in the HPRD background network that, on average, are affected
by the terminal DEGs. This p-value threshold is a parameter of
SCIA and can be set as different scores according to different data
and requirements.

The results of the KEGG functional enrichment analysis are
shown in Supplementary Tables S1–S4. SCIA found 131 and 64

FIGURE 2 | SCIA performs better in edge testing than the self-contained

methods under different inter-gene correlations and different sample sizes.

pathways and GSEA found 46 and 40 pathways in the GSE103512
and TCGA LUSC datasets, respectively. Among them, 55 (42%)
SCIA pathways were common between the two datasets, whereas
only 5 (11%) of the GSEA pathways were common between
the two datasets. These results illustrated that there was little
comparability between the two results of GSEA, while, SCIA
could demonstrate common results in different lung cancer
datasets and the individual differences in the two researches,
implying the two results of SCIA with different datasets were
comparable. More than 33 of the 55 SCIA pathways found in
both of the two datasets have been reported previously to have
relationships with lung cancer (Table 5), including the non-small
cell lung cancer. While, most of these pathways were not detected
by GSEA. This result showed that SCIA could find many positive
pathways that GSEA could not, and the high proportion of
results with literature supporting indicated that the intersection
of results of SCIA with different datasets could increase the
reliability. Further, SCIA produces a CSSPN, which can be
considered simply as a set of DEGs. SCIA detected 41 DEGs in
the two datasets, and more than 27 (Supplementary Table S5)
of these genes have been reported previously to be related with
lung cancer.
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TABLE 5 | SCIA found more literature supported KEGG pathways than GSEA in

two non-small-cell lung cancer datasets.

KEGG pathway name Adjusted p-value of SCIA GSEA

Cell cycle 3.89E-45 Yes

Cellular senescence 3.99E-12 No

Epstein-Barr virus infection 2.31E-11 Yes

Viral carcinogenesis 5.59E-10 Yes

p53 signaling pathway 4.81E-09 Yes

FoxO signaling pathway 1.19E-08 No

Platinum drug resistance 2.16E-07 Yes

Hepatitis B 1.43E-06 No

Transcriptional misregulation in

cancer

1.92E-06 No

Small cell lung cancer 5.74E-06 No

Human papillomavirus infection 1.39E-05 No

MicroRNAs in cancer 1.62E-05 No

Glioma 3.25E-05 No

Kaposi’s sarcoma-associated

herpesvirus infection

3.10E-05 Yes

Apoptosis 3.51E-05 No

Non-small cell lung cancer 5.11E-05 No

Hepatocellular carcinoma 9.52E-05 No

Hippo signaling pathway 0.0001275 No

TGF-beta signaling pathway 0.0004040 No

Adherens junction 0.0006536 No

PI3K-Akt signaling pathway 0.0006624 No

Proteoglycans in cancer 0.0058405 No

Wnt signaling pathway 0.0084030 No

AGE-RAGE signaling pathway in

diabetic complications

0.0151588 No

HIF-1 signaling pathway 0.0302121 No

Hepatitis C 0.0339220 No

Basal cell carcinoma 0.0343406 No

Mitophagy—animal 0.0362401 No

ErbB signaling pathway 0.0418948 No

Insulin resistance 0.0418948 No

Apoptosis—multiple species 0.0427196 No

Measles 0.0427196 No

Amyotrophic lateral sclerosis

(ALS)

0.0427196 No

“Yes” means the pathway is found by both SCIA and GSEA with adjusted p-value < 0.05.

“No” means the pathway is found by SCIA but not by GSEA.

DISCUSSION

SCIA is the first GSA method that combines the advantages
of self-contained, competitive, and PT-based methods. SCIA
has three main advantages over the other methods as was
shown by the simulation studies. First, SCIA is powerful
and statistically rigorous under high inter-gene correlations,
which are conditions under which most competitive methods
lose control of FDR. Second, SCIA has higher sensitivity and
minimum FDR compared to two competitive methods (GSEA,
CAMERA) under a high proportion of DEGs in background
genes, which are conditions that make most self-contained
methods invalid. Moreover, SCIA uses an a priori biological
network and performs better than ROAST and NES in testing

edge (inter-gene correlation) changes. Overall, the FDR of SCIA
was well-controlled and its sensitivity was higher than that of the
other four methods tested (GSEA, CAMERA, ROAST, and NES)
under most simulated conditions, highlighting the extensive
applicability and unbiased results of SCIA.

The robustness of SCIA can be attributed to two aspects.
First, its extensive applicability with reliable and unbiased
results, as mentioned above, are the most important reasons.
Second, through the CSSPN-based permutation strategy in
SCIA, a reasonable hypothesis is innovatively combined with
a priori biological information. Briefly, if DEGs can be
mapped only in one gene set, a positive weight is added
to them because there is no other explanation for the
differential expressions of these genes. Therefore, for SCIA,
comprehensiveness of the background networks is more
important than its accuracy. However, when the a priori
biological networks are more comprehensive, the hypothesis
of SCIA becomes more reasonable and the results are more
precise. This robustness gives SCIA the ability to calculate with
different datasets and to integrate the results of SCIA with
different datasets.

There are many potential applications for SCIA, including
differential expression analysis (Dona et al., 2017), sub-pathway
analysis (Martini et al., 2013), and micorRNA target gene
prediction (Wang, 2008). First, all of the genes in the CSSPN
can be considered as DEGs and used independently. In addition,
CSSPN itself can be considered as a cascading effect pathway
when the input data are from a knockout/over-expression
experiment of a single gene. Second, if the function of differential
pathways can be biologically confirmed, the sub-pathway of the
given functional pathway can be built without the permutation
procedure. Third, the choice of initial gene set is very flexible
and can be tailored for different purposes. For instance, if
the input data are derived from a microRNA knockout/over-
expression experiment, the initial gene set can be select as the
predicted target genes of the microRNAs, and the significant
predicted targets will have more potential to be the targets of
these microRNA in a specific experimental condition.
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Informational Biology, University of Electronic Science and Technology of China, Chengdu, China, 2 Innovative Institute of 
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DNA N6-methyladenine (6mA) is a dominant DNA modification form and involved in many 
biological functions. The accurate genome-wide identification of 6mA sites may increase 
understanding of its biological functions. Experimental methods for 6mA detection in 
eukaryotes genome are laborious and expensive. Therefore, it is necessary to develop 
computational methods to identify 6mA sites on a genomic scale, especially for plant 
genomes. Based on this consideration, the study aims to develop a machine learning-
based method of predicting 6mA sites in the rice genome. We initially used mono-
nucleotide binary encoding to formulate positive and negative samples. Subsequently, 
the machine learning algorithm named Random Forest was utilized to perform the 
classification for identifying 6mA sites. Our proposed method could produce an area 
under the receiver operating characteristic curve of 0.964 with an overall accuracy of 
0.917, as indicated by the fivefold cross-validation test. Furthermore, an independent 
dataset was established to assess the generalization ability of our method. Finally, an 
area under the receiver operating characteristic curve of 0.981 was obtained, suggesting 
that the proposed method had good performance of predicting 6mA sites in the rice 
genome. For the convenience of retrieving 6mA sites, on the basis of the computational 
method, we built a freely accessible web server named iDNA6mA-Rice at http://lin-group.
cn/server/iDNA6mA-Rice.

Keywords: N6-methyladenine, mono-nucleotide binary encoding, random forest, cross-validation, web-server

INTRODUCTION

Methylated bases, such as N4-methylcytosine (4mC), N6-methyladenine (6mA), and 5-methylcytosine 
(5mC), exist in genomic DNA of diverse species (Cheng, 1995; Ratel et al., 2006). All these DNA 
methylation modifications play important roles in controlling many biological functions (Tang et al., 
2018b). As an epigenetic mechanism, DNA methylation refers to a process that methyl groups are 
transferred to DNA molecules and is essential in the normal development of organisms (Bergman 
and Cedar, 2013; Smith and Meissner, 2013; von Meyenn et al., 2016). Through DNA methylation, 
the activity of a DNA segment can be changed without changing its sequence. For example, gene 
transcription can be repressed when DNA methylation occurs at its promoter (Bird, 1992).

As shown in Figure 1, after a methyl group is transferred to the sixth position of adenine ring, 
under the catalysis action of methyltransferases, 6mA is formed. 6mA is a noncanonical DNA 
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modification form in different eukaryotes at low levels (Fu et al., 
2015; Greer et al., 2015; Zhang et al., 2015; Koziol et al., 2016; 
Liu et al., 2016; Mondo et al., 2017; Wang et al., 2017). 6mA in 
prokaryotes and eukaryotes shows similar characteristics (Heyn 
and Esteller, 2015). It has diverse functions, including guiding 
the discrimination of an original DNA strand from a newly 
synthesized DNA strand (Wion and Casadesus, 2006), regulating 
gene transcription (Cheng et al., 2016), repressing transposable 
elements, and reducing the stability of base pairings (Fang et al., 
2012). Surprisingly, the methylation protection is an inheritable 
state, although it may be changed by environmental factors 
(Wion and Casadesus, 2006). Therefore, it is worth underscoring 
the importance of 6mA throughout generations.

Recent studies revealed the genome-wide distributions of 6mA 
in Tetrahymena (Wang et al., 2017), Chlamydomonas reinhardtii 
(Fu et al., 2015), Drosophila melanogaster (Zhang et  al., 2015), 
Caenorhabditis elegans (Greer et al., 2015), vertebrates (e.g. frog 
and fish) (Koziol et al., 2016; Liu et al., 2016), mammals (e.g., 
human and Mus. musculus) (Wu et al., 2016; Yao et al., 2017; 
Xiao et al., 2018; Zou et al., 2018a), fungi (Mondo et al., 2017), 
and vascular plants (e.g. rice) (Zhou et al., 2018). Although these 
studies testified the presence of 6mA in eukaryotic genomes based 
on experimental means and indeed achieved encouraging results, 
the implication of 6mA in epigenetics is still obscure (Ratel et al., 
2006). In addition, in eukaryotes, the level of 6mA was so low that 
it could only be detected by advanced techniques. In rice, with 
two antibodies, based on SMRT and IP-seq, Zhou et al. (2018) 
found that AGG-rich sequences were the most significantly 
enriched for 6mA. Thus, the computational prediction of 6mA 
sites may be a good choice to reduce experimental costs and 
guide the experimental study on plant 6mA.

In fact, several computational methods have been applied 
in the identification of DNA methylation sites. Based on 
the data of experimentally confirmed 4mC sites, Chen et al. 
(2017) firstly developed a predictor called iDNA4mC to 
identify 4mC sites, in which DNA samples were formulated 
with nucleotide frequency and nucleotide chemical property. 

Then, based on the dataset (Chen et al., 2017), He et al. 
(2018a) established another tool named 4mCPred, and Wei 
et al. (2018b) built a new predictor (4mcPred-SVM) to predict 
4mC sites. Recently, a free tool called iDNA6mA-PseKNC was 
constructed for the computational prediction of 6mA sites 
(Feng et al., 2019). The tool could be used to identify 6mA 
sites in Mus. musculus genome. However, the tool could not 
provide valuable data contained in plant genomes due to the 
difference between mammal and plant genomes. Thus, it is 
necessary to develop a 6mA site predictor for plant genomes. 
Recently, a tool named i6mA-Pred was constructed to identify 
6mA site in rice (Chen  et al., 2019). The tool could realize 
the area under the receiver operating characteristic curve 
(auROC) of 0.886 in jackknife cross-validation. However, the 
database used was not large enough, and the accuracy should 
be further improved.

In view of the aforementioned descriptions, this study aims to 
develop a new method and establish an efficient tool to identify 
6mA sites in the rice genome. A flowchart is shown in Figure 2. 
We firstly collected the existing data in the rice genome, including 
experimentally confirmed non-6mA sequences and 6mA 
sequences and built a benchmark dataset based on the report 
by Zhou et al. (2018). Subsequently, three kinds of sequence 
encoding features were proposed to formulate samples as the 
input of the Random Forest algorithm (RF) to discriminate 6mA 
sequences from non-6mA sequences. Then, several experiments 
were performed to investigate the prediction capability of 
the proposed method. Finally, on the basis of the method, we 
established a predictor called iDNA6mA-Rice.

MATERIALS AND METHODS

Benchmark Dataset
A benchmark dataset is important in building a reliable 
prediction model. By combining immunoprecipitation with 
single-molecular real-time sequencing approach, 6mA sites 

FIGURE 1 | Illustration of N6-methyladenine (6mA) modifications in DNA. The conversion of adenine to 6mA is mediated by methyl-transferases.
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in the rice genome had been detected (Zhou et al., 2018) and 
deposited in Gene Expression Omnibus (GEO) database, 
which was created and is maintained by the National Center 
for Biotechnology Information (NCBI) (Long et al., 2019). 
Therefore, a total of 265,290 6mA sites containing sequences 
were obtained from GEO. All of these sequences in GEO 
are 41 nt long with the 6mA site at the center. To reduce 
homologous bias and avoid redundancy (Dao et al., 2018; 
Su et al., 2018; Tang et al., 2018a; Zou et al., 2018b; Feng et al., 
2019), sequences with the similarity above 80% were excluded 
by using the CD-HIT program (Li and Godzik, 2006). Finally, 
we obtained 154,000 6mA sites-contained sequences as 
positive samples.

Negative samples were collected from NCBI (https://www.
ncbi.nlm.nih.gov/genome/10) and according to the following 
three rules. Firstly, the 41-nt long sequences with adenine at the 
center were selected. Secondly, experimental results proved that 
the centered adenine was not methylated. Thirdly, Zhou et al. 
(2018) believed that 6mA most frequently occurred at GAGG, 
AGG, and AG motifs, so we statistically analyzed the ratios of 
GAGG, AGG, and AG motifs in positive samples and reported 
the result in Table 1. Based on the result in Table 1, we selected 
the negative samples with the same ratio of motifs so that the 

negative data were more objective. In this way, a large number of 
negative samples were obtained. In machine learning processes, 
imbalanced datasets lead to unreliable results. To balance 
positive and negative samples, 154,000 non-modified segments 
were randomly picked out as negative samples in model training. 
Finally, the benchmark dataset contained 154,000 positive 
samples and 154,000 negative samples. The benchmark dataset 
S is formulated as:

 S = S S+ −
  (1)

where the S+ contains 154,000 positive samples; the S− contains 
154,000 negative samples;  is the symbol of “union” in the set 
theory. The benchmark dataset is available at http://lin-group.cn/
server/iDNA6mA-Rice.

FIGURE 2 | A flowchart used in this study.

TABLE 1 | Details of the three motifs in positive samples.

Motifs Numbers Proportions (%)

GAGG 26,300 17.08
AGG 24,264 15.76
AG 22,206 14.42
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Feature Descriptions
Feature extraction is a key step in establishing an excellent 
predictor (Song et al., 2012; Zuo et al., 2017; Stephenson et al., 
2018; Manavalan et al., 2018a; Wei et al., 2018a; Manavalan et al., 
2018b; Song et al., 2018b; Song et al., 2018c). The following three 
feature extraction techniques were adopted to formulate 6mA 
samples.

K-tuple Nucleotide Frequency Component
As a special form of PseKNC (Guo et al., 2014; Lin et al., 2014), 
the K-tuple nucleotide frequency component has been widely 
used in a variety of bioinformatics problems (Lin and Li, 2011; 
Yang et al., 2018b).

A DNA sequence D can be expressed as:

 D = −R R R R R R Ri L L1 2 3 4 1  ,  (2)

where Ri represents the nucleotide [Adenine (A), Thymine 
(T), Cytosine (C), and Guanine (G)] at the ith position; L is 
the length of sequence D and equals to 41 in this study. The 
strategy of k-tuple composition is to convert each sample into a 
4k dimension vector expressed as:

 
DD  ==  f f f fk tuple k tuple

i
k tuple k tuple

k1 2 4
− − − −



 

TT
 (3)

where T represents the transposition of the vector and fi
k tuple−  

represents the frequency of the ith k-tuple composition in the 
DNA sequence sample. The feature has been applied in DNA 
element identification (Wei et al., 2018b). Here, we set k = 2, 3, 4.

Mono-Nucleotide Binary Encoding
The second feature technique is to transfer nucleotide into a 
binary code formulated as:

 

n

when n A
when n C=

=
=

( , , , ),
( , , , ),
( , , , )

1 0 0 0
0 1 0 0
0 0 1 0 ,,

( , , , ),
when n G
when n T

=
=









 0 0 0 1

 (4)

Thus, an arbitrary DNA sequence with L nucleotides can be 
described as a vector of 4 × L features (Song et al., 2018a; Wei 
et al., 2018b).

Natural Vector
In the natural vector method proposed by Deng et al. (2011), 
sequences are represented as points in high-dimensional space 
based on statistical characteristics (Liu et al., 2018). With the 
sequence data, such as occurrence frequencies, the central 
moments, and average positions of nucleotides, the natural 
vector method is used to describe the distributions and numbers 
of nucleotides, cluster sequences, and predict their various 
attributes.

Based on Eq. (3), each nucleotide R can be defined as follows:

 Wk( ) : {A,C,G,T}, { , },⋅ → 0 1  (5)

where WR (Ri) = 1 if Di = R and WR (Di) = 0, otherwise

 n W DR i
n

R i= =∑ 1 ( ),  (6)

where nR represents the number of nucleotide R in the DNA 
sequence D:

 S i W DR i R i[ ][ ] ( ),= ⋅  (7)

where S[R][i] represents the distance from the first nucleotide to 
the ith nucleotide R.

 T SR i
n

R i
R= =∑ 1 [ ][ ],  (8)

where TR represents the total distance of each set of the four 
nucleotides.

 µR R RT n= / ,  (9)

where μR represents the mean position of the nucleotide R.
Finally, the second-order normalized central moments can be 

defined as:

 D
S

nn
R

i
n R R

R

R i
2 1

2

=
−

=∑ ( )[ ][ ]
µ

 (10)

Then, the natural vector of sequence D is expressed as (Tian 
et al., 2018):

 n D n c D n D n DA A
A

c
C

G G
G

T T
T, , , , , , , , , , , .µ µ µ µ2 2 2 2( )  (11)

Random Forest Algorithm
The RF algorithm has been extensively applied in computational 
biology (Zhao et al., 2014; Zhang et al., 2016; Lv et al., 2019), 
since it is a flexible and practical machine learning method 
and can deal with many input variables without variable 
deletion and provide an internal unbiased estimate of the 
generalization error. According to the principle of RF, many 
trees are randomly generated with the recursive partitioning 
approach, and then, the results are aggregated according to 
voting rules. In this study, the number of trees is set to 100 
with the seed of 1. The details of RF had been described by 
Breiman (2001).

Performance Evaluation
Cross-validation test is a statistical analysis method for 
assessing a classifier. For the purpose of saving computation 
time, the fivefold cross-validation test was performed to assess 
the method proposed in this study. We used four metrics 
[Matthew’s correlation coefficient (MCC), sensitivity (Sn), 
overall accuracy (Acc), and specificity (Sp)] to measure the 
predictive capability of our model (Zuo et al., 2014; Zou et al., 
2016; Manavalan and Lee, 2017; Manavalan et al., 2017; Cao 
et al., 2017a; Cao et al., 2017b; Cheng et al., 2018a; Yang et al., 
2018a; Zhu et al., 2019).

32

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Detecting N6-Methyladenine Sites in RiceHao et al.

5 September 2019 | Volume 10 | Article 793Frontiers in Genetics | www.frontiersin.org

Sn N
N

Sn

Sp N
N

Sp

Acc N N
N

= − ≤ ≤

= − ≤ ≤

= − +

−
+

+

+
−

−

−
+

+
−

+

1 0 1

1 0 1

1
++

≤ ≤

=
− +

+ − +

−

−
+

+
+
−

−

+
−

−
+

+

N
Acc

MCC

N
N

N
N

N N
N

N

0 1

1

1 1

( )

( )( −−
+

+
−

−

−
≤ ≤






















N
N

MCC

)

,

0 1

 (12)

where N+ and N− are, respectively, the numbers of 6mA 
sites and non-6mA sites in benchmark dataset; N−

+ indicates 
the number of the 6mA sites recognized as non-6mA sites; 
and N+

− indicates the number of the wrongly predicted non-
6mA sites. Sn and Sp represent the ability of a model to 
correctly identify 6mA sites and non-6mA sites, respectively. 
The value of Acc indicates the overall accuracy of our model 
distinguishing 6mA sites from non-6mA sites. MCC indicates 
the performance of our model based on real and predicted 
values. When N N−

+
+
−= = 0, meaning that none of the 6mA sites 

in the dataset S+ and none of the non-6mA sites in the dataset 
S− was mispredicted, we have MCC = 1; when N N−

+ += / 2 
and N N+

− −= / 2, we have MCC = 0, meaning no better than 
random prediction; when N N−

+ +=  and N N+
− −=  we have 

MCC  = -1, meaning total disagreement between prediction 
and observation.

In addition to the analysis based on the previously discussed 
indicators, the ROC curves (Metz, 1989; Chen et al., 2016; Dao 
et al., 2018; Feng et al., 2018; Lai et al., 2019; Tan et al., 2019) 
were plotted, and then, the area under the receiver operating 
characteristic curve (AUC) was calculated to objectively evaluate 
our proposed model.

RESULTS AND DISCUSSION

Sequence Analysis
To investigate the nucleotide distribution around the 21st 
site (6mA or non 6mA) in positive and negative samples, the 
pLogo (O’Shea et al., 2013) was plotted to analyze the statistical 
difference of nucleotide occurrence between two kinds of 
samples. The 6mA samples were dramatically different from non-
6mA samples in terms of nucleotide compositions (Figure 3). 
The nucleotide composition bias regions existed in the ranges 
from -8 to +10 sites and from +15 to +18 downstream of the 
6mA site. Unlike the distribution in the non-6mA samples, a 
consensus motif of AAAA was observed in the upstream of 
the 6mA site. These results suggested that it was feasible to 
construct a machine learning model for identifying 6mA sites 
with extracted sequence features.

Performance Evaluation on Different 
Features
The prediction performances of three features [K-tuple 
nucleotide frequency component (KNFC), mono-nucleotide 
binary encoding (MNBE), and natural vector (NV)] and their 
combinations were firstly explored with RF. Accordingly, we 
built four computational models and evaluated them through 
the fivefold cross-validation test. The prediction results are 
provided in Figure 4 and Table 2. It was found that MNBE 
could produce the best prediction performance among 
all features, indicating that it was the best descriptor  for 
6mA samples.

KNFC is a commonly used feature extractor technique 
and has been successfully applied in DNA regulatory element 
prediction. However, the results in Table 2 showed that 
the accuracy of KNFC was only 68.3%, which was far from 
satisfactory. For the 41-nt long 6mA samples, KNFC is a 
high-dimension vector (16 + 64 + 256), which is so large 
that many elements in feature vector are zero. Although 

FIGURE 3 | Nucleotide distribution preferences around 6mA and non-6mA sites. The upper half of the x-axis indicates the nucleotide distribution in 6mA site 
containing sequence, whereas the lower half of the x-axis indicates the nucleotide distribution in non-6mA site containing sequences.
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high-dimension features contain more information, more 
noise and redundant information are also included, thus 
decreasing the discrimination capability. Therefore, KNFC 
is not suitable for 6mA identification. In fact, the NV is the 
worst descriptor among all features in this study, since it 
can only obtain the overall accuracy of 54.3%, which almost 
equals the accuracy of random guess. The reason for the poor 
performance of NV in 6mA prediction is that NV contains too 
few features to capture enough sequence information of 6mA 
and non-6mA samples.

For the combinations of different features, if MNBE was 
included, the prediction performances are always good. 
However, they are still not higher than those obtained with 
MNBE alone. Thus, subsequent studies were based on MNBE.

Performance Evaluation of Different 
Algorithms
It is natural to ask whether other classification is better 
than RF in 6mA identification. Thus, we investigated the 

discriminant capabilities of three algorithms, namely, Naïve 
Bayes, Bayes Net, and Logistic Regression, with the benchmark 
dataset through fivefold cross-validation. All algorithms were 
implemented in WEKA (Frank et al., 2004). The ROC curves 
were plotted (Figure 5). It is obvious that RF is the best one for 
6mA prediction among four algorithms. Thus, the final model 
was built with RF.

Performance Evaluation Based 
on Different Data Ratios
In order to further assess the proposed method, the benchmark 
dataset was randomly divided into two parts according to five 
ratios (5:5, 6:4, 7:3, 8:2, and 9:1): training dataset and testing 
dataset. The former part was used to train the model, whereas 
the other part was used to test corresponding model. In this way, 
the training dataset and testing dataset are independent of each 
other. The predictive results are listed in Table 3. For each ratio 
between training and testing datasets, the model could always 

TABLE 2 | Predictive performances of KNFC, MNBE, and NV.

Methods Sn (%) Sp(%) Acc(%) MCC AUC

KNFC (k = 2, 3, 4) 70.3 66.3 68.3 0.366 0.744
MNBE 93.0 90.5 91.7 0.835 0.964
NV 58.1 50.6 54.3 0.087 0.566
KNFC-MNBE 91.8 90.1 90.9 0.819 0.958
KNFC-NV 70.4 66.5 68.4 0.369 0.747
MNBE-NV 92.8 90.3 91.6 0.832 0.963
KNFC-MNBE-NV 91.7 90.3 91.0 0.820 0.925

FIGURE 4 | Performance evaluation based on three features and their combinations.
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produce the AUC of >0.90, suggesting that our method was 
robust and reliable.

Performance Evaluation With 
an Independent Dataset
We designed the third experiment to investigate the 
performance of our proposed predictor. In the experiment, 
an independent test set was collected from NCBI Gene 
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) 
with the accession number GSE103145 (Zhou et al., 2018). All 
the sequences were 41 nt long with the 6mA site at the center. 
After removing redundant information with CD-HIT program 
according to the cutoff of 60%, a total of 880 positive samples 
were obtained (Chen et al., 2019). The negative samples were 
also obtained from the rice genome. In the report by Zhou 
et  al., 6mA most frequently occurs at GAGG motifs and 

seldom occurs in coding sequences (CDSs). Thus, negative 
samples were extracted from CDSs with GAGG motifs in the 
rice genome. In total, 880 negative samples with the sequence 
identity less than 60% were obtained. All negative samples were 
also 41 nt long with non-methylated adenosine at the center. 
The data were utilized as the benchmark dataset in i6mA-Pred 
(Chen et al., 2019). The details for the benchmark dataset are 
available at http://lin-group.cn/server/iDNA6mA-Rice.

We utilized these data to examine our proposed model 
(Table 4). In total, 95.8% 6mA sites and 93.3% non-6mA sites 
were correctly identified, suggesting that the method was a 
powerful tool for identifying 6mA sites in rice genome.

Comparison With Published Methods
Till now, i6mA-Pred (Chen et al., 2019) is the only 
computational-based predictor for 6mA site prediction in the 

FIGURE 5 | Performance evaluation of different algorithms.

TABLE 3 | Predictive performances of five ratios on the testing and training datasets.

Ratios 5:5 6:4 7:3 8:2 9:1

testing training testing training testing training testing training testing training

Sn (%) 91.4 91.8 92.0 91.9 92.2 92.4 92.4 92.5 92.7 92.7
Sp (%) 70.9 90.5 87.7 90.0 90.6 90.0 91.7 90.1 92.1 90.4
Acc (%) 81.1 91.1 89.9 90.9 91.4 91.2 92.1 91.3 92.2 91.8
MCC 0.636 0.822 0.798 0.819 0.828 0.824 0.841 0.827 0.853 0.835
AUC 0.904 0.969 0.953 0.963 0.963 0.963 0.967 0.963 0.969 0.964
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rice genome. To provide an objective and strict comparison, 
we investigated the performance of our method with the same 
data through jackknife cross-validation. The method could 
produce the auROC of 0.910 (Table 5), which was higher than 
that of i6mA-Pred. This comparison demonstrated that our 
method was powerful.

Subsequently, iDNA6mA-PseKNC (Feng et al., 2019) is a 
tool to identify 6mA sites in Mus. musculus genome, and it can 
identify 6mA sites in many other species with high success 
rates. Thus, it is necessary to compare our proposed method 
with it. We investigated the performance of our predictor and 
iDNA6mA-PseKNC based on the independent dataset used in 
this work. All compared results were recorded in Table 4. It is 
obvious that the model proposed in this paper is superior to 
iDNA6mA-PseKNC for identifying 6mA sites. 

Web Server
Databases and web servers (Wang et al., 2014; Liang et al., 2017; Yi 
et al., 2017; Zhang et al., 2017; Cui et al., 2018; Dao et al., 2018; Cheng 
et al., 2018b; He et al., 2018b; Hu et al., 2019; Cheng et al., 2019a; 
Cheng et al., 2019b) can provide scholars with more convenient 
services. Thus, the basis of the novel method, we built a web server 
named iRNA6mA-Rice to identify 6mA sites in the rice genome. 
The web server can be freely accessible at http://lin-group.cn/server/
iDNA6mA-Rice.

Users can open the homepage shown in Figure 6 to see a short 
introduction about iDNA6mA-Rice. One may firstly click the “Web-
server” button, then type or copy/paste DNA sequences in the input 
box, or upload the FASTA format file. Note that the length of each 
sequence should be greater than 41 nt. Subsequently, after clicking 
the “submit” button, the predicted results will appear on a new 
page. As described previously, the tool is simple and can provide a 
convenient way for users to identify putative 6mA sites in DNA of 
their interest. Moreover, in order to facilitate the processing of large-
scale data, the stand-alone package can be downloaded at http://lin-
group.cn/server/iDNA6mA-Rice/download.html.

CONCLUSIONS

This paper developed a computational method for the 
identification of 6mA sites in the rice genome. We designed 
several kinds of experiments to examine the performance of 
the proposed method, for example, the performance evaluation 
on different features, performance evaluation on different 
algorithms, performance evaluation based on different data 
ratios, performance evaluation with an independent dataset, and 

TABLE 4 | Comparison of different methods for predicting 6mA sites in 
independent dataset.

Method Sn (%) Sp (%) Acc (%) MCC auROC

Our method 95.8 93.3 94.6 0.891 0.981
iDNA6mA-PseKNC 76.6 94.3 85.5 0.721 –

TABLE 5 | Comparison of different methods for predicting 6mA sites in the rice 
genome with jackknife test.

Methods Sn (%) Sp (%) Acc (%) MCC auROC

This study 83.86 83.41 83.63 0.67 0.910
i6mA-Pred 82.95 83.30 83.13 0.66 0.886

FIGURE 6 | A semi-screenshot for the web server page of the iDNA6mA-Rice web server at http://lin-group.cn/server/iDNA6mA-Rice.
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comparison with published methods. All results demonstrated 
that our proposed method could accurately recognize 6mA sites 
in the rice genome. For the convenience of most wet-experimental 
scholars, we established a free web server to predict 6mA sites. We 
anticipate that the web server can promote the efficient discovery 
of novel potential 6mA sites in the rice genome and facilitate the 
exploration of their functional mechanisms in gene regulation.
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Circular RNAs (circRNAs) are a novel class of endogenous noncoding RNAs that have well-
conserved sequences. Emerging evidence has shown that circRNAs can be novel biomarkers 
or therapeutic targets for many diseases and play an important role in the development of 
various pathological conditions. Therefore, identifying potential disease-related circRNAs is 
helpful in improving the efficiency of finding therapeutic targets for diseases. Here, we propose 
a computational model (PreCDA) to predict potential circRNA–disease associations. First, 
we calculated the circRNA expression similarity based on circRNA expression profiles. The 
circRNA functional similarity is calculated based on cosine similarity, and the disease similarity 
is used as the dimension of each circRNA vector. The associations between circRNAs and 
diseases are defined based on the circRNA functional similarity and expression similarity. 
We constructed a disease-related circRNA association network and used a graph-based 
recommendation algorithm (PersonalRank) to sort candidate disease-related circRNAs. 
As a result, PreCDA has an average area under the receiver operating characteristic 
curve value of 78.15% in predicting candidate disease-related circRNAs. In addition, we 
discuss the factors that affect the performance of this method and find some unknown 
circRNAs related to diseases, with several common diseases used as case studies. These 
results show that PreCDA has good performance in predicting potential circRNA–disease  
associations and is helpful for the diagnosis and treatment of human diseases.

Keywords: circRNA, disease, circRNA expression similarity, circRNA functional similarity, PersonalRank

INTRODUCTION

Circular RNAs (circRNAs) are a type of RNA molecule that forms a covalently closed continuous 
loop from exon circularization (Motieghader et al., 2017; Xu, 2017). In recent years, advances in 
high-throughput sequencing technology have greatly facilitated the study of circRNAs (Jeck and 
Sharpless, 2014). When compared to other ncRNAs (Danan et al., 2012), circRNAs are highly 
stable. Circular RNAs have evolutionarily conserved sequence features across species, tissues, and 
developmental stages (Jens, 2013; Conn et al., 2015; Rybak-Wolf et al., 2015). Therefore, circRNAs 
have become hotspots in transcriptomics research.

Recent studies have shown that alterations in the expression of circRNAs play important roles in human 
disease and other biological processes (Xu, 2017; Zhao and Shen, 2017; Xia et al., 2018). For example, 
the best-known circRNA, CDR1as, as the inhibitor of miR-7, is a critical ncRNA known to be involved 
in cancer, neurodegenerative diseases, diabetes, and atherosclerosis (Li et  al., 2015; Xu et  al., 2018). 
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Researchers found that the circRNA ciRS-7 may be a promising 
target for neurodegenerative disorder (Lukiw, 2013) and myocardial 
infarction (Lin et al., 2018). The circRNA CircCCDC66 has been 
demonstrated to regulate colon cancer growth and metastasis as a 
miRNA sponge (Hsiao et al., 2017). The circRNA hsa_circ_0001895 
is involved in the expression of cancer-related proteins in gastric 
cancer (Shao et  al., 2017). The circRNA CircHIPK3 plays an 
important role in cell growth by sponging multiple miRNAs (Zheng 
et al., 2016). Moreover, circRNAs can be found in exosomes, cell-free 
saliva, and plasma (Li Y et al ., 2015). Circular RNAs are emerging 
as novel biomarkers or therapeutic targets for many diseases due to 
their conservation, cell type–specific expression, and tissue-specific 
expression, and they play roles in the development of various 
pathological conditions (Meng et al., 2017; Vo et al., 2018).

Although a large number of circRNAs have been discovered, 
the mechanisms of circRNAs in many diseases remain unclear (Xu 
et al., 2018). To enable research on circRNAs and diseases, several 
databases have been constructed, such as circRNADisease (Zhao 
et al., 2018), CircR2Disease (Fan et al., 2018), and Circ2Disease (Yao 
et al., 2018). They provide important data support for circRNA–
disease association analyses. Some methods have been proposed to 
provide the most promising disease-related biomarkers, including 
those involving lncRNAs (Chen et al., 2015; Gu et al., 2017; Cheng 
et al., 2018a; Cheng et al., 2019), miRNAs (Peng et  al., 2019b; 
Shao et al., 2018), genes (Cheng et al., 2016; Hu et al., 2019; Peng 
et al., 2019a), and drugs (Jiang et al., 2017; Zhang et al., 2017), 
for further experimental validation. These methods can decrease 
the time and cost of biological experiments. However, very few 
methods have been developed to predict potential circRNA–
disease associations (Lei et al., 2018), and both disease functional 
similarity and semantic similarity were not considered in these 
methods. Improved knowledge has suggested that exploring both 
the semantic and functional associations of diseases, which are two 
types of significant associations, is beneficial in measuring disease 
similarity (Cheng et al., 2014; Peng et al., 2018).

In this study, we proposed a computational model (PreCDA) 
for potential disease-related circRNA identification. In view of the 
limited number of circRNA–disease associations, we introduced 
disease similarity to solve possible sparse problems and built a 
disease-related circRNA similarity network. However, relying 
entirely on circRNA-related diseases greatly limits the utility 
of the method because many circRNAs still have very few or no 
associated diseases. To overcome this limitation, we calculated 
the circRNA expression similarity based on the existing data 
resources. Subsequently, we built a new disease-associated circRNA 
network by fusing circRNA functional associations and expression 
similarities. To assess the practicability and accuracy of this 
method, we designed a validation process with different datasets of 
circRNA–disease associations, as good computational models must 
perform well on different data sources. Finally, PreCDA proved 
successful in predicting potential disease-related circRNAs.

MATERIALS AND METHODS

Workflow
A flowchart of the PreCDA workflow is shown in Figure 1. We 
preprocessed circRNA and disease data because of the lack of 

uniform identification of circRNAs and diseases. We extracted 
the synonym vocabulary from the two circRNA databases, 
including circRNADisease (Zhao et al., 2018) and circBase 
(Glažar et al., 2014). Then, we unified different representations 
of the same circRNA in different databases. Additionally, the 
identification of the Human Disease Ontology (DO) (Kibbe 
et al., 2015) was used as the unified marker of diseases in the 
computational model. We measured the similarity between 
circRNAs in two ways, including the circRNA expression 
similarity and functional similarity. We extracted circRNA 
expression profiles from circBase (Glažar et al., 2014) and 
CIRCpedia (Dong et al., 2018). The circRNA expression 
similarity was calculated based on the Spearman correlation 
coefficient. The disease similarity was used as the dimension 
of each circRNA vector, and the circRNA functional similarity 
was calculated based on cosine similarity. A disease-related 
circRNA association network was built based on the circRNA 
expression similarity and functional similarity. Finally, we 
identified potential candidate disease-related circRNAs based 
on the PersonalRank algorithm (PR) (Haveliwala, 2002).

Data Preprocessing
circRNA Data
In this study, we used three circRNA databases for experiments 
and validations. The circRNADisease database is a manually 
curated database of experimentally supported circRNA and 
disease associations, which collected 330 circRNAs and 48 

FIGURE 1 | Flowchart of the PreCDA workflow.
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diseases in 354 associations. Each entry in the circRNADisease 
database includes detailed information on a circRNA–disease 
association, including the circRNA and disease name, the 
circRNA expression pattern, literature references, and other 
annotation information. CircR2Disease is a database for 
experimentally supported circRNA–disease associations and 
provides a platform for investigating the mechanism of disease-
related circRNAs. The present version of CircR2Disease 
collected 661 circRNAs and 100 diseases. Circ2Disease is 
a database that curates experimentally supported human 
circRNAs and provides comprehensive associations between 
circRNAs and human diseases. It contains 273 manually 
curated associations between 237 circRNAs and 54 human 
diseases from 120 studies. However, currently, the naming 
of circRNAs has not yet been unified (Xu et al., 2018), which 
leads to the underutilization of information from different 
public circRNA databases. Therefore, we designed and 
collected mappings among different circRNA names provided 
by different circRNA databases, including circRNADisease 
and circBase. circRNADisease contains circRNA synonyms, 
and circBase is a database that merged and unified datasets 
of circRNAs. We mapped circRNAs from the three circRNA 
databases to circBase referring to circRNA synonyms. Then, 
we used circRNA IDs from circBase as the unified IDs of 
circRNAs in this work.

Disease Data
Human Disease Ontology represents common and rare human 
disease concepts captured across biomedical resources. Each 
node in DO represents one disease term and is organized in a 
directed acyclic graph with the relationship of “is_a”. MEDIC 
(Davis et al., 2012) integrates OMIM (Online Mendelian 
Inheritance in Man) terms (Amberger et al., 2015), synonyms 
and identifiers with MeSH terms (Lipscomb, 2000), synonyms, 
definitions, identifiers, and hierarchical relationships.

We extracted disease terms and synonyms from MEDIC 
to annotate DO by the same external references in DO and 
MEDIC, as shown in Figure 2. If a disease term was recorded 
in both DO and MEDIC, the term and its synonyms in MEDIC 
were used to annotate DO. With this approach, a given 
disease name can be matched to DO to a great extent by string 
matching, considering that the naming rules for diseases in 
different disease-related circRNA databases are different. The 
diseases described by different names are considered to be the 
same disease that has a unique id in DO if these disease names 
can match the disease term or its extended synonyms in DO.

circRNA Expression Similarity
Considering that comprehensive circRNA expression data are 
still unavailable, we extracted circRNA expression profiles from 
circBase and CIRCpedia, including the expression profiles of 
92488 circRNAs in 78 human cell types or tissues. We used 
the Spearman correlation coefficient between the expression 
profiles of each circRNA as the circRNA expression similarity, 
as shown in Formula 1.

 
ρ = −

−( )
∑1

6

1

2

2

d

n n

i

 (1)

where di is the difference between the two ranks of the expression 
scores in the ith human cell type or tissue, and n is the number 
of the human cell types or tissues from circBase or CIRCpedia. 
Matrix CB and Matrix CP are, respectively, denoted as the circRNA 
expression similarity matrix of circBase and CIRCpedia, where 
CB(i,j) and CP(i,j) are the expression similarities between circRNA 
c(i) and c(j). Then, to obtain reliable performance for circRNA 
expression data, we defined the expression similarity between 
circRNA c(i) and c(j) as shown in Formula 2 if circRNA c(i)  
and c(j) are included in both circBase and CIRCpedia.

 
ExSim i j

Max CB i j CP i j CB i j CP i j
,

, , , , , ,( ) ( ) ( )( ) ( )
=

Max (( )( )





≥ τ

0 otherwise

 (2)

To reduce the impact of data noise, we set a threshold τ to filter 
out those weak similarities between circRNAs. The threshold τ is 
set to 0.7 based on our experiments.

circRNA Functional Similarity
We extracted circRNA–disease associations from these above 
circRNA databases and defined a relational matrix of circRNAs and 
diseases. For each circRNA, all diseases in the matrix can be used to 
make a vector in a multidimensional space. Because of the limited 
number of available disease–circRNA pairs, there is a data sparsity 
problem in the matrix. Therefore, we calculated the circRNA-
related disease similarity and filled this matrix with predicted 

FIGURE 2 | Flowchart of establishing mappings between circRNAs and 
disease ontology terms.
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association scores based on disease–circRNA associations and the 
disease similarity. Here, we use FNSemSim (Wang et al., 2017) to 
calculate disease similarity. This method, which combines disease 
functional similarity and semantic similarity, has good performance 
for calculating similarities between diseases. The workflow of 
calculating circRNA functional similarity is shown in Figure 3.

To calculate the association between one circRNA and any 
disease, the similarities between this disease and all diseases 
that are directly related to this circRNA are calculated by 
FNSemSim. C is defined as the set of disease-related circRNAs, 
and D represents the set of circRNA-related diseases. DisSet(c) 
is defined as the set of diseases directly related to circRNA c. The 
association score between disease dis and circRNA c is defined 
as follows:

 
Score c Max FNSemSim i i

dis dis dis dis D
, ,     ( ) = ( )( ) ∈

1

iisSet dis DisSet

dis DisSet

c c

c

( ) ∉ ( )
∈ ( )







,    

 
(3)

where DisSet(c) ⊆D, 1≤i ≤ |DisSet(c)|; |DisSet(c)| is denoted as the 
number of diseases in DisSet(c). If this disease belongs to DisSet(c), 
the score is 1; otherwise, the score is defined as the maximum of 
similarities between this disease and all the diseases  related to 

circRNA c. Therefore, circRNA c can be depicted by a vector that 
is composed of circRNA-related diseases in a multidimensional 
space. We can calculate the functional similarity between any two 
circRNAs based on cosine similarity. The functional similarity 
between circRNA c(m) and c(n) is defined as follows:
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 (4)

where |D| represents the size of the circRNA-related disease 
set D, and disi is the ith disease in the circRNA-related disease set D.

Prediction of Candidate Disease-Related 
circRNAs
We take circRNA functional similarity and expression similarity 
as weights to construct a circRNA association network. In this 
network, the weight between circRNA c(i) and c(j) is defined as 
shown in Formula 5. If ExSim(i,j) is greater than 0, the weight 
between circRNA c(i) and c(j) is the average value of their 

FIGURE 3 | Flowchart of calculating circRNA functional similarity.
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functional similarity and expression similarity; otherwise, the 
weight is defined as the functional similarity between them.

 
CircWeight i j

i j i j

FnSim i
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,,
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j

i j
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
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


( ) >if ExSim

otherwise

0

 (5)

To predict candidate disease-related circRNAs, the associations 
between diseases and circRNAs are also considered in this network. 
The weight between circRNA c and disease dis is defined as shown 
in Formula 6. If the disease is directly related to circRNA c, the 
weight between them is 1; otherwise, the weight is 0.

 

CircDisWeight i
c

, j     
if dis DisSet

otherw
( ) =

∈ ( )1
0 iise





  

(6)

In this network composed of circRNAs and diseases, we 
identify novel candidate disease-related circRNAs based on the 
PR. PersonalRank algorithm, as a recommendation algorithm 
based on random walking, can reveal more information 
between a target node and all the others in a specific network. 
PersonalRank algorithm is defined as follows:

 

PR i d r d
j

j
i

j i

( ) = −( ) +
( )
( )∈ ( )

∑1
in

PR

out
 (7)

where PR(i) represents the possibility value that node i is 
accessed; d is the transfer probability; out(j) represents the out-
degree of node j; in(i) is the in-degree of node i; and ri is defined 
as follows:
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1
0

      
 

if
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 (8)

where t represents the target node. According to previous 
studies (Kang et al., 2014; Cheng et al., 2018b), d is set to 0.85. The 
target node t in the network randomly moves to adjacent nodes 
with the probabilities of the edges between these nodes. After 
enough iterations, the probabilities from the target node to all the 
other nodes will become stable. Eventually, the algorithm outputs 
the relevance degrees between all the nodes and this target node.

RESULTS

circRNAs and Diseases
We calculated similarities between 323 circRNAs from circBase 
and CIRCpedia based on circRNA expression profiles. Then, we 
obtained 11,281 circRNA pairs based on the preset threshold. 
Additionally, we found 507 relationships between 58 diseases 
and 445 circRNAs by mapping DO terms to the diseases in 
CircR2Disease. We matched 26 diseases based on DO terms 
and extracted 293 relationships between 277 circRNAs and 
these diseases from circRNADisease. In Circ2Disease, 218 
relationships between 37 diseases and 199 circRNAs were 
found. Based on DO terms and the unification of circRNA 
naming, we analyzed the three circRNA databases and found the 
same circRNAs and diseases among these databases, as shown 
in Figure 4. This provided the test data for the performance 
evaluation of PreCDA.

We separately calculated the similarities between 445 circRNAs 
from CircR2Disease, 277 circRNAs from circRNADisease and 
199 circRNAs from Circ2Disease. Three circRNA association 
networks were built that in turn contained 96,580 associations 

FIGURE 4 | Data distribution in the three databases.
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between 440 circRNAs associated with 56 diseases; 38,226 
associations between 277 circRNAs associated with 26 diseases; 
and 18,915 associations between 195 circRNAs associated with 
36 diseases. The detailed statistics of the circRNAs and diseases 
are shown in Table 1.

Performance
We designed a test scheme to assess the performance of 
PreCDA. First, we selected two circRNA–disease databases, 
one to build the circRNA association network and the other to 
provide test data. Then, we extracted the same diseases from 
the circRNA association network and the reference database. 
For a given disease, if any circRNA related to this disease in 
the reference database exists in the network, but the association 
between the circRNA and the disease does not, the circRNA can 
be used as a test case for the disease to assess the performance 
of this circRNA association network. The test scheme is shown 
in Figure 5.

In this article, we used three circRNA–disease databases, 
including CircR2Disease, circRNADisease, and Circ2Disease. 
For example, both circRNA hsa_circ_0000284 and liver 
cancer (DOID: 3571) were recorded in Circ2Disease and 
CircR2Disease. The circRNA hsa_circ_0000284 was related 
to liver cancer (DOID: 3571) in Circ2Disease but not in 
CircR2Disease. Therefore, we built a circRNA association 
network based on CircR2Disease and calculated the relevance 
degrees between liver cancer and all circRNAs unrelated 
to the disease. We calculated the area under the receiver 
operating characteristic curve (AUC) according to the ranking 
of the circRNA hsa_circ_0000284 among these circRNAs 
to measure the prediction results. To validate the reliability 
of the computational model, we conducted nine validation 
experiments based on this scheme involving 18 diseases. We 
built three circRNA association networks based on the three 
different circRNA–disease databases. The three data sources 
were also used as the reference data. Additionally, we merged 
the known circRNA–disease associations in the three databases 
as an additional control data source.

PreCDA had an average AUC value of 78.15% in predicting 
candidate disease-related circRNAs. Furthermore, it had an 
outstanding performance on some diseases. For example, 
diabetes mellitus (DOID: 9351) in the network from 
Circ2Disease had an AUC of 98.48% based on the control data 
from circRNADisease and an AUC of 93.04% based on the 
control data from CircR2Disease. Based on the control data 
from Circ2Disease, the AUC of osteoarthritis (DOID: 8398) 
was 97.44% in the network from CircR2Disease and 98% 

in the network from circRNADisease. In the network from 
Circ2Disease, the AUC of stomach cancer (DOID: 10534) 
was 56.41% based on the control data from circRNADisease; 
it had an AUC of 73.88% in CircR2Disease. This shows that 
the networks from the different data sources have different 
results for a disease based on the same control database. 
However, the AUCs in the other validation experiments 
achieved more than 65%. Even so, the performance of 
PreCDA is excellent in predicting candidate disease-related 
circRNAs. The performance of PreCDA based on the 
different databases and the different control data sources is  
shown in Figure 6.

Case Study
To further evaluate the performance of PreCDA in predicting 
potential disease-related circRNAs, we conducted some case 
studies, including prostate cancer (DOID: 10283), liver cancer 
(DOID: 3571), breast carcinoma (DOID: 3459), Alzheimer 
disease, and pancreatic cancer (DOID: 1793). We integrated the 
known associations between circRNAs and diseases in the three 
databases and prioritized candidate disease-related circRNAs 
based on PreCDA.

In the ranking of candidate circRNAs related to liver cancer 
(DOID: 3571), hsa_circ_0001727 (Qiu et al., 2018) ranked 
4th, hsa_circ_0001946 (Yu et al., 2016) ranked 7th, and hsa_
circ_0001141 (Guo et al., 2017) ranked 19th. They ranked in the 

TABLE 1 | Information on the three circRNA association networks.

Database circRNA association network

circRNA Disease Association

CircR2Disease 440 56 96,580
circRNADisease 277 26 38,226
Circ2Disease 195 36 18,915

FIGURE 5 | The validation scheme of the computational model. For 
comparison with database B, test data are extracted from database A 
according to the test scheme. PreCDA outputs the ranks of candidate 
circRNAs with the circRNA–disease associations from database A as the 
input. The performance of PreCDA is assessed based on the test data.
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top 3% and were associated with liver cancer. For prostate cancer 
(DOID: 10283), hsa_circ_0001946 (Zhang et al., 2018) and hsa_
circ_0001649 (Yi et al., 2016) ranked 3rd and 5th in the ranking, 
respectively. They were documented to be related to prostate 
cancer. For pancreatic cancer (DOID: 1793), CircRNA_100782 
(Chen et al., 2017), which ranked 1st in the ranking, was 

validated to regulate pancreatic carcinoma proliferation through 
the IL6-STAT3 pathway. We found that some candidate circRNAs 
related to these diseases were included by Circ2Traits (Ghosal 
et al., 2013), which is a comprehensive database for circRNAs 
potentially associated with disease and traits. For example, 
hsa_circ_0000118, which ranked 1st in the ranking of candidate 

FIGURE 6 | The performance in predicting circRNA-associated diseases. (A) Seven diseases were tested based on CircR2Disease with reference to 
circRNADisease, Circ2Disease, and all circRNA–disease associations from the three data sources. (B) Fifteen diseases were tested based on circRNADisease 
with reference to CircR2Disease, Circ2Disease, and all circRNA–disease associations from the three data sources. (C) Fourteen diseases were tested based on 
Circ2Disease with reference to CircR2Disease, circRNADisease, and all circRNA–disease associations from the three data sources.
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circRNAs associated with prostate cancer, was documented to be 
potentially related to this disease in Circ2Traits. The prediction 
results of the case studies are presented in Table 2.

DISCUSSION

Although functional associations between circRNAs are 
measured based on circRNA expression profiles, there are many 
weak connections among them. To reduce the impact of data 
noise, we set a threshold to filter out those weak connections 
between circRNAs. Based on the above validation strategy and 
different thresholds, we conducted nine groups of experiments 
in which these three databases were used as a reference to each 
other and to test the performance of PreCDA. As shown in 

Figure 7, the average AUC of PreCDA varied with the change in 
the threshold, and the computational model worked best when 
the threshold was set to 0.7.

We calculated circRNA similarities by only cosine similarity 
and built a circRNA association network. Additionally, we merged 
the known circRNA–disease associations in these three databases 

TABLE 2 | The prediction results of predicting candidate circRNAs for five diseases.

Disease 
name

DOID circRNA Rank Evidence

Prostate 
cancer

10283 hsa_circ_0000118 1 Circ2Traits
hsa_circ_0001946 3 Zhang et al., 2018
hsa_circ_0001649 5 Yi et al., 2016
hsa_circ_0001070 7 Circ2Traits
hsa_circ_0001512 16 Circ2Traits
hsa_circ_0000437 18 Circ2Traits
hsa_circ_0001727 45 Circ2Traits
hsa_circ_0000130 52 Circ2Traits

Breast 
carcinoma

3459 hsa_circ_0001070 7 Circ2Traits
hsa_circ_0001727 19 Circ2Traits
hsa_circ_0001333 35 Circ2Traits
hsa_circ_0000190 54 Circ2Traits

Liver cancer 3571 hsa_circ_0001727 4 Qiu et al., 2018
hsa_circ_0001946 7 Yu et al., 2016
hsa_circ_0001141 19 Guo et al., 2017

Pancreatic 
cancer

1793 hsa_circ_0000284 1 Chen et al., 2017
hsa_circ_0002702 5 Circ2Traits
hsa_circ_0001667 29 Circ2Traits

Alzheimer 
disease

10652 hsa_circ_0000284 8 Circ2Traits
hsa_circ_0001141 28 Circ2Traits
hsa_circ_0000096 32 Circ2Traits

FIGURE 7 | The impact of different thresholds on the performance of PreCDA.

FIGURE 8 | The performance of different computational models.

TABLE 3 | Performance differences of predicting circRNA–disease pairs based on different data sources.

References database Disease DOID AUC circRNA

CircR2Disease circRNADisease Circ2Disease
Colorectal cancer 9256 71.86% 82.17% hsa_circ_0001649

hsa_circ_0000284
hsa_circ_0014717
hsa_circ_0001141

Malignant glioma 3070 57.1% 76.1% hsa_circ_0000284
hsa_circ_0001649
hsa_circ_0001445

Lung benign neoplasm 3683 51.4% 53.18% hsa_circ_0001821
circUBAP2

Diabetes mellitus 9351 71.85% 93.04% hsa_circ_0000284
Coronary artery disease 3393 54.21% 57.78% hsa_circ_0000615

CircR2Disease Circ2Disease
circRNADisease Diabetes mellitus 9351 73.73% 98.48% hsa_circ_0054633

Malignant glioma 3070 80.6% 75.77% hsa_circ_0001946
hsa_circ_0004214

CircR2Disease circRNADisease
Circ2Disease Osteoarthritis 8398 97.44% 98% hsa_circ_0000026
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as an additional control data source. Based on the validation 
strategy mentioned above, we used these three databases to 
test the performance of the network. As shown in Figure 8, the 
average AUC was 77.22%, the minimum AUC was 69.26%, and the 
maximum AUC was 88.85%. In comparison, PreCDA has a more 
stable performance, with an average AUC of 78.15%. Its minimum 
and maximum AUCs are 71.83% and 95.72%, respectively.

We found that the performance of predicting potential 
disease–circRNA pairs in the disease-related circRNA 
association network was impacted by different data sources. 
The result of predicting the associations between the 
same diseases and circRNAs was different based on the 
different data sources that were used to build networks. For 
example, referring to CircR2Disease, some of the data to 
be tested in the networks built based on circRNADisease 
and Circ2Disease were the same. However, the AUC values 
of predicting the associations between them were different. 
As shown in Table 3, we predicted the associations between 
colorectal cancer (DOID: 9256) and four circRNAs, including 
hsa_circ_0001649, hsa_circ_0000284, hsa_circ_0014717, 
and hsa_circ_0001141. The AUC value for the network of 
circRNADisease was 71.86%. The performance of identifying 
the associations between colorectal cancer and these four 
circRNAs based on Circ2Disease was improved, and its AUC 
achieved 82.17%.

CONCLUSIONS

Circular RNA plays an important role in the development 
of various pathological conditions. Research on circRNA is 
invaluable in explaining the underlying pathogenesis. Therefore, 
we proposed a computational model to identify candidate 
disease-related circRNAs. First, we calculated the circRNA 
expression similarity with the circRNA expression profiles. 
Then, the disease similarity was used as dimensions of circRNA 
vectors, and the circRNA functional similarity was calculated 
based on cosine similarity. We defined the associations between 
circRNAs and diseases based on the circRNA expression 
similarity and functional similarity. A disease-related circRNA 
association network was built, and potential candidate disease-
related circRNAs were ranked by the PR.

We evaluated the performance of PreCDA with the help of data 
differences among these three databases, including CircR2 Disease, 
circRNADisease, and Circ2Disease. The results showed that the 
average AUC of PreCDA was 78.15%, and it had good performance 
in predicting potential disease-related circRNA signatures. We  
discussed the selection of the threshold and the impact of different 
data sources on the performance of PreCDA. Then, we used 
several common diseases as case studies and found some unknown 
circRNAs that could be related to these diseases based on PreCDA. 
The findings of this study could be further applied in analyzing 
diseases in a system biology perspective (Cheng and Hu, 2018) and 
helpful for researchers to improve disease diagnostics and treatments.
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Summary: Identification of replication origins is playing a key role in understanding the 
mechanism of DNA replication. This task is of great significance in DNA sequence analysis. 
Because of its importance, some computational approaches have been introduced. 
Among these predictors, the iRO-3wPseKNC predictor is the first discriminative method 
that is able to correctly identify the entire replication origins. For further improving its 
predictive performance, we proposed the Pseudo k-tuple GC Composition (PsekGCC) 
approach to capture the “GC asymmetry bias” of yeast species by considering both the 
GC skew and the sequence order effects of k-tuple GC Composition (k-GCC) in this study. 
Based on PseKGCC, we proposed a new predictor called iRO-PsekGCC to identify the 
DNA replication origins. Rigorous jackknife test on two yeast species benchmark datasets 
(Saccharomyces cerevisiae, Pichia pastoris) indicated that iRO-PsekGCC outperformed 
iRO-3wPseKNC. It can be anticipated that iRO-PsekGCC will be a useful tool for DNA 
replication origin identification.

Availability and implementation: The web-server for the iRO-PsekGCC predictor was 
established, and it can be accessed at http://bliulab.net/iRO-PsekGCC/.

Keywords: replication origin identification, pseudo k-tuple GC composition, random forest, web-server, DNA 
sequence analysis

INTRODUCTION

In the process of the cell cycle, DNA replication is one of the most important steps (Shirahige et al., 
1998). Since the DNA replication is initiated from a specific region, which is called replication origin, 
identifying the DNA replication origin is especially important for studying drug developments, cell 
life activities, genetic engineering, etc. (Méchali, 2010). Experimental methods detect the replication 
origins by using Chromatin immunoprecipitation (Chip) with high cost (Lubelsky et al., 2012). 
Therefore, researchers are seeking computational methods to efficiently predict the replication 
origins only based on the sequence information. Compared with non-replication origins, replication 
origins show uneven distribution of G (guanine) and C (cytosine) (Lobry, 1996), and the concept of 
“GC Skew” (Grigoriev, 1998) was proposed. Later, some computational methods incorporated these 
characteristics into the predictors based on the replication origins (Zhang and Zhang, 1991; Zhang 
and Zhang, 1994; Grigoriev, 1998; Roten et al., 2002; Thomas et al., 2007; Gao and Zhang, 2008; Luo 
et al., 2014; Bu et al., 2018). In order to further improve the predictive performance, the discriminative 
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methods were proposed by using both the information of the 
positive and negative samples (Chen et al., 2012; Li et al., 2015; 
Zhang et al., 2016), and all of these methods mentioned above 
achieved the-state-of-the-art performance. A recent method 
iRO-3wPseKNC incorporated the “GC asymmetry bias” (Lobry, 
1996; Grigoriev, 1998; Lubelsky et al., 2012; Li et al., 2014) into 
the prediction by representing the entire replication origins based 
on three-window-based PseKNC (3wPseKNC) (Liu et al., 2018b). 
Feature extraction methods are the keys for the performance 
improvement. In this regard, many features have been proposed, 
which can be easily generated by some software tools.

These existing computational methods have significantly 
enhanced the development of this hot area, but they all suffer from 
certain disadvantages or limitations, for example, as discussed 
above the GC Skew is an important feature of replication origins, 
but all the existing discriminative methods failed to directly 
use GC Skew to construct the predictors. Furthermore, the 
existing feature extraction methods cannot reflect the uneven 
distribution of G and C. To solve these problems, we followed the 
framework of iRO-3wPseKNC (Liu et al., 2018b), and proposed 
an improved predictor called iRO-PsekGCC for replication 
origin identification. iRO-PsekGCC cannot only capture the CG 
asymmetry bias by using k-tuple GC composition (or k-GCC), 
but can also incorporate the GC Skew into the concept of 
PseKNC (Chen et al., 2014a; Chen et al., 2014b).

MANUSCRIPT FORMATTING

Benchmark Datasets
In order to evaluate the performance of the proposed method, 
two recently established benchmark datasets of the Saccharomyces 
cerevisiae and Pichia pastoris (Liu et al., 2018b) were employed 
in this study, because they showed clear CG asymmetry 
distributions, which can be represented as:

 

  τ τ τ τ= =+ −
 ,  

     1
2

for  Saccharomyces cerevisiae
      for Pichia pastoris






 (1)

where the symbol ∪ represents the union, and −
+  represents 

the positive dataset containing 340 replication origins, and 1
−  

represents the negative dataset containing 342 non-replication 
origins; 305 replication origins are in positive dataset 2

+ , and 
302 non-replication origins are in the negative dataset 2

− . For 
both of the two benchmark datasets, the redundant samples have 
been removed by using CD-HIT software tool (Li and Godzik, 
2006) with the most stringent cut-off threshold (80%).

Pseudo k-Tuple GC Composition 
(PsekGCC)
One of the key steps for constructing machine-learning 
predictors for analyzing biological sequences is feature 
extraction. Following the framework of three-window-based 
PseKNC (3wPseKNC) (Liu et al., 2018b), we proposed a feature 
extraction method called “Pseudo k-tuple GC composition 

(PseKGCC)” to directly incorporate the CG asymmetry bias 
(Lobry, 1996; Grigoriev, 1998; Lubelsky et al., 2012; Li et al., 
2014) and GC skew (Grigoriev, 1998) into the predictor. In the 
following sections, we will introduce how to represent DNA 
samples by using PseKGCC. 

A DNA sequence D can be formulated as follow:

 D = =N N N N N1 2 3 1 2 3  i L i L( , , , )  (2)

where L denotes the length of D, and

 

Ni ∈{A(adenine),C(cytosine),G(guanine),

T(thymine))}, ( , , , , )i L= 1 2 3  (3)

which represents the i-th nucleobase in the sequence, and fi ∈ 
denotes the “member of ’” in the set theory. Following the study 
(Liu et al., 2018b), D is divided into three windows by two 
parameters ε and δ, including front window, middle window, 
and rear window respectively. ε and 1 − δ denote the percentage 
of total nucleobases of D in the front window and rear window, 
respectively. The front window, middle window and rear window 
can be represented as D[1,η], D[η + 1,ξ], and D[ξ + 1, L], 
respectively, where η and ξ are defined as (Liu et al., 2018b),

 

η ε
ξ δ

ε δ
= ×
= ×






< < <

Int
Int

C

C

[ ]
[ ]

, ( . )
L
L

0 1 0  (4)

where the symbol IntC represents the ceiling operator, which 
means to return the smallest integer value greater than or equal 
to the float number .

According to (Liu et al., 2018b), if D is formulated by the 
k-tuple nucleotide (or k-mer) (Liu et al., 2019b; Liu, 2017) based 
on the three windows strategy, it can be represented as follow:

 

D = f f f f f fv v vk k k k1
1 1

4
1

4 1
2

4
2

4
2( ) ( ) ( ) ( ) ( ) ( )

    

+ + +




× × + × + ×

f f f fk k k kv2 4
2

2 4 1
3

2 4
3

3 4
3( ) ( ) ( ) ( )

 

T  (5)

where in vector operations, symbol ‘T’ denotes the transformation 
symbol, and in the sample D, the normalized frequency values 
of the corresponding k-tuple nucleotides appearing in the front 
window, middle window and rear window are represented as f(1), 
f(2), f(3), respectively. The feature vector’s dimension is 3 × 4k.

This strategy was proposed to capture the patterns of “GC 
asymmetry bias” in yeast species genomes, and it is able to improve 
the predictive performance for identifying replication origins 
among multiple yeast species genomes. However, this approach has 
the following disadvantages: 1) the three windows strategy can only 
capture the local GC asymmetry bias of replication origins, but it 
cannot incorporate the GC asymmetry bias in a global fashion; 2) for 
large k values of k-tuple nucleotide, the dimension of the resulting 
feature vectors is high, which will cause high dimension disaster.
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In order to overcome these disadvantages, we proposed a new 
composition of DNA sequence called “k-tuple GC composition 
(or k-GCC)” to capture the GC preference in the replication 
origins and their global interactions. k-GCC treats A (adenine) 
and T (thymine) as one nucleotide type represented as *. 
Therefore, the alphabet of k-GCC is

 Ni i L∈ ={G(guanine),C(cytosine),*}, ( , , , , )1 2 3  (6)

Therefore, by replacing the k-tuple by k-GCC, a DNA 
sequence D can be represented as:

 

D =
+ + ×

f f f f f f fv vk k k k1
1 1

3
1

3 1
2

3
2

2 3
2( ) ( ) ( ) ( ) ( ) ( )

   

22 3 1
3

2 3 1
3

2 3
3

3 3
3

× +

× + × + ×







k

k k kf f f
v

( )

( ) ( ) ( )



 

T  (7)

Compared with Equation 5, the k-GCC can efficiently reduce 
the dimension of the feature vector from 3 × 4k to 3 × 3k by 
focusing on the GC composition. 

The proposed Pse-KGCC incorporates both the k-GCC and 
GC skew into the framework of PseKNC (Chen et al., 2014a), 
which can be represented as:

 

D = + + + + + × +[    ( ) ( )φ φ φ φ φ φ φλ λ λ λ1 3 3 3 1 3 3 2 3 2   k k k k k k ×× + +

× + + × +

( )

( ) ( )]
3 1

2 3 3 3 3

k

k k k

λ

λ λφ φ 

T

  
  (8)

where
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  (9)

where λ denotes the highest tier correlation of the k-GCC 
nucleotides in each local window of D, whose the value is an 
integer. w is a float number that represents the weight factor, and 
the value of w is between 0 and 1. In the front window, the middle 
window and the rear window, the correlation factor of the j-th 

tier is represented as θ j
( )1 , θ j

( )2 , and θ j
( )3  , respectively. The GC 

skew value of the k-GCC nucleotides separated by j nucleotides 
is used to represent the correlation factor of the j-th tier in each 
local window. (Figure 1). θ j

( )1 , θ j
( )2 , and θ j

( )3  can be calculated by

128
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   (10)

where IntC[ ]η − +k
j

1  denotes the number of the k-GCC in the 

corresponding local window, and Θ(Ni × j + 1Ni × j + 2 ⋯ Ni × j + k) 
is the GC Skew (Lobry, 1996; Grigoriev, 1998; Li et al., 2014) of 
the i-th k-GCC in the local window, which can be calculated by

Θ N N N
N N N

i j i j i j k
G i j i j i j kf

× + × + × +
× + × + × +( ) =

( )
1 2

1 2




 
−− ( )

(
× + × + × +

× + × + × +

f

f
C i j i j i j k

G i j i j i j k

N N N

N N N
1 2

1 2



 )) + ( )× + × + × +fC i j i j i j kN N N1 2   
  (11)

where fG(Ni × j + 1 Ni × j + 2 ⋯ Ni × j + k) denotes the frequency of 
G in the subsequence Ni × j + 1 Ni × j + 2 ⋯ Ni × j + k fC(Ni × j + 1 Ni × j + k 
⋯ Ni × j + k) denotes the frequency of C in the subsequence Ni × j + 1 
Ni × j + 2 ⋯ Ni × j + k, reflecting the CG asymmetry bias directly. 
Please note that for the terminal subsequence, if its length is less 
than k, then the GC skew will be calculated by all the available 
nucleotide residues.

Random Forest
Being widely used in bioinformatics (Zhao et al., 2014; Su 
et al., 2019), Random Forest (RF) (Ho, 1995; Barandiaran, 
1998) is a machine learning classifier. Its training process 
can prevent overfitting (Hastie et al., 2008). The Random 
Forest model was implemented by calling the command 
line RandomForestClassifier (“max_features=’sqrt’, min_
samples_leaf=1, min_samples_split=2, criterion = ‘gini’, 
 = optimize-d value ”) with the help of the Scikit-learn package 
(Pedregosa et al., 2011), where the values of   represents the 
number of the trees in the forest, and it was set as 600 for both 
the two benchmark datasets (cf. Equation 1).

Ensemble Learning
Previous studies (Zou et al., 2015; Liu et al., 2016a; Chen et al., 
2016b; Chen et al., 2017a; Chen et al., 2017b; Liu et al., 2018a) 
have demonstrated that fusing a series of individual predictors 
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by a voting strategy can improve the predictive performance. In 
this regard, in this study an ensemble predictors was constructed 
by fusing 10 top performing individual predictors constructed by 
different parameter combinations of PseKGCC (see Supplementary  
Information S1), which can be represented as (Liu et al., 2016a):

 E RF(1)   RF(2)     RF( )   RF(10) R= ∀ ∀ ∀ ∀ ∀ = ∀ = i i 1
10 FF( )i   

  (12)

where E  represents the ensemble classifier, ∀ represents the 
fusing operator, and RF(i) represents the basic Random Forest 
predictor. 

The ensemble predictor is constructed based on the fusion 
score ß of the probabilities predicted by the 10 basic predictors, 
which can be calculated by

 
ß  =

=∑ q Pi i
i 1

10  (13)

where qi is the weight of the i-th basic RF predictor, which was 
optimized by the genetic algorithm (Mitchell, 1998), and their 
values were listed in Supplementary Information S1. If the 
value of ß is higher than 0.5, it is a replication origin, otherwise, 
it is a non-replication origin. The flowchart of the iRO-PseKGCC 
is illuminated in Figure 2.

FIGURE 1 | A schematic diagram to illustrate how to calculate the GC Skew in the front, middle, and rear windows along a DNA sequence. (A) The coupling 
between all the contiguous k-GCC (k = 3); (B) The coupling between the second most contiguous k-GCC (k = 3); (C) The coupling between all the contiguous 
k-GCC (k = 4); (D) The coupling between the second most contiguous k-GCC (k = 4). 

FIGURE 2 | A flowchart illustration to show how the iRO-PseKGCC predictor 
works. 
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Cross Validation
Three widely used cross-validation strategies include: i) 
independent test, ii) K-fold cross validation, and iii) jackknife 
test. Among these methods, only the jackknife test can achieve 
the unique results for the same benchmark dataset. Therefore, 
in this study, the jackknife test was employed to give the final 
predictive results. However, considering its high computational 
cost, during the parameter optimization process, the 5-fold 
cross-validation was used to reduce the computational cost  
(see Optimize Parameters section). 

Evaluation Method of Performance
To evaluate the quality of the classifier for prediction of the 
replication origins, the four metrics are used (Feng et al., 2013; 
Chen et al., 2016c; Chen et al., 2019): i) the sensitivity, Sn, ii) 
the specificity, Sp, iii) the overall accuracy of the predictive 
results, Acc, iv) the Mathew’s correlation coefficient, MCC, 
and v) Arear under ROC Curve, AUC (Chen et al., 2016a), 
defined as:
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where N+ denotes the number of all the positive samples 
(replication origins), N– denotes the number of all the negative 
samples (non-replication origins), N−

+  denotes the number of 
the positive samples (replication origins) incorrectly predicted 
as the negative samples (non-replication origins), N+

−  denotes 
the number of the negative samples (non-replication origins) 
incorrectly predicted as the positive samples (replication origins). 
More information of these performance measures can refer to 
Liu et al. (2016b).

RESULTS AND DISCUSSION

Optimize Parameters
There are five parameters in PseKGCC according to Equations 
4–9. These parameters were optimized by the following equations:
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The fivefold cross-validation was employed to search the 
optimal parameters by gridding method so as to reduce the time 
consumption, and the predictive results of the top 10 performing 
predictors, and their optimized parameters were listed in 
Supplementary Information S1.

Comparison With Other Methods
To the best knowledge of ours, iRO-3wPseKNC (Liu et al., 
2018b) is the only existing predictor that is able to predict the 
entire replication origins. All the other predictors can only 
predict the fragments of replication origins. Therefore, the 
performance of the proposed iRO-PseKGCC was compared 
with iRO-3wPseKNC on the two benchmark datasets, and the 
results were listed in Table 1, from which we can see that iRO-
PseKGCC obviously outperformed iRO-3wPseKNC in terms 
of the five performance measures (cf. Equation 14), indicating 
that the proposed PseKGCC feature is able to capture the GC 
asymmetry bias, and incorporate the GC skew into the predictor. 
Therefore, iRO-PseKGCC is an efficient approach for improving 
the predictive performance.

Feature Analysis
Random forest is a combination classifier model composed 
of decision tree classifiers. During the process of constructing 
each tree by the “Bootstrap” method (Efron, 1992), samples not 
extracted for training the corresponding tree can be used to make 
“Out Of Bag” (OOB) error estimate (Breiman, 1996) to evaluate 
the generalization performance of a predictor. Based on the OOB 
error, the Mean Decrease Accuracy (MDA) (Jiang et al., 2007) can 

TABLE 1 | The results of the iRO-PseKGCC Predictor and comparison with iRO-PseKGCC on the two benchmark datasets (cf. Equation 1) obtained by using 
jackknife test.

Species Method Acc(%) MCC Sn(%) Sp(%) AUC

Saccharomyces cerevisiae 1 iRO-PseKGCCa 76.46 0.5298 73.90 78.13 0.8129
iRO-3wPseKNCb 72.95 0.4594 70.67 75.22 0.8084

Pichia pastoris 2 iRO-PseKGCCa 74.22 0.4844 74.51 73.93 0.8002
iRO-3wPseKNCc 71.10 0.4222 69.93 72.28 0.7962

aThe parameters are listed in Supplementary Information S1.
bThe predictor reported in (Liu et al., 2018b) with parameter ε = 0.25, δ = 0.85, k = 5, λ= 6, w = 0.3, and   = 700. 
cThe predictor reported in (Liu et al., 2018b) with parameter ε = 0.15, δ = 0.55, k = 4, λ = 9, w = 0.3, and   = 800.
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be used to estimate the importance of the features. The details of the 
process are (Jiang et al., 2007): 1) When training a Random Forest 
model, using the OOB samples to test the accuracy of each tree in 
the model; 2) Randomly disturb the value of the feature variable v in 
the OOB samples, and retest the accuracy of each tree; 3) Calculate 
the mean value of the decreasing accuracy between the two tests in 
all decision trees in the Random Forest model. The MDA value can 
reflect the importance of the corresponding feature. 

As shown in previous studies (Liu and Zhu, 2019; Liu et al. 
2019a), feature analysis is critical for exploring the characteristics 
of the predictors. To explore the reason why the proposed predictor 
iRO-PseKGCC works so well, we analyzed the features of the two 
top performing iRO-PseKGCC predictors (see Supplementary 
Information S1) on the two benchmark datasets (cf. Equation 1) 
by MDA approach, and the results are listed in the Table 2, from 
which we can see that: 1) for both the two RF-based predictors, 

their most important features are the “***” and “*****,” indicating 
the importance of the k-GCC; 2) The global sequence order effects 
measured by different λ values and GC skew values contribute to 
the performance improvement; 3) Features in certain local window 
show more discriminative powers than those in other windows, for 
examples, for Pichia pastoris, all the top 10 most important features 
are in the middle window, which is consistent with the previous 
observations that the nucleobase composition distribution is 
uneven along the replication origins (Lobry, 1996; Grigoriev, 1998; 
Frank and Lobry, 1999; Tillier and Collins, 2000; Liu et al., 2018b).

Web Server and User Guide
Web-servers are important for the researchers to implement 
the corresponding computational predictors. In this regard, 
for the user’s convenience, we established a web-server named 

TABLE 2 | The top 10 most important features of the top two performing RF-based predictors on the two benchmark datasets (cf. Equation 1).

Rank Saccharomyces cerevisiae Pichia pastoris

Feature Window MDA (%) Feature Window Index MDA (%)

1 *** Rear window 20.49 ***** Middle window 15.89
2 *** Middle window 19.62 ****G Middle window 5.69
3 *GG Rear window 9.04 G**** Middle window 5.38
4 GG* Rear window 8.35 *C*** Middle window 5.23
5 *GG Middle window 8.26 *G*** Middle window 5.14
6 λ = 1 Rear window 7.67 *CGCG Middle window 3.99
7 GG* Middle window 7.45 ****C Middle window 3.94
8 CC* Middle window 7.31 ***G* Middle window 3.77
9 G*G Rear window 6.64 *C*GG Middle window 3.47
10 λ = 2 Rear window 6.12 C**G* Middle window 3.40

FIGURE 3 | A semi-screen shot to show the homepage of the web-server iRO-PseKGCC, which can be accessed at http://bliulab.net/iRO-PsekGCC/.
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“iRO-PseKGCC.” For users’ convenience, a detailed user guide 
explaining how to use the web-server is given.

Step 1. Click on the web sites address http://bliulab.net/
iRO-PsekGCC/ to open the web-server, then the main 
pages on the website as shown in Figure 3 will appear 
in front of you. To see a brief introduction about the 
server, please click on the “Read Me” button.

Step 2. Choose the one specie from Saccharomyces 
cerevisiae or Pichia pastoris.

Step 3. The input sequences should be in the FASTA format. 
The sequence data can be uploaded via the “Browse” 
button or copy and paste or type into the input box directly. 

Step 4. To see the predicted results, please click on the 
“Submit” button. For example, if the four query DNA 
sequences in the Example window are used as the 
queried data, the predictive results are the 1st and 2nd 
query sequences are replication origins, and the 3rd and 
4th are non-replication origins.
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Faced with the lack of reliability and reproducibility in omics studies, more careful and 
robust methods are needed to overcome the existing challenges in the multi-omics 
analysis. In conventional omics data analysis, signal intensity values (denoted by M and  
values) are estimated neglecting pixel-level uncertainties, which may reflect noise and 
systematic artifacts. For example, intensity values from two-color microarray data are 
estimated by taking the mean or median of the pixel intensities within the spot and then 
subjected to a within-slide normalization by LOWESS. Thus, focusing on estimation and 
normalization of gene expression profiles, we propose a spot quantification method that 
takes into account pixel-level variability. Also, to preserve relevant variation that may 
be removed in LOWESS normalization with poorly chosen parameters, we propose a 
parameter selection method that is parsimonious and considers intrinsic characteristics 
of microarray data, such as heteroskedasticity. The usefulness of the proposed methods 
is illustrated by an application to real intestinal metaplasia data. Compared with the 
conventional approaches, the analysis is more robust and conservative, identifying fewer 
but more reliable differentially expressed genes. Also, the variability preservation allowed 
the identification of new differentially expressed genes. Using the proposed approach, 
we have identified differentially expressed genes involved in pathways in cancer and 
confirmed some molecular markers already reported in the literature. 

Keywords: delta method, pixel-level uncertainty, spot quantification, optimal LOWESS normalization, two-color 
microarray, variability preservation, parameter selection

INTRODUCTION

The growing number of omics datasets (e.g., genomics, transcriptomics, proteomics, metabolomics) 
and the recent advances in multi-omics integration approaches have contributed to the better 
understanding of biological mechanisms and also the emergence of the personalized medicine. 
However, the lack of reliability and reproducibility in omics studies stands as one of the biggest 
obstacles in bridging the gap between research and practice of personalized medicine (Alyass et al., 
2015; Karczewski and Snyder, 2018). Considering that inflated variability and non-robust estimation 
may lead to inaccurate and misleading results, this paper proposes improvements to the conventional 
estimation and normalization of the intensity values obtained from omics experiments. Specifically, 
the proposal is to estimate the intensity values by a method that accounts for the variability due to 
pixel-level uncertainties and to normalize these values by using LOWESS with suitably selected 
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parameter values, preserving variation that may be relevant to 
subsequent analyses.

Image processing and fluorescence analysis are the preferred 
approaches for data quantification in microarray technologies. 
Although microarrays have been predominantly used since 
the end of the nineties to measure gene expression levels, they 
remain widely used to detect other omics data types, including 
microRNA expression, DNA methylation, single-nucleotide 
polymorphisms (SNPs), and copy number variants (CNVs) 
(Goodwin et al., 2016). After hybridization and cleaning of 
the target molecules, the array is scanned by activation with 
lasers at different wavelengths (one for each of the fluorophores 
used), and each laser channel generates an image. The pixel 
intensities within each spot in these microarray images are 
summarized to represent the hybridization signal. Depending 
on the platform (e.g., gene expression array, DNA methylation 
array, SNP array, and comparative genomic hybridization [CGH] 
array), the interpretation of this signal is different (e.g., gene 
expression levels, methylation levels, allele frequencies, and copy 
number alterations).

The continuance of the microarray technology can be mainly 
explained by the availability of many datasets in public repositories, 
such as the Gene Expression Omnibus (GEO) (Edgar et al., 2002; 
Barrett et al., 2012) and ArrayExpress (Kolesnikov et al., 2015), 
by the existence of well-established strategies for data analysis 
and experimental design, and by the low cost compared with the 
next-generation sequencing technologies. However, given that 
microarray analysis is still facing reliability and reproducibility 
problems, more robust and rigorous methods are needed to 
account for the high variability and biases introduced in all steps 
of a microarray experiment.

Several preprocessing and normalization procedures have 
been proposed to remove biases due to the inhomogeneity of 
the background and the different fluorescence properties of the 
dyes. However, biases introduced in the image analysis step, 
which includes spot segmentation and signal extraction, have not 
received the same attention, and those may partially explain the 
existing reliability and reproducibility problems in omics studies. 
Particularly, several factors, including image resolution, scanner 
settings, effectiveness of the segmentation algorithm, and 
unexpected behaviors during hybridization, may lead to errors 
in spot localization and classification of the pixels (as foreground 
or background, depending on whether it is situated within or 
around the spot). Thus, spot intensities are usually noisy and that 
high pixel–level variability leads to uncertainty in microarray 
quantification and correlates with variability between replicate 
spots on duplicate slides (Brown et al., 2001).

Given that even state-of-art image processing tools are 
susceptible to errors that significantly influence the variability of 
the data derived from microarray images (Ahmed et al., 2004), new 
segmentation and intensity extraction algorithms are still being 
developed in order to improve precision in spot quantification 
(Li et al., 2017; Karthik and Manjunath, 2018; Shao et al., 2019). 
Usually, these tools combine sophisticated algorithms and pixel-
level analyses in order to obtain an accurate estimate of the signal 
intensity in each spot. However, to allow subsequent analyses to 
take into account possible errors and uncertainties arising from 

the image processing, the method output usually includes not 
only statistical measures of location (e.g., mean and median) of 
the foreground and background intensities of each channel of 
each spot but also measures of dispersion, including standard 
deviation and covariance between both channels.

Despite the common use of pixel-level variability measures 
as data quality criteria for filtering purpose, the conventional 
microarray analysis is solely based on statistical measures of 
location of the spot intensities (Yang et al., 2002; Sun et al., 
2011; Brady and Vermeesch, 2012). To improve robustness 
and reliability in microarray analysis, pixel-level uncertainties 
should be accounted for in the intensity log-ratio estimation and 
propagated to the next steps of the analysis.

Pixel-level uncertainties have been taken into account by 
many spot quantification algorithms in the literature, but 
requiring all pixel values to be available. Some of them are 
interested in improving the log-ratio estimator. Particularly, the 
method proposed by (Dodd et al., 2004) is a log-ratio estimator 
that corrects for signal saturation by regressing all pixel 
intensities at both test and control channels using a censored 
regression model. The META algorithm (Chan and Chang, 
2009) estimates the intensity log-ratio by grouping the pixels 
according to their distance to the center of the spot and then 
weighting the log-ratio of each group in inverse proportion to 
its sample variance. A method that only uses pixel-level mean 
and variance summary statistics is the hierarchical maximum-
likelihood estimator (Bakewell and Wit, 2005). However, it is 
not exactly based on the standard log-ratio representation of the 
spot intensity. It models the gene expression signal at control 
and treatment channels separately, incorporating the sample 
within-spot deviation and then performs the estimation using 
maximum likelihood. To the best of our knowledge, there is no 
intensity log-ratio estimator to be used after the image analysis 
phase (i.e., based solely on the pixel-level summary statistics) 
that takes into account pixel-level uncertainties. 

The first contribution of this paper is a more robust estimator 
for the intensity log-ratio (M) and average log intensity (A) of 
a microarray spot that accounts for pixel-level variance and 
covariance between channels. For a spot t, these values are 
denoted by Mt and At, respectively (Dudoit et al., 2002). We 
derive these estimators by using the multivariate delta method 
(Casella and Berger, 1990). Specifically, we approximate the 
expected values of Mt and At by using their second-order Taylor’s 
expansions, and the variance of Mt and At by using their first-
order Taylor’s expansions. These expansions depend on the 
pixel-level variance and covariance between channels of the spot, 
whose sample estimates are readily accessible through standard 
output files of microarray image analysis tools. 

After spot intensity estimation, it is necessary to perform a 
within-slide normalization to remove array-specific effects, 
intensity-dependent dye biases, and other systematic trends of 
the microarray data. The within-slide normalization based on the 
robust locally weighted regression (LOWESS) (Cleveland, 1979) 
is one of the most used techniques. The choice of the LOWESS 
parameters, particularly the smoothing parameter (also known 
as neighborhood size or bandwidth), dramatically affects the 
intensity and quality of the microarray data calibration. Although 
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the smoothing parameter is still commonly set arbitrarily 
(around 0.2 and 0.4) (Dudoit et al., 2002; Smyth and Speed, 2003; 
Drăghici, 2012), some data-driven methods have been proposed 
to select its optimal value (Berger et al., 2004; Futschik and 
Crompton, 2004a; Lee et al., 2008). All these methods are similar 
in that they choose the smoothing parameter by minimizing 
a measure of error of the LOWESS fit. Berger et al. (2004) use 
the mean-squared difference between the LOWESS estimates 
and the corresponding normalization reference levels as cost 
function. These normalization levels are the true spot-specific 
calibration errors, which are usually unknown. Thus, Berger et al. 
suggest to estimate them from control transcripts and replicate 
slides. However, they are not always available for all genes in a 
typical microarray experiment, making it hard to reliably use 
the method. Futschik and Crompton’s selection method, named 
OLIN (Futschik and Crompton, 2004a; Futschik and Crompton, 
2004b), has the advantage of not relying on a reference level. Its 
optimization procedures use the generalized cross-validation 
(GCV) criterion, an estimator of the prediction mean square 
error (PMSE), as cost function. Lee et al. (2008) proposes to 
select the smoothing parameter by minimizing the bootstrap 
estimate of the mean integrated square error (MISE) and show 
that their results are comparable to OLIN. 

Although all these methods have shown superiority over 
LOWESS normalization with a fixed arbitrarily chosen 
smoothing parameter, they lack in taking into account any 
heteroskedasticity in the data. In addition, they usually suffer 
from a poor bias–variance trade-off, tending to choose small 
smoothing values, which yield unnecessarily complicated (with 
high variance) LOWESS fits. 

The second contribution of this paper is a data-driven 
method for selecting the smoothing parameter of the LOWESS 
normalization process. Inspired by the previous proposed 
methods, we choose the optimal smoothing value by minimizing 
a mean squared error criterion. However, our selection method 
also takes into account heteroskedasticity of the microarray data 
and offers a better bias–variance trade-off by selecting from 
among the low-MSE fits the one that is the most parsimonious. 
The parameter selection is obtained by solving a discrete 
optimization problem and is based on conventionally accepted 
ideas for analysis of M-plots—a graphical tool showing the 
curve of the MSE against the effective degrees of freedom of the 
estimate (Cleveland et al., 1988).

Given that the primary application of DNA microarrays has 
been to measure gene expression levels, we focus in this paper 
on variation-preserving estimation and normalization methods 
for gene expression levels from two-channel (or two-color) 
microarrays. However, it is straightforward to adapt the same 
ideas to improve analysis of other types of microarray data, even 
from single-channel technologies. 

The proposed methods were evaluated by a differential gene 
expression analysis from real intestinal metaplasia and normal 
microarray samples. The proposed estimators for the Mt and 
At values were compared with the conventional estimators that 
neglect the pixel-level variability. In addition, we compared 
the proposed method for selecting the LOWESS smoothing 
parameter with OLIN, as it is conceptually similar to the 

other existing methods and can be applied even to microarray 
experiments with few or no replicates. Results show that a more 
robust and conservative analysis is performed when the LOWESS 
smoothing parameter is selected by our method, potentially 
reducing the number of false-positive differential expressions. 
Besides, both the pixel-level variabilities incorporated by the 
proposed estimators for the Mt and At values and the variability 
preserved by our more parsimonious normalization method 
contributed to the identification of new differentially expressed 
genes. Thus, the proposed methods may also reduce the false-
negative rate. 

MATERIALS AND METHODS

Two procedures that critically affect the adequacy of microarray 
data analysis are the spot quantification, which extracts 
summarized quantitative measures of the pixel intensities 
within each spot of the microarray slide, and the within-slide 
normalization, which removes dye-specific biases and other 
systematic noises simultaneously from all logged spot intensities 
(Mt and At values). 

In the section Intestinal Metaplasia Database, we describe 
a gene expression dataset used to illustrate the application of 
our proposed methods. In the section Improved Estimators 
for the Mt and At values, we show our improved estimation 
method for the Mt and At values that incorporates pixel-level 
variability. In the section Estimators for the Variances of the 
Mt and At Values, we discuss some criteria that can be used for 
proper setting of the parameters of the LOWESS within-slide 
normalization and we propose an algorithm for selecting the 
optimal value for the smoothing parameter (denoted by f). 

Intestinal Metaplasia Database
Due to a chronic inflammatory process, the normal squamous 
mucosa of the stomach may be replaced by columnar intestinal-
type epithelium, characterizing a disease called intestinal 
metaplasia of the stomach. Since adenocarcinoma of the stomach 
and inflamed intestinal mucosa are strongly associated (Coussens 
and Werb, 2002), intestinal metaplasia may be a significant risk 
factor for gastric cancer. 

We analyzed data from a two-color microarray experiment with 
tissues samples from 90 different subjects, being 35 from tissues 
representing type II intestinal metaplasia and 55 from tissues 
representing the normal condition, obtained from the Tumor Bank 
at A.C. Camargo Cancer Center/Antonio Prudente Foundation. 

It was used the standard reference design (Churchill, 2002), in 
which each sample is hybridized against a pool of normal tissues 
using the same orientation of dye labeling. Gene expression levels 
were measured on Agilent Whole Human Genome Microarrays 
4x44K G4112F (design ID 014850), each slide containing 41,093 
unique probes. The scanned images of the microarray slides were 
processed by Agilent Feature Extraction software, version 9.5, 
where statistics (mean, standard deviation, and covariance) of 
the foreground and local background pixels were computed for 
each spot, in both test and reference channels. Each microarray 
spot contains about 60 foreground pixels. 
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This study was carried out in accordance with the 
recommendations of the international guidelines for 
investigations involving human beings with written informed 
consent from all subjects. All subjects gave written informed 
consent in accordance with the Declaration of Helsinki. The 
protocol was approved by the Ethics Institutional Committee of 
the A.C. Camargo Cancer Center (process number 1023/07).

Improved Estimators for the Mt and 
At Values
Usually, in microarray analysis, the test channel is denoted 
by  (red), and the reference channel is denoted by G (green), 
following this usual notation, denoted by Rtj and by Gtj, the 
intensity value of the jth pixel within the th spot, respectively, in 
the test and reference channel. The relative expression of pixel j 
within spot  is denoted by Mtj and defined as follows:

 
M

R
G

R Gtj
tj

tj
tj tj log log ( ) log ( ).2 2 2









 = −   (1)

 The average expression of pixel  within spot  is denoted by Atj 
and defined as follows: 
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tj tj tj

tj tj


1
2 2

2 2( ) =
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Usually, image analysis software does not provide all pixel 
intensity values within each spot. Nonetheless, it provides several 
descriptive statistics of the foreground and background pixel 
intensities, including sample estimates for the mean, median, 
variance, and covariance between the two channels. 

To incorporate the pixel-level variability in the analysis, we 
derived an approximation of the expected values of Mtj and Atj  by 
using the multivariate delta method (Casella and Berger, 1990). 
Assuming that the functions (1) and (2) are twice differentiable 
on an open interval which contains the point  ( (), )R Gtj tj( ) , we 
computed their second-order Taylor’s expansions, around the 
point  ( (), )R Gtj tj( ) , and then derived their expected values. 
The derivation is presented in Appendix 4. 

It is reasonable to assume that the variables Rtj, Gtj, Mtj and 
Atj have a distribution with well-defined mean and variance. 
Particularly, Hoyle et al. (Hoyle et al., 2002) empirically showed 
that the distribution of the pixels within a spot is heavy-tailed 
(a non-Gaussian distribution) and well-approximated by a 
log-normal distribution. Consequently, Mtj and Atj follow 
a distribution which is well-approximated by a Gaussian 
distribution and all the variables have at least the first and second 
moments finite. 

Let Rtc  and Gtc  be non-zero estimates of, respectively, 
( )Rtj  and ( )Gtj , which represent average foreground signals 
after correction for removing the background influence. The 
subscript  indicates dependence on the background correction. 
Also, let ˆ ( )σ 2 Rt  and ˆ ( )σ 2 Gt  be estimates of, respectively, Var 
(Rtj) and Var (Gtj), which are assumed to be independent of the 

background correction. Note that mean and variance estimates 
are calculated across observed foreground pixel intensities within 
the spot  at the respective channel. 

We can derive improved estimators for ( )Mtj  and ( )Atj  
as follows: 
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Note that the conventional estimators for the Mtj and Atj 
values, given by

 
ˆ log ( ) log ( ),M R Gt tc tc 2 2−  (5)
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are approximations of, respectively, ( )Mtj  and ( )Atj  
derived from only the zeroth-order Taylor’s expansion of 
the functions that define Mtj and Atj. Thus, the conventional 
estimators ignore the known measures of pixel-variability, which 
represent uncertainties in the gene expression measurements. 

Figure 1 illustrates the differences between the estimators for 
the ( )Mtj  and ( )Atj  for a randomly chosen microarray slide 
of the database described in the section Intestinal Metaplasia 
Database. Since these estimators may suffer from numerical 
instability if the corrected foreground signals, Rtc  and Gtc,  
are very close to zero, we removed the background influence 
by applying the normexp method (Ritchie et al., 2007) with 
offset equals to 50. The top 20 spots with the highest pixel-level 
variability are highlighted in red plus symbols. Several of these 
spots have low average intensity (small estimates for ( )Atj ) and 
a small difference between the intensities of the two channels 
(estimates for ( )Mtj  close to zero), but they are not the 
majority. The differences between the proposed estimators, 
defined in Eq. (3) and (4), and the conventional estimators, 
defined in Eq. (5) and (6), are shown in Figures 1C, D. These 
differences are due to the distinct parts between their respective 
formulas. When computing the M j  estimates, the ratio of the 
pixel-level variability to the squared expected value in the test 
channel appears in Eq. (3) with an opposite sign to the same term 
in the reference channel. Thus, positive and negative differences 
between the estimates for ( )Mtj  may occur if such terms do 
not cancel each other out. Figure 1C shows the ilde Mt  estimates 
were smaller than the M̂t  estimates for the genes with highest 
pixel-level variance, indicating a larger variance in their test 
channels. Figure 1D shows some At  estimates were smaller than 
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the Ât  estimates. The reduction is explained by the fact that the 
additional terms in Eq. (4) are negative for any positive pixel-
level variability in any channel.

Estimators for the Variances of the Mt and At Values
Since we have also available the sample covariance between Rtj 
and Gtj, denoted by ˆ( , )σ R Gt t , we applied the multivariate delta 
method for deriving estimators for the variances of the Mtj and Atj. 
We calculated the variance of the first order Taylor’s expansion of 
the functions (1) and (2) that define, respectively, Mtj and Atj, as 
shown in Appendix 5. The variance estimators for Mtj and Atj, for 
pixels j within spot t are: 
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The variances of Mtj and  represent pixel-level uncertainties 
of the th spot. They can be used, for instance, for assessing the 
quality of the th spot or for constructing confidence intervals for 
the parameters ( )Mtj  and ( )Atj . 

Optimal Selection of the LOWESS 
Parameters
To simplify the notation, we will denote the estimates for ( )Mtj  
and ( )Atj , independently of the estimation method used, by, 
respectively, Mt and At values.

It is necessary to remove from these Mtj intensity values the 
dependent dye-specific biases and other systematic errors by 
using some within-slide normalization method. 

In the LOWESS within-slide normalization method, one 
estimates for each microarray slide a smoothing function µ̂  that 
maps each At observed value to a smoothed Mt value, ˆ( )µ At . 
Since ˆ( )µ At  is considered an estimate of a dye-dependent bias, it 
must be subtracted from the corresponding observed Mt value to 
obtain a residual value representing, presumably, the biologically 
relevant gene expression level. 

An appropriate LOWESS estimation depends on the choice 
of its parameters. According to loader (Loader, 1999), the 

FIGURE 1 | Comparison between conventional and proposed estimation methods for the Mt and At values for the microarray slide with ID 251485069395_1.4. 
The M-A plots in (A) and (B) were obtained by using, respectively, the conventional and improved estimators for the Mt and At values. Plots (C) and (D) show the 
conventional against the improved estimates for, respectively, the Mt and At values. Top 20 genes with the highest pixel-level variance are highlighted in red plus 
symbols. The test channel contains RNA samples of normal gastric mucosa, and the control channel contains samples from a common reference. The background 
influence was removed from the foreground signals by the normexp method with offset.
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weight function and the number of iterations of the robustness 
algorithm are not critical parameters. Cleveland (Cleveland, 
1979) comments that good choices for these parameters are, 
respectively, the tricube function and three iterations. However, 
the degree of the local polynomials and the smoothing parameter 
f, which, in the nearest neighbor method, is a number between  
and  indicating the proportion of data used in each local fit, 
affects the bias and the variance of the fit. 

Specifically, the higher the degree of the local polynomial 
(related to the complexity of the model), the lower the bias of the 
fit (probably, fitting the data very well). However, the additional 
parameters of this more complex model increase the variance of 
the fitted values, yielding a poor generalization ability (i.e., the 
model will have a large error). Thus, to avoid unstable LOWESS 
estimates, several references as (Loader, 1999; Yang et al., 2001; 
Dudoit et al., 2002; Smyth and Speed, 2003) recommend using 
local polynomials of degree one, mainly in the presence of 
sparsity, as is the case of microarray data. 

The effects of the smoothing parameter f on the bias and 
variance of the fit are opposite to those of the degree of the 
local polynomials. Since the f parameter indicates the number 
of observations that will be used in the local polynomial 
estimation, when f value is large, a simple polynomial may 
not fit well to all observations in the neighborhood, distorting 
or ignoring essential features. In other words, the estimation 
of the smoothing function can be significantly biased. On 
the other hand, when a low f value is chosen, the number 
of observations may be insufficient to capture the general 
behavior of the data, resulting in a very noisy (large variance) 
fitness function. 

In the next section, we propose a method for selecting 
a value for the f parameter, focusing on microarray data 
normalization. Our method takes into account the intrinsic 
characteristics of the bias and variance of the fit as well as of 
gene expression data. 

Lowess Smoothing Parameter Selection
For microarray data normalization, the ideal LOWESS fitted 
curve captures only trends and effects from systematic errors, 
retaining all biological variation. However, it critically depends 
on the choice of the f parameter value. 

Figure 2 illustrates the MA plot of the microarray slide shown 
in Figure 1B, with different LOWESS fits yielded by f values 
varying from 0.05 to 0.9. The improved estimation method was 
used to obtain the Mt and At values, that is, the Mt  and At  
estimates.

The quality of a LOWESS estimator can be assessed by the 
MSE, which measures how close the estimator µ̂  is of the true 
mean function μ : 

MSE( ) [( ) ].ˆ ˆµ µ µ= − 2

Since the real curve μ is unknown, we need a criterion to evaluate 
the MSE. Under the assumption of heteroskedasticity, Cleveland 
and Devlin (Cleveland and Devlin, 1988) propose the Mallows’ Cp 

criterion for local fitting that can be used as as MSE estimator. In 
the presence of heteroskedasticity, as usual for microarray data, the 
heteroskedasticity-robust Cp (HRCp) criterion, proposed by Liu 
and Okui (Liu and Okui, 2013), may be a more appropriate MSE 
estimator. We detail this MSE estimator next. 

Considering {( , )}A Mt t t
T

=1  within-slide data points, the 
evaluation of the LOWESS smoothing function  on any point  
is given by a linear combination of the  observed points, whose 
weights {( }( )l At t

T
=1  are assigned according to the distance of A to 

the At observed points: 

ˆ ( )( ) .µ A l A M
t

T

t t=
=

∑
1

Consider the T × T matrix L which maps the observed to the 
fitted values: 
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Two commons definitions of the effective degrees of freedom 
of µ̂  are: (1) v1 tr ( )L  and (2) v2  tr ( )′L L , where tr stands 
for the trace operator. 

Supposing that the variance of Mt, across T spots of a 
microarray slide, is constant and equals to σ2, the Mallows’ Cp 
for local fitting is defined as: 

Cp M A T v
t

T

t t( ) ( ( )) .ˆ ˆµ µ= − − +
=

∑1 22
1

2
1σ

Cleveland et al. (1988) shows that σ2 can be estimated as 
follows:

FIGURE 2 | MA plot for the slide 251485069395_1.4, with Mt and At values 
estimated by the proposed method and LOWESS fits yielded by f values 
ranging from 0.05 to 0.9.
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ˆ ˆ[ ( )] .σ µ2 1
2

2 12


Σt
T

t tM A
n v v

= −
+ −

When heteroskedasticity is present, Mallows’ Cp criterion 
is not an appropriate MSE estimator. Considering the T × T 
diagonal matrix Σ, whose th diagonal element is given by a non-
homogeneous variance σ t

2  of Mt, a robust MSE estimation can 
be achieved by using the HRCp criterion, defined as: 

HRCp M A
t

T

t t( ) ( ( )) ( ).ˆ ˆµ µ= − +
=

∑
1

2 2tr  ΣL

According to Loader (1999), σ t
2  can be estimated locally 

by calculating the error variance (the residual sum of squares 
divided by the corresponding degrees of freedom) of a nearly 
unbiased LOWESS fit, which can be yielded using a very small 
value for the smoothing parameter (e.g., f = 0.1. Since the local 
variance estimates can be very noisy, it may be appropriate to 
smooth them using a gamma kernel. 

Several authors suggest to choose the f value which minimizes 
a measure of error of the LOWESS fit, such as the MSE criterion 
(Berger et al., 2004; Futschik and Crompton, 2004a; Lee et al., 
2008). However, other authors (Mallows, 1973; Cleveland and 
Devlin, 1988; Loader, 1999) argue that a selection based only 
on minimizing the MSE criterion is a poor procedure since it 
ignores the intrinsic information of the bias and variance of the 
fit. Therefore, following their suggestion, we propose a method 
based on a graphical tool called M-plot. It is a graph of the MSE 
estimate as a function of the effective degrees of freedom of the fit.

M-plots illustrating the f parameter selection method for a 
typical microarray slide (ID 251485069395_1.4) are shown in 
Figure 3. Dots show MSE estimates (by HRCp criterion) and 
respective degrees of freedom (by v2 definition) of LOWESS 
fits (on the M̂t  and Ât  estimates, in the first M-plot, and 
on the Mt  and At , in the second M-plot) obtained with f 
parameter varying from  to 0.2 We fixed the other LOWESS 
parameters (local polynomials of degree one, tricube weight 
function, and three iterations) so that the M-plot curve 
shows only the effect of the f parameter on the bias–variance 
compromise. Large f values tend to yield simple fits (with 
fewer degrees of freedom), which have a small variance, but a 
large bias. On the other hand, minimal f values tend to yield 
complex fits (with many degrees of freedom), which have a 
small bias, but a large variance.

For the microarray slide in Figure 3, a selection method 
based only on the minimization of the MSE curve would choose 
the smallest evaluated f value (0.2). However, any f value within 
the flattening region near to the minimum (the region with 
light-colored dots) is a good choice, in the sense that it yields 
a low-MSE fit (Cleveland and Devlin, 1988; Loader, 1999). 
Depending on the type of application, we can choose between 
one value which yields a low-bias fit (with more degrees of 
freedom) or a low-variance fit (with fewer degrees of freedom). 
Since we want to estimate a natural phenomenon behavior, we 
propose to select from the flattening region the f value which 
yields the simplest LOWESS fit (the one with fewest effective 
degrees of freedom). The biggest dot in each M-plot indicates 
the selected f value. The detection of the flattening region is 
made by searching points for which the derivative of the MSE 
curve is small. We check for each sequence of three points near 
the minimum whether the difference between the MSE values 

FIGURE 3 | Selection of the LOWESS f parameter by using HRCp criterion. The M-plots illustrate the selection process for a particular microarray slide (ID: 
251485069395_1.4). The flattening region is represented by the light-colored dots and the selected f value by the biggest dot. The LOWESS fits were yielded using  
values ranging from 1 to 0.2 (from lowest to highest degree of freedom).
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is small. If so, these points are considered as belonging to the 
flattening region. 

The f parameter selection method can be summarized in 
the following discrete and constrained optimization problem. 
Consider a sequence of l different values for f, {f1, f2, ... , fl}, and 
denoted by µ̂ fk , the LOWESS fit yielded by using the value fk for 
the f parameter. Also, let: 

 = ∈ … < = … −+{ ; { , , , },  ,  , , }µ̂ f k l k kk
f f f f f f for k l1 2 1 1 1 ;;

argmin   ( ), ;ˆ ˆf HRCp such that
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Since v2 function provides the effective degrees of freedom of 
a given fit, the selected f value is the solution f*, if it exists, of the 
following problem: 
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If the minimum of the M-plot curve is far away of the 
point corresponding to the second lowest MSE estimate, the 
previous problem has no solution. In that case, the f value 
that yields the fit with lowest MSE estimate is selected. 
Specifically, the f parameter value is selected by solving the 
following problem: 

f
f

f f
k

k k
* argmin ( ), .ˆ ˆ
  HRCp  such thatµ µ ∈

APPLICATION ON INTESTINAL 
METAPLASIA DATA

To investigate the effects of the proposed methods, we preprocessed 
the data described in the section Intestinal Metaplasia Database 
by using all discussed methods and compared the identified 
differentially expressed genes. 

First, we applied the normexp method with offset value of  
for removing the background influence. Then, we compute the 
Mt and At values both by the conventional estimation methods, 
defined in Eq. (5) and (6), and by the proposed estimation 
methods, defined in Eq. (3) and (4). The LOWESS within-
slide normalization was carried out as discussed in the section 
Optimal Selection of the LOWESS Parameters. For comparison 

purpose, the f smoothing parameter was selected both by the 
OLIN method (considered by us as a conventional approach) 
and by the proposed method, discussed in the section LOWESS 
Smoothing Parameter Selection. Since data from all microarray 
slides present overdispersion, we used the HRCp criterion as cost 
function of our selection method.

Therefore, the following four preprocessing procedures were 
applied separately to the original data:

1. Conventional estimation for Mt and At and LOWESS within-
slide normalization using f parameter selected by OLIN;

2. Improved estimation of Mt and At and LOWESS within-slide 
normalization using f parameter selected by OLIN;

3. Conventional estimation of Mt and At and LOWESS within-
slide normalization using f parameter selected by the proposed 
method;

4. Improved estimation of Mt and At and LOWESS within-slide 
normalization using  parameter selected by the proposed 
method.

Figure 4 shows the distribution of the optimal values for 
the LOWESS f parameter, according to the proposed selection 
method with HRCp criterion, for the entire database, separated 
by normal and intestinal metaplasia conditions (both, hybridized 
against a pool of normal tissues). In the first plot, the LOWESS 
curve was fitted on the M̂t  and Ât  estimates and, in the second 
plot, on the Mt  and At  estimates. The average of the selected f 
values was close to 0.5.

As expected from a method that neither takes into account 
heteroskedasticity of the data nor attempts to make a good 
balance between bias and variance, the OLIN method selected 
the smallest evaluated  value (0.2) for most of the slides. Same 
results were obtained when the Mt and At values were estimated 
by the conventional and by the proposed estimator. Such 
behavior has been reported in the literature, implying that the 
optimal f values according OLIN are usually close to the default 
one (Chiogna et al., 2009).

After preprocessing the data, a two-sample t-test assuming 
unequal variance was performed for each spotted gene to 
determine whether its expression is statistically different 
between gastric tissues in normal and intestinal metaplasia 
groups. However, since we are interested in directly assessing the 
impact of each proposed method on the t-statistics and p-values 
rather than making inference about differential expression, the 
comparative study was performed before applying a multiple 
testing correction. 

Comparison of the Results
Results of a pairwise comparison among the p-values and 
t-statistics obtained by the four preprocessing methods are 
shown in Figure 5. In the left-column plots, we compare the 
p-values and, in the right-column plots, we show the changes in 
the difference between the group means (the absolute value of 
the t-statistic numerator) and in the within-group variability (the 
denominator of the t-statistic). Only genes with p-value less than 
5% were considered.
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The left-column plots show that most of the points are 
distributed around the 45-degree line. Thus, the p-values and, 
consequently, the total number of differentially expressed 
genes, even at a lower significance level, were similar among 
the four methods. 

The first- and second-row plots show how p-values and 
t-statistics were affected by estimating the Mt and At values 
with the proposed method, which takes into account the pixel-
level uncertainties. The genes represented by blue plus signs 
were identified as differentially expressed only when using the 
proposed estimator for the Mt and At values.

The genes represented by green crosses were identified 
as differentially expressed only when using the conventional 
estimator for the Mt and At values. 

When the LOWESS f parameter is selected by OLIN (first-row 
plots), it is clear that the within-group variability decreases when 
using the proposed estimators for the Mt and At values. When 
the LOWESS  parameter is selected by our method (second-row 
plots), there is still a reduction in the within-group variability. 
However, this impact is less clear because of the variability 
introduced when the LOWESS f parameter is selected by our 
method. 

The third- and fourth-row plots compare p-values and 
t-statistics obtained by OLIN and the proposed approach for 
selecting the LOWESS f parameter. The genes represented 
by blue plus signs were identified as differentially expressed 
only when f was selected by the proposed method. The genes 
represented by green crosses were identified as differentially 
expressed only when selecting f by OLIN. It is clear that, for 
most genes, both within-group variabilities increased, implying 
that the normalization procedure was more conservative, and 
thus, more potentially relevant information is retained. In 
addition, for many genes, the increase in the within-group 
variability was counterbalanced by an increase in the distance 
between the groups. Such effect is even most pronounced when 
the proposed estimator for the Mt and At values are used. Thus, 
their respective p-values reduced enough to consider them as 
differentially expressed genes. 

The diagrams in Figure 6 show a comparison of the 
methods with respect to the total number of genes with p-value 
less than 5%. On the left, the p-values were not corrected for 
multiple tests, while on the right, the p-values were adjusted 
by the false discovery rate (FDR) correction (Benjamini and 
Hochberg, 1995).

Note that the four methodologies are quite different 
in terms of which genes were identified as differentially 
expressed. As a consequence of the more conservative 
(milder) noise reduction performed in the LOWESS within-
slide normalization procedure with f parameter selected 
by our method, fewer genes are identified as differentially 
expressed. However, regardless of the normalization method, 
more genes could be identified as differentially expressed 
when the Mt and At values were estimated by the proposed 
estimation method that incorporates pixel-level variability. 
Given that both proposed methods make the analysis more 
robust by incorporating and preserving information neglected 
by the conventional methods, we can argue that they are 
contributing to the reduction of both false-positive and false-
negative rates. 

Validation Analysis
To check the consistency of our analysis, we compared our 
results with those reported in the literature. Out of the genes 
which are associated with intestinal metaplasia according to the 
Gene Expression Omnibus platform (Edgar et al., 2002) of the 
NCBI (National Center for Biotechnology Information) website, 
80 spotted genes (corresponding to 63 unique genes) have 
p-value (before FDR correction) less than 5%, and 35 spotted 
genes (corresponding to 29 unique genes) have p-value (after 
FDR correction) less than 5%. These findings are summarized 
respectively in Tables 1, 2. In addition, Figure 7 compares the 
total number of validated genes identified by each method with 
p-value less than 5% (before FDR correction).

Greater differences in inference were observed among the 
genes whose p-value is close to the significance level. These 

FIGURE 4 | Distribution of the selected f values by normal and metaplasia intestinal conditions when the Mt and At values are estimated by using the conventional 
(left) and the proposed (right) method.
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genes have a more subtle differential expression, which can be 
easily damaged by measurement errors and poor estimation 
and normalization methods. Thus, the more accurate and 
careful analysis provided by the proposed methods is especially 
important for making decisions on the differential expression of 
these more sensitive genes. 

Two replicates of the HSPB1 gene could not be identified 
as differentially expressed when using both the conventional 
estimators for the Mt and At values and our selection method for 
the LOWESS f parameter. Thus, the estimation of the Mt and At 

values by the proposed estimators was crucial in determining the 
differential expression of the HSPB1 gene. 

The genes PTEN, CTNNB1, MLH1, CXCR4, and CXCR1 could 
only be identified as differentially expressed when the LOWESS  
parameter was selected by our proposed method. Particularly, 
the gene CXCR4 only was determined as differentially expressed 
when the improved estimators for the Mt and At values were 
also used. In contrast, the gene KRT14 was no longer identified 
as differentially expressed when the LOWESS f parameter was 
selected by our proposed method. 

FIGURE 5 | Pairwise comparison between the proposed and the conventional methods. Left-column plots compare the FDR-corrected p-values, and the right-
column plots compare the difference between the absolute values of the numerators with the difference between the denominators of the t-test statistic.
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In the following, we briefly describe the association of those 
genes with intestinal metaplasia of the stomach according to the 
literature data: 

• HSPB1 (heat-shock protein beta-1, also known as HSP27—
heat-shock protein 27): It has a protective role against 
stress-induced cell damage, and its expression has been 
considered critical for mucosal protection in the stomach (Ebert 
et al., 2005). Also, it has been reported as down-regulated in 
esophageal adenocarcinoma (Lv et al., 2019).

• PTEN (phosphatase and tensin homolog): It has been 
identified as overexpressed in intestinal metaplasia and is a 
known marker for tumorigenesis and progression of gastric 
carcinoma (Yang et al., 2003).

• CTNNB1 (beta-catenin 1): It is a canonical oncogene that has 
been identified as overexpressed in intestinal metaplasia and 
gastric adenocarcinomas (Werner et al., 2001; Huang et al., 2018).

• MLH1 (mutL homolog 1): Its expression has been reported as 
absent or downregulated in intestinal metaplasia, dysplasia, 
and gastric cancers (Takeda et al., 2012; Hu et al., 2018).

• CXCR4 (chemokine receptor type 4): Its expression has been 
associated with the staging of gastric cancer, being reduced in 
the majority of gastrointestinal tumors and significantly higher 
in patients with advanced stages of gastric cancer (Shibuta 
et al., 1997; Hannelien et al., 2012; Nikzaban et al., 2014).

• CXCR1 (C-X-C motif chemokine receptor 1): It has been 
reported to be strongly expressed in gastric carcinoma (Eck 
et al., 2003; Hannelien et al., 2012).

• KRT14 (keratin 14): It is a squamous cell marker that is down-
regulated by CDX2 transfection (Liu et al., 2007). In addition, 
although it has been determined as significantly overexpressed 
in intestinal metaplasia by our analysis when the  parameter 
was selected by OLIN, it has been reported as down-regulated 

in esophageal adenocarcinoma when compared to normal 
esophagus (Lv et al., 2019).

Genes Involved in Cancer
By performing a gene enrichment analysis, we identified, at a 
significance level of 5% (after FDR correction), 31 differentially 
expressed genes that are involved in cancer. Their respective 
p-values and fold changes are shown in Table 3. We remark that 
their association with intestinal metaplasia has not been clearly 
demonstrated yet. Thus, further investigation has to be done to 
confirm such conclusions.

Particularly, two replicates of the CCND1 gene and the 
LAMB2 gene were identified as differentially expressed only by 
the conventional approaches, suggesting that they may be false 
positives. Next, we briefly describe their association with cancer: 

• CCND1 (cyclin D1): In contrast to its underexpression 
identified by the conventional analyses, it has been frequently 
reported as overexpressed in intestinal metaplasia, human 
neoplasias, and several tumors (Hosokawa and Arnold, 1998; 
Franchi et al., 2015).

• LAMB2 (laminin subunit beta 2): Although its expression has 
been associated with some carcinomas, ts expression is tightly 
regulated in normal human tissues and in disease (Wewer 
et al., 1994; Ljubimova et al., 2006).

DISCUSSIONS

Faced with the growing trend of multi-omics data integration 
in the midst of a replication crisis, improved microarray 
data analyses are crucial to identifying more reliable results 
(Ritchie et al., 2015a).

FIGURE 6 | Venn diagram illustrating the total number of differentially expressed genes identified in each variant of the database at a significance level of 5%. On the 
left, p-values were not corrected for multiple tests, while on the right, p-values were adjusted by the false discovery rate (FDR) correction.
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TABLE 1 | Genes reported in the literature as associated with intestinal metaplasia of the stomach that were identified as differentially expressed in our analysis at a significance level of 5% (after FDR correction). 

Gene Improved estimation for the  and  values Conventional estimation for the Mt and At values 

f by our method f by OLIN f by our method f by OLIN 

p adj. p FC p adj. p FC p adj. p FC p adj. p FC

CLND3 2.70 × 10−12 4.28 × 10−8 2.86 1.84 × 10−12 2.32 × 10−8 2.74 2.77×10−12 4.01 × 10−8 2.86 1.87 × 10−12 2.33 × 10−8 2.74
CLND3 2.23 × 10−5 1.35 × 10−3 0.59 1.63 × 10−5 1.07 × 10−3 0.60 2.23 × 10−5 1.35 × 10−3 0.59 1.55 × 10−5 1.04 × 10−3 0.60
MUC2 3.51 × 10−11 1.32 × 10−7 1.73 3.14 × 10−11 1.06 × 10−7 1.71 3.21 × 10−11 1.21 × 10−7 1.73 3.06 × 10−11 1.04 × 10−7 1.71
MUC2 1.90 × 10−4 6.56×10−3 0.24 2.14 × 10−4 7.19 × 10−3 0.24 1.96 × 10−4 6.69 × 10−3 0.24 2.35 × 10−4 7.74 × 10−3 0.23
CDX1 4.22 × 10−10 6.05 × 10−7 2.15 4.53 × 10−10 6.74 × 10−7 2.13 4.03 × 10−7 5.94 × 10−7 2.16 4.40 × 10−10  6.98 × 10−7  2.14
ANPEP 4.28 × 10−10 6.05 × 10−7 3.14 5.31 × 10−10 7.19 × 10−7 3.08 4.37 × 10−10 6.17 × 10−7 3.13 5.19 × 10−10 7.03 × 10−7 3.07
CLCA1 2.55 × 10−9 1.69 × 10−6 3.75 7.18 × 10−10 8.49 × 10−7 3.85 2.71 × 10−9 1.70 × 10−6 3.75 7.15 × 10−10 8.93 × 10−7 3.85
DMBT1 2.79 × 10−9 1.75 × 10−6 3.39 4.22 × 10−9 2.43 × 10−6 3.26 2.77 × 10−9 1.71 × 10−6 3.39 3.98 × 10−9 2.33 × 10−6 3.26
GUCY2C 3.07 × 10−9 1.86 × 10−6 2.31 9.58 × 10−9 4.07 × 10−6 2.20 3.10 × 10−9 1.84 × 10−6 2.31 9.70 × 10−9 4.06 × 10−6 2.19
CLDN7 3.78 × 10−9 2.17 × 10−6 2.37 2.21 × 10−9 1.56 × 10−6 2.23 1.24 × 10−9 1.13 × 10−6 2.27 2.30 × 10−9 1.59 × 10−6 2.22
CDH17 4.21 × 10−9 2.27 × 10−6 2.69 4.83 × 10−9 2.64 × 10−6 2.65 4.16 × 10−9 2.24 × 10−6 2.69 4.73 × 10−9 2.59 × 10−6 2.65
CDX2 5.67 × 10−9 2.80 × 10−6 1.01 7.29 × 10−9 3.40 × 10−6 1.00 6.00 × 10−9 2.82 × 10−6 1.01 7.67 × 10−9 3.51 × 10−6 1.00
DEFA5 1.17 × 10−7 2.48 × 10−5 3.33 1.17 × 10−7 2.45 × 10−5 3.29 1.18 × 10−7 2.46 × 10−5 3.32 1.17 × 10−7 2.43 × 10−5 3.28
VDR 2.82 × 10−7 4.94 × 10−5 1.15 1.61 × 10−7 3.23 × 10−5 1.12 2.60 × 10−7 4.64 × 10−5 1.15 1.57 × 10−7 3.17 × 10−5 1.12
ISX 5.26 × 10−7 8.04 × 10−5 1.33 5.57 × 10−7 8.25 × 10−5 1.32 5.37 × 10−7 8.06 × 10−5 1.33 5.83 × 10−7 8.03 × 10−5 1.31
CLDN4 1.15 × 10−6 1.43 × 10−4 1.20 1.33 × 10−6 1.62 × 10−4 1.19 1.15 × 10−6 1.40 × 10−4 1.19 1.33 × 10−6 1.60 × 10−4 1.18
ACSL5 2.44 × 10−6 2.49 × 10−4 1.45 2.29 × 10−6 2.42 × 10−4 1.45 2.17 × 10−6 2.26 × 10−4 1.46 2.16 × 10−6 2.30 × 10−4 1.45
REG4 3.24 × 10−6 3.06 × 10−4 2.50 3.53 × 10−6 3.35 × 10−4 2.45 3.21 × 10−6 3.02 × 10−4 2.50 3.49 × 10−6 3.31 × 10−4 2.45
REG4 3.62 × 10−4 1.08 × 10−2 1.28 1.41 × 10−3 2.84 × 10−2 1.11 3.57 × 10−4 1.06 × 10−2 1.28 1.35 × 10−3 2.76 × 10−2 1.11
RUNX1 1.11 × 10−5 7.87 × 10−4 −0.56 6.91 × 10−6 5.50 × 10−4 −0.57 1.01 × 10−5 7.16 × 10−4 −0.55 7.59 × 10−6 5.93 × 10−4 −0.57
FOXA2 1.12 × 10−5 7.90 × 10−4 −1.13 9.18 × 10−6 6.75 × 10−4 −1.14 1.10 × 10−5 7.72 × 10−4 −1.13 9.51 × 10−6 6.96 × 10−4 −1.13
FOXA2 1.67 × 10−4 5.93 × 10−3 −0.86 2.12 × 10−4 7.16 × 10−3 −0.85 1.73 × 10−4 6.10 × 10−3 −0.86 2.22 × 10−4 7.42 × 10−3 −0.85
FOXA2 7.25 × 10−3 8.39 × 10−2 −0.61 8.20 × 10−3 9.01 × 10−2 −0.60 7.71 × 10−3 8.67 × 10−2 −0.61 8.13 × 10−3 9.03 × 10−2 −0.60
SOX2 1.62 × 10−5 1.05 × 10−3 −0.87 1.44 × 10−5 9.73 × 10−4 −0.87 1.56 × 10−5 1.01 × 10−3 −0.87 1.38 × 10−5 9.41 × 10−4 −0.87
SOX2 1.48 × 10−4 5.50 × 10−3 −0.77 3.23 × 10−4 9.87 × 10−3 −0.74 1.55 × 10−4 5.62 × 10−3 −0.76 3.26 × 10−4 1.00 × 10−2 −0.73
SERPINB5 2.42 × 10−5 1.44 × 10−3 1.04 2.55 × 10−5 1.51 × 10−3 1.03 2.46 × 10−5 1.45 × 10−3 1.05 2.67 × 10−5 1.58 × 10−2 1.03
SERPINB5 1.15 × 10−4 4.59 × 10−3 0.64 1.18 × 10−4 4.65 × 10−3 0.64 1.13 × 10−4 4.49 × 10−3 0.64 1.14 × 10−4 4.52 × 10−3 0.64
SERPINB5 1.73 × 10−2 1.42 × 10−1 0.11 1.18 × 10−2 1.14 × 10−1 0.12 1.66 × 10−2 1.39 × 10−1 0.11 1.22 × 10−2 1.16 × 10−1 0.11
FAS 6.35 × 10−5 2.95 × 10−3 0.41 6.54 × 10−5 3.02 × 10−3 0.41 6.46 × 10−5 2.97 × 10−3 0.41 6.93 × 10−5 3.12 × 10−3 0.41
CDHI 2.13 × 10−4 7.14 × 10−3 0.62 1.97 × 10−4 6.74 × 10−3 0.60 1.88 × 10−4 6.50 × 10−3 0.62 2.05 × 10−4 6.94 × 10−3 0.60
EMPI 6.05 × 10−4 1.57 × 10−2 0.94 6.45 × 10−4 1.65 × 10−2 0.90 5.77 × 10−4 1.51 × 10−2 0.94 6.61 × 10−4 1.68 × 10−2 0.90
EMPI 7.22 × 10−3 8.36 × 10−2 0.37 5.94 × 10−3 7.37 × 10−2 038 7.02 × 10−3 8.19 × 10−2 0.37 5.95 × 10−3 7.39 × 10−2 0.37
FGFR2 7.50 1.86 × 10−2 −0.57 9.15 × 10−4 2.12 × 10−2 −0.58 7.44 × 10−4 1.83 × 10−2 −0.57 9.13 × 10−4 2.11 × 10−2  −0.57
FGFR2 8.37 × 10−3 9.20 × 10−2 −0.12 7.95 × 10−3 8.85 × 10−2 −0.12 9.07 × 10−3 9.65 × 10−2 −0.12 8.47 × 10−3 9.23 × 10−2 −0.12
PGC 9.29 × 10−4 2.15 × 10−2 −1.71 1.47 × 10−3 2.92 × 10−2 −1.45 7.65 × × 10−4 1.87 × 10−2 −1.64  1.46 × 10−3 2.91 × 10−2 −1.45
LRIG1 9.74 × 10−4 2.22 × 10−2 −0.67 4.82 × 10−4 1.34 × 10−2 −0.67 8.72 × 10−4 2.04 × 10−2 −0.66 5.07 × 10−4 1.39 × 10−2 −0.67
KRT20 1.05 × 10−3 2.32 × 10−2 1.49 1.18 × 10−3 2.52 × 10−2 1.46 1.02 × 10−3 2.26 × 10−2 1.49 1.17 × 10−3 2.50 × 10−2 1.46

Each column shows the p-value (p), the FDR-corrected p-value (adj. p), and the fold change (FC) obtained in a variant of the database. P-values greater than 5% are shown in bold type.
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TABLE 2 | Other genes reported in the literature as associated with intestinal metaplasia of the stomach that were identified as differentially expressed in our analysis at a significance level of 5% (without FDR correction).

Gene Improved estimation for the Mt and At values Conventional estimation for the Mt and At values 

f by our method f by OLIN f by our method f by OLIN 

p adj. p FC p adj. p FC p adj. p FC p adj. p FC

VEGFA 3.76 × 10−3 5.52 × 10−2 −0.76 4.16 × 10−3 5.84 × 10−2 −0.75 3.54 × 10−3 5.28 × 10−2 −0.76 4.21 × 10−3  × 10−2 −0.75
VEGFA 4.03 × 10−2 2.35 × 10−1 −0.25 3.93 × 10−2 2.29 × 10−1 −0.25 4.65 × 10−2 2.54 × 10−1 −0.25 4.52 × 10−2  × 10−1 −0.25
PPP1R1B 3.96 × 10−3 5.70 × 10−2 0.76 4.07 × 10−3 5.76 × 10−2 0.75 3.89 × 10−3 5.60 × 10−2 0.76 4.03 × 10−3  × 10−2 0.75
MUC5AC 4.07 × 10−3 5.79 × 10−2 −1.08 3.54 × 10−3 5.24 × 10−2 −1.08 4.18 × 10−3 5.87 × 10−2 −1.07 3.58 × 10−3  × 10−2 −1.08
MUC5AC 4.60 × 10−3 6.30 × 10−2 −0.83 4.51 × 10−3 6.15 × 10−2 −0.82 4.78 × 10−3 6.40 × 10−2 −0.82 4.50 × 10−3  × 10−2 −0.82
CLDN18 4.78 × 10−3 6.46 × 10−2 −1.05 5.12 × 10−3 6.69 × 10−2 −1.03 4.83 × 10−3 6.44 × 10−2 −1.04 5.03 × 10−3  × 10−2 −1.03
ASCC1 6.62 × 10−3 7.90 × 10−2 0.18 1.42 × 10−2 1.27 × 10−1 0.17 6.57 × 10−3 7.85 × 10−2 0.18 1.43 × 10−2  × 10−1 0.17
FOXA3 6.85 × 10−3 8.09 × 10−2 −0.57 4.87 × 10−3 6.47 × 10−2 −0.57 6.98 × 10−3 8.15 × 10−2 −0.56 5.01 × 10−3  × 10−2 −0.57
FOXA3 1.96 × 10−2 1.54 × 10−1 −0.53 2.05 × 10−2 1.58 × 10−1 −0.52 1.98 × 10−2 1.54 × 10−1 −0.53 1.98 × 10−2  × 10−1 −0.52
GAST 8.99 × 10−3 9.60 × 10−2 −1.48 1.24 × 10−2 1.17 × 10−1 −1.31 9.15 × 10−3 9.69 × 10−2 −1.48 1.21 × 10−2  × 10−1 −1.32
PIK3CA 1.02 × 10−2 1.04 × 10−1 −0.16 7.28 × 10−3 8.42 × 10−2 −0.17 9.62 × 10−3 9.97 × 10−2 −0.16 6.62 × 10−3  × 10−2 −0.17
BHLHA15 1.04 × 10−2 1.05 × 10−1 −0.63 9.50 × 10−3 9.93 × 10−2 −0.63 1.11 × 10−2 1.09 × 10−1 −0.62 9.79 × 10−3  × 10−1 −0.63
SLPI 1.07 × 10−2 1.06 × 10−1 −0.71 7.96 × 10−3 8.86 × 10−2 −0.70 1.41 × 10−2 1.26 × 10−1 −0.70 7.91 × 10−3  × 10−2 −0.70
SLPI 1.80 × 10−2 1.46 × 10−1 −0.64 1.13 × 10−2 1.10 × 10−1 −0.66 1.74 × 10−2 1.43 × 10−1 −0.64 1.18 × 10−2  × 10−1 −0.65
KLF5 1.22 × 10−2 1.15 × 10−1 0.54 1.60 × 10−2 1.36 × 10−1 0.49 1.24 × 10−2 1.16 × 10−1 0.54 1.55 × 10−2  × 10−1 0.49
CXCR2 1.26 × 10−2 1.18 × 10−1 0.23 1.30 × 10−2 1.20 × 10−1 0.23 1.25 × 10−2 1.17 × 10−1 0.23 1.34 × 10−2  × 10−1 0.23
MGMT 1.28 × 10−2 1.19 × 10−1 −0.30 1.09 × 10−2 1.08 × 10−1 −0.31 1.30 × 10−2 1.20 × 10−1 −0.30 1.09 × 10−2  × 10−1 −0.31
MOS 1.32 × 10−2 1.21 × 10−1 0.14 5.84 × 10−3 7.29 × 10−2 0.16 1.24 × 10−2 1.16 × 10−1 0.14 6.22 × 10−3  × 10−2 0.16
IL10 1.35 × 10−2 1.23 × 10−1 0.05 1.74 × 10−2 1.43 × 10−1 0.05 1.26 × 10−2 1.17 × 10−1 0.05 1.73 × 10−2  × 10−1 0.05
GHRL 1.39 × 10−2 1.26 × 10−1 1.08 1.24 × 10−2 1.17 × 10−1 1.06 1.34 × 10−2 1.22 × 10−1 1.08 1.23 × 10−2  × 10−1 1.06
KRT7 1.56 × 10−2 1.35 × 10−1 0.40 1.81 × 10−2 1.47 × 10−1 0.39 1.58 × 10−2 1.35 × 10−1 0.40 1.81 × 10−2  × 10−1 0.39
CDKN1A 1.70 × 10−2 1.41 × 10−1 0.25 1.91 × 10−2 1.51 × 10−1 0.24 1.70 × 10−2 1.40 × 10−1 0.24 1.94 × 10−2  × 10−1 0.24
CDKN1A 3.48 × 10−2 2.17 × 10−1 0.42 4.19 × 10−2 2.37 × 10−1 0.39 3.34 × 10−2 2.11 × 10−1 0.42 4.17 × 10−2  × 10−1 0.39
PDPK1 2.65 × 10−2 1.85 × 10−1 0.17 4.31 × 10−2 2.41 × 10−1 0.15 2.61 × 10−2 1.82 × 10−1 0.17 4.25 × 10−2  × 10−1 0.15
PDX1 2.72 × 10−2 1.87 × 10−1 0.06 2.29 × 10−2 1.69 × 10−1 0.06 2.28 × 10−2 1.68 × 10−1 0.06 2.07 × 10−2  × 10−1 0.06
HSPB1 3.22 × 10−2 2.07 × 10−1 −0.58 4.43 × 10−2 2.45 × 10−1 −0.55 4.65 × 10−2 2.53 × 10−1 −0.53 4.43 × 10−2  × 10−1 −0.55
HSPB1 3.66 × 10−2 2.23 × 10−1 −0.56 3.55 × 10−2 2.17 × 10−1 −0.55 5.03 × 10−2 2.65 × 10−1 −0.52 3.63 × 10−2  × 10−1 −0.55
HSPB1 3.66 × 10−2 2.23 × 10−1 −0.51 4.63 × 10−2 2.52 × 10−1 −0.48 5.63 × 10−2 2.80 × 10−1 −0.46 4.73 × 10−2  × 10−1 −0.48
THBSI 3.27 × 10−2 2.08 × 10−1 −0.10 3.86 × 10−2 2.27 × 10−1 −0.10 3.36 × 10−2 2.11 × 10−1 −0.10 3.94 × 10−2  × 10−1 −0.10
PTEN 3.30 × 10−2 2.09 × 10−1 0.16 6.99 × 10−2 3.12 × 10−1 0.14 3.17 × 10−2 2.04 × 10−1 0.16 6.90 × 10−2  × 10−1 0.14
LGR5 3.63 × 10−2 2.22 × 10−1 −0.07 3.64 × 10−2 2.20 × 10−1 −0.07 4.22 × 10−2 2.41 × 10−1 −0.07 3.88 × 10−2  × 10−1 −0.07
SHH 3.96 × 10−2 2.32 × 10−1 −0.07 2.68 × 10−2 1.85 × 10−1 −0.08 4.82 × 10−2 2.59 × 10−1 −0.07 3.10 × 10−2  × 10−1 −0.08
TJP1 3.98 × 10−2 2.33 × 10−1 0.31 4.33 × 10−2 2.41 × 10−1 0.30 4.14 × 10−2 2.39 × 10−1 0.31 4.56 × 10−2  × 10−1 0.29
PTGS2 4.02 × 10−2 2.35 × 10−1 0.21 3.90 × 10−2 2.28 × 10−1 0.20 4.00 × 10−2 2.34 × 10−1 0.21 3.73 × 10−2  × 10−1 0.21
SOX9 4.48 × 10−2 2.48 × 10−1 −0.29 4.02 × 10−2 2.32 × 10−1 −0.30 4.45 × 10−2 2.48 × 10−1 −0.29 4.04 × 10−2  × 10−1 −0.30
CTNNB1 4.53 × 10−2 2.50 × 10−1 0.33 5.05 × 10−2 2.63 × 10−1 0.33 4.83 × 10−2 2.59 × 10−1 0.33 5.31 × 10−2  × 10−1 0.32
MLH1 4.55 × 10−2 2.51 × 10−1 −0.23 6.82 × 10−2 3.08 × 10−1 −0.22 4.97 × 10−2 2.63 × 10−1 −0.22 6.80 × 10−2  × 10−1 −0.22
CDKN1B 4.56 × 10−2 2.51 × 10−1 −0.22 4.90 × 10−2 2.59 × 10−1 −0.22 4.41 × 10−2 2.46 × 10−1 −0.23 4.69 × 10−2  × 10−1 −0.22
CXCR4 4.83 × 10−2 2.58 × 10−1 −0.43 5.72 × 10−2 2.81 × 10−1 −0.42 5.00 × 10−2 2.64 × 10−1 −0.43 5.77 × 10−2  × 10−1 −0.42
CXCR1 4.98 × 10−2 2.63 × 10−1 0.19 5.38 × 10−2 2.72 × 10−1 0.18 4.64 × 10−2 2.53 × 10−1 0.19 5.18 × 10−2  × 10−1 0.18
KRT14 5.11 × 10−2 2.67 × 10−1 0.19 3.65 × 10−2 2.20 × 10−1 0.19 5.15 × 10−2 2.68 × 10−1 0.19 3.95 × 10−2  × 10−1 0.19

Each column shows the p-value (p), the FDR-corrected p-value (adj. p), and the fold change (FC) obtained in a variant of the database. P-values greater than 5% are shown in bold type.

71

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Variance-Preserving Estimation of Intensity ValuesRibeiro et al.

14 September 2019 | Volume 10 | Article 855Frontiers in Genetics | www.frontiersin.org

Given that several pixel-level summary statistics are 
readily available in microarray databases, but are usually 
discarded in conventional approaches, we propose an 
improved estimation method for the Mt and At values, which 
takes into account the pixel-level variability. Specifically, we 
applied the multivariate delta method to derive estimators for 
the expected values of Mt and At, considering their Taylor’s 
expansion up to the second-order terms. The conventional 
estimators, nonetheless, approximate the expected values 
considering only the zeroth-order term. Since the functions 
that define Mt and At are analytic (they are combinations of 
logarithmic function through addition or subtraction), the 
higher the number of terms of the Taylor expansion, the 
better the approximation of the function. Thus, we expect 
that the proposed estimators provide a better quantification 
of the hybridization signal. Also, by using these improved 
estimators, pixel-level dispersion can play an essential role in 
the analysis, increasing reliability. 

To minimize the propagation of errors, the Mt and At values 
have to be properly normalized. Thus, we also propose a 
method for selecting the LOWESS smoothing parameter f that 
provides an optimal bias–variance compromise, considering 
some specific characteristics of microarray experiments, such 
as heteroskedasticity. This optimal normalization method 
leads to a more parsimonious correction of the systematic 
biases and, consequently, to greater preservation of the 
biological variation of interest. 

By using the proposed methods, more variability information 
is considered and retained, improving inferences and preventing 
false conclusions. Thus, we expect to perform a more conservative 
analysis, where possibly fewer but more reliable differentially 

expressed genes are identified. In other words, we expect a 
reduction in both the false-positive and false-negative error rates. 

Besides the theoretical support, relevant empirical observations 
could be drawn by a comparative study between the methods 
using real intestinal metaplasia microarray data. The results shows 
that inferences on differential gene expression were moderately 
affected by the incorporation of the pixel-level variability in the 
estimation of the Mt and At values and significantly affected by 
the LOWESS within-slide normalization using a smoothing 
parameter selected by the method. Both proposed methods tend 
to increase the within-group variability (the denominator of the 
t-statistic). However, for many genes, such increase occurred along 
with an increase in the difference between the group means (the 
absolute value of the t-statistic numerator), significantly reducing 
their respective p-values. Thus, many genes were identified as 
differentially expressed only when the proposed methods were 
used and some of them have been validated by other studies. 

It is important to remark that most of the genes reported in the 
literature as differentially expressed in intestinal metaplasia were 
validated with a very strong association with the disease. Thus, 
these genes are probably more robust to difference approaches 
for estimating and normalizing the gene expression levels. On 
the other hand, genes sensitive to methods that address essential 
uncertainties in measurements are precisely those plagued with 
major reproducibility issues. Measurement error is one of the 
most damaging sources of error and has been neglected in many 
published analyses, thereby increasing uncertainty in parameter 
estimates and even inflating the estimates of effect sizes (Loken and 
Gelman, 2017). Thus, particularly for those sensitive genes, a more 
robust analysis is needed so that false conclusions are not made. 

In this paper, we focused on gene expression from two-
color microarray data, but it is possible to use the same ideas 
to improve estimation and normalization of any fluorescent 
signal quantified by microarray image analysis. Also, the 
proposed methods could be adapted for oligonucleotide 
(one-color) microarray data. Particularly, the cyclic 
LOWESS normalization method (Bolstad et al., 2003) could 
be extended by just considering that the Mt and At values 
are defined by comparing pairs of arrays instead of pairs 
of channels and that the LOWESS normalization is applied 
to all distinct combination of two arrays. Although not so 
straightforward, it is also possible to adapt our methods to 
handle next-generation sequencing (NGS) data. Recently, 
Law et al. (Law et al., 2014) showed that RNA-Seq counts 
after log transformation and normalization by sequencing 
depth (log-counts per million, or log-cpm) can be properly 
analyzed by methods based on the normal distribution if a 
precision weight for each observation is taken into account. It 
was used to adapt all methods in the limma package (initially 
developed for microarrays) to also handle RNA-Seq and 
other sequence count data (Ritchie et al., 2015b). Therefore, 
considering the current need for accounting and propagating 
measurement uncertainties through analyses of NGS data 
(O’Rawe et al., 2015), a possible future work is to adapt our 
ideas to improve transcriptome profiling from RNA-Seq data. 
Specifically, one could investigate whether it is possible to use 
the delta method for incorporating a measure of uncertainty 

FIGURE 7 | Venn diagram for the total number of genes already identified 
as differentially expressed in intestinal metaplasia according to the literature. 
Inferences were made at a significance level of 5%.
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TABLE 3 | Genes belonging to the “pathways in cancer” category identified as differentially expressed between normal and intestinal metaplasia groups at a significance level of 5% (after FDR correction).

Gene Improved estimation for the Mt and At values Conventional estimation for the Mt and At values 

f by our method f by OLIN f by our method f by OLIN 

p adj. p FC p adj. p FC p adj. p FC p adj. p FC

PLD1 4.08 × 10−7 6.60 × 10−5 1.03 3.54 × 10−7 5.86 × 10−5 0.99 4.31 × 10−7 6.73 × 10−5 1.03 3.60 × 10−7 5.89 × 10−5 0.99 
PLD1 2.50 × 10−6 2.53 × 10−4 0.43 3.49 × 10−6 3.32 × 10−4 0.42 2.36 × 10−6 2.41 × 10−4 0.43 3.34 × 10−6 3.24 × 10−4 0.42 
PLD1 9.73 × 10−5 4.06 × 10−3 0.49 9.90 × 10−5 4.14 × 10−3 0.49 1.07 × 10−4 4.35 × 10−3 0.48 1.08 × 10−4 4.37 × 10−3 0.48 
MITF 2.68 × 10−6 2.68 × 10−4 −0.69 6.38 × 10−6 5.19 × 10−4 −0.69 2.70 × 10−6 2.67 × 10−4 −0.68 6.29 × 10−6 5.19 × 10−4 −0.69 
MAX 6.06 × 10−6 4.93 × 10−4 0.43 7.72 × 10−6 6.00 × 10−4 0.43 5.26 × 10−6 4.37 × 10−4 0.43 7.13 × 10−6 5.67 × 10−4 0.43 
MAX 1.61 × 10−3 3.10 × 10−2 0.35 1.35 × 10−3 2.75 × 10−2 0.35 1.36 × 10−3 2.77 × 10−2 0.35 1.31 × 10−3 2.68 × 10−2 0.35 
NOS2 7.08 × 10−6 5.52 × 10−4 1.37 7.61 × 10−6 5.93 × 10−4 1.34 6.59 × 10−6 5.19 × 10−4 1.37 7.28 × 10−6 5.76 × 10−4 1.34 
CDKN2B 8.14 × 10−6 6.14 × 10−4 0.98 8.41 × 10−6 6.38 × 10−4 0.97 7.79 × 10−6 5.94 × 10−4 0.98 8.20 × 10−6 6.25 × 10−4 0.97 
CDKN2B 4.00 × 10−4 1.16 × 10−2 0.24 5.72 × 10−4 1.51 × 10−2 0.23 3.33 × 10−4 1.01 × 10−2 0.24 4.84 × 10−4 1.34 × 10−2 0.24 
VEGFB 1.23 × 10−5 8.41 × 10−4 −0.95 7.23 × 10−6 5.68 × 10−4 −0.89 4.36 × 10−6 3.78 × 10−4 −0.94 6.65 × 10−6 5.35 × 10−4 −0.89 
VEGFB 1.09 × 10−4 4.40 × 10−3 −0.55 1.05 × 10−4 4.32 × 10−3 −0.55 1.09 × 10−4 4.38 × 10−3 −0.54 1.04 × 10−4 4.26 × 10−3 −0.55 
ITGA6 2.80 × 10−5 1.60 × 10−3 0.63 3.92 × 10−5 2.06 × 10−3 0.59 2.43 × 10−5 1.44 × 10−3 0.64 3.63 × 10−5 1.96 × 10−3 0.59 
RXRA 3.03 × 10−5 1.71 × 10−3 0.25 4.33 × 10−5 2.23 × 10−3 0.26 3.05 × 10−5 1.72 × 10−3 0.25 4.76 × 10−5 2.39 × 10−3 0.25 
PIAS3 4.53 × 10−5 2.29 × 10−3 −0.55 2.93 × 10−5 1.68 × 10−3 −0.57 4.81 × 10−5 2.38 × 10−3 −0.55 2.85 × 10−5 1.65 × 10−3 −0.57 
ITGA2 5.24 × 10−5 2.53 × 10−3 0.48 7.52 × 10−5 3.33 × 10−3 0.47 5.88 × 10−5 2.76 × 10−3 0.48 7.43 × 10−5 3.30 × 10−3 0.47 
FZD8 6.00 × 10−5 2.83 × 10−3 −0.60 5.09 × 10−5 2.51 × 10−3 −0.60 6.05 × 10−5 2.81 × 10−3 −0.60 4.83 × 10−5 2.42 × 10−3 −0.61 
FOXO1 1.54 × 10−4 5.65 × 10−3 −0.53 1.03 × 10−4 4.25 × 10−3 −0.53 1.39 × 10−4 5.24 × 10−3 −0.53 1.00 × 10−4 4.16 × 10−3 −0.54 
FOXO1 2.70 × 10−3 4.46 × 10−2 −0.20 2.66 × 10−3 4.33 × 10−2 −0.20 2.80 × 10−3 4.51 × 10−2 −0.20 2.42 × 10−3 4.06 × 10−2 −0.21 
EGLN1 1.85 × 10−4 6.42 × 10−3 0.50 4.00 × 10−4 1.16 × 10−2 0.46 1.73 × 10−4 6.10 × 10−3 0.50 3.96 × 10−4 1.16 × 10−2 0.46 
TGFBR2 2.88 × 10−4 9.06 × 10−3 −0.36 8.86 × 10−5 3.78 × 10−3 −0.37 2.68 × 10−4 8.46 × 10−3 −0.36 8.71 × 10−5 3.73 × 10−3 −0.37 
WNT3 4.16 × 10−4 1.19 × 10−2 0.51 4.13 × 10−4 1.19 × 10−2 0.51 4.00 × 10−4 1.15 × 10−2 0.51 4.22 × 10−4 1.21 × 10−2 0.50 
CKS1B 7.02 × 10−4 1.76 × 10−2 −0.29 1.91 × 10−3 3.46 × 10−2 −0.27 1.04 × 10−3 2.29 × 10−2 −0.27 2.01 × 10−3 3.56 × 10−2 −0.27 
AXIN2 7.63 × 10−4 1.88 × 10−2 −0.53 8.64 × 10−4 2.02 × 10−2 −0.53 7.62 × 10−4 1.86 × 10−2 −0.53 8.52 × 10−4 2.01 × 10−2 −0.53 
CCND1 9.74 × 10−4 2.22 × 10−2 −0.55 7.00 × 10−4 1.75 × 10−2 −0.55 9.79 × 10−4 2.21 × 10−2 −0.55 6.73 × 10−4 1.70 × 10−2 −0.56 
CCND1 3.34 × 10−3 5.12 × 10−2 −0.76 2.81 × 10−3 4.51 × 10−2 −0.77 3.45 × 10−3 5.19 × 10−2 −0.76 2.88 × 10−3 4.58 × 10−2 −0.77 
CCND1 3.49 × 10−3 5.23 × 10−2 −0.26 4.11 × 10−3 5.80 × 10−2 −0.26 3.19 × 10−3 4.95 × 10−2 −0.27 3.75 × 10−3 5.45 × 10−2 −0.26 
ITGAV 1.03 × 10−3 2.30 × 10−2 −0.36 1.06 × 10−3 2.34 × 10−2 −0.35 9.39 × 10−4 2.15 × 10−2 −0.36 1.04 × 10−3 2.29 × 10−2 −0.35 
CEBPA 1.50 × 10−3 2.96 × 10−2 0.63 1.79 × 10−3 3.32 × 10−2 0.60 1.36 × 10−3 2.77 × 10−2 0.63 1.76 × 10−3 3.27 × 10−2 0.60 
JUN 1.60 × 10−3 3.09 × 10−2 −0.58 1.57 × 10−3 3.04 × 10−2 −0.54 1.94 × 10−3 3.48 × 10−2 −0.56 1.56 × 10−3 3.03 × 10−2 −0.54 
WNT11 2.98 × 10−3 4.76 × 10−2 0.28 2.96 × 10−3 4.65 × 10−2 0.28 3.06 × 10−3 4.81 × 10−2 0.28 2.97 × 10−3 4.67 × 10−2 0.28 
LAMB2 5.18 × 10−3 6.76 × 10−2 −0.52 2.58 × 10−3 4.25 × 10−2 −0.49 4.42 × 10−3 6.10 × 10−2 −0.49 2.61 × 10−3 4.28 × 10−2 −0.49 

 Each column shows the p-value (p), the FDR-corrected p-value (adj. p), and the fold change (FC) obtained in a variant of the database. P-values greater than 5% are shown in bold type.
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to each base call, usually provided by base-calling algorithms, 
into the log-cpm estimator, leading to a more accurate gene 
expression quantification from RNA-Seq data. 

DATA AVAILABILITY

The omicsMA R package contains the source code of the 
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in this study. It was implemented using R, version 3.5.1, and 
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APPENDIX

Estimation of E(Mtj) and E(Atj) by the Delta 
Method
Let f (Rtj, Gtj) be a twice differentiable function of two random 
variables, Rtj and Gtj.The second-order Taylor’s expansion of  at 
( ( ), ( )) R Gtj tj  is:
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An approximation of ( ( ( )), f R Gtj tj  can be determined by the 
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Assuming that ( )Rtj  and ( )Gtj are non-zero, an 
approximation of  ( ) (log ( ) log ( ))M R Gtj tj tj= −2 2  can be 

obtained by using its second-order Taylor’s expansion:
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Let the non-zero background-corrected signals be estimators 
for the expected values of the foreground signals, i.e.,

ˆ ( ) , , R R Rtj tc tc= ≠with 0

ˆ ( ) , . G G Gtj tc tc= ≠with 0

Denote the sample variance estimators, obtained across the 
pixel intensities within each spot, as ˆ ( )σ 2 Rt  (for the test channel) 
and ˆ ( )σ 2 Gt  (for the control channel). Also, assume that these 
estimators do not depend on thebackground correction. We can 
derive an estimator for ( )Mtj  as follows: 
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we can estimate ( )Atj  in a similar way to ( )Mtj . The first and 
second derivatives of Atj are: 
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An approximation of ( )Atj  is obtained by using its second-
order Taylor’s expansion:
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Considering the sample estimators of the expected values 
and variances of Rtj and Gtj, we can derive the following 
estimator for ( )Atj : 
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the Delta Method
We can derive an estimator for Var (f (Rtj, Gtj)) by computing 
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The second-order term was not considered because Var ( )Rtj
2  

and Var ( )Gtj
2  cannot be usually estimated. 

Since M f R G R Gtj tj tj tj tj= −( , ) log ( ) log ( ) 2 2 , with the first 

and second derivative showed in Appendix 5, we can obtain an 
approximation of Var (Mtj) as follows: 
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Consider the sample estimators of the expected values of Rtj 
and Gtj, denoted by, respectively, Rtc  and Gtc , and assume that 
they are non-zero. Also, consider their variance and covariance 
sample estimators, denoted by, respectively, ˆ ( )σ 2 Rt , ˆ ( )σ 2 Gt

, and ˆ( , )tσ Rt G , and assume that they are independent of the 
background correction. We can derive the following estimator 
for Var (Mtj) : 

ˆ ( )
ˆ ( ) ˆ ( ) ˆ

ln ( )
( ,σ σ σ2

2

2

2

2

2
1

2
2M R

R
G

G
R G

t
t

tc

t

tc

t
 + − σ tt

tc tcR G
) .








Considering that Atj is defined by the function 
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we can estimate Var (Atj) in a similar way to Var (Mtj). 
By using the first and second derivatives of Atj, which are 

showed in Appendix (Barrett et al., 2012), we obtain the following 
approximation of Var (Atj): 
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Rewriting the above expression using the sample estimators 
for the expected value, variance and covariance of Rtj and Gtj, we 
derive the following estimator for Var (Atj) : 
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Background/Aims: As a malignant and melanocytic tumor, cutaneous melanoma is the 
devastating skin tumor with high rates of recurrence and metastasis. Bone is the common 
metastatic location, and bone metastasis may result in pathologic fracture, neurologic 
damage, and severe bone pain. Although metastatic melanoma was reported to get 
benefits from immunotherapy, molecular mechanisms and immune microenviroment 
underlying the melanoma bone metastasis and prognostic factors are still unknown.

Methods: Gene expression profiling of 112 samples, including 104 primary melanomas 
and 8 bone metastatic melanomas from The Cancer Genome Atlas database, was 
assayed to construct a ceRNA network associated with bone metastases. Besides, we 
detected the fraction of 22 immune cell types in melanoma via the algorithm of “cell type 
identification by estimating relative subsets of RNA transcripts (CIBERSORT).” Based 
on the significant ceRNAs or immune cells, we constructed nomograms to predict the 
prognosis of patients with melanoma. Ultimately, correlation analysis was implemented to 
discover the relationship between the significant ceRNA and immune cells to reveal the 
potential signaling pathways.

Results: We constructed a ceRNA network based on the interaction among 8 pairs of 
long noncoding RNA–microRNA and 15 pairs of microRNA–mRNA. CIBERSORT and 
ceRNA integration analysis discovered that AL118506.1 has both significant prognostic 
value (P = 0.002) and high correlation with T follicular helper cells (P = 0.033). Meanwhile, 
T cells CD8 and macrophages M2 were negatively correlated (P < 0.001). Moreover, we 
constructed two satisfactory nomograms (area under curve of 3-year survival: 0.899; 
5-year survival: 0.885; and concordance index: 0.780) with significant ceRNAs or immune 
cells, to predict the prognosis of patients.
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INTRODUCTION

Cutaneous melanoma is a malignant, melanocytic tumor and 
considered as the most harmful skin cancer (Cymerman et al., 
2016; Lombard et al., 2019). All over the world, it accounts for 
about 232,100 (1.7%) cases of all newly diagnosed primary 
malignant cancers (excluding nonmelanoma), and meanwhile 
approximately 55,500 (0.7%) deaths are derived from cutaneous 
melanoma each year (Schadendorf et al., 2018). Nowadays, its 
incidence rate is still escalating dramatically (Schadendorf et al., 
2019).

Extensive local resection with clean margins, depending on 
Breslow thickness of the tumor tissue, is recommended as the 
primary treatment for localized disease [The Cancer Genome 
Atlas (TCGA), 2015]. However, distant metastases often occur 
even after complete tumor resection due to the aggressive nature. 
Bone is the common metastatic location, and bone metastasis 
often results in pathologic fracture, neurologic damage, and 
severe bone pain, which decreases the quality of life (Braeuer et al., 
2014; Bier et al., 2016). Regarding some patients with metastasis, 
systemic therapies such as targeted therapy and immunotherapy 
have achieved promising survival outcome; however, prognosis 
remains poor in most patients with metastasis (Bostel et al., 
2016). Hence, it is in a desperate need to explore the molecular 
mechanism and probe for the prognostic factors for cutaneous 
melanoma patients with bone metastasis. The relationship 
among microRNA (miRNA), long noncoding RNA (lncRNA), 
and mRNA, known as ceRNA networks, had been explored in 
many diseases. However, ceRNA network mechanism underlying 
melanoma and bone metastasis still remains unknown.

In this study, we constructed a ceRNA network based on the 
gene expression profiling retrieved from the TCGA database 
to identify the ceRNAs associated with melanoma and bone 
metastasis. Besides, we perform “The Cell Type Identification 
by Estimating Relative Subsets of RNA Transcripts algorithm 
(CIBERSORT)” algorithm to detect the immune cells and 
their proportions in tumor tissues of melanoma. Additionally, 
nomograms were developed to predict the prognosis of 
melanoma with bone metastasis based on significant immune 
cells and ceRNA. The relationship between bone metastasis–
related immune cells and ceRNA networks was evaluated to 
identify the underlying signaling pathways.

MATERIALS AND METHODS

Data Collection and Differential Gene 
Expression Analysis
The Ethics Committee of the First Affiliated Hospital of 
Zhengzhou University approved this study (no. 2019-KY-107). 
We downloaded the RNA profiles of the primary melanomas 
and bone metastasis samples from the TCGA (https://tcga-
data.nci.nih.gov/tcga/) database. HTseq-count and fragments 
per kilobase of exon per million reads mapped profiles of 112 
samples, including 104 primary melanomas and 8 melanomas 
with bone metastasis, were assembled. Meanwhile, demographic 
and survival information of each patient was collected. The 
edgeR method was used to find differentially expressed mRNAs, 
lncRNAs, and miRNAs after removing nonmelanoma-specific 
expression genes (no expression in both the experimental group 
and control group). Only when the false discovery rate (FDR) 
P < 0.05 and the log (fold change) > 1.0 or <−1.0 could be 
regarded as differentially expressed gene of downregulation and 
upregulation, respectively.

The Construction of the ceRNA Network
Prior to the initial statistical analysis, the miRNA–mRNA 
and lncRNA–miRNA interaction data were retrieved from 
miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/) (Chou 
et al., 2018) and Incbase v.2 Experimental Module (http://
carolina.imis.athena-innovation.gr/diana_tools/web/index.
php?r=lncbasev2%2Findex-experimental) (Paraskevopoulou 
et al., 2016), respectively. Afterward, miRNAs, which illustrate 
significant outcomes in the aspect of regulating both IncRNAs 
and mRNAs in hypergeometric testing and correlation analysis, 
were collected for establishing the ceRNA network by Cytoscape 
v.3.5.1 (Shannon et al., 2003).

Survival Analysis and Nomograms of Key 
Members in the ceRNA Network
Kaplan–Meier (K-M) survival analysis was performed to show 
the relationship between the expression level of biomarkers 
with the prognostic value illustrated in the ceRNA network 
and survival outcomes in patients with melanoma. Afterward, 
the significant biomarkers were incorporated into the reduced 
Cox proportional hazards model by screening the significant 
variables in the initial Cox models to illustrate the variables 
with prognostic values. Besides, Lasso regression (least 
absolute shrinkage and selection operator regression), which 
is a kind of linear regression using shrinkage where data values 
are shrunk to a specific point, was implemented to confirm 

Abbreviations: AUC, Area under curve; ceRNA, competitive endogenous RNA; 
lncRNA, long noncoding RNA; miRNA, microRNA; CIBERSORT, Cell type 
identification by estimating relative subsets of RNA transcripts; TCGA, The Cancer 
Genome Atlas; FDR, false discovery rate; SD, standard deviation; ROC, Receiver 
operating characteristic curves; THBS, Thrombospondin, Tfh, T follicular helper 
cells; IL-21, interleukin 21.

Conclusions: In this study, we suggest that bone metastasis in melanoma might 
be related to AL118506.1 and its role in regulating thrombospondin 2 and T follicular 
helper cells. Two nomograms were constructed to predict the prognosis of patients with 
melanoma and demonstrated their value in improving the personalized management.

Keywords: melanoma, bone metastasis, competing endogenous RNA network, immune cell, nomogram
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the fitness of the established multifactor models. Ultimately, a 
nomogram based on the multivariable models was developed 
to predict the prognosis of patients with melanoma. In 
accordance with the expression level of biomarkers with 
prognostic values, we can acquire the points of each biomarker 
and add up to obtain the total points, which can display the 3- 
and 5-year overall survival probability. Meanwhile, calibration 
curves and receiver operating characteristic (ROC) curves 
were performed to evaluate the discrimination and precision 
of the nomogram.

CIBERSORT Estimation
CIBERSORT is an analytical tool constructed by Newman et al. 
(2015) to identify the richness and proportion of the diversified 
cell types in a mixed cell population using gene expression 
data. Every cell type and their quantity in each sample can 
be conveniently acquired via CIBERSORT estimation. In this 
study, we use CIBERSORT algorithm to further probe for the 
cytological causes of molecular mechanisms of the pivotal 
biomarkers in the ceRNA network. The proportions of 22 
immune cell types in the primary melanoma and melanoma 
with bone metastasis were estimated by CIBERSORT. Only 
when the CIBERSORT output of P < 0.05 could put the 
samples into further analysis. The Wilcoxon rank-sum test was 
performed to look for the significant immune cells in the aspect 
of the fraction between the primary melanoma and melanoma 
with bone metastasis. Then, K-M survival analysis was used 
to demonstrate the relationship between the overall survival 
of melanoma patients and proportion of specific immune 
cells. After being well filtered by Lasso regression, specific 
immune cells were incorporated into the Cox proportional 
hazards model. Then, nomogram was constructed to predict 
the prognosis for melanoma. Concordance index of Cox 
model was applied to access the discrimination and accuracy 
of the nomogram. Ultimately, Pearson correlation analysis was 

carried out to show the relationship between immune cells 
and biomarkers.

Online Database Validation
To minimize bias caused by the imbalanced sample size and 
get more complete annotation of key biomarkers, multiple 
online databases including the CellMarker (Zhang et al., 2019), 
LncRNA2Target (Cheng et al., 2019), Ontogene (Cheng et al., 
2016), String (Szklarczyk et al., 2019), DincRNA (Cheng et al., 
2018), SurvExpress (Aguirre-Gamboa et al., 2013), Cancer Cell 
Line Encyclopedia (CCLE) (Ghandi et al., 2019), Genotype–
Tissue Expression (GTEx) (Consortium, 2015), Oncomine 
(Elfilali et al., 2006), and Gene Expression Omnibus (GEO) 
(ID: GSE19234 (Bogunovic et al., 2009), GSE22153 (Jonsson 
et al., 2010) were used to detect gene expression levels of key 
biomarkers at the tissue and cellular levels.

Statistical Analysis
Only two-sided P < 0.05 was defined as statistical significance. All 
the statistical analyses were performed with R version 3.5.1 software 
(Institute for Statistics and Mathematics, Vienna, Austria; www.r-
project.org) (package: GDCRNATools (Li et al., 2018), edgeR, 
ggplot2, rms, glmnet, preprocessCore, survminer, timeROC).

RESULTS

Identification of Significantly Differentially 
Expressed Genes
Figure 1 illustrates the analysis process of this study. The baseline 
features of all the patients retrieved from the TCGA database 
were described in Table S1. We defined the log (fold change) >1.0 
or < −1.0 and FDR <0.05 as the critical point and found out that 
there were 701 differentially (550 down- and 151 up-) expressed 

FIGURE 1 | The flowchart of the analysis process.
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protein-coding genes, along with 14 differentially (5 down- 
and 9 up-) expressed lncRNAs and 72 differentially (45 down- 
and 27 up-) expressed miRNAs between the bone metastatic 
melanoma and the primary melanoma from the TCGA database 
(Figures 2A–F).

ceRNA Network Establishment and 
Survival Analysis
A ceRNA network was established based on the interaction 
among 8 pairs of lncRNA–miRNA and 15 pairs of miRNA–
mRNA (Figure 3A) (Table 1). Kaplan–Meier survival analysis 
was implemented to explore the relationship between the 
prognosis and biomarkers involved in ceRNA network related 
to the bone metastasis in melanoma. The results revealed that 

thrombospondin 2 (THBS2) (P = 0.040) and AL118506.1 
(P = 0.002) displayed significance (Figures 3B, C). According to 
enrichment analysis, the significant genes associated with bone 
metastasis in melanoma were mostly functioned in extracellular 
matrix organization (Figure S1).

Construction of the Prediction Model 
Based on the ceRNA Network
The outcomes of Lasso regression illustrated that four genes, 
hsa-miR-137, hsa-miR-425-5p, VCAN, and AL118506.1, were 
critical to modeling and were then incorporated into the Cox 
regression, after which the nomogram, aimed to predict the 
prognosis, was constructed according to the Lasso regression. 
The areas under curve (AUC) of the 3- and 5-year survival were 

FIGURE 2 | Continued
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0.899 and 0.855, respectively, which reflects the satisfactory 
accuracy. Additionally, the discrimination of the nomogram was 
suggested by the calibration curves (Figures 4A–F).

Immune Cells Related to the Melanoma
The composition of the immune cells in the melanoma 
evaluated by CIBERSORT algorithm was illustrated in the 
histogram and the heat map (Figures 5A, B). The results of 
the Wilcoxon rank-sum test revealed that the proportion 
of the T follicular helper (Tfh) cells in the melanoma with 
bone metastasis was relatively less than that in the primary 
melanoma (P = 0.021), and macrophages M2 was relatively 
greater in the melanoma with bone metastasis (P = 0.036) 
(Figure 5C).

Construction of the Prediction Model 
Based on the Immune Cells
Similarly, 16 of 22 immune cells, which showed significant 
prognostic values in the initial Cox regression model, were 
integrated into the final multivariable model with satisfactory 
predictive power (concordance index 0.780) and were 
utilized to construct the nomogram (Figures 6A, B). The 
concordance curve and concordance index showed a good 
concordance of the model (Figure 6C). Based on the result 
of the Kolmogorov–Smirnov test, the fraction of regulatory T 
cells (Tregs) in stages T1, T2, T3, and T4 showed significant 
difference between patients with or without bone metastasis 
(Figure S2).

Comprehensive Analysis of Genes and 
Immune Cells
Correlation analysis (Pearson analysis) was applied to demonstrate 
the coexpression patterns among diversified immune cells 
(Figure 7A). Likewise, correlation relationship (Pearson analysis) 
between immune cells and biomarkers was further analyzed and 
illustrated (Figure 7B). As shown, hsa-miR-425-5p and Tfh cells 
(P = 0.019, R = 0.260) (Figure 7C), AL118506.1 and Tfh cells 
(P = 0.033, R = −0.240) (Figure 7D), and Tfh cells and hsa-miR-
425-5p (Figure S3) represented good correlation. Eventually, 
bone metastasis–specific immune cells and ceRNAs significantly 
associated with prognosis were integrated into one multivariable 
model and one nomogram (Figure S4), which could decently 
predict the prognosis of SKCM (AUC of 3-year survival: 1.000; 
AUC of 5-year survival: 1.000). However, the model diagnostic 
information suggested that the prediction model had bias due to 
the small sample size.

Metastasis-Specific ceRNAs and 
Immune Cells’ Surface Markers Coding 
Genes Showing Significant Results in 
Multidimensional Validation
In order to explore the expressions of metastasis-specific ceRNAs 
and immune cells’ surface markers coding genes in different 
datasets, a dimensional validation applying multiple online 
databases was performed.

At the cellular level, BCL6 transcription repressor (BCL6), 
membrane metalloendopeptidase (MME), C-X-C motif 

FIGURE 2 | The heat maps of differentially expressed (A) RNAs, (C) miRNAs, (E) lncRNAs between the bone-metastatic melanoma and the primary melanoma. 
(B) Bar plot showing differentially expressed protein-coding genes, long noncoding genes, pseudogenes, and other RNAs. Red and blue represent up-regulated 
and down-regulated RNAs, respectively. It shows that 550 of 701 differentially expressed protein-coding genes are down-regulated and 151 are up-regulated. 
Besides, among 14 differentially expressed lncRNAs, 5 lncRNAs are down-regulated, and 9 are up-regulated. Volcano plots of differentially expressed mRNAs (D) 
and lncRNAs (F). We defined the log (fold change) >1.0 or <−1.0 and FDR <0.05 as the critical point. Thus, the red and blue dots in the plots represent high and 
low expression RNAs with statistical significance, respectively. Meanwhile, black dots represent mRNAs and lncRNAs without statistical significance between the 
primary and the bone-metastatic melanoma.
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chemokine ligand 13 (CXCL13), inducible T-cell costimulator 
(ICOS), and programmed cell death 1 (PDCD1) had been 
reported as the surface markers of Tfh cell in the CellMarker 
(Figure S5). AL118506.1 is a type of lncRNA (Ensemble ID: 
ENSG00000268858). According to DincRNA, Ontogene, and 
LncRNA2Target database, AL118506.1 is the antisense to 
Abhydrolase domain containing 16B (ABHD16B, also known 
as C20orf135), and it can down-regulate the expression level of 
hsa-miR-27b-3p. However, the function of AL118506.1 remains 
largely unknown. Thus, AL118506.1, ABHD16B, THBS2, BCL6, 
MME, CXCL13, ICOS, and PDCD1 were incorporated into 
further multidimensional validation.

First, Figure S6 illustrates the protein–protein interaction 
network of these genes, indicating that there are many 
interactions between THBS2 protein and T infertile helper cell’s 
surface markers. Besides, in the CCLE and GTEx, we found 
that THBS2 was expressed in various SKCM cell lines, and Tfh 
cell’s surface marker coding gene expressions were low, while in 
normal skin tissue THBS2 and AL118506.1 were expressed, and 
surface marker coding gene expressions were also low (Figures 
S7A, S7C). Meanwhile, significant coexpression relationships 
between THBS2 and Tfh cell’s surface marker coding genes 
had been observed in tissue levels, but not in cancer cell lines 
(Figures S7B, S7D). Besides, in meta-analysis of Oncomine, 

FIGURE 3 | (A) Overview of the lncRNA–miRNA–mRNA ceRNA network of melanoma with 8pairs of lncRNA–miRNA and 15 pairs of miRNA–mRNA. Red balls represent 
miRNAs, blue balls represent lncRNAs, and green balls represent protein-coding RNAs. Kaplan–Meier survival curves based on the expression of biomarkers involved in 
ceRNA network related to the bone metastasis in melanoma shows that (B) THBS2 (P = 0.040) and (C) AL118506.1 (P = 0.002) had significantly prognostic values.
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THBS2 (Median rank 1,088, P < 0.001) (Figures S8A, B), 
ICOS (Median rank 1,008, COPA = 1.854) (Figures S8C, D), 
CXCL13 (Median rank 536.5, COPA = 30.145) (Figures S8E, F), 
BCL6  (Median rank 434.5, COPA = 2.016) (Figures S8G, H), 
MME (median rank 221.0, COPA = 8.940) (Figures S8I, J), and 
PDCD1 (median rank 7,680, P = 0.350) (Figures S8C, D) all 
showed significant results in multiple melanoma–related studies 
except PDCD1. Additionally, the reanalysis results of GSE19234 
(Figure S9) and GSE22153 (Figure S10) in SurvExpress 
suggested that these genes have significant predictive value for 
metastasis (censoring event: metastasis, hazard ratio = 5.19 [95% 
confidence interval {CI}, 1.92–14.05], P = 0.001, Figure S9C) 
(censoring event: subcutaneous metastasis, hazard ratio = 4.01 
[95% CI, 1.93–8.34], P < 0.001, Figures S10C, D) and prognosis 
(censoring event: overall death, hazard ratio = 3.15 [95% CI, 
1.71–5.80], P < 0.001, Figure S10B).

DISCUSSION

Malignant melanoma is regarded as one of the most devastating 
and metastatic diseases with a drastic increasing incidence rate 
around the world (Bostel et al., 2016). Tumor metastasis is the 
advanced stage of disease and its complications often decrease 
the quality of life, especially for the bone metastasis. Although 
the mechanisms of tumorigenesis and metastasis are still unclear 
for melanoma, molecular and cellular features often changed 
during the process and are often viewed as important predictors 
(Braeuer et al., 2014; Rodina et al., 2016). Thus, the differentially 
expressed genes and tumor-infiltrating immune cells in the 
primary melanoma and bone metastasis attract our interest, 
which is seldom focused by previous studies.

In the current study, we first figured out the differently 
expressed and statistically significant ceRNA and tumor-
infiltrating immune cells between the primary and metastatic 
melanoma. Afterward, two nomograms are constructed based 
on them to predict the outcomes of patients with melanoma. 
The high AUC value and concordance index in two nomograms 
might contribute to make an evaluation for bone metastasis 

and survival outcomes. At last, according to the results of K-M 
survival analysis and correlation analysis, we inferred that the 
ceRNA regulatory mechanism of AL18506.1 (lncRNA), THBS2 
(mRNA), hsa-miR-27b-3p (miRNA), and Tfh cell might play a 
crucial role in bone metastasis of melanoma.

Recently, a myriad of studies had uncovered that no more than 
2% of the whole genome encode protein-coding genes, which 
suggests that most of the human transcriptomes are represented 
by noncoding RNAs (Volders et al., 2013). mRNAs, miRNAs, and 
lncRNAs are connected through the competitive endogenous 
RNA networks in an intricate crosstalk (Tay et al., 2014). The 
interaction among miRNA, lncRNA, and mRNA, operating 
as ceRNA networks, had been drastically explored in many 
diseases, including lung cancer, gastric cancer, and gallbladder 
cancer, among others (Kumar et al., 2014; Chen et al., 2018; Chen 
et al., 2019). However, ceRNA network mechanism underlying 
melanoma and bone metastasis remains largely unknown. 
In our study, we identified that AL118506.1 (lncRNA) could 
down-regulate and up-regulate the level of hsa-miR-27b-3p and 
THBS2, respectively, to promote bone metastasis in patients with 
melanoma via ceRNA network. The role of hsa-miR-27b-3p was 
shown to be essential in malignant transformation, which is in 
conformity with our present study (Liu et al., 2015).

Thrombospondins (THBSs) had been verified to play important 
roles in various processes, including angiogenesis, cellular adhesion, 
extracellular matrix interaction, tumor formation, and metastasis 
(Roberts, 2008; Liu et al., 2018). Thrombospondin 2, one of members 
in THBSs, is revealed to regulate the antiangiogenic activity and 
prevent the development of focal adhesion in endothelial cells 
(Agostini et al., 2012). Moreover, the overexpression of THBS2 had 
been demonstrated to be positively correlated with node metastasis 
and over survival in many types of cancer, including colorectal 
adenocarcinoma, myxoid liposarcoma, prostate cancer, and gastric 
cancer (Kim et al., 2010; Slavin et al., 2014; Chang et al., 2016; Lin 
et al., 2016; Nezu et al., 2016; Zhuo et al., 2016; Qian et al., 2017; Wei 
et al., 2017). The role of THBS2 was also investigated in melanoma 
in a previous study, and metastatic uveal melanoma had a higher 
expression level of THBS2, which is consistent with our analysis 
(Liu and Ma, 2018).

TABLE 1 | Hypergeometric testing and correlation analysis results of ceRNAs network.

LncRNA Protein-coding RNA MiRNAs Correlation P Hypergeometric test P

AL118506.1 THBS2 hsa-miR-27b-3p 0.006581855 0.00747894
MIR22HG FGFR3 hsa-miR-425-5p 0.022787186 0.006234399
MIR22HG DSC2 hsa-miR-25-3p 0.000396455 0.001248439
ATP2B1-AS1 RGS5 hsa-miR-23a-3p,hsa-miR-23b-3p 2.58E−06 0.001872829
ATP2B1-AS1 FBN2 hsa-miR-101-3p 0.000158704 0.006866417
ATP2B1-AS1 KLF12 hsa-miR-137 0.009365181 0.020470827
ATP2B1-AS1 VCAN hsa-miR-23b-3p 0.001403378 0.006866417
ATP2B1-AS1 LPAR1 hsa-miR-23a-3p 5.78E−09 0.020470827
ATP2B1-AS1 ZEB1 hsa-miR-101-3p,hsa-miR-23b-3p 2.43E−05 0.014703227
ATP2B1-AS1 HGF hsa-miR-26a-5p 0.000176262 0.033905608
ATP2B1-AS1 PTGER4 hsa-miR-101-3p 0.016481894 0.006866417
ATP2B1-AS1 PRKACB hsa-miR-23b-3p 9.06E−07 0.006866417
ATP2B1-AS1 ADAM17 hsa-miR-26a-5p 0.000901194 0.033905608

ceRNAs, competing endogenous RNAs; LncRNA, long noncoding RNA; MiRNA, microRNA.
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FIGURE 4 | (A) The Cox proportional hazards model based on RNAs selected by (B) (C) Lasso regression. hsa-miR-137, hsa-miR-425-5p, VCAN, and AL118506.1 
are incorporated into the Cox proportional hazards model. (E) Nomogram for predicting patients’ outcome based on RNAs (hsa-miR-137, hsa-miR-425-5p, VCAN, 
and AL118506.1) in Panel (A). (D) ROC curves and (F) calibration curves for assessing the discrimination and accuracy of the nomogram. Besides, AUCs of the 3- 
and 5-year survival were 0.899 and 0.855, respectively. AUC, area under curve; ROC, receiver operating characteristic.
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We also found out the different proportions of numerous 
immune cells in the primary melanoma and bone metastatic 
melanoma tissues. T follicular helper cells and macrophages 
M2 were demonstrated to be related to bone metastasis. 
The nomogram, composed of 16 kinds of immune cells, was 
constructed to predict the overall survival, which showed the 
great clinical utility with the concordance index of 0.78.

Generally, the CD8+ cytotoxic T cell is considered to be the 
main element of active antitumor immunity, whose full function 
greatly relied on adequate help from CD4+ T cells (Gillgrass et al., 
2014). Naive CD4+ T cells could differentiate into different T helper 

(TH) cells, including TH1, TH2, TH17, Tregs, and Tfh cells (Zhu 
et al., 2010). The Tfh cell is one subtype of CD4+ T cells, which is 
defined by its surface phenotypes with the highest expression level 
of CXCR5(Vinuesa et al., 2016). It had been demonstrated that Tfh 
plays an important part in the construction of humoral immunity 
through regulating the formation and cellular reactions that happen 
in the germinal center (Qi, 2016). The dysregulated Tfh cells were 
found to be associated with several autoimmune or (and) immune-
deficient diseases, including systemic lupus erythematosus, HIV, 
and lymphoma (Tangye et al., 2013). A few previous studies had 
revealed that there are ordered lymph node–like structures mainly 

FIGURE 5 | (A) Bar plot showing cell types and relative percent in melanoma tissues. Different colors represent different cell types, which are listed in the right 
as y axis, while x axis represents different samples. (B) Heat map of tumor-infiltrating cells in tumor tissues in patients with the primary melanoma and the bone 
metastatic disease. Annotations on top show clustering of samples. While the blue represents the melanoma with bone metastasis, the red symbolizes the primary 
melanoma. (C) Violin plot for comparing cells’ proportion between the primary and bone-metastatic disease. It illustrates that the proportion of the T follicular helper 
(Tfh) cells in the melanoma with bone metastasis was relatively less than that in the primary melanoma (P = 0.021), and macrophages M2 was relatively greater in 
the melanoma with bone metastasis (P = 0.036).

86

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


ceRNA Networks and Tumor-Infiltrating Immune CellsHuang et al.

10 September 2019 | Volume 10 | Article 828Frontiers in Genetics | www.frontiersin.org

FIGURE 6 | (A) Cox proportional hazards model integrated by 16 different types of immune cells. (B) Nomogram for predicting patients’ outcome based on 16 cells 
in Panel (A). (C) Calibration curves for evaluating the accuracy of the nomogram. *P < 0.05; **P < 0.001.
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formed by Tfh cells in extensively infiltrated tumors, including breast 
cancer, lung cancer, and colorectal cancer, with obviously detectable 
Tfh cells, which function in antitumor immunity with positive 
clinical outcome (Dieu-Nosjean et al., 2008; deLeeuw et al., 2012). 
Other human-related studies also identified that Tfh cells had great 
capacity in directly assisting B cells through releasing interleukin 
21 (IL-21), and IL-21 could further help human antigen-specific 
cytotoxic T cells to generate and proliferate, which also suggests 
that Tfh cells had a direct antitumorigenic function (Chen et al., 
2016). Thus, patients with fewer Tfh cells had a decreased immune 
response in fighting against tumor, while immunosuppression was 
positively correlated with tumor metastasis (Bidwell et al., 2012). 
In our study, our data indicate that Tfh cells had a lower expression 
level in patients with bone metastatic disease.

Similarly, the importance of CD4+ cells of high concentration 
in hindering melanoma metastasis and recurrence has also been 
reported (He et al., 2017). Antibody of anti–programmed death 1, 
situated on the surface of CD4+ cells, had been verified to prove 
the clinical outcomes of patients with melanoma (Yamaguchi et al., 
2018). Additionally, the expression levels of tumor-infiltrating 
cells of CD8 and macrophages M2 are, to some extent, related 
to clinical outcomes. The extensively studied immune infiltrate 
in different cancer had established that macrophages M2 could 
suppress antitumor immunity and promote tumor progression 
(Gillgrass et al., 2014; Guerriero et al., 2017). The data presented in 
this study also showed that macrophages M2 expression is higher 
in samples of patients with bone metastasis. Furthermore, the 
correlation analysis led us to know that the level of macrophages 

FIGURE 7 | (A) Correlation analysis (Pearson analysis) of different tumor-infiltrating cells and (B) the relationships between different tumor-infiltrating cells and 
differentially expressed genes in tumor tissues of melanoma. Scatterplots further illustrate the exact relationship between T cells CD8 and macrophages M2 
(P < 0.001, R = −0.480) (C), AL118506.1, and T follicular helper cells (P = 0.033, R = −0.240) (D). Besides, gray-shaded areas in two graphs represent the 
standard errors of the blue regression lines. R, correlation coefficient.
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M2 was inversely correlated with that of CD8 T cells, and patients 
with more CD8 cells in tumor tissues had worse outcome, which 
was highly consistent with a previous study (Gillgrass et al., 2014).

The correlation analysis revealed that Tfh cells were associated 
with AL118506.1 (R = −0.240, P = 0.033). Based on the results 
of correlation analysis and hypergeometric testing of ceRNA 
network, AL118506.1 (lncRNA), THBS2 (protein-coding RNA), 
and hsa-miR-27b-3p (miRNA) were considerably correlated 
(P = 0.007). Therefore, we inferred that the interaction among 
hsa-miR-27b-3p, AL118506.1, THBS2, and Tfh cells was highly 
relevant with bone metastasis in patients with melanoma.

Nevertheless, there are several unavoidable limitations to our 
study that should be taken into consideration. First, the quantity 
of related data available from the public datasets is still limited. 
The idea of acquiring the same number of cases in the aspects 
of different genders, age groups, and races, among others, to 
decrease the potential error and bias is far too difficult to be 
achieved under the current circumstances, which leads to the lack 
of comprehensiveness of this study. Second, we have not taken 
into account the heterogeneity of the immune microenvironment 
associated with the location of immune infiltration. Third, all 
data series retrieved for the construction of nomograms aimed 
to predict outcomes were from the west. Therefore, if patients 
are from other countries, samples are tested by other platforms, 
but GPL96 or GPL570. Last but not least, the small sample size 
of bone metastasis melanoma may reduce the confidence and 
transformation of the predictive models into other cohorts. And to 
minimize bias, additional validation based on multiple databases 
was applied to detect gene expression levels of key biomarkers at 
the tissue and cellular levels, showing the key biomarkers were 
significantly associated with metastasis and prognosis of SKCM 
(Figure S5–S10).

CONCLUSIONS

According to ceRNA networks and tumor-infiltrating immune 
cells, two nomograms were built, respectively, in our study to 
predict survival and metastasis of melanoma patients and had 
great utility, which was verified by high concordance index and 
AUC values. Based on the comprehensive clinical information 
from the prediction nomograms, individual management of 
melanoma patients could be greatly improved. Furthermore, 
with sufficient evidence shown in this study, we speculate that 
melanoma bone metastasis may depend on the interaction 
among hsa-miR-27b-3p, AL118506.1, THBS2, and Tfh cells.
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TABLE S1| Baseline information of 112 patients diagnosed with Primary 
melanoma.

FIGURE S1 | The result of enrichment analysis showed that genes in melanoma 
tissues were significantly associated with extracellular matrix organization.

FIGURE S2 | The results of the Wilcoxon rank-sum test in T regulatory cells 
(Tregs) of different T stages.

FIGURE S3 | The correlation analysis revealed that T cells follicular helper was 
positively correlated with hsa-miR-425-5p (P = 0.019; R = 0.260).

FIGURE S4 | The results of Cox proportional hazards model and the nomogram 
integrating both biomarkers and immune cell portions significantly associated 
with prognosis. Bone metastasis–specific immune cells and ceRNAs significantly 
associated with prognosis were integrated into one multi-variable model and one 
nomogram (A, E), which could decently predict the prognosis of SKCM (AUC of 
3-year survival: 1.000; AUC of 5-year survival: 1.000) (D). However, the model 
diagnostic information suggested that the prediction model had bias due to the 
small sample size (A, B, C, F).

FIGURE S5 | Use CellMarker to explore the surface markers of T follicular helper 
cells. At the cellular level, BCL6 transcription repressor (BCL6), membrane 
metalloendopeptidase (MME), C-X-C motif chemokine ligand 13 (CXCL13), 
inducible T-cell costimulator (ICOS) and Programmed cell death 1 (PDCD1) had 
been reported as the surface markers of T follicular helper cell in the CellMarker.

FIGURE S6 | Protein–protein interaction network of ABHD16B, THBS2, BCL6, 
MME, CXCL13, ICOS, PDCD1, indicating that there are many interactions 
between THBS2 protein and T infertile helper cell’s surface markers.

FIGURE S7 | The expression levels and co-expression analysis of AL118506.1, 
ABHD16B, THBS2, BCL6, MME, CXCL13, ICOS, PDCD1 in various SKCM cell 
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lines and normal skin tissue in Cancer Cell Line Encyclopedia (CCLE) (A, B) and 
The Genotype–Tissue Expression (GTEx) database (C, D).

FIGURE S8 | Validation of THBS2 (A, B), ICOS (C, D), CXCL13 (E, F),  
BCL6 (G, H), MME (I, J), and PDCD1 (K, L) on a transcriptional  
level in multiple cancer types and multiple studies using the Oncomine database.

FIGURE S9 | The results of reanalysis of GSE19234 in SurvExpress. The 
reanalysis results of GSE19234 in SurvExpress suggested that these genes have 

significant predictive value for metastasis (Censoring event: metastasis, Hazard 
Ratio = 5.19 (95% CI, 1.92–14.05), P = 0.001)

FIGURE S10 | The results of reanalysis of GSE22153 in SurvExpress. The 
reanalysis results of GSE22153 in SurvExpress suggested that these genes 
have significant predictive value for metastasis (Censoring event: subcutaneous 
metastasis, Hazard Ratio = 4.01 (95% CI, 1.93–8.34), P < 0.001) and 
prognosis (Censoring event: overall death, Hazard Ratio = 3.15 (95% CI, 
1.71–5.80), P < 0.001).
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It is estimated that the impact of related genes on the risk of Alzheimer’s disease (AD) 
is nearly 70%. Identifying candidate causal genes can help treatment and diagnosis. 
The maturity of sequencing technology and the reduction of cost make genome-wide 
association study (GWAS) become an important means to find disease-related mutation 
sites. Because of linkage disequilibrium (LD), neither the gene regulated by SNP nor 
the specific SNP can be determined. Because GWAS is affected by sample size and 
interaction, we introduced empirical Bayes (EB) to make a meta-analysis of GWAS to 
greatly eliminate the bias caused by sample and the interaction of SNP. In addition, most 
SNPs are in the noncoding region, so it is not clear how they relate to phenotype. In 
this paper, expression quantitative trait locus (eQTL) studies and methylation quantitative 
trait locus (mQTL) studies are combined with GWAS to find the genes associated with 
Alzheimer disease in expression levels by pleiotropy. Summary data-based Mendelian 
randomization (SMR) is introduced to integrate GWAS and eQTL/mQTL data. Finally, we 
prioritized 274 significant SNPs, which belong to 20 genes by eQTL analysis and 379 
significant SNPs, which belong to seven known genes by mQTL. Among them, 93 SNPs 
and 2 genes are overlapped. Finally, we did 10 case studies to prove the effectiveness of 
our method.

Keywords: Alzheimer’s disease, Mendelian randomization, GWAS, eQTL, mQTL

INTRODUCTION

It is estimated that the impact of related genes on the risk of AD is nearly 70%. Importantly, neuronal 
cell death precedes the appearance of cognitive symptoms for 10 years or more, suggesting that 
targeted treatment needs to be performed before symptoms appear. Therefore, the identification 
of AD biomarkers such as genes, RNAs (Jiang et al., 2015; Cheng et al., 2018; Cheng et al., 2019), 
proteins, and metabolites (Cheng et al., 2019) is critical for early detection and early intervention in 
AD. In addition, identifying candidate genes and loci can also help us understand the pathogenesis 
of AD and develop drugs.

Recently, Jansen et al. (Jansen et al., 2019) published his AD GWAS study on natural genetics. 
The sample size is more than eight times that of Lambert et al. (Lambert et al., 2013) in 2013. Due to 
the increase in the number of samples, they found nine AD risk loci more than in previous studies. 
Jansen et al. found that most of the AD-related DNA mutations were located in the noncoding part 
of the genome in regions that affected gene transcription. It means that combining GWAS data with 
transcriptional expression data will greatly advance AD research (Cheng et al., 2016).
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However, GWAS still has certain limitations. The SNP is 
not necessarily the true pathogenic locus, but only related 
to the SNP that actually causes the disease due to the LD. 
GWAS usually analyzes the edge effects of individual loci 
while ignoring the interaction of multiple genes in complex 
diseases (Battle et  al., 2014). Therefore, GWAS still cannot 
fully reveal the genetic susceptibility factors of complex 
diseases (Cheng et al., 2018). It is only an important part of 
exploring the genetic etiology of complex diseases (Cheng and 
Hu, 2018). Therefore, using GWAS data for research, we must 
first start with the expression of SNP, that is, combined with 
data affecting gene expression, which can weaken the impact 
of LD on significance. Then, the interaction of multiple genes 
is considered, that is, the statistical values of each SNP are 
revised within the whole genome.

It was found that about 80% of the genetic susceptibility loci 
detected by GWAS were located in the noncoding region of the 
genome, suggesting that the pathogenic loci may have regulatory 
functions on gene expression. An important role of large-
scale eQTL research is to be able to prioritize SNP loci (Barral 
et al., 2012) in GWAS susceptible regions and to infer possible 
biological mechanisms through the influence of DNA polymers 
on biological characteristics. At present, many studies have used 
eQTL analysis as a very effective tool to explain the results of 
GWAS. Hormozdiari et al. (Hormozdiari et al., 2016) present a 
probabilistic method named eCAVIAR, which can detect target 
genes by colocalization of GWAS and eQTL signals. Xu et al. 
purposed a more powerful method based on PrediXcan and 
TWAS. It can integrate single set or multiple sets of eQTL data 
with GWAS.

mQTL is mainly based on the analysis of cis-mQTL, that 
is, using Beta value of methylation level of CpG locus near a 
gene as dependent variable, screening all SNP variations in the 
chromosomal region upstream and downstream of the gene 
as independent variable and regressing each SNP locus S and 
methylation level M in this region one by one, so as to obtain 
SNP loci significantly related to the methylation level of a gene. 
There is no doubt that methylation affects gene expression. This 
is very similar to eQTL, both of which can cause changes in 
expression through mutations in a single locus. Therefore, in 
recent years, more and more studies have been carried out to 
screen genes related to traits by combining mQTL with GWAS. 
Hägg et al. (Hägg et al., 2015) integrated GWAS, eQTL, and 
mQTL to find out genes which are related to obesity. Pharoah 
et al. (Pharoah et al., 2013) identified three new susceptibility 
loci for ovarian cancer by GWAS meta-analysis and verified the 
result by mQTL.

In our previous paper (Hu et al., 2018), we have identified 
some AD-related genes by GWAS and eQTL using SMR. There 
are three points to be improved. Firstly, mQTL should be 
included to verify and improve our result. Secondly, we used 
several eQTL datasets in that paper, whereas a meta-analysis 
method should be used to integrate the datasets, which can 
improve the accuracy of eQTL’s statistical results. Finally, 
GWAS datasets should also be integrated into one dataset so 
that can overcome the difference of statistical power caused by 
sample size.

METHODS

SMR
Since Zhu et al. proposed “SMR” in 2016, it has become a 
common way to identify the genes whose expression levels are 
associated with a complex trait because of pleiotropy. Using 
GWAS and eQTL data, SMR could screen trait-related genes. 
After two years, they applied SMR to mQTL data. They found 
7,858 DNAm sites which are related to 14 complex traits.

The basic idea of this method is as follows. First, let y be 
the phenotype, which is the outcome variable. x is the gene 
expression, which is the exposure factor. z is the gene mutation, 
which is the instrumental variable. Then, bxy is the effect of x on 
y, bzx is the effect of z on x, and bzy is the effect of z on y. The 
definition of bxy is bxy = bzy/bzx, which means the effect of gene 
expression on phenotype without confounding factors. This idea 
is based on the Mendelian randomization (Cheng et al., 2018; 
Cheng et al., 2019).

Figure 1 is a hypothetical model of a mediation mechanism 
tested in SMR. The blue line represents causal relationship. 
Methylation will cause SNP. Both SNP and methylation can affect 
the change of transcription. The change of transcription will cause 
the difference of trait. The red line denotes the relationship data 
represents. mQTL denotes the relationship between methylation 
and SNP. eQTL denotes the relationship between transcription 
and SNP. GWAS denotes the relationship between SNP and trait.

Based on this hypothesis, many researchers have found the 
genes which are related to certain traits. Diseases like bone 
mineral density (BMD) (Meng et al., 2018), amyotrophic lateral 
sclerosis (ALS) (Du et al., 2017), and neuroticism (Fan et al., 
2017) have been found some potential related genes by SMR. 
Other traits like height, BMI (Yengo et al., 2018), and obesity (Liu 
et al., 2018) have also researched by SMR.

Eb-GWAS
Due to the complex linkage effects and statistical errors of the 
samples, the contribution of GWAS to biological research is 
reduced. GWAS may associate common diseases with thousands 
of DNA mutations, that is, every DNA region that happens to be 
active in diseased tissues may be associated with disease (Jiang et al., 
2013). Many GWAS matches are not specifically biologically related 
to disease and, therefore, cannot be used as effective drug targets. 
In fact, these “peripheral” mutations are likely to affect the activity 
of “core” genes, which are more directly related to disease, through 
complex biochemical regulatory networks (Jiang et al., 2010).

As we discussed before in the introduction, the interaction of 
multiple genes is considered, that is, the statistical values of each 
SNP are revised within the whole genome. In this section, we will 

FIGURE 1 | A hypothetical model of a mediation mechanism. 
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process GWAS data in two steps: 1. meta-analysis, 2. using EB, 
revise the statistical value of each SNP within the whole genome.

Meta-Analysis
Since SE denotes the standard error of each SNP, it represents the 
reliability of Beta values. Then, weight of each Beta should be:

 w SEi i= 1 2/  (1)

SEi denotes the standard error for study i, wi denotes the 
weight of Beta.

Then, the Beta after meta-analysis would be:

 β β= ∑∑ i i i
ii

w w/  (2)

βi denotes effect size estimate for study i.
Then, we could use the weight of each Beta to calculate the 

result of meta-analysis.

 SE wi= ∑1/
i

 (3)

Finally, the overall Z-score could be obtained by the original 
equation.

 Z = β / SE  (4)

Eb-GWAS
After meta-analysis, we could summary several GWAS datasets 
into one dataset. Then, we used EB to integrate all the Z scores 
in the whole genomic level. As we know that the SNP could 
interact with each other, the Z score of all SNP should have some 
relationship and obey normal distribution.

The overall Z-score we obtained before obeying normal 
distribution with standard deviation is 1. Then,

 






Z N Zi i

ind

i| Z ( , )1  (5)


Zi denotes the Z score we obtained. It is a value with bias. Zi 
denotes the real Z score.

Real Z score obeys normal distribution:

 Z N
ind

 ( )θ,σ 2  (6)

Then, the marginal distribution of 


Zi is

 

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ind
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Moreover, the posterior distribution should be:
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Then, we could know that E Zi( )


= θ , so the mean of 


Zi can be 
used to estimate θ.
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Then,

 σ χ
2

21 1+ − −
S

 inverse N( )  (12)

From the properties of inverse chi-square distribution,

 E
N

( )σ 2 1 1
3

+
−S

  (13)

Then,

  (14)

Therefore, the EB estimation of B is

  (15)

Finally, we can put the (Hu et al., 2018) into (Battle et al., 2014)

 Z Z N
S

Z Zi i= + − − −
 

( ( ))( )1 3  (16)

Then, we have done the meta-analysis and revised the 
statistical value of each SNP within the whole genome.

Dataset
As shown in Table 1 we obtained five GWAS datasets, three eQTL 
dataset, and three mQTL datasets. All the eQTL and mQTL are from 
brain tissue. Yang Jian et al. have already meta-analysis the eQTL 
and mQTL datasets. Therefore, we used the data they processed.

For GWAS dataset, Scelsi M A et al. obtained the data from 
1,517 Caucasian ADNI subjects. Lambert JC et al.’s dataset is 

E N
S

B( )− =
+

= −3 1
1

12σ

B N
S

= − −1 3( )

TABLE 1 | Datasets used in this paper.

Data Name Reference

GWAS ADNI_DPS_GWAS
ADNI_amyloid_GWAS
ADNI_hippo_GWAS

Scelsi et al. (2018)
(include three datasets)

IGAP_stage_1 Lambert et al. (2013)
UK_Biobank Marioni et al. (2018) 

eQTL GTEx-brain eQTL GTEx Consortium (2017)
CMC Fromer et al. (2016)
ROSMAP Ng et al. (2017)

mQTL ROSMAP Ng et al. (2017)
Human fetal brain Hannon et al. (2016)
Frontal cortex Jaffe et al. (2016)
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consisted of 17,008 Alzheimer’s disease cases and 37,154 controls. 
Marioni R E et al. obtained data from 314,278 participants.

For eQTL dataset, SNPs within 1Mb distance from each probe 
are available in these three datasets. After meta-analysis, the 
estimated effective sample size n = 1194.

For mQTL dataset, 5kb, 500kb, and 20kb are the available 
distance for the three datasets, respectively. After meta-analysis, 
the estimated effective sample size n = 1160.

RESULTS

Results of GWAS Meta-Analysis
We did a meta-analysis of five groups of GWAS data and 
integrated them into a GWAS file.

The blue block in Figure 2 is P value density of GWAS after 
meta-analysis. The red block in Figure 2 is P value density of 
GWAS after EB. As we can see in Figure 2, the distribution 
approximates uniform distribution. After using EB in all SNPs in 
whole dataset, the P value of the final GWAS data approximates 
the normal distribution.

Results of SMR
GWAS included 1,474,846 SNPs, mQTL included 6,966,746, and 
eQTL included 1,067,443 SNPs. There are 149,326 SNPs occur in 
both GWAS and eQTL and 408,896 SNPs occur in both GWAS 
and mQTL. Therefore, we use SMR to test these repeated SNPs 
in data sets.

Note that some SNPs are marked by multiple probes, so one 
SNP may significant in more than one gene. One SNP may affect 
expression of multiple genes.

In Figures 3 and 4, we can see that SNPs’ P value in GWAS are 
not related to eQTL and mQTL. It means that only few significant 
SNPs in GWAS have significance in eQTL and mQTL. Anyway, 
the points near the upper right corner in the images mean that 
the difference in expression level caused by these SNPs is related 
to AD and SMR can help us detect these SNPs.

We set a threshold as 0.05/(number of probers). For eQTL 
data, the threshold is 0.05/8362 = 5.98e-06. For mQTL data, the 
threshold is 0.05/97263 = 5.14e-07. The numbers of SNPs and 
genes identified by the two experiments are shown in Table 2.

Figure 5 shows all the SNPs’ P value. The red points are the 
P value of GWAS SNPs. The blue points are the P value of eQTL 
SNPs and the green points are the P value of mQTL SNPs. There is 
a black line in the first picture. The line is the significant threshold 
of P value. It is -log10(5*10-8). The SNPs of eQTL and mQTL are 
already screened so each SNP’s P value is less than 5*10-8.FIGURE 2 | Pvalue density of genome-wide association study (GWAS).

FIGURE 3 | Duplicated SNPs’ P value in genome-wide association study 
(GWAS) and eQTL.

FIGURE 4 | Duplicated SNPs’ P value in genome-wide association study 
(GWAS) and mQTL.
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Figure 6 shows the result of SMR by two different datasets. 
The first graph is the result of GWAS and eQTL and the second 
one is the result of GWAS and mQTL. The black line in the two 
graphs is significant threshold, respectively. As we can see, only 
few of SNPs can pass the SMR test. Some of them are not very 
significant in GWAS, but combined with eQTL or mQTL, they 
would be significant.

As we can see in Table 3, HLA-DQA1 and HLA-DRB5 are 
selected in both eQTL and mQTL datasets. The HLA complex 
is located in the 21.31 region (6p21.31) on the short arm of 

chromosome 6 and is composed of 3.6 million base pairs. It is the 
region with the highest gene density and the most polymorphic 
region in human chromosomes. Known as “chemical fingerprints 
in humans”. Due to the complexity of HLA, the methylation level 
and expression level differ greatly.

Case Study
In this section, we want to confirm whether the 25 AD-related 
genes we found have been reported by others. In order to be 
precise, we only use the literature that got AD-related genes by 
biological experiments, rather than the bioinformatics method 
or GWAS method.

Zhu et al. (2017) found four CR1 SNPs showed significant 
associations with the Aβ deposition at the baseline level.

James et al. (2018) gathered 71 cognitively healthy women’s 
the volumes of total gray matter, cerebrocor-tical gray matter, and 
subcortical gray matter by structural magnetic resonance imaging 

FIGURE 5 | P value of genome-wide association study (GWAS), eQTL, and mQTL.

FIGURE 6 | Result of summary data-based Mendelian randomization (SMR).

TABLE 2 | The results of summary data-based Mendelian randomization (SMR).

Dataset Number of SNPs Number of Genes

GWAS&eQTL 274 20
GWAS&mQTL 379 7
Overlapped 93 2
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(sMRI) scan and found that the protective effect of DRB1*13:02 
is related to successful elimination of specific  pathogens that 
would ultimately cause gradual brain atrophy.

Yu et al. (2015) found that BIN1 was associated with Aβ load 
and brain DNA methylation in HLA-DRB5 was associated with 
pathological AD by 447 participants

Lee et al. (2018) used non-Hispanic Caucasians with 
neuroimaging and found that HLA-DQB1 is significantly 
associated with entorhinal cortical thickness by controlling for 
multiple testing.

Yoshino et al. (2016) found that SNCA mRNA expression in 50 
AD subjects was significantly higher than that in control subjects. 
Therefore, they inferred mRNA expression and methylation of 
SNCA intron 1 are altered in AD, whereas ZSCAN21 at upstream 
of these CpG site were reported to bind at intron 1.

Rathore et al. (2018) noted that both TREM2 and PILRB 
function as activating receptors and signal through DAP12. A 
reduction of PILRA inhibitory signals in R78 carriers could allow 
more microglial activation via PILRB/DAP12 signaling and 
reinforce the cellular mechanisms by which TREM2 is believed 
to protect from AD incidence.

Ruggiero et al. (2017) did biological experiments on mice 
and found that MTCH2 is a critical player in neuronal cell 
biology, controlling mitochondria metabolism, motility, 
and calcium buffering to regulate hippocampal-dependent 
cognitive functions.

De Jager et al. (2014) used a collection of 708 prospectively 
collected autopsied brains to assess the methylation state of the 

brain’s DNA in relation to AD and found two SNPs associated 
with POLR2E are related to AD in methylation levels.

Roses et al. (2010) identified polymorphic poly-T variant 
rs10524523 in transposase of TOMM40 gene, which can be used 
to estimate the starting age of LOAD with APOE ɛ3 carriers.

Prendecki et al. (2018) recruited 230 individuals and found 
that APOC1 and TOMM40 rs2075650 polymorphisms may be 
independent risk factors of developing AD, whose major variants 
are accompanied by disruption of biothiols metabolism and 
inefficient removal of DNA oxidation.

We found 10 of 25 genes are reported to be related to AD by 
biological experiments. Some literary works may found that the 
other 15 genes are related to AD via other methods, but we would 
not discuss in this paper. This case study verified the effectiveness 
of our method and we hope the other 15 genes could be verified 
by biological experiments in future.

CONCLUSION

AD brings great burden to patients and society and identifying 
AD-related genes can help us known the machanism of AD 
then diagnose and treatment. In this paper, we used SMR to 
find AD-related genes by GWAS, eQTL, and mQTL. There are 
some overlaps between GWAS and the other two datasets, which 
means that some SNPs are related to AD due to the change of 
expression level. SMR is a method which can identify the genes 
whose expression levels are associated with a complex trait 
because of pleiotropy.

Due to the LD and interaction between genes, GWAS data has 
bias. In order to overcome these, we did meta-analysis on five 
GWAS datasets and then used EB to revise the Z-score of each 
SNPs in whole-SNP level.

Finally, we found 653 SNPs reached the threshold of 
significance and they are associated with 25 genes. Ninety-three 
of SNPs are significant in both GWAS&eQTL and GWAS&mQTL 
tests. We did 10 case studies at last, which means that the 10 of 
25 genes we identified have been verified to correlated to AD by 
biological experiments in existing literary works.

DATA DEPOSITION

eQTL and mQTL Data
The direct link for accessing eQTL and mQTL data is as follows 
(origin from PMID: 29891976).

 1) eQTL data: https://cnsgenomics.com/data/SMR/Brain-eMeta.
tar.gz

 2) mQTL data: https://cnsgenomics.com/data/SMR/Brain-mMeta.
tar.gz

GWAS Dataset 1,2,3
GWAS dataset 1,2,3 are from paper PMID:29860282. The direct 
link is for accessing them is as following.

TABLE 3 | The candidate genes selected by summary data-based Mendelian 
randomization (SMR).

Gene Number of SNPs

eQTL CR1 20
HLA-DRB1 69
HLA-DQA1 39
HLA-DRB5 8
HLA-DQB1 3

HLA-DQB1-AS1 1
RP11-385F7.1 36

ZSCAN21 8
PILRB 5
PILRA 5

MTCH2 20
KAT8 20

AC012146.7 23
ZNF232 4
POLR2E 7

PVR 12
CTB-171A8.1 24
CEACAM19 11
TOMM40 23
ZNF296 6

mQTL BIN1 11
HLA-DRB5 15
HLA-DRB1 16
EPHA1-AS1 3

FAM63B 2
APOC1 12

EXOC3L2 24
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 1) https://www.ebi.ac.uk/gwas/studies/GCST006134 & ftp://
ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
ScelsiMA_29860282_GCST006134

 2) https://www.ebi.ac.uk/gwas/studies/GCST006136 & ftp://
ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
ScelsiMA_29860282_GCST006135

 3) https://www.ebi.ac.uk/gwas/studies/GCST006135 & ftp://
ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
ScelsiMA_29860282_GCST006136

GWAS Data 4
GWAS data 4 is from PMID: 24162737. The direct link is for 
accessing it is as following:

http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_
download.php

GWAS Data 5
GWAS data 5 is from PMID: 29777097. The direct link is for 
accessing it is as following:

http://datashare.is.ed.ac.uk/download/DS_10283_3364.zip

All code could be downloaded by
https://github.com/zty2009/Integrate-GWAS-eQTL-and-

mQTL-data-to-identify-Alzheimer-s-Disease-related-genes

AUTHOR CONTRIBUTIONS

TZang and YW are the corresponding authors. They help to 
revise and support data for this data. TZhao and YH are the 
co-first authors. They wrote the code and write the paper.

FUNDING

This work was supported by the National Natural Science 
Foundation of China (No: 61571152 and 61502125), the 
National High-tech R&D Program of China (863 Program) [Nos: 
2014AA021505, 2015AA020101, 2015AA020108], the National 
Science and Technology Major Project [Nos: 2013ZX03005012 
and 2016YFC1202302], the Heilongjiang Postdoctoral Fund 
(Grant No. LBH-Z15179), and the China Postdoctoral Science 
Foundation (Grant No. 2016M590291).

REFERENCES

Barral, S., Bird, T., Goate, A., Farlow, M., Diaz-Arrastia, R., Bennett, D., et al. 
(2012). Genotype patterns at PICALM, CR1, BIN1, CLU, and APOE genes 
are associated with episodic memory. Neurology 78, 1464–1471. doi: 10.1212/
WNL.0b013e3182553c48

Battle, A., Mostafavi, S., Zhu, X., Potash, J. B., Weissman, M. M., McCormick, C., 
et  al. (2014). Characterizing the genetic basis of transcriptome diversity 
through RNA-sequencing of 922 individuals. Genome Res. 24, 14–24. doi: 
10.1101/gr.155192.113

Cheng, L., and Hu, Y. (2018). Human Disease System Biology. Curr. Gene. Ther. 18, 
255–256. doi: 10.2174/1566523218666181010101114

Cheng, L., Sun, J., Xu, W. Y., Dong, L. X., Hu, Y., and Zhou, M. (2016). OAHG: an 
integrated resource for annotating human genes with multi-level ontologies. 
Sci. Rep. 6, 1–9. doi: 10.1038/srep34820

Cheng, L., Zhuang, H., Yang, S., Jiang, H., Wang, S., and Zhang, J. (2018). 
Exposing the causal effect of C-reactive protein on the risk of type 2 diabetes 
mellitus: a mendelian randomization study. Front. Genet. 9, 657. doi: 10.3389/
fgene.2018.00657

Cheng, L., Hu, Y., Sun, J., Zhou, M., and Jiang, Q. (2018). DincRNA: a comprehensive 
web-based bioinformatics toolkit for exploring disease associations and 
ncRNA function. Bioinformatics 34, 1953–1956. doi: 10.1093/bioinformatics/ 
bty002

Cheng, L., Jiang, Y., Ju, H., Sun, J., Peng, J., Zhou, M., et al. (2018). InfAcrOnt: 
calculating cross-ontology term similarities using information flow by a 
random walk. BMC Genomics 19, 919. doi: 10.1186/s12864-017-4338-6

Cheng, L., Yang, H., Zhao, H., Pei, X., Shi, H., Sun, J., et al. (2019). MetSigDis: 
a manually curated resource for the metabolic signatures of diseases. Brief 
Bioinform. 20, 203–209. doi: 10.1093/bib/bbx103

Cheng, L., Zhuang, H., Ju, H., Yang, S., Han, J. W., Tan, R. J., et al. (2019). 
Exposing the causal effect of body mass index on the risk of type 2 diabetes 
mellitus: a mendelian randomization study. Front. Genet. 10, 10. doi: 10.3389/
fgene.2019.00094

Cheng, L., Wang, P., Tian, R., Wang, S., Guo, Q., Luo, M., et al. (2019). 
LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs 
in human and mouse. Nucleic Acids Res. 47, D140–D144. doi: 10.1093/nar/
gky1051

Consortium, G. (2017). Genetic effects on gene expression across human tissues. 
Nature 550, 204. doi: 10.1038/nature24277

De Jager, P. L., Srivastava, G., Lunnon, K., Burgess, J., Schalkwyk, L. C., Yu, L., 
et al. (2014). Alzheimer’s disease: early alterations in brain DNA methylation 
at ANK1, BIN1, RHBDF2 and other loci. Nat. Neurosci. 17, 1156. doi: 10.1038/
nn.3786

Du, Y., Yan, W., Guo, X., Hao, J., Wang, W., He, A., et al. (2017). and Pathways 
Associated with Amyotrophic Lateral Sclerosis. Cell. Mol. Neurobiol. 38, 1–5. 
doi: 10.1007/s10571-017-0512-2

Fan, Q., Wang, W., Hao, J., He, A., Wen, Y., Guo, X., et al. (2017). Integrating 
genome-wide association study and expression quantitative trait loci data 
identifies multiple genes and gene set associated with neuroticism. Prog. 
Neuro-Psychopharmacol. Biol. Psychiatry 78, 149–152. doi: 10.1016/j.
pnpbp.2017.05.017

Fromer, M., Roussos, P., Sieberts, S. K., Johnson, J. S., Kavanagh, D. H., Perumal, 
T. M., et al. (2016). Gene expression elucidates functional impact of polygenic 
risk for schizophrenia. Nat. Neurosci. 19, 1442. doi: 10.1038/nn.4399

GTEx Consortium. (2017). Genetic effects on gene expression across human 
tissues. Nature 550 (7675), 204.

Hägg, S., Ganna, A., Van Der Laan, S. W., Esko, T., Pers, T. H., Locke, A. E., 
et  al. (2015). Gene-based meta-analysis of genome-wide association studies 
implicates new loci involved in obesity. Hum. Mol. Genet. 24, 6849–6860. doi: 
10.1093/hmg/ddv379

Hannon, E., Spiers, H., Viana, J., Pidsley, R., Burrage, J., Murphy, T. M., et al. 
(2016). Methylation QTLs in the developing brain and their enrichment in 
schizophrenia risk loci. Nat. Neurosci. 19, 48. doi: 10.1038/nn.4182

Hormozdiari, F., Vandebunt, M., Segrè, A., Li, X., Joo, J. W., Bilow, M., et al. (2016). 
Colocalization of GWAS and eQTL Signals Detects Target Genes. Am. J. Hum. 
Genet. 99, 1245–1260. doi: 10.1016/j.ajhg.2016.10.003

Hu, Y., Zhao, T., Zang, T., Zhang, Y., and Cheng, L. (2018). Identification of 
Alzheimer’s disease-related genes based on data integration method. Front. 
Genet. 9, 703. doi: 10.3389/fgene.2018.00703

Jaffe, A. E., Gao, Y., Deep-Soboslay, A., Tao, R., Hyde, T. M., Weinberger, D. R., 
et al. (2016). genotype and schizophrenia in the human frontal cortex. Nat. 
Neurosci. 19, 40. doi: 10.1038/nn.4181

James, L. M., Christova, P., Lewis, S. M., Engdahl, B. E., Georgopoulos, A., and 
Georgopoulos, A. P. (2018). Protective effect of human leukocyte antigen 
(HLA) Allele DRB1* 13: 02 on age-related brain gray matter volume reduction 
in healthy women. EBioMedicine 29, 31–37. doi: 10.1016/j.ebiom.2018.02.005

Jansen, I. E., Savage, J. E., Watanabe, K., Bryois, J., Williams, D. M., Steinberg, S., 
et al. (2019). Genome-wide meta-analysis identifies new loci and functional 

98

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.ebi.ac.uk/gwas/studies/GCST006134
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/ScelsiMA_29860282_GCST006134
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/ScelsiMA_29860282_GCST006134
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/ScelsiMA_29860282_GCST006134
https://www.ebi.ac.uk/gwas/studies/GCST006136
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/ScelsiMA_29860282_GCST006135
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/ScelsiMA_29860282_GCST006135
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/ScelsiMA_29860282_GCST006135
https://www.ebi.ac.uk/gwas/studies/GCST006135
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/ScelsiMA_29860282_GCST006136
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/ScelsiMA_29860282_GCST006136
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/ScelsiMA_29860282_GCST006136
http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php
http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php
http://datashare.is.ed.ac.uk/download/DS_10283_3364.zip
https://github.com/zty2009/Integrate-GWAS-eQTL-and-mQTL-data-to-identify-Alzheimer-s-Disease-related-genes
https://github.com/zty2009/Integrate-GWAS-eQTL-and-mQTL-data-to-identify-Alzheimer-s-Disease-related-genes
https://doi.org/10.1212/WNL.0b013e3182553c48
https://doi.org/10.1212/WNL.0b013e3182553c48
https://doi.org/10.1101/gr.155192.113
https://doi.org/10.2174/1566523218666181010101114
https://doi.org/10.1038/srep34820
https://doi.org/10.3389/fgene.2018.00657
https://doi.org/10.3389/fgene.2018.00657
https://doi.org/10.1093/bioinformatics
https://doi.org/10.1186/s12864-017-4338-6
https://doi.org/10.1093/bib/bbx103
https://doi.org/10.3389/fgene.2019.00094
https://doi.org/10.3389/fgene.2019.00094
https://doi.org/10.1093/nar/gky1051
https://doi.org/10.1093/nar/gky1051
https://doi.org/10.1038/nature24277
https://doi.org/10.1038/nn.3786
https://doi.org/10.1038/nn.3786
https://doi.org/10.1007/s10571-017-0512-2
https://doi.org/10.1016/j.pnpbp.2017.05.017
https://doi.org/10.1016/j.pnpbp.2017.05.017
https://doi.org/10.1038/nn.4399
https://doi.org/10.1093/hmg/ddv379
https://doi.org/10.1038/nn.4182
https://doi.org/10.1016/j.ajhg.2016.10.003
https://doi.org/10.3389/fgene.2018.00703
https://doi.org/10.1038/nn.4181
https://doi.org/10.1016/j.ebiom.2018.02.005


Identifying Alzheimer’s Disease-Related GenesZhao et al.

8 October 2019 | Volume 10 | Article 1021Frontiers in Genetics | www.frontiersin.org

pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413. doi: 
10.1038/s41588-018-0311-9

Jiang, Q., Hao, Y., Wang, G., Juan, L., Zhang, T., Teng, M., et al. (2010). Prioritization 
of disease microRNAs through a human phenome-microRNAome network. 
BMC Syst. Biol. 4 Suppl 1, S2. doi: 10.1186/1752-0509-4-S1-S2

Jiang, Q., Wang, G., Jin, S., Li, Y., and Wang, Y. (2013). Predicting human 
microRNA-disease associations based on support vector machine. Int. J. Data 
Min. Bioinform. 8, 282–293. doi: 10.1504/IJDMB.2013.056078

Jiang, Q., Ma, R., Wang, J., Wu, X., Jin, S., Peng, J., et al. (2015). LncRNA2Function: 
a comprehensive resource for functional investigation of human 
lncRNAs based on RNA-seq data. BMC Genomics 16 Suppl 3, S2. doi: 
10.1186/1471-2164-16-S3-S2

Lambert, J.-C., Ibrahim-Verbaas, C. A., Harold, D., Naj, A. C., Sims, R., 
Bellenguez, C., et al. (2013). Meta-analysis of 74,046 individuals identifies 
11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452. doi: 
10.1038/ng.2802

Lee, Y., Han, S., Kim, D., Kim, D., Horgousluoglu, E., Risacher, S. L., et al. (2018). 
Genetic variation affecting exon skipping contributes to brain structural 
atrophy in Alzheimer’s disease. AMIA Summits on Translat. Sci. Proc. 2017, 124.

Liu, L., Fan, Q., Zhang, F., Guo, X., Liang, X., Du, Y., et al. (2018). A Genomewide 
Integrative Analysis of GWAS and eQTLs Data Identifies Multiple Genes 
and Gene Sets Associated with Obesity. Biomed. Res. Int. 2018. 1–5 doi: 
10.1155/2018/3848560

Marioni, R. E., Harris, S. E., Zhang, Q., McRae, A. F., Hagenaars, S. P., Hill, W. D., 
et al. (2018). GWAS on family history of Alzheimer’s disease. Transl. Psychiatry 
8 (1), 99. doi: 10.1038/s41398-018-0150-6

Meng, X. H., Chen, X. D., Greenbaum, J., Zeng, Q., You, S. L., Xiao, H. M., et al. 
(2018). Integration of summary data from GWAS and eQTL studies identified 
novel causal BMD genes with functional predictions. Bone 113, 41–48. doi: 
10.1016/j.bone.2018.05.012

Ng, B., White, C. C., Klein, H.-U., Sieberts, S. K., McCabe, C., Patrick, E., et al. 
(2017). An xQTL map integrates the genetic architecture of the human brain’s 
transcriptome and epigenome. Nat. Neurosci. 20, 1418. doi: 10.1038/nn.4632

Pharoah, P. D., Tsai, Y.-Y., Ramus, S. J., Phelan, C. M., Goode, E. L., Lawrenson, K., 
et al. (2013). GWAS meta-analysis and replication identifies three new 
susceptibility loci for ovarian cancer. Nat. Genet. 45, 362. doi: 10.1038/ng.2564

Prendecki, M., Florczak-Wyspianska, J., Kowalska, M., Ilkowski, J., Grzelak,  T., 
Bialas, K., et al. (2018). Biothiols and oxidative stress markers and 
polymorphisms of TOMM40 and APOC1 genes in Alzheimer’s disease 
patients. Oncotarget 9 (81), 35207. doi: 10.18632/oncotarget.26184

Rathore, N., Ramani, S. R., Pantua, H., Payandeh, J., Bhangale, T., Wuster, A., et al. 
(2018). Paired immunoglobulin-like type 2 receptor alpha G78R variant alters 

ligand binding and confers protection to Alzheimer’s disease. PLoS Genet. 14 
(11), e1007427. doi: 10.1371/journal.pgen.1007427

Roses, A., Lutz, M., Amrine-Madsen, H., Saunders, A., Crenshaw, D., Sundseth, S., 
et al. (2010). A TOMM40 variable-length polymorphism predicts the age of 
late-onset Alzheimer’s disease. Pharmacogenomics J. 10, 375. doi: 10.1038/
tpj.2009.69

Ruggiero, A., Aloni, E., Korkotian, E., Zaltsman, Y., Oni-Biton, E., Kuperman, Y., 
et al. (2017). Loss of forebrain MTCH2 decreases mitochondria motility and 
calcium handling and impairs hippocampal-dependent cognitive functions. 
Sci. Rep. 7, 44401. doi: 10.1038/srep44401

Scelsi, M. A., Khan, R. R., Lorenzi, M., Christopher, L., Greicius, M. D., Schott, 
J. M., et al. (2018). Genetic study of multimodal imaging Alzheimer’s disease 
progression score implicates novel loci. Brain 141, 2167–2180. doi: 10.1093/
brain/awy141

Yengo, L., Sidorenko, J., Kemper, K. E., Zheng, Z., Wood, A. R., Weedon, M. N., 
et al. (2018). Meta-analysis of genome-wide association studies for height and 
body mass index in ~700,000 individuals of European ancestry. Hum. Mol. 
Genet. 27 (20), 3641–3649. doi: 10.1101/274654

Yoshino, Y., Mori, T., Yoshida, T., Yamazaki, K., Ozaki, Y., Sao, T., et al. (2016). 
Elevated mRNA expression and low methylation of SNCA in Japanese 
Alzheimer’s disease subjects. J. Alzheimer’s Dis. 54, 1349–1357. doi: 10.3233/
JAD-160430

Yu, L., Chibnik, L. B., Srivastava, G. P., Pochet, N., Yang, J., Xu, J., et al. (2015). 
Association of Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, 
SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease. JAMA 
Neurol. 72, 15–24. doi: 10.1001/jamaneurol.2014.3049

Zhu, X.-C., Wang, H.-F., Jiang, T., Lu, H., Tan, M.-S., Tan, C.-C., et al. (2017). 
Initiative, Effect of CR1 genetic variants on cerebrospinal fluid and neuroimaging 
biomarkers in healthy, mild cognitive impairment and Alzheimer’s disease 
cohorts. Mol. Neurobiol. 54, 551–562. doi: 10.1007/s12035-015-9638-8

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as a 
potential conflict of interest.

Copyright © 2019 Zhao, Hu, Zang and Wang. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC 
BY). The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. 
No use, distribution or reproduction is permitted which does not comply with 
these terms.

99

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1038/s41588-018-0311-9
https://doi.org/10.1186/1752-0509-4-S1-S2
https://doi.org/10.1504/IJDMB.2013.056078
https://doi.org/10.1186/1471-2164-16-S3-S2
https://doi.org/10.1038/ng.2802
https://doi.org/10.1155/2018/3848560
https://doi.org/10.1038/s41398-018-0150-6
https://doi.org/10.1016/j.bone.2018.05.012
https://doi.org/10.1038/nn.4632
https://doi.org/10.1038/ng.2564
https://doi.org/10.18632/oncotarget.26184
https://doi.org/10.1371/journal.pgen.1007427
https://doi.org/10.1038/tpj.2009.69
https://doi.org/10.1038/tpj.2009.69
https://doi.org/10.1038/srep44401
https://doi.org/10.1093/brain/awy141
https://doi.org/10.1093/brain/awy141
https://doi.org/10.1101/274654
https://doi.org/10.3233/JAD-160430
https://doi.org/10.3233/JAD-160430
https://doi.org/10.1001/jamaneurol.2014.3049
https://doi.org/10.1007/s12035-015-9638-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 October 2019 | Volume 10 | Article 1020

ORIGINAL RESEARCH

doi: 10.3389/fgene.2019.01020
published: 29 October 2019

Frontiers in Genetics | www.frontiersin.org

Edited by: 
Lei Deng,  

Central South University, China

Reviewed by: 
Yungang Xu,  

University of Texas Health Science 
Center at Houston,  

United States 
Zhen Tian,  

Zhengzhou University, China 
Wei Lan,  

Guangxi University, China

*Correspondence: 
Maozu Guo 

guomaozu@bucea.edu.cn

Specialty section: 
This article was submitted to 

Statistical Genetics and Methodology, 
a section of the journal  

Frontiers in Genetics

Received: 02 July 2019
Accepted: 24 September 2019

Published: 29 October 2019

Citation: 
Wang J, Cui B, Zhao Y and 

Guo M (2019) A New Algorithm for 
Identifying Genome Rearrangements 

in the Mammalian Evolution.  
Front. Genet. 10:1020.  

doi: 10.3389/fgene.2019.01020

A New Algorithm for Identifying 
Genome Rearrangements in the 
Mammalian Evolution
Juan Wang 1, Bo Cui 1, Yulan Zhao 1 and Maozu Guo 2,3*

1 School of Computer Science, Inner Mongolia University, Hohhot, China, 2 School of Electrical and Information Engineering, 
Beijing University of Civil Engineering and Architecture, Beijing, China, 3 Beijing University of Civil Engineering and 
Architecture, Beijing Key Laboratory of Intelligent Processing for Building Big Data, Beijing, China

Genome rearrangements are the evolutionary events on level of genomes. It is a 
global view on evolution research of species to analyze the genome rearrangements. 
We introduce a new method called RGRPT (recovering the genome rearrangements 
based on phylogenetic tree) used to identify the genome rearrangements. We test 
the RGRPT using simulated data. The results of experiments show that RGRPT 
have high sensitivity and specificity compared with other tools when to predict 
rearrangement events. We use RGRPT to predict the rearrangement events of six 
mammalian genomes (human, chimpanzee, rhesus macaque, mouse, rat, and dog). 
RGRPT has recognized a total of 1,157 rearrangement events for them at 10 kb 
resolution, including 858 reversals, 16 translocations, 249 transpositions, and 34 
fusions/fissions. And RGRPT has recognized 475 rearrangement events for them at 
50 kb resolution, including 332 reversals, 13 translocations, 94 transpositions, and 
36 fusions/fissions. The code source of RGRPT is available from https://github.com/
wangjuanimu/data-of-genome-rearrangement.

Keywords: genome rearrangements, mammal, phylogenetic tree, evolution, algorithm

INTRODUCTION

The rapid development of sequencing technologies makes the phylogenetic analysis from the level 
of whole genome possible. A studied genome is represented as a line of conserved segments (called 
syntenic blocks). The genome rearrangements of species are changes of syntenic block orderings 
and losing of sequence blocks. These events include reversal, translocation, transposition, fusion, 
fission, and so on (Xu et al., 2017; Cheng et al., 2019; Dong et al., 2018). The research on genome 
rearrangements is mainly three aspects.

One is the computation of evolutionary distance between two species by considering genome 
rearrangements. Researchers have proposed a lot of metric for measuring the dissimilarity of 
evolution between species and a large amount of algorithms for computing the metrics. The 
breakpoint distance is the minimum rearrangement operations transforming one genome to 
the other genome, which is computed by means of breakpoint graph (Blanchette et al., 1997; 
Sankoff and Blanchette, 1998). There are lots of algorithms for computing breakpoint distance. 
In 1995, Hannenhalli and Pevzner put forward an algorithm with O(n5) time complexity to 
compute the breakpoint distance just considering reversal events (Hannenhalli and Pevzner, 
1999). Later, Kaplan improved the algorithm to time complexity O(n5) (Kaplan et al., 2000). 
In 1996, Hannenhalli designed an algorithm with O(n3) time complexity to compute it by 
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considering translocation events (Hannenhalli, 1995). In 
2001, Zhu et al. improved the algorithm to time complexity 
O(n2logn) (Zhu and Ma, 2002). And then Zhu et al. devised 
an algorithm with O(n2) time complexity (Liu et al., 2004). 
The DCJ distance is introduced by Yancopoulos et al. (Sophia 
et  al., 2005), which uses the double cut and join (DCJ for 
short) operation to model rearrangement events, such as 
reversal, translocation, transposition, fusion, and fission in 
an unified way. Yancopoulos et al. first propose a method to 
compute the DCJ distance by considering only translocations 
and reversals on linear chromosomes (Sophia et al., 2005). 
Paper (Lu et al., 2006) has proposed an O(n2) time algorithm 
to compute the distance by considering the fusions and 
fissions between circular unsigned chromosomes. Unimog 
(Hilker et al., 2012) is software for computing DCJ distance 
which implements lots of algorithms (Erdös et al., 2011; Jakub 
et al., 2011). SoRT is a tool to compute breakpoint distance 
and the DCJ distance for linear/circular multi-chromosomal 
gene orders (Yen-Lin et  al., 2010). SCJ distance (Feijão and 
Meidanis, 2011) is defined using the single cut and join (SCJ 
for short) operations, which is in analogy to DCJ measure. 
The distance can be computed by a speedily computable.

Two is the reconstruction of the ancestral gene orders by 
using the genomes of extant species. Ma et al. (Ma et al., 2006) 
use maximum parsimony principle to recover reliably ancestral 
genomes starting from phylogenetic tree and adjacent genes in 
genome and make the probabilistic reconstruction accuracy 
analysis for the six mammalian genome (human, mouse, rat, 
dog, opossum, and chicken) based on the improved Jukes–
Cantor model. PMAG utilized the Bayesian theorem in the 
probabilistic framework to infer ancestral genomes (Yang et al., 
2014). Multiple Genome Rearrangements (MGR) recovers 
the ancestral genome by minimizing the rearrangement 
distance (Bourque and Pevzner, 2002). Multiple Genome 
Rearrangements and Ancestors (MGRA) is developed to 
reconstruct ancestral genomes based on multiple breakpoint 
graphs and is used to analyze rearrangement evolutionary 
events of seven mammalian genomes (human, chimpanzee, 
macaque, mouse, rat, dog, and opossum) (Alekseyev and 
Pevzner, 2009). Decostar (Duchemin et al., 2017) is a software 
which reconstructs neighborhood relations of ancestral genes 
aiming at reconstructing the organization of ancestral genomes.

Three is the recognition of the rearrangement events of 
existing species. Efficient Method to Recover Ancestral Events 
(EMRAE) is an algorithm which can recognize rearrangement 
events in evolution described by phylogenetic tree by means of 
adjacent genes in genomes (Zhao and Bourque, 2009).

MATERIALS AND METHODS

Preliminaries
A genome is composed of several chromosomes, and each 
chromosome is an ordering of syntenic blocks. For convenience, 
each syntenic block is recorded by an integer, so a chromosome is 
represented by a signed permutation X=c1c2⋯gn, where ci(1≤i≤n) 

is an integer representing a syntenic block, its sign is assigned 
with the orientation that is either positive (recorded by ci) or 
negative (recorded by –ci). The chromosome X=c1c2⋯cn is the 
same as –X = – cn – cn – 1

… – c1.
A reversal r (i, j) (i ≤ j) converts chromosome X=c1c2⋯cn into 

a new chromosome Xʹ=c1c2⋯−cj−cj–1⋯−ci+1−cicj+1⋯cn, where the 
reversal is from ci to cj.

A translocation event breaks two chromosomes into four 
segments and then reconnects them into two new chromosomes. 
Given two chromosomes X = X1X2 and Y = Y1Y2, where 
X1=x1x2⋯xi–1,X2=xixi+1⋯xm,Y1=y1y2⋯yj–1, and Y2=yjyj+1⋯yn, a 
translocation is represented by tl(i,j). X1 and Y1 are exchanged to 
form two new chromosomes Xʹ=Y1X2 and Yʹ=X1Y2, or X1 and Y2 
are exchanged to form two new chromosomes X” = – Y2X2 and 
Y” = X1 – Y1. 

A transposition event is to exchange two adjacent 
fragments on one chromosome into a new chromosome. A 
transposition is represented by tp(i, j, k), i.e., the fragment ci⋯cj 
of one chromosome inserted into after ck. If ck is on the same 
chromosome (k > j or k < i), then the transposition tp(i, j, k) is 
called intra-chromosomal; otherwise, it is inter-chromosomal. 
Given a chromosome X=c1c2⋯cici+1⋯cj–1cj⋯ck⋯cn and 
an intra-chromosomal transposition, X is converted into 
Xʹ=c1c2⋯ckcici+1⋯cjck+1⋯cn.

A fusion event is to connect two chromosomes into a new 
chromosome. The fusion acting on chromosomes X1 and X2 
is represented by f u(X1, X2) and forming a new chromosome 
X1X2 or X1−X2. A fission is to split a chromosome into two new 
chromosomes. A fission acting on the chromosome X = X1X2 is 
represented by f i(X) and forming two new chromosomes X1 and 
X2 (where X1 and X2 are non-empty segments).

An adjacency a(ci,ci+1) of genome X is two adjacent integers 
in one chromosome of X. a(ci,ci+1) is the same as a(−ci+1,−ci). For 
example, all adjacencies on chromosome X = 1,234 are a(1, 2), 
a(2, 3), and a(3, 4). For a set of genomes S, an adjacency a is 
effective w.r.t. S if it belongs to at least one genome and not all 
genomes. For example, two uni-chromosomal genomes G1 and 
G2, the chromosome X = 1,234 of G1 and the chromosome Y = 
1 – 3 − 24 of G2, then all effective adjacencies w.r.t. G1 and G2 are 
a(1, 2), a(2, 3), a(3, 4), a(1, −3), and a(−2, 4).

EMRAE
Given a phylogenetic tree T describing the evolution of the 
genomes G, EMRAE first computes all effective adjacencies 
w.r.t. G. Then, it predicts the rearrangement events for each 
edge of T by means of inference rules (will be introduced in 
the following).

Figure 1 shows a reversal r(2, 3) during the evolution from 
A to B, where A and B are two uni-chromosomal genomes, and 
the chromosomes are X = 1,234 and Y = 1 – 3 – 24, respectively. 
The set of genomes will be divided into two subsets recorded 
by SA and SB after removing the edge e from T. Suppose there 
is not any rearrangement events inside SA and SB. Then, 
adjacencies a(1, 2) and a(3, 4) can be found in each genome of 
SA and not in any one genome of SB; a(1,−3) and a(−2,4) can be 
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found in each genome of SB and not in any one genome of SA. 
In turn, we can utilize the four adjacencies a(1, 2), a(3, 4), a(1, 
−3), and a(−2,4) to identify a reversal r(2, 3) occurring on the 
edge e. The EMRAE method infers the rearrangement events 
by means of the similar rules.

Let e = (A, B) be an edge of T, G={G1,G2,⋯,Gm}the genomes 
of leaves, and a1,a2,⋯ai the children of A and b1,b2,⋯bj the 
children of B. EMRAE first selects a number of adjacencies as 
candidate adjacencies Ca(e,A) for edge e and node A according 
the following steps.

1. Find the adjacencies are in each genome of SA and not in any 
one genome of SB, then put them to Ca(e, A);

2. If A is an internal node, find all edges connected with A except 
e and record them with e1,e2,⋯,ek. For each ei=(ui,A)(1≤i≤k), 
G can be divided into two parts after removing ei, Sui is the 
part not including A.
a. Find the adjacencies that are in one genome of each 

Sui (1 ≤ i ≤ k) and not in any one genome of SB, then 
put them to Ca(e,A);

b. Compute Ca(ei, ui) and Ca(ei,u)(1≤i≤k). For each one 
Ca(ei, ui), find the adjacency a1 from Ca(ei, ui), such 
that a1 is not overlap gene with any one adjacency in 
Ca(ei, u), a1 has overlap gene with one adjacency a2 in 
each Ca(ej,uj)(1≤j≠i≤k), and a2 has overlap gene with 
at least one adjacency in Ca(ej, u), then put a\s\do5(1) 
to Ca(e, u).

EMRAE then infers rearrangement from Ca(e, A) and Ca(e, B) 
for edge e = (A, B) with the help of inference rules in the following 
section. From the definitions of genome rearrangements, 
we find that each genome rearrangement can change several 
adjacencies. For example, each reversal r(i, j)(i ≤ j) can change 
two adjacencies a1=a(ci–1,ci) and a2=a(cj,cj+1) into b1 = a(ci–1, – cj) 
and b2=a(−ci,cj+1). Based on those facts, we obtain the inference 
rules introduced in the following section.

Inference Rule
Let e = (A,B) be an edge of the phylogenetic tree T. Given 
adjacencies a1 = a (c1–1, ci), a2 = a (cj, cj+1) in Ca(e,A) and b1=a(ci–1,−
cj), b2=a(−ci,cj+1) in Ca(e,B), EMRAE infers a reversal r(i,j) from A 
to B if all genomes are uni-chromosomal or a1, a2 are in the same 
chromosome in SA and b1, and b2 are in the same chromosome 
in SB. Otherwise, we infer a translocation tl(i, j). Similarly, given 

adjacencies a1=a(ci–1,ci), a2=a(cjcj+1) in Ca(e,A) and b1=a(ci+1,cj+1), 
b2=a(cj,ci) in Ca(e,B), EMRAE infers a translocation tl(i,j), or a 
reversal for a1, a2 in Ca(e,A) and adjacencies b1, b2 in Ca(e,B).

Assume that there are adjacencies a1=a(ci–1,ci), a2=a(cj,cj+1), 
and a3=a(ck,ck+1) in Ca(e,A) and b1=a(ci–1,cj+1), b2=a(ck,ci), and 
b3=a(cj,ck+1) in Ca(e,B). EMRAE can predict a transposition 
tp(i,j,k) during the evolution from A to B if all genomes are 
uni-chromosomal. Otherwise, suppose m genomes in SA have 
a1 and a2, then EMRAE can predict a transposition tp(i,j,k) 
if there are at least m/2 genomes such that the four integers 
of a1 and a2 on the same chromosome, or there are at least 
m/2 genomes such that the four integers of a2 and a3 on the 
same chromosome.

Assume that there is a=a(ci,cj) in Ca(e,A). EMRAE can predict 
a fission that splits the adjacency a=a(ci,cj) if a is sign-compatible 
for each genome Gk in SB. The fusion from A to B can be seen as 
a fission from B to A.

Recovering the Genome Rearrangements 
Based on Phylogenetic Tree
EMRAE can not identify the rearrangement occurring in the 
frontier of genomes. We take Figure 2, for example, where 
species A, B, and C are uni-chromosomal genomes A = 1,234, 
B = −2 – 134, and C = 1,234. A reversal r(1,2) has occurred in 
the evolution from A to B. EMRAE can compute the candidate 
adjacencies a(−1,3) for Ca(e1,B) and a(2,3) for Ca(e1,A). So, 
EMRAE can not infer the reversal r(1,2) on the edge e1 according 
to the candidate adjacencies.

We improve EMRAE so that the improved method (called 
RGRPT) is able to infer the rearrangement events occurring in 
the frontier region. The inference rule of RGRPT is the same as 
that of EMRAE. The difference between RGRPT and EMRAE 
is that they have different candidate adjacencies. RGRPT puts 
0 to the head and tail for each chromosome, so there will be 
added a lot of adjacencies for each genome. For example, 
considering the uni-chromosomal genomes X = 1,234 and 
Y = −2 −134, the two additional candidate adjacencies a(0,1) 
and a(0,−2) are added.

RGRPT adds candidate adjacencies in the step b of EMRAE. 
For each one Ca(ei,ui) and an adjacency a1 from Ca(ei,ui), if there 
is an adjacency a2 in each Ca(ej,uj)(1≤j≠i≤k) such that a1 with a2 
has overlap gene, then put a1 to Ca(e,u).

FIGURE 1 | A reversal r (2, 3) during the evolution from A to B; S\s\do5 (A) 
and S\s\do5 (B) are two subsets of all leaves species divided by the edge e.

FIGURE 2 | The tree topology with two taxa (B and C). 
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RESULTS

All of the experiments were performed on a computer with Intel 
Vostro 14 2.0 GHz CPU, 4 GB RAM, and 500 GB Hard Disk 
Drives (HDD). The operating system was Win10 64 bit with Java 
1.6 installed. RGRPT was written in Java.

We tested RGRPT with both simulated data and the practical 
data (i.e., real biological data) introduced by the following section.

Simulated Data
Here, we start with an uni-chromosomal genome as the ancestor, 
and it evolves along the phylogenetic tree with n taxa whose 
topology sees the Figure 3.

We generate two simulated data sets in order to test the 
affectivity of RGRPT. One of them is created from the 
phylogeny only with reversals events. The other data set is 
generated from the phylogeny with kinds of events, including 
reversals, translocation, transposition, fusion, and fission, 
and the quantity of those events is in a certain ratio. The two 
data sets can test the ability of methods to recover the simple 
and the complex evolution histories. First data set is created 
just using reversal events. Since the reversal on only one gene 
is rare (Korbel et al., 2007), we set the ratio of reversal on 
one gene and on more than one gene as 1:3. The number of 
leaves is from 3 to 10 with step 1. For each number of leaves, 

the ancestor genome with m gene, where m from 50 to 150 
with step 10. Each edge will happen k reverse, where k is 
random integer number from 3 to 10. So, there are 11 groups 
data for each leaf number. Sensibility is the percentage of 
correctly predicted events in all practical events. Specificity 
is the percentage of correctly predicted events in all predicted 
events. We compute the sensibility and specificity for RGRPT 
and EMRAE for each group data. Table 1 shows the average 
sensitivity and specificity for each leaf number. The second 
column of the table records the number of all events, and its 
last row records the average values.

Table 1 shows that RGRPT achieves higher sensibility than 
EMRAE, and RGRPT achieves comparable specificity with 
EMRAE. Obviously, RGRPT can distinguish more actually 
occurred events than EMRAE. So, the experimental results show 
that the RGRPT is more efficient than EMRAE for predicting 
reversal events.

Second data set is generated by using all events, i.e., 
reversal, translocation, transposition, fusion, and fission. The 
reversals are generally more than the other rearrangement 
events. The fusions and the fissions are very rare; so, we 
record the number of the two events together. Here, we set the 
ratio of those events as 10:2:2:0.1. The ancestor genome has 
5 chromosomes and each chromosome with 100 genes. The 
ancestor genome evolves along the topology with four leaves 
(see Figure 3). Each edge happen k events, where k is random 
number from 1 to μ and μ is 6, 12, 18, and 24. For each μ, it 
runs 10 times; so, we can obtain 10 groups data for each μ. 
Table 2 shows the average of 10 groups data for each μ. This 
table indicates that the RGRPT is more efficient than EMRAE 
for predicting all events.

Practical Data
The practical data is from the paper (Zhao and Bourque, 2009). 
It contains six mammalian genomes, i.e., human, chimpanzee, 
rhesus monkey, mouse, voles, and dog. The data are created from 
two different levels of resolution 10 kb and 50 kb. Figure 4 is the 
tree describing the phylogeny of species. The results are shown 
in Tables 3 and 4. EM and RG represent EMRAE and RGRPT 
respectively, and Rev, Tloc, Tran, Fus, and Fis represent reversal, 

TABLE 1 | Results of EMRAE and recovering the genome rearrangements based on phylogenetic tree algorithms in predicting reversal events.

Leaves Reversal Sensibility Specificity

EMRAE RGRPT EMRAE RGRPT

3 24 64% 76% 89% 90%
4 39 65% 76% 94% 94%
5 45 61% 72% 92% 93%
6 59 57% 66% 90% 90%
7 69 54% 65% 92% 91%
8 79 59% 80% 92% 92%
9 92 55% 63% 90% 90%
10 104 55% 62% 89% 89%

Mean 58.7% 70% 91% 91.1%

FIGURE 3 | The topology used to generate the simulation data.
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translocation, transposition, fusion, and fission, respectively. 
Each row in the table records the ancestor rearrangement events 
of the edge. For example, the values in the human row are the 
rearrangement events from D to human; the values in MR row 
are the rearrangement events from A and B.

At 10 kb resolution, the RGRPT algorithm predicts 1,157 
ancestor rearrangement events, including 858 reversals, 16 
translocations, 249 transpositions, and 34 fusions and fissions. 
It identifies 48 rearrangement events more than the EMRAE. 
The reversal events are in the majority in all predicted events. 
At 50 kb resolution, the RGRPT algorithm predicts 475 
ancestor rearrangement events, including 332 reversals, 13 
translocations, 94 transpositions, and 36 fusion and fissions. 
RGRPT identifies 21 rearrangement events more than EMRAE 
algorithm. The rearrangement events identified in the rat 

TABLE 2 | Results of EMRAE and recovering the genome rearrangements based on phylogenetic tree algorithms in predicting all events.

Events of each edge All events Sensibility Specificity

EMRAE RGRPT EMRAE RGRPT

6 19 75.8% 85.7% 95.8% 96.2%
12 29 74.2% 80.3% 97% 96.5%
18 38 53.5% 58.1% 95.4% 96.7%
24 50 47.7% 50.5% 94.9% 94.1%

Mean 62.8% 68.7% 95.8% 95.9%

FIGURE 4 | The tree describing the phylogeny of mammalian species.

TABLE 3 | Genome rearrangement predictions of EMRAE and recovering the genome rearrangements based on phylogenetic tree at 10 kb resolution.

Species Rev Tloc Tran Fus/Fis Total events

EM RG EM RG EM RG EM RG EM RG

Human 12 13 0 0 4 5 0 0 16 18
HC 29 32 0 0 15 15 0 1 44 48
HCP 83 84 0 0 8 10 2 8 93 102
Chimp 17 19 0 0 7 8 1 1 25 28
Rhesus 49 50 0 0 40 42 1 2 90 94
Mouse 90 95 3 3 10 13 5 5 108 116
Rat 227 233 0 0 127 129 3 3 357 365
MR 140 143 2 3 9 10 0 0 151 156
Dog 184 189 10 10 17 17 14 14 225 230
Total 831 858 15 16 237 249 26 34 1,109 1,157

TABLE 4 | Genome rearrangement predictions of EMRAE and recovering the genome rearrangements based on phylogenetic tree at 50 kb resolution.

Species Rev Tloc Tran Fus/Fis Total events

EM RG EM RG EM RG EM RG EM RG

Human 2 2 0 0 1 1 0 0 3 3
HC 19 19 0 0 4 4 1 1 24 24
HCP 27 29 0 0 5 6 2 6 34 41
Chimp 17 19 0 0 7 8 1 1 25 28
Rhesus 22 23 0 0 6 7 1 3 29 33
Mouse 25 27 3 3 0 0 5 6 33 36
Rat 128 131 0 0 65 65 5 5 198 201
MR 41 42 2 2 2 2 0 0 45 46
Dog 46 47 7 8 8 8 13 14 74 77
Total 322 332 12 13 92 94 28 36 454 475
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edge are mostly in all edges either at 10 kb resolution or at 
50 kb resolution. The syntenic blocks of genomes at 10 kb 
resolution are more than the syntenic blocks of genomes at 50 
kb resolution. The fact reduces the recognized rearrangement 
events at 10 kb resolution that are more than the recognized 
rearrangement events at 50 kb resolution. Experiments show 
that RGRPT can recover more ancestor events than EMRAE.

DISCUSSION

This paper proposes a new method, RGRPT, to infer ancestor 
rearrangement events. RGRPT takes a phylogenetic tree describing 
the evolution of species and the genomes of species as input. 
Experiments on the simulated data and practical data show that 
RGRPT is more efficient than EMRAE and can recover more 
ancestor rearrangement events than EMRAE. RGRPT provides a 
method for us to research the genome rearrangement of species. We 
can use RGRPT to recognize the ancestral genome rearrangement 
for the evolution of other species in future (Tian et al., 2018).

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. These 
data can be found here: https://github.com/wangjuanimu/
data-of-genome-rearrangement.

AUTHOR CONTRIBUTIONS

JW proposed and implemented the RGRPT method. JW and 
BC designed all experiments. All authors participated in the 
designing the algorithm and writing the paper.

FUNDING

The work was supported by the National Natural Science 
Foundation of China (61661040, 61661039, 61571163, 61532014, 
61671189, 91735306, 61751104); the National Key Research and 
Development Plan Task of China (Grant No. 2016YFC0901902).

REFERENCES

Alekseyev, M. A., and Pevzner, P. A. (2009). Breakpoint graphs and ancestral 
genome reconstructions. Genome Res. 19 (5), 943–957.

Blanchette, M., Bourque, G., and Sankoff, D. (1997). Breakpoint phylogenies. 
Genome Inform. Ser. Workshop Genome Inform. 8, 25–34.

Bourque, G., and Pevzner, P. A. (2002). Genome-scale evolution: reconstructing 
gene orders in the ancestral species. Genome Res. 11 (1), 26–36.

Cheng, L., Yang, H., Zhao, H., Pei, X., Shi, H., Sun, J., et al. (2019). Metsigdis: a 
manually curated resource for the metabolic signatures of diseases. Briefings 
Bioinf. doi: 10.1093/bib/bbx103

Dong, S., Zhao, C., Fei, C., Liu, Y., Zhang, S., Hong, W., et al. (2018). The complete 
mitochondrial genome of the early flowering plant nymphaea colorata is highly 
repetitive with low recombination. Bmc Genomics 19 (1), 614–626.

Duchemin, W., Anselmetti, Y., Patterson, M., Ponty, Y., Brard, S., Chauve, C., 
et  al. (2017). Decostar: Reconstructing the ancestral organization of 
genes or genomes using reconciled phylogenies. Genome Biol. Evol. 9 (5), 
1312–1319.

Erdös, P. L., Soukup, L., and Stoye, J. (2011). Balanced vertices in trees and a 
simpler algorithm to compute the genomic distance. Appl. Math. Lett. 24 (1), 
82–86.

Feijão, P., and Meidanis, J. (2011). Scj:a breakpoint-like distance that simplifies 
several rearrangement problems. IEEE/ACM Trans. Comput. Biol. Bioinform. 
8 (5), 1318–1329.

Hannenhalli, S. (1995). Polynomial-time algorithm for computing translocation 
distance between genomes. Discrete Appl. Math. 71 (1–3), 137–151.

Hannenhalli, S., and Pevzner, P. A. (1999). Transforming cabbage into 
turnip:polynomial algorithm for sorting signed permutations by reversals. J. 
Acm 46 (1), 1–27.

Hilker, R., Sickinger, C., Pedersen, C. N., and Stoye, J. (2012). Unimog–a unifying 
framework for genomic distance calculation and sorting based on dcj. 
Bioinformatics 28 (19), 2509.

Jakub, K., Robert, W., Braga, M. D. V., and Jens, S. (2011). Restricted dcj model: 
rearrangement problems with chromosome reincorporation. J. Comput. Biol. J. 
Comput. Mol. Cell Biol. 18 (9), 1231–1241.

Kaplan, H., Shamir, R., and Tarjan, R. E. (2000). Faster and simpler algorithm 
for sorting signed permutations by reversals. SIAM J. Comput. 29 (3), 
880–892.

Korbel, J. O., Urban A. E., Affourtit J. P., Godwin B., Grubert F., Simons J. F. 
et al. (2007). Paired-end mapping reveals extensive structural variation in the 
human genome. Science 318 (5849), 420–426.

Liu, X., Zhu, D., Ma, S., Li, Z., and Wang, L. (2004). An o(n2) algorithm for sorting 
oriented genomes by translocations. Chin. J. Comput. 27 (10), 1354–1360.

Lu, C. L., Huang, Y. L., Wang, T. C., and Chiu, H. T. (2006). Analysis of circular 
genome rearrangement by fusions, fissions and block-interchanges. Bmc Bioinf. 
7 (1), 295.

Ma, J., Zhang, L., Suh, B., and e. a. Raney, B. (2006). Reconstructing contiguous 
regions of an ancestral genome. Genome Res. 16 (12), 1557–1565.

Sankoff, D., and Blanchette, M. (1998). Multiple genome rearrangement and 
breakpoint phylogeny. J. Comput. Biol. 5, 555–570.

Sophia, Y., Oliver, A., and Richard, F. (2005). Efficient sorting of genomic 
permutations by translocation, inversion and block interchange. Bioinformatics 
21 (16), 3340–3346.

Tian, Z., Teng, Z., Cheng, S., and Guo, M. (2018). Computational drug 
repositioning using meta-path-based semantic network analysis. BMC Syst. 
Biol. 12 (S9), 134.

Xu, Y., Wang, Y., Luo, J., Zhao, W., and Zhou, X. (2017) Deep learning of the 
splicing (epi)genetic code reveals a novel candidate mechanism linking histone 
modifications to esc fate decision. Nucleic Acids Res. 45 (21), 12100–12112.

Yang, N., Hu, F., Zhou, L., and Tang, J. (2014). Reconstruction of ancestral gene 
orders using probabilistic and gene encoding approaches. PLoS One 9 (10), 
e108796.

Yen-Lin, H., Chen-Cheng, H., Chuan Yi, T., and Chin Lung, L. (2010). Sort2: a 
tool for sorting genomes and reconstructing phylogenetic trees by reversals, 
generalized transpositions and translocations. Nucleic Acids Res. 38 (Web 
Server issue), W221–W227.

Zhao, H., and Bourque, G. (2009). Recovering genome rearrangements in the 
mammalian phylogeny. Genome Res. 19 (5), 934–942.

Zhu, D., and Ma, S. (2002). An improved algorithm for the translocation sorting 
problem of genomes. Chin. J. Comput. 25 (2), 189–196.

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as a 
potential conflict of interest.

Copyright © 2019 Wang, Cui, Zhao and Guo. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC 
BY). The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner(s) are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

105

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://github.com/wangjuanimu/data-of-genome-rearrangement
https://github.com/wangjuanimu/data-of-genome-rearrangement
https://doi.org/10.1093/bib/bbx103
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1

Edited by: 
Liang Cheng, 

Harbin Medical University, 
China

Reviewed by: 
Guiyou Liu, 

Chinese Academy of Sciences, 
China  

Zhi-Liang Ji, 
Xiamen University, China

*Correspondence: 
Feng Zhu 

zhufeng@zju.edu.cn;  
prof.zhufeng@gmail.com

Specialty section: 
This article was submitted to 

 Statistical Genetics  
and Methodology, 

 a section of the journal 
 Frontiers in Genetics

Received: 22 July 2019
Accepted: 18 October 2019

Published: 12 November 2019

Citation: 
Han Z, Hua J, Xue W and Zhu F 

(2019) Integrating the Ribonucleic 
Acid Sequencing Data From Various 

Studies for Exploring the Multiple 
Sclerosis-Related Long  

Noncoding Ribonucleic Acids  
and Their Functions. 

 Front. Genet. 10:1136. 
 doi: 10.3389/fgene.2019.01136

Integrating the Ribonucleic Acid 
Sequencing Data From Various 
Studies for Exploring the Multiple 
Sclerosis-Related Long Noncoding 
Ribonucleic Acids and Their 
Functions
Zhijie Han 1,2, Jiao Hua 3, Weiwei Xue 2 and Feng Zhu 1,2*

1 College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China, 2 School of Pharmaceutical Sciences, 
Chongqing University, Chongqing, China, 3 School of Mathematics, Harbin Institute of Technology, Harbin, China

Multiple sclerosis (MS) is a chronic fatal central nervous system (CNS) disease involving in 
complex immunity dysfunction. Recently, long noncoding RNAs (lncRNAs) were discovered 
as the important regulatory factors for the pathogenesis of MS. However, these findings 
often cannot be repeated and confirmed by the subsequent studies. We considered 
that the small-scale samples or the heterogeneity among various tissues may result in 
the divergence of the results. Currently, RNA-seq has become a powerful approach to 
quantify the abundances of lncRNA transcripts. Therefore, we comprehensively collected 
the MS-related RNA-seq data from a variety of previous studies, and integrated these data 
using an expression-based meta-analysis to identify the differentially expressed lncRNA 
between MS patients and controls in whole samples and subgroups. Then, we performed 
the Jensen-Shannon (JS) divergence and cluster analysis to explore the heterogeneity 
and expression specificity among various tissues. Finally, we investigated the potential 
function of identified lncRNAs for MS using weighted gene co-expression network 
analysis (WGCNA) and gene set enrichment analysis (GSEA), and 5,420 MS-related 
lncRNAs specifically expressed in the brain tissue were identified. The subgroup analysis 
found a small heterogeneity of the lncRNA expression profiles between brain and blood 
tissues. The results of WGCNA and GSEA showed that a potential important function of 
lncRNAs in MS may be involved in the regulation of ribonucleoproteins and tumor necrosis 
factor cytokines receptors. In summary, this study provided a strategy to explore disease-
related lncRNAs on genome-wide scale, and our findings will be benefit to improve the 
understanding of MS pathogenesis.

Keywords: ribonucleic acid sequencing, multiple sclerosis, long non-coding ribonucleic acids, meta-analysis, 
function analysis

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1136

ORIgINAL RESEARch

doi: 10.3389/fgene.2019.01136
published: 12 November 2019

106

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2019.01136
https://www.frontiersin.org/article/10.3389/fgene.2019.01136/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01136/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01136/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01136/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01136/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01136/full
https://loop.frontiersin.org/people/740897
https://loop.frontiersin.org/people/427253
https://loop.frontiersin.org/people/527398
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.01136
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.01136&domain=pdf&date_stamp=2019-11-12


LncRNAs Analysis by Integrating RNA-seq DataHan et al.

2

INTRODUcTION
Multiple sclerosis (MS) is a chronic fatal neurodegenerative 
disease involving in complex immunity [central nervous system 
(CNS)] (Sospedra and Martin, 2005; Frohman et al., 2006; 
Li et al., 2018). Based on the 2014 statistics of the Atlas of MS 
investigation, the estimated number of the people afflicted 
with the MS worldwide has reached approximately 2.3 million 
(Browne et al., 2014). Although much remains unknown about 
the molecular etiology of MS, more and more studies showed that 
the dysregulation of transcriptional processes could potentially 
contribute to the pathogenesis of MS (Li et al., 2017; Selmaj et al., 
2017; Angerer et al., 2018; Cheng et al., 2018; Han et al., 2018b; 
Zhang et al., 2019).

Recently, long noncoding RNA (lncRNA), one of the non-
protein-coding genes whose transcripts are longer than 200 
nucleotides, has been discovered as the important regulatory 
factor of immune system and pathogenesis of CNS disorders 
including MS (Gomez et al., 2013; Ng et al., 2013; Dong et al., 
2015; Cheng et al., 2016; Santoro et al., 2016; Zhang et al., 2016; 
Chen et al., 2017; Eftekharian et al., 2017; He et al., 2017; Cheng 
et al., 2018; Yin et al., 2019). However, for MS, these results often 
cannot be repeated and confirmed by subsequent study. For 
example, multiple variants of the lncRNA antisense non-coding 
RNA in the INK4 locus (ANRIL) are found significantly associated 
with the risk of MS through the haplotype analysis of blood 
samples (Rezazadeh et al., 2018). But following study reveals that 
the function of ANRIL does not contribute the pathogenesis of 
MS in blood, cortex, and cerebellum tissues (Pahlevan Kakhki 
et al., 2018). Study showed a significant upregulation of lncRNA 
MALAT1 in MS blood tissues (Cardamone et al., 2019), while 
the expression of MALAT1 was found markedly decreased 
in MS brain by the subsequent study (Masoumi et al., 2019). 
Moreover, another study found that MALAT1 is not significantly 
differentially expressed between MS patients and controls 
(Gharesouran et al., 2019). We considered that the small-scale 
samples or the heterogeneity among various tissues may result in 
the divergence of the results.

Currently, specifically for lncRNAs, using RNA-seq data to 
quantify abundance of the transcripts has become very powerful 
approach compared with the traditional ones (e.g., gene 
microarray) (Wang et al., 2009). Particularly, almost all of the 
expression of the known lncRNA transcripts can be measured 
using RNA-seq data, but this proportion is just approximately 
0.1 to 10.6% by the method of probe re-annotation using various 
types of microarrays (Du et al., 2013; Fang et al., 2018; Yang 
et al., 2019). Moreover, lncRNA abundance quantification using 
RNA-seq data also shows higher accuracy based on its deep 
read coverage, while the re-annotation approach only requires 
the sequence match of 1 to 4 probes when quantifies lncRNA 
abundance (Du et al., 2013; Gellert et al., 2013; Li et al., 2019). A 
previous study reported that by paying attention to some aspect 
of library and sequencing process [i.e., poly-A tail selection, 
paired-end sequencing, and sequencing of double-stranded 
complementary DNA (cDNA)], the lncRNAs are more easily 
and more accurately identified through RNA-seq (Ilott and 
Ponting, 2013).

In this study, we thus selected all MS-related RNA-seq data 
in a variety of studies by searching three authoritative public 
databases: GEO DataSets (Barrett et al., 2013), EBI-EMBL 
ArrayExpress (Athar et al., 2019), and DDBJ Sequence Read 
Archive (Ogasawara et al., 2013) using the keyword “multiple 
sclerosis.” Then, we used these RNA-seq data to perform 
expression quantification of the lncRNA in each of the selected 
studies. Next, we integrated the lncRNA expression results of all 
selected studies by an expression-based meta-analysis to identify 
the significantly differentially expressed lncRNAs between MS 
patients and controls. Further, we explored their heterogeneity 
and expression specificity among various tissues. After that, the 
weighted gene co-expression network analysis (WGCNA) was 
performed using the expression data of lncRNAs and protein-
coding genes to identify the significant modules for MS. The 
expression of the protein-coding genes was calculated using 
the same approach on lncRNA. Finally, we conducted gene set 
enrichment analysis (GSEA) on the co-expressed protein-coding 
genes in each significant module to infer the function of the 
differentially expressed lncRNAs potentially contributing to the 
pathogenesis of MS.

MATERIALS AND METhODS

Selection of the Multiple Sclerosis-Related 
Ribonucleic Acid Sequencing Datasets 
and Studies
We used the keyword “multiple sclerosis” to search all the possible 
MS-related RNA-seq datasets in three authoritative databases: 
GEO DataSets (Barrett et al., 2013), EBI-EMBL ArrayExpress 
(Athar et al., 2019), and DDBJ Sequence Read Archive 
(Ogasawara et al., 2013). The search was performed before the 
last update of the databases on May 16 2019. Then, we selected 
the suitable datasets using four criteria: 1) the organism in the 
dataset is the human being; 2) the study in the dataset is designed 
using the case-control method; 3) the dataset has provided the 
FASTQ data; (4) the FASTQ data in the dataset is not generated 
by metagenome, whole genome, or whole exome sequencing. 
Finally, the studies from these datasets based on various tissues 
were selected. Figure 1 showed the workflow.

Quantification of Long Noncoding 
Ribonucleic Acid Sequencing Abundance 
Using Ribonucleic Acid Sequencing 
Sequencing Data
We first downloaded the sequence data of these studies by 
Prefetch and converted them into FASTQ files using fastq-dump 
tool of the SRA Toolkit software (Leinonen et al., 2011). Next, 
we downloaded the reference sequences of lncRNA and protein-
coding transcripts in FASTA format from NONCODE (version 
5) (Fang et al., 2018) and Ensembl (release 91) (Aken et al., 
2017), respectively, and further merged the two FASTA format 
files. Particularly, NONCODE is one of the most complete 
and well-annotated databases of the noncoding RNAs, and we 
obtained a total of 172,216 transcript sequences of 96,308 human 
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lncRNA genes from it. Ensembl aggregated the cDNA data from 
National Center for Biotechnology Information (Sayers et al., 
2019), UniProt (UniProt, 2015), Genome Reference Consortium 
(Church et al., 2011), and UCSC Genome Browser (Kent et al., 
2002) databases. After removing the pseudogenes, we obtained 
a total of 160,040 transcript sequences of 22,810 human protein-
coding genes from it. Then, we performed the quantification 
of the lncRNA and protein-coding transcripts simultaneously 
by mapping the RNA-seq reads of each study to the merged 
reference sequence (pseudoalignment) and calculating the count 
values using Kallisto software (Bray et al., 2016). Kallisto is a fast 
and highly accurate quantification tool for transcript abundance 
through k-mer lookup technique. Here, the merged reference 
sequences have been processed into a transcriptome index to 
conduct the pseudoalignment which has the same effect as the 
reads alignment to a given reference genome in the traditional 
transcript-level RNA-seq processing but can substantially reduce 
calculation time. For the paired-end sequencing samples, the 

arguments were set to defaults, i.e., the number of bootstrap 
samples (-b) equals 0 and the number of threads (-t) equals 1. 
For the single-end sequencing samples, besides these default 
parameter settings, we set the estimated average fragment length 
(-l) and the standard deviation of fragment length (-s) to 200 and 
20, respectively, according to Kallisto’s recommended parameters. 
Finally, based on the annotation file “Transcript2Gene,” we 
integrated transcript-level count values of lncRNAs to calculate 
their corresponding gene-level count values using the R package 
“tximport” (Soneson et al., 2015).

heterogeneity Test and Meta-Analysis
To identify the significantly differentially expressed lncRNAs 
between MS patients and controls, we calculated and integrated 
the results of each study by a meta-analysis. These analyses 
were conducted using R package “MetaOmics,” which is a 
comprehensive analytical pipeline to meta-analyze multiple 

FIgURE 1 | The flow chart of selecting the RNA sequencing (RNA-seq) datasets and studies which are used to identify the multiple sclerosis-related long 
noncoding RNAs.
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transcriptomic studies (Ma et al., 2019). This meta-analysis 
includes a normalization process same as the edgeR’s strategy 
and a “AW-Fisher” method to integrate data (Bullard et al., 2010; 
Robinson et al., 2010; Ma et al., 2019). First, we calculated the two 
parameters, I2 and P value, to measure the lcnRNA expression 
heterogeneity by the Cochran’s Q Statistics, which is based on 
a chi-square test with k − 1 degrees of freedom (k equals to the 
number of studies used for the meta-analysis). According to the 
previous studies, the heterogeneity was considered as statistically 
significant when I2 > 50% and P < 0.01 (Han et al., 2015; Li et al., 
2016; Liu et al., 2017; Han et al., 2018a; Xue et al., 2018). Then, the 
meta-analysis was performed for each of these lncRNAs based on 
their count values. Particularly, the random effect model (REM) 
and fixed effect model (FEM) were used, respectively, for the 
lncRNAs with a significant heterogeneity or not. Using the REM 
in meta-analysis can reduce bias of the results (Kim et al., 2015; 
Szajewska and Kolodziej, 2015). We calculated standardized 
mean difference (SMD) with its 95% confidence interval (CI) 
to identify the differentially expressed lncRNA between the MS 
patients and controls (95% CI of SMD does not include zero, 
FDR adjusted P < 0.05). The SMD is given by the mean difference 
between case and control divided by the standard deviation and 
applies to meta-analysis when the outcome is continuous variable 
(e.g., expression level). Moreover, since all these samples can 
be split into brain and blood, we performed the meta-analysis 
for the two subgroups, and explored the differential expression 
pattern of the MS-related lncRNAs between brain and blood.

In addition, we further explored the specific target genes 
of the lncRNAs using LncRNA2Target v2.0 database which 
is authoritative source including 152,137 lncRNA-target 
relationships confirmed by the knockdown or overexpression 
analysis and binding experimental technologies, and provides 
web interface for searching the targets by a particular lncRNA 
(Cheng et al., 2019).

Tissue Specificity Analysis of the Multiple 
Sclerosis-Related Long Noncoding 
Ribonucleic Acids
We explored the tissue expression specificity of the significantly 
differentially expressed lncRNAs in MS, which was important 
aspects of neurological disease research (usually, specifically 
expressed in CNS system) (Fatica and Bozzoni, 2014; He et al., 
2017; Tang et al., 2019b). For this purpose, lncRNA expression data 
were first downloaded from the NONCODE, which were involved 
in primary human tissue/cell line (e.g., brain, heart, breast, lung, 
liver, foreskin, lung, lymph node, colon, skeletal muscle, leukocyte, 
HeLa cells, and fibroblasts, etc.). Then, we extracted the expression 
data of various tissues by the corresponding differentially expressed 
lncRNAs in brain, blood, and whole sample, respectively, and 
stored them in three independent sets. Further, based on these data, 
we used the Jensen-Shannon (JS) divergence, an entropy-based 
approach, to calculate a tissue specificity score of the differentially 
expressed lncRNAs according to previous study (Cabili et al., 
2011). Briefly, the lncRNA expression vectors were converted to 
abundance density, and the distance between two tissue expression 
patterns was defined as the square root of JS divergence. The tissue 

specificity of a lncRNA expression pattern was measured through 
the distance between expression patterns across various tissues 
and predefined extreme pattern in which the lncRNA is uniquely 
expressed in one tissue (1 minus the distance). Thus, the metric of 
tissue specificity ranged from 0 to 1. The nearer the score to one, 
the stronger the tissue specificity becomes. Finally, using the same 
data, we performed the cluster analysis with Manhattan distance 
for differentially expressed lncRNAs in brain, blood and whole 
sample by R package “gplots.”

Inferring the Functions of Multiple 
Sclerosis-Related Long Noncoding 
Ribonucleic Acids by Weighted gene 
co-Expression Network Analysis
To infer the potential biological functions of these significantly 
differentially expressed lncRNAs in MS, we used WGCNA 
approach to determine the co-expression profile of these 
MS-related lncRNAs and protein-coding genes, and further 
performed the GSEA by the co-expressed protein-coding genes. 
First, in the same way used for identifying MS-related lncRNAs, 
we quantified the abundance of the protein-coding genes and 
identified the significantly differentially expressed genes by 
a meta-analysis. Second, we constructed the co-expression 
network by integrating the count values of the differentially 
expressed lncRNAs and protein-coding genes using the R 
package “WGCNA” (Langfelder and Horvath, 2008). Particularly: 
1) we conducted the sample clustering to check if there were any 
outlier samples using “hclust” function of R package “WGCNA”; 
2) after quality control, we used “pickSoftThreshold” function of 
R package “WGCNA” to calculate the satisfactory soft threshold 
power β for ensuring the scale-free topology characteristics 
of the co-expression network; 3) based on the β value, we 
applied the Pearson’s method to calculate an adjacency matrix 
which includes the weighted correlation of all gene pairs; 4) by 
adjacency matrix, we used the dynamic cut-tree algorithm to 
construct a hierarchical clustering dendrogram and identified 
the co-expression modules where genes have high topological 
overlap with each other. Finally, we assessed the significance of 
the modules for MS by measuring two indices. Particularly, one 
of the indices is correlation between module membership (i.e., 
intramodular connectivity) and gene significance for MS. High 
correlation means that the hub genes (i.e., the genes with high 
connectivity in a co-expression module) of the corresponding 
module also tend to be highly correlated with disease states (MS 
or healthy) (Langfelder and Horvath, 2008). The other is the 
average correlation of the genes in each module with disease 
states. This was also applied to assess association of each module 
with the platforms and the tissue types, respectively.

Pathway Analysis of the Multiple 
Sclerosis-Related Long Noncoding 
Ribonucleic Acids by gene Set 
Enrichment Analysis
Based on the two indices of module significance, we selected 
the most significant modules of disease states to investigate the 
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lncRNA functions in MS by GSEA. We first extracted the ID 
numbers of the protein-coding genes co-expressed with lncRNAs 
in the modules. Then, we downloaded the signaling pathway 
data from two common databases, Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG). GO is a 
public resource of data on the gene functions in the biological 
process, molecular function, and cellular component (The 
Gene Ontology, 2017), and KEGG is comprehensive database 
which integrates the information of genes involved in signaling 
pathways, cellular processes, human diseases, etc. (Kanehisa 
et  al., 2017). Finally, we used the co-expressed protein-coding 
genes and the signaling pathway data to conduct the GSEA of 
the most significant modules using R package “clusterProfiler” 
(Yu et al., 2012). The adjusted P value calculated by the multiple 
testing (Benjamini-Hochberg method) was set at less than 0.05 as 
the threshold of significance.

RESULTS AND DIScUSSION

Results of Study Selection and Long 
Noncoding Ribonucleic Acid Abundance 
Quantification
Using keyword search and quality filtering, we identified 
ten MS-related RNA-seq datasets including: GSE60424, 
GSE66573, GSE66763, GSE89843, GSE100297, GSE120411, 
GSE111972, GSE123496, GSE77598, and SRP132699 from 
three authoritative databases. We found that the library 
preparation and sequencing methods in most of these 
datasets meet one/multiple requirements for improving the 

lncRNAs identification (i.e., poly-A tail selection, paired-end 
sequencing, and sequencing of double-stranded cDNA). Then, 
after the investigating the source of samples, we found that 
these datasets are involved in eight brain tissues (optic chiasm, 
corpus callosum, occipital cortex, astrocytes, frontal cortex, 
hippocampus, internal capsule, parietal cortex) and seven 
blood tissues (B cell, T cell, monocyte, platelets, neutrophils, 
natural killer cell, and whole blood). According to the various 
tissues, we selected a total of 20 studies (207 MS cases and 348 
controls) for the following analysis. The detailed information 
of each study was shown in Table 1. Finally, we downloaded 
RNA-seq data of the samples in each study, and used them to 
measure lncRNA expression (count values) using Kallisto (Bray 
et al., 2016) and R package “tximport” (Soneson et al., 2015). In 
total, lncRNA abundance in 555 samples was quantified.

heterogeneity Test and Meta-Analysis
Based on the count values of the 96,308 lncRNAs in 20 studies, 
the meta-analysis was performed to calculate SMD value with 
its 95% CI for each lncRNA using REM/FEM. Heterogeneity 
test showed that only about 2.90% lncRNAs have the significant 
heterogeneity (I2 > 50% and P < 0.01). Therefore, the homogeneous 
unbiased results could be identified in >97% lncRNAs by FEM. 
For the remaining lncRNAs of significant heterogeneity, REM 
could reduce resulting bias. In total, 5,420 lncRNAs were 
identified significantly differentially expressed between MS cases 
and controls, which included 368 downregulated and 5,052 
upregulated lncRNAs (shown in Figure 2A and Supplementary 
Table S1). For example, the Figure 2B exhibited the meta-analysis 
results of the lncRNA NONHSAG108980.1 which shows the 

TABLE 1 | Summary of the 20 selected studies for the meta-analysis. NK, natural killer cell.

Study 
Number

Dataset Tissue Year No. of 
cases

No. of 
controls

Sequencing 
platform

RNA-seq library type

Poly-A tail 
select

Sequencing 
of double-
stranded 
cDNA

Read type

1 GSE60424 B-cells 2014 6 4 Illumina HiScanSQ Yes Not described Paired-end
2 GSE60424 Monocytes 2014 6 4 Illumina HiScanSQ Yes Not described Paired-end
3 GSE60424 Neutrophils 2014 6 4 Illumina HiScanSQ Yes Not described Paired-end
4 GSE60424 NK 2014 3 4 Illumina HiScanSQ Yes Not described Paired-end
5 GSE60424 T-cells 2014 12 8 Illumina HiScanSQ Yes Not described Paired-end
6 GSE60424 Whole blood 2014 6 4 Illumina HiScanSQ Yes Not described Paired-end
7 GSE66573 Whole blood 2015 6 8 Illumina HiSeq 2500 Yes Yes Paired-end
8 GSE66763 T-cells 2015 10 6 Illumina HiSeq 2500 Not described Not described Paired-end
9 GSE77598 Monocytes 2016 5 3 Illumina HiSeq 2000 Not described Not described Paired-end
10 GSE89843 Platelets 2017 58 234 Illumina HiSeq 2500 Yes Yes Single-end
11 GSE100297 Optic chiasm 2017 5 5 Illumina HiSeq 3000 Yes Yes Single-end
12 GSE111972 Corpus callosum 2018 10 11 Illumina NextSeq 500 Yes Not described Single-end
13 GSE111972 Occipital cortex 2018 5 5 Illumina NextSeq 500 Yes Not described Single-end
14 GSE120411 Astrocytes 2018 24 18 Illumina HiSeq 2500 Yes Not described Single-end
15 SRP132699 Monocytes 2018 20 5 Illumina HiSeq 2500 Not described Not described Single-end
16 GSE123496 Corpus callosum 2019 5 5 Illumina HiSeq 3000 Yes Yes Single-end
17 GSE123496 Frontal cortex 2019 5 5 Illumina HiSeq 3000 Yes Yes Single-end
18 GSE123496 Hippocampus 2019 5 5 Illumina HiSeq 3000 Yes Yes Single-end
19 GSE123496 Internal capsule 2019 5 5 Illumina HiSeq 3000 Yes Yes Single-end
20 GSE123496 Parietal cortex 2019 5 5 Illumina HiSeq 3000 Yes Yes Single-end
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most significant association with an increased risk of MS (SMD = 
0.59, 95% CI = 0.40−0.78, P = 1.89×10−9). Then, to investigate the 
heterogeneity of the lncRNA expression profile in various tissues, 
we split the samples into brain and blood tissue, and performed 
the heterogeneity test and meta-analysis for subgroups. We 

found that not only the proportion of lncRNAs with a significant 
heterogeneity was not high for the whole samples, but also this 
percentage is further reduced to about 1.99 and 1.20% in blood 
and brain, respectively (Figure 2C). Finally, we explored the 
difference of the differentially expressed lncRNAs identified in 

FIgURE 2 | The results of heterogeneity test and meta-analysis for all samples and subgroups. (A) The expression level of the significantly differentially expressed 
long noncoding RNAs (lncRNAs) in each study after meta-analysis. The random effect model was used for 157 lncRNAs with a significant heterogeneity, while the 
fixed effect model was used for 5,263 non-heterogeneous lncRNAs. The details can be clearly viewed by enlarging the electronic version. (B) The forest plot for the 
meta-analysis of the lncRNA NONHSAG108980.1 which is the most significant result associated with an increased risk of MS (SMD = 0.59, 95% CI = 0.40−0.78, 
P = 1.89×10−9). (c) The bar plot showing the results of heterogeneity test in each group. For all samples, the proportion of lncRNAs with a significant heterogeneity 
is not high (about 2.90%), and this percentage is further decreased to about 1.99 and 1.20% in blood and brain, respectively. (D) The Venn diagram exhibiting the 
overlap among the significantly differentially expressed lncRNAs that are identified using brain tissues, blood tissues, and all samples.
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various tissues. We found that there was the higher specificity for 
these lncRNAs identified in brain compared with them identified 
in blood. Particularly, about 60.06% of the 5,420 differentially 
expressed lncRNAs can also be identified in the blood, while 
percentage is only 26.82% in brain (Figure 2D). Moreover, the 
total number of upregulated lncRNAs is far more than that of the 
downregulated ones in the blood (Supplementary Table S2) and 
the brain (Supplementary Table S3), which indicated that MS 
risk was related to lncRNA overexpression.

In addition, previous studies found that lncRNAs were 
modestly evolutionarily conserved in sequence (Guttman et al., 
2009; Iyer et al., 2015). Therefore, we explored the conservation 
in sequence of these differentially expressed lncRNAs using 
conservation constrain search in NONCODE which contains 
the conservation information of lncRNAs in 13 common model 
organisms (i.e., human, chimp, gorilla, orangutan, rhesus, 
mouse, rat, cow, pig, opossum, platypus, chicken, and zebrafish). 
The results showed that only 0.11% of the differential lncRNAs 
were conserved in sequence among all these 13 organisms, while 
this percentage is increased to 28.5% in primates (human, chimp, 
gorilla, orangutan, and rhesus).

Tissue Specificity Analysis of the Multiple 
Sclerosis-Related Long Noncoding 
Ribonucleic Acids
Using expression data of NONCODE database, we performed 
the JS divergence metric and the cluster analysis to explore 
the tissue specificity of MS-related lncRNAs. The results of JS 
divergence metric showed that the MS-related lncRNA had high 
tissue specificity when used the brain, blood and whole samples 
(Figure 3A). For cluster analysis, relied on the same data, we 
further compared the expression patterns of these differentially 
expressed lncRNAs in various human tissues and cell lines. We 
found that the differentially expressed lncRNAs identified based 
on whole sample were highly specifically expressed in brain tissue 
(Figure 3B). Similarly, we observed a significant brain-specific 
expression for the differentially expressed lncRNAs identified 
based on brain sample (Figure 3C). Interestingly, although the 
differentially expressed lncRNAs were identified from blood 
sample, their expressions were still highly specific in brain tissue 
(Figure 3D). These results are consistent with the findings of the 
previous step and our recently published study (Han et al., 2019), 
which suggest that MS possesses the characteristics of the CNS 
disorder in lncRNA dysregulation.

Inferring the Functions of Multiple 
Sclerosis-Related Long Noncoding 
Ribonucleic Acids by Weighted gene 
co-Expression Network Analysis
After abundance quantification together with meta-analysis, 
we identified 2,051 protein-coding genes significantly 
differentially expressed between MS patients and controls 
(Supplementary Table S4). Then, we combined the count values 
of 2,051 differentially expressed protein-coding genes and 5,420 
MS-related lncRNAs to perform the WGCNA. By quality control, 

we removed three outlier samples whose minimum cluster size 
less than 5 and cutting height less than 4.0×106 (Supplementary 
Figure S1). The satisfactory soft threshold power β was set 
as 9 when the model fitting index R2 equals 0.8 and the mean 
connectivity is close to 0 simultaneously (Supplementary 
Figure  S2). Finally, we constructed a co-expression network 
which includes 1,938 protein-coding genes and 5,022 lncRNAs, 
and according to the interconnectedness of gene pairs, they were 
clustered into 15 modules in network (MEyellow, MEturquoise, 
MEblue, MEsalmon, MEred, MEpurple, MEpink, MEmagenta, 
MEgreen, MEmidnightblue, MEcyan, MEtan, MEgreenyellow, 
MEbrown, and MEblack) (Figure 4A). Moreover, to assess the 
significance of these modules for MS, we calculated two types of 
correlations as the index. The results of the average correlation 
of the genes in each module with the disease states showed that 
MEyellow is the most associated module with MS (r = 0.33, 
P = 5×10−15), and the following three are MEred (r = 0.32, P = 
2×10−14), MEpink (r = −0.28, P = 2×10−11), and MEbrown (r = 
0.24, P = 9×10−9). This was also applied to assess the association of 
each module with the platforms and the tissue types, respectively. 
Consistently, we found that the MEred (r = 0.71, P = 2×10−85), 
MEbrown (r = 0.52, P = 1×10−39), and MEyellow (r = 0.38, P = 
2×10−20) were most significantly associated with the tissue types. 
While there is no module strongly associated with platforms 
(Figure 4B). These findings are generally consistent with the 
result of the correlation between the module membership and 
the gene significance for MS. For example, MEyellow and MEred 
are the top two module with the high average correlation of 
genes with disease states, and they also show a high correlation 
between module membership and gene significance (cor = 0.43, 
P = 4.6×10−15 and cor = 0.50, P = 2.6×10−19, respectively) (Figures 
4C, D). On the contrary, MEcyan shows a very low level both for 
the two types of correlations (r = −0.058, P = 0.2 and cor = 0.038, 
P = 0.8) (Figure 4E).

In addition, we also perform a WGCNA with the satisfactory 
soft threshold power β = 9 using all the quantified genes. We 
found that these genes are clustered into 119 modules in the 
network, and about 82.2% differentially expressed genes are 
clustered into 16 of the 119 modules (including a gray one). We 
also found that these modules show low/modest association with 
MS (the correlation coefficients are < 0.19). These results reflect 
the similar distribution of the differentially expressed genes 
between using all and filtering genes in this WGCNA, and imply 
that the extra genes may mask the association of the differentially 
expressed genes with MS.

Pathway Analysis of the Multiple 
Sclerosis-Related Long Noncoding 
Ribonucleic Acids by gene Set 
Enrichment Analysis
To explore the function of lncRNAs in MS, we performed 
GSEA in the four most significant modules for MS based 
on the two types of correlations, i.e., MEyellow (r = 0.33, P = 
5×10−15 and cor   = 0.43, P = 4.6×10−15), MEred (r = 0.32, P = 
2×10−14 and cor  =  0.50, P = 2.6×10−19), MEpink (r = −0.28, 
P  = 2×10−11 and cor = 0.63, P = 3.5×10−14), and MEbrown (r 
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FIgURE 3 | Continued
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= 0.24, P = 9×10−9 and cor = 0.32, P = 4.7×10−9). We found no 
significantly enriched pathway related to the MEred. Based on 
the result of LncRNA2Target, we identified that two differentially 
expressed lncRNAs in MEred could target the MS-related 
genes. Particularly, two target genes (CDH1 and CDH2) of the 
lncRNA NONHSAG081583.2 encoded cadherin protein which 
is the most abundant adhesion molecules participating in nerve 
conduction in synaptic junctions and the proinflammatory 
cytokines in MS can downregulate its expression (Minagar 
et al., 2003; Tian et al., 2009). The lncRNA NONHSAG000840.2 
targets a MS-related gene NOTCH2, and reducing NOTCH2 
in the proinflammatory monocytes can increase the frequency 

of the nonclassical monocytes and neutralizing antidrug 
antibody induction in IFN-β treated MS patients (Adriani et al., 
2018). For MEbrown, the co-expressed protein-coding genes 
were mainly involved in leukocytes and interleukin-related 
immune response (Figure 5A and Supplementary Table S5), 
which was similar to the finding of our recent study (Han et 
al., 2019). Many genomic variants in the human leukocyte 
antigen complexes and interleukin receptor were identified 
significantly associated with susceptibility of MS (Rubio et al., 
2002; Teutsch et al., 2003; Lundmark et al., 2007; Hollenbach and 
Oksenberg, 2015; Tang et al., 2019a). The protein-coding genes 
in MEpink are mainly associated with intercellular junction 

FIgURE 4 | The co-expression network analysis of the differentially expressed long noncoding RNAs (lncRNAs) and protein-coding genes. (A) The clustering 
dendrogram of these co-expressed lncRNAs and protein-coding genes. There are 15 clustered modules in the hierarchical clustering dendrogram which is 
constructed by a dynamic cut-tree algorithm. These clustered modules are marked as 15 different colors, respectively, i.e., yellow, turquoise, tan, salmon, red, 
purple, pink, midnight blue, magenta, green yellow, green, cyan, brown, blue, and black. (B) The heatmap for the association of each module with the disease 
states, platforms, and tissue types. Each cell represents a module, and contains the correlation r and corresponding P value (in brackets). Panels (c) to (E) show 
the results of correlation between the module membership and the gene significance in MEyellow, MEred, and MEcyan, respectively. The results of other modules 
were described in Supplementary Figure S3.

FIgURE 3 | The tissue specificity of the multiple sclerosis-related long noncoding RNAs (lncRNAs) based on expression data from NONCODE database. (A) Tissue 
specific expression measured by Jensen-Shannon divergence. The distributions of the maximal tissue specificity scores showed the high tissue specificity of the 
differentially expressed lncRNAs identified using whole (blue), brain (green), and blood sample (red), respectively. The (B) to (D) showed the hierarchical clustering 
heatmap for expression of these lncRNAs in primary human tissues and cell lines. These differentially expressed lncRNAs identified using whole (B), brain (c), and 
blood sample (D) are all highly specifically expressed in brain tissue. The Manhattan distance was used to perform all of the three cluster analyses.
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and signaling transmission (Figure 5B). Previous studies found 
that the defect of axon-glial signaling transmission caused by the 
oligodendrocyte gap junction loss and disconnection contributes 
to MS pathogenesis (Brand-Schieber et al., 2005; Markoullis et al., 
2012; Markoullis et al., 2014). The results of LncRNA2Target 
showed that lncRNA NONHSAG049754.2 in MEyellow targets 
the MS-related gene TNFRSF10A. This gene encodes the receptor 
of tumor necrosis factor (TNF) cytokines which plays a important 
role in inflammation regulations and is related to susceptibility 
of developing MS (De-la-Torre et al., 2019). The protein-coding 
genes in the MEyellow are related to ribonucleoprotein (Figure 
5C). Ribonucleoprotein is a kind of ribonucleic acid-binding 
protein which participates in the mRNA splicing (Guthrie, 1991). 
Previous study showed that as an important autoantigen in the 
neuroimmune disease, the ribonucleoprotein significantly more 
often interact with the autoantibodies in MS cerebrospinal fluids 
compared with controls (Sueoka et al., 2004; Yukitake et al., 2008). 
The following studies further identified a ribonucleoprotein-related 
lncRNA, TNF-α, and heterogeneous nuclear ribonucleoprotein L, 
which was significantly upregulated and produced transcriptional 
activating complexes to promote TNF-α expression by cooperating 
with ribonucleoprotein in the circulating blood cells of MS (Li 
et al., 2014; Eftekharian et al., 2017). Given that MEyellow is the 
most significant module for MS, we inferred that one of the key 
mechanisms of lncRNAs in MS is associated with the regulation of 
ribonucleoprotein and TNF cytokines receptor.

cONcLUSIONS
In this study, we comprehensively collected MS-related RNA-seq 
data from a variety of studies, and integrated these data by an 
expression-based meta-analysis to assess the affection of lncRNAs 
on the MS pathogenesis on genome scale. We identified a total 
of 5,420 lncRNAs significantly differentially expressed between 

MS patients and controls. Then, the subgroup analysis found a 
small heterogeneity of the lncRNA expression profile between 
the brain and blood tissues. Further, the specificity analysis of 
multiple tissues showed that the differentially expressed lncRNAs 
(including identified using brain, blood, and whole sample) are 
highly specifically expressed in brain tissue. Finally, the result of 
GSEA and WGCNA demonstrated that the potential important 
function of lncRNAs in MS may be involved in the regulation 
of ribonucleoprotein and TNF cytokines receptor. All in all, 
we performed a strategy to resolve the inconsistent MS-related 
lncRNA findings in previous studies, and explore the functions 
of these lncRNAs in MS. The findings of this study will be benefit 
to improve the understanding of the pathogenesis of MS.
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The interactions between RNAs and RNA binding proteins (RBPs) are crucial for 
understanding post-transcriptional regulation mechanisms. A lot of computational tools 
have been developed to automatically predict the binding relationship between RNAs 
and RBPs. However, most of the methods can only predict the presence or absence 
of binding sites for a sequence fragment, without providing specific information on the 
position or length of the binding sites. Besides, the existing tools focus on the interaction 
between RBPs and linear RNAs, while the binding sites on circular RNAs (circRNAs) have 
been rarely studied. In this study, we model the prediction of binding sites on RNAs as 
a sequence labeling problem, and propose a new model called circSLNN to identify the 
specific location of RBP-binding sites on circRNAs. CircSLNN is driven by pretrained 
RNA embedding vectors and a composite labeling model. On our constructed circRNA 
datasets, our model has an average F1 score of 0.790. We assess the performance 
on full-length RNA sequences, the proposed model outperforms previous classification-
based models by a large margin.

Keywords: RNA–protein binding sites, sequence labeling, convolutional neural network, bidirectional LSTM neural 
network, deep learning

INTRODUCTION
Benefitting from the rapid development of high-throughput experimental technologies, 
transcriptome, proteome, epigenome and other omics data have accumulated in an unprecedented 
speed. The multi-omics data have enabled large-scale studies on gene regulation at different levels. 
Especially, the interactions between RNAs and RNA binding proteins (RBPs) are crucial for 
understanding post-transcriptional regulation mechanisms (Filipowicz et al., 2008). The RNA–RBP-
interactions play important roles in protein synthesis, gene fusion, alternative mRNA processing, 
etc. (Bolognani and Perrone-Bizzozero, 2008). The aberrant expression of RBPs and disruption of 
RNA–RBP-interactions are closely related to various diseases of human beings (Khalil and Rinn, 
2011). In the early stage of RNA–RBP-interaction studies, the recognition of binding sites mainly 
relies on the analysis of RNA–protein complexes via biophysical methods. As the experimental 
process is costly and laborious, it is increasingly important to develop automatic tools to predict 
binding sites.

As for protein–protein-interactions, both structures and amino acid sequences are commonly 
used for identifying binding sites, including POCKET (Liu and Hu, 2011), Fpocket (Le Guilloux 
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et al., 2009) LIGSITE (Hendlich et al., 1997), etc. The structural 
feature-based prediction methods exploit protein 3D structures 
and appropriate geometries to locate potential binding regions. 
Most structure-based methods assume that proteins bound to 
the same ligand have similar overall structure and biochemistry 
characteristics, while some researchers found that proteins having 
the same binding site may have diverse sequences or structures 
(Muppirala et al., 2011). Sequence-based methods usually utilize 
amino acid composition, function domain, secondary structure 
and solvent accessibility information (Shen et al., 2007).

Due to the lack of solved structures for RNA-protein complexes, 
most of the existing studies have turned to sequence information 
and machine learning methods for predicting RBP-binding sites 
on RNAs, like support vector machines (SVMs) (Kumar et al., 
2008) and random forest (RF) (Liu et al., 2010). Moreover, deep 
learning models have emerged in this field (Alipanahi et al., 2015; 
Pan and Shen, 2017). Deep learning is a data-driven approach 
that allows automatic learning of the advanced features from data 
without the need for domain knowledge, by stacking multiple 
layers of neural networks (LeCun et al., 2015). Compared to 
traditional machine learning models, it does not require feature 
engineering and can achieve better performance. A few deep 
learning methods, including convolutional neural network (CNN) 
and recurrent neural network (RNN), have been developed to 
predict RBP-binding sites (Pan and Shen, 2017; Pan et al., 2018).

Although researchers have made some progress in predicting 
RNA–protein binding sites, current mainstream prediction 
methods have some limitations.

First, most prediction methods simplify the prediction task as 
a binary classification problem, i.e. they assign a positive/negative 
label to a segment of RNA, where the positive label denotes the 
presence of a binding site. Actually, binding sites on RNAs are 
sequence fragments that range from tens to hundreds of nucleotides 
in length. Thus, the prediction based on fixed-length fragments may 
be inaccurate, as it only yields approximate locations of binding 
sites and could not specify the length that the sites span.

Second, most of the existing methods predict the interaction 
between linear RNAs and RBPs, while circular RNAs (circRNAs) 
have been rarely studied. CircRNAs play an important role 
in gene regulation, and they also play crucial roles in the 
development of many complex diseases (Fan et al., 2018). Thanks 
to the advances of new sequencing technology, circRNAs have 
been identified on the whole genome scale (Song et al., 2016). 
Moreover, the interplay between circRNAs and proteins or 
microRNAs has attracted more and more research interests from 
biomedical field, resulting in large-scale data of circRNA–RBP 
interactions using high-throughput experiments, like CLIP-Seq 
(Dudekula et al., 2016). Thus, the models for predicting binding 
sites on circRNAs are in great demand.

In this study, we propose a sequence labeling neural 
network model to predict circRNA–protein binding sites, called 
circSLNN, which is composed of a long-short-term memory 
(LSTM) network, a convolutional neural network (CNN) and a 
conditional random field (CRF) model. Instead of performing 
a binary classification on the whole fragment, it assigns a label 
(bound or unbound) to each position on the fragment. Compared 
with traditional classifiers, it can not only predict whether the 

input segment is bound to a given RBP, but also predict the 
specific location of binding sites on the segment. Besides, in order 
to fully utilize the sequence information of circRNAs, we propose 
to use RNA embeddings learned via a similar word embedding 
algorithm for processing natural languages, where the corpus 
is extracted from the whole human genome. To the best of our 
knowledge, this is the first predictor for RNA–protein binding 
sites using a sequence labeling scheme. The contributions of this 
study are listed in the following.

 1. We construct the sequence labeling network of LSTM-CNN-
CRF for predicting RBP-binding sites on RNA sequences. 
Compared to previous methods, it has the advantage in 
identifying location and length of binding sites.

 2. We apply RNA embeddings to the prediction of RNA–RBP 
interaction, and demonstrate the effectiveness of continuous 
dense feature vectors trained by word embedding and whole-
genome corpus.

 3. We propose a predictor, circSLNN, trained on circRNA 
binding sites, which may help researchers reveal the 
interaction mechanisms of circRNAs and proteins.

ReLATeD WORK

Prediction Based on Traditional Machine 
Learning Methods
The prediction of molecular interactions has been a hot topic 
in bioinformatics over the past decades. Especially, the protein–
protein-interactions (PPIs) have been well-studied due to the 
abundant information that can be utilized in the prediction, 
e.g. amino acid sequences, function domains, gene ontology 
annotation (Ashburner et al., 2000). The machine learning-
based predictors usually consist of two parts, i.e. the feature 
extraction and classification. Similar to PPI, the prediction of 
RNA–RBP-interaction is a typical machine learning problem. 
However, due to the lack of functional annotation of RNAs, the 
feature extraction mainly relies on RNA sequences or secondary 
structures. For some types of RNAs, like circRNAs which 
have constrained structures, i.e. covalently closed continuous 
loops, the effective feature extraction from sequences are 
more important.

Traditional feature representation of RNA sequences include 
k-tuple composition, pseudo k-tuple composition (PseKNC) 
(Chen et al., 2013), etc. The features are discrete vectors, working 
with shallow learning models. For instance, Muppirala et al. 
(2011) used the SVMs and random forest methods to predict the 
RNA–RBP-interactions. As the rise of deep learning, sequence 
encoding schemes and deep neural networks have been emerging 
and achieved better prediction performance.

Prediction Based on Deep Neural 
Networks
DeepBind (Alipanahi et al., 2015) is a pioneer work in 
developing deep learning models for RNA–RBP-interactions. 
The model is based on a convolutional neural network, which 
not only improves prediction accuracy but also reveals new 
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sequence patterns at the binding area. Later, Pan et al. released 
a series of computational tools, including iDeep (Pan and Shen, 
2017), iDeepS (Pan et al., 2018) and iDeepE (Pan and Shen, 
2018), which have different feature representation and model 
architecture. iDeep utilizes five different information sources, 
i.e. secondary structure information, motif information for 
describing the conserved region of sequences, CLIP co-binding, 
region type, and sequence information, to extract high-level 
abstraction features via deep learning models. Especially, the 
sequence information is processed by a CNN (Krizhevsky 
et  al., 2012), while other four data sources are processed by 
deep belief networks (Zou and Conzen, 2004). Compared with 
iDeep, iDeepS reduces the types of data sources and only retains 
sequence information and secondary structure information. The 
authors added bi-directional long short-term memory (BiLSTM) 
(Schuster and Paliwal, 1997) to integrate the data, which better 
reserves contextual information based on relative position 
relationship of nucleotides.

Generally, the performance of deep learning-based methods 
depends on informative feature representation and powerful 
model architecture. In this study, we explore both the two parts 
to improve prediction accuracy.

MATeRIALS AND MeThODS

Data Source
To construct a predictor for circRNA–RBP-interactions, we 
collect a standard dataset of RBP-binding sites on circular RNAs 
from the circRNA Interactome database (Dudekula et al., 2016), 
which contains sequence information for more than 100,000 
human circRNAs, as well as specific locations of binding sites for 
different RBPs. Each binding site is represented as an interval from 
the start index to the end index on the circRNAs. We extend 50-nt 
upstream and downstream respectively by taking the midpoint of 
each interval as the center. In this way, 101-nt fragments can be 
obtained as positive samples. Then we randomly extract 101-nt 
segments from the remaining fragments as negative samples. In 
order to avoid the issue caused by repeated sequences, we remove 
redundant sequences using CD-HIT (Li and Godzik, 2006). The 
positive-to-negative ratio is 1:1, and the training-to-test ratio is 
5:1.

Then we generate standard labels for all samples. For 
positive samples, we label all the symbols within the binding 
sites as “I” and all the other locations as “O”, meanwhile we 
mark all symbols as “O” for negative samples. Here we use the 
IO tag scheme, where “I” is short for inside (a binding site) and 
“O” is short for outside, i.e. not a binding site. As it is known 
that, the BIO format (short for inside, outside, beginning) is 
a common tagging format in natural language. As there are a 
lot of adjacent labeling objects in text, it is hard to distinguish 
between different labeling objects using only the IO scheme. 
By contrast, in the sequence labeling problem of binding sites, 
the distribution of binding sites is extremely sparse, and usually 
binding segments are far from each other. Thus, we use the 
IO labeling scheme to reduce the types of labels and make the 
training model easier to converge.

Data encoding
As mentioned in the Related Work section, feature representation 
can have a substantial impact on the performance for both 
shallow learning and deep learning models. To work with deep 
models, RNA sequences need to be encoded into numerical 
vectors, like one-hot vectors. In recent years, more and more 
studies on biological sequence analysis have adopted word 
embedding-based encoding schemes to replace one-hot encoding 
(Harris and Harris, 2010), as embedding vectors are continuous 
and high-dimensional, which may capture more context and 
semantic information in sequences. In our previous studies, we 
propose the RNA2Vec method to get RNA embeddings (Xiao 
et al., 2018). We regard 10-mer segments as words and train the 
word embeddings using Glove (Pennington et al., 2014).

Model Architecture
In this study, we design a sequence labeling model based on deep 
neural networks to predict RBP-binding sites on RNAs. We first 
feed the embedding vectors to a convolutional neural network 
(Krizhevsky et al., 2012) to extract local features, and then learn 
the long-distance dependency information among bases through 
a BiLSTM layer. Finally, the label identification of the entire RNA 
sequence is completed by the CRF layer (Lafferty et al., 2001). 
The network structure is shown in Figure 1.

CNN Layer
Convolutional neural network (CNN) (Krizhevsky et al., 2012) 
is a widely used deep learning architecture. CNN generates 
feature maps at different abstract levels by stacking convolutional 
layers. In circSLNN, the CNN serves as a feature extractor from 
the initial input vectors. As sequence labeling models predict a 
label for each symbol in the sequence, whereas the embedding 
vectors are trained for 10-mers, we adopt CNN to extract high-
level features for each nucleotide in RNA sequences based on 
the embedding vectors of its surrounding 10-mers, i.e. a window 
centered by the nucleotide.

Specifically, for each individual nucleotide (except for the first 
9 nucleotides), there are 10 fragments of length 10 containing 
it. Based on the vectors of the 10 fragments, we perform 
feature extraction via a one-dimensional CNN. Suppose the 
dimensionality of embedding vectors is m, then each nucleotide 
can be represented as a matrix of size 10×m, which is fed to 
the CNN. Before using CNN, we need to expand the 101-nt 
fragments to 110-nt (101 + 10 − 1), which is passed through a 
sliding window of size 10. Here we pad the matrix by zero vectors.

Let hj be the size of the jth convolutional kernel, Xi be the matrix 
of the sliding window at the ith time step, which consists of the ith 
to the (i + hj − 1)th columns of the original input. Thus, the features 
learned by the convolutional layer can be expressed in Eq. 1,

 

c f

i N h
ij j

j

= ∗ +

∈ − + ∈
+ −( )

{ , , , }, j { , ,
:w X bi i hj j1

1 2 1 1 2 nn}  (1)

where n is the number of filters, f(.) is the activation function, 
and wj and bj are the weight matrix and the offset, respectively.
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BiLSTM Layer
Till now, the mechanism of RNA–RBP-interaction has not been 
fully understood yet, and various factors impact the binding 
between RNAs and RBPs, include not only the local structural 
motifs and binding domains but also long-term dependencies 
of nucleotides. In our model, the CNN component serves 
as a feature extractor from raw input and learn the context 
information in local regions. To further exploit sequence 
information, we adopt bi-directional long short-term memory 
(BiLSTM) (Schuster and Paliwal, 1997) network. BiLSTM is a 
combination of forward LSTM and backward LSTM, which is a 
special type of recurrent neural network (RNN). It is often used 
to model context information in natural language processing 
tasks. BiLSTM was designed to learn the relationship between 
base before and after the current position, and to capture longer 
distance dependencies.

Let xt be the input vector of the tth time step, and st and sʹt be 
the hidden states of the forward and backward calculations of the 
tth time step. Then the calculations of st and sʹt depend on st-1 and 
sʹt+1, respectively, as shown in Eqs. 2 and 3.

 s gt t t= + −( )Ux Ws 1  (2)

 ′ = ′ + ′ ′+s gt t t( )U x W s 1  (3)

where U and W are the weight matrices of the input and hidden 
states in the forward pass. U′ and W′ are the weight matrices of 
the input and hidden states in the backward pass.

The final output ot of step t is a combination of a forward 
hidden layer and a backward hidden layer, defined as follows.

 o ht t t= + ′ ′(Vs V s )  (4)

where V and V′ are the weight matrices of the hidden layers to 
the output layer in forward pass and backward pass, respectively.

CRF Layer
As mentioned in the CNN Layer and BiLSTM Layer sections, 
CNN and RNN have their respective advantages. The hybrid 
CNN-RNN architecture has been proposed in previous studies 
and achieved much better performance than using CNN or RNN 
alone. For instance, both CRIP (Zhang et al., 2018) and iDeepS 
(Pan et al., 2018) are hybrid CNN-RNN models, and both use 
LSTM for classification. CRIP feeds the outputs for all time-
steps of the LSTM to a fully-connected layer and get the decision 
result, while iDeepS uses the output of the last time-step for 
classification. Actually, based on the output on each time-step of 
LSTM, it is straightforward to get the sequence labeling results. 
However, the raw outputs without any constraint are often 
meaningless, e.g. OIOI … OOI, as it is known that binding sites 
are continuous regions on RNA sequences. In order to avoid such 
cases, we add a conditional random field (CRF) layer to process 
the output of BiLSTM. The purpose of the CRF layer is to predict 
the probability of the entire sequence rather than the probability 
of each individual tag. The CRF layer can add some constraints 
to the predicted labels to ensure that the output labels are legal. 
During the data training process, these constraints can be 
automatically learned through the CRF layer, so the probability 
of occurrence of illegal sequences in the prediction phase will 
be greatly reduced. Specifically, the CRF layer calculates the 
conditional probability shown in Eq. 5

 P x xn n n n( , , | , , ) P( , , | ), ( , , )y y x y y x x x1 1 1 1   = =  (5)

where P(y|x) is the probability that the prediction label is y 
if the input is x, where xi is the output of ith time-step by the 
LSTM layer.

In order to estimate the probability, CRF makes two 
assumptions. First, the distribution is an exponential family 
distribution. Second, the association between the outputs occurs 

FIgURe 1 | The overall architecture of CircSLNN.
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only at adjacent locations, and the association is exponentially 
additive. This allows the probability to be calculated by the 
probability density function as shown in Eq. 6.

 

f
g

( , , ; ) ( ; ) ( ; ) ( ; )
( ,

,y y x h y x g y y x h y x
y y

n1 1 1 2 2

2 3
 = + + +

;; ) ( ; ) ( , ; ) ; )nx h y x g y y x h y xn+ + + +−3 1 ( n  (6)

where f, g, h are probability density functions and can be 
considered as scoring functions. The overall score f of all tags can 
be broken down into the sum of the score h of each individual 
tag and the score g of each pair of adjacent tags. Since LSTM 
is capable to learn the mapping from input x and its output y, 
we assume that the function g is independent of x and the final 
probability distribution can be formulated in Eq. 7,

 
P

Z x
h x g y yk k

k

n

( , , | x)
( )

( ( ; ) [ ( , )y y exp yn1 1 1
1

1
 = + ++

=

−11

1∑ +h y xk( ; )])

 (7)

where the single-label scoring function h(yi; x) is fitted by the 
BiLSTM layer, thus completing the construction of the CRF layer.

eXPeRIMeNTAL ReSULTS

experimental Settings
In circSLNN, the number of convolution kernels in the CNN 
layer is 128, the convolution window size is 10, the hidden layer 
size of the BiLSTM layer is 256, and the activation function 
used by the middle layer is ReLU. The optimization algorithm 
is RMSProp, with batch size 512 and epoch number 20, using 
the early stopping mode. The performance metrics include 
precision, recall and F1, which are computed based on the labels 
of individual nucleotides.

Prediction Performance of circSLNN
We perform experiments on all 37 datasets described in the 
Data Source section. For each dataset, we perform a 6-fold 
cross-validation. The original datasets are divided into 6 folds 
with approximately equal size (5 folds for training and validation, 
and one fold for test). The accuracies shown in Table 1 are 
averaged over 6 times of independant test.

As can be seen, circSLNN achieves high prediction accuracy 
for most RBPs. The F1 scores are higher than 0.8 on 24 out 
of the 37 datasets, showing the effectiveness of the sequence 
labeling model.

Data encoding Analysis
In circSLNN, the inputs are pretrained embedding vectors for 
k-mers, while most of the existing methods for predicting RBP-
binding sites use one-hot encoding, e.g. iDeep and DeepBind. 
In order to investigate the impact of encoding scheme on model 
performance, we compare one-hot and our embedding vectors 

on the same datasets. We randomly choose 5 RBPs. Figure 2 
depicts the comparison results.

Apparently, the pretrained embedding vectors perform 
much better than the one-hot vectors. The average F1 score 
is increased by 0.087. This result suggests that the word 
embedding encoding method can effectively extract the feature 
information of RNA sequences from the human genome 
database, and can effectively improve the performance of the 
binding site predictor.

The Role of CNN Layer
Compared to ordinary text sequence labeling tasks, we introduce 
the CNN layer to extract local features from RNA sequences. The 
purpose of the CNN layer is to characterize the local sequence 
pattern surrounding the base to be labeled, and encode each 
individual base with richer information. Here we assess the 
contribution of CNN by removing it from the model. The inputs 
of the LSTM-CRF model are the pretrained k-mer embedding 
vectors. Specifically, for each base, we choose the embedding 
vector of the fragment that centered by the base as its feature 

TABLe 1 | Prediction accuracies on 37 different protein datasets.

Protein Precision Recall F1-Measure

AGO1 0.820 0.853 0.836
AGO2 0.804 0.429 0.559
AGO3 0.840 0.773 0.805
ALKBH5 0.908 0.928 0.918
AUF1 0.908 0.938 0.923
C17ORF85 0.889 0.926 0.907
C22ORF28 0.847 0.828 0.838
CAPRIN1 0.881 0.789 0.833
DGCR8 0.794 0.863 0.827
EIF4A3 0.520 0.749 0.614
EWSR1 0.892 0.912 0.902
FMRP 0.473 0.679 0.557
FOX2 0.999 0.925 0.961
FUS 0.583 0.566 0.575
FXR1 0.958 0.951 0.955
FXR2 0.799 0.825 0.812
HNRNPC 0.841 0.892 0.866
HUR 0.542 0.609 0.573
IGF2BP1 0.522 0.716 0.604
IGF2BP2 0.691 0.660 0.675
IGF2BP3 0.533 0.618 0.572
LIN28A 0.543 0.702 0.613
LIN28B 0.764 0.636 0.694
METTL3 0.774 0.806 0.790
MOV10 0.805 0.808 0.806
PTB 0.609 0.597 0.603
PUM2 0.910 0.988 0.948
QKI 0.982 0.971 0.976
SFRS1 0.797 0.704 0.748
TAF15 0.916 0.968 0.941
TDP43 0.864 0.760 0.809
TIA1 0.915 0.863 0.888
TIAL1 0.836 0.824 0.829
TNRC6 0.952 0.841 0.893
U2AF65 0.848 0.796 0.821
WTAP 0.976 0.953 0.964
ZC3H78 0.848 0.790 0.818
Average 0.794 0.795 0.790
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vector. The following training on LSTM and CRF is the same as 
circSLNN. We compare the performance of the two methods on 
five randomly selected data sets, as shown in Figure 3.

As can be seen, the average F1 is increased by 0.021 by introducing 
CNN layer. Although the overall improvement seems not significant, 
we find that CNN has larger contribution for the difficult datasets, 
e.g. HUR and LIN288, compared with easy datasets, indicating the 
importance of further feature learning from raw inputs.

Comparison of Different Sequence 
Labeling Schemes
The sequence labeling scheme used in this study is IO tag, not 
the BIO or BME (BME is short for begin, middle and end) 
that commonly used in text labeling tasks (Carpenter, 2009), 
as binding sites generally span tens of bases in length, whereas 
common text labeling objects only consist of several words, such 
as a typical place name in the named entity recognition mission 
(NER), ‘Shanghai Jiao Tong University’. In order to assess the 

performance of these three tag systems, we conduct experiments 
on five randomly selected protein datasets, as shown in Figure 4.

As can be seen, the IO tag system outperforms BIO and BME 
by a large margin. BIO and BME have close performance. We find 
that the B-coded labeling systems can hardly find tag B in the test 
set, i.e. their results contain only tag I and tag O. The reason is 
that the B tag is extremely sparse due to the long binding sites, 
which leads to an imbalanced distribution of tags, and it is very 
hard to recognize tag B.

Investigation on Positive-to-Negative Data 
Ratio
In our experiments, the positive-to-negative ratio for all datasets 
is 1:1, which is the same as previous studies (Pan and Shen, 2017), 
(Zhang et al., 2018). However, the length of human circRNAs could 
be tens of thousands bases, including 1–5 exons (Memczak et al., 
2013), while the binding sites are small regions and very sparse on 
the sequences. That is to say, the true ratio between positive and 
negative data is very small, leading to an extremely imbalanced 
problem, thus most studies adopt a sampling strategy to control 
the ratio. Here, to get closer to the actual situation, we compare 
the performance of circSLNN under different positive-to-negative 
ratios, i.e. 1:1, 1:2, and 1:4. The results are shown in Figure 5.

Note that although adding negative samples results into data 
imbalance, the increase in data volume is beneficial for training 
the model. As shown in Figure 5, the accuracies on some datasets, 
e.g. LIN28B, LIN28B, and TDP43, have even been increased 
by using expanded negative set. Generally, the performance of 
circSLNN has little variance when expanding negative set several 
times, showing the model robustness.

Comparison With the existing Methods 
on Sequence Labeling for Full-Length 
circRNAS
In order to assess the performance of circSLNN in real cases, we 
conduct experiments on full-length circRNAs instead of sampled 

FIgURe 2 | F1 Score for Different Coding Methods.

FIgURe 3 | Performance comparison between models with and without the 
CNN layer. FIgURe 4 | Performance comparison on three sequence labeling schemes.
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segments in the datasets, and compare it with the state-of-the-art 
predictors for RNA–RBP binding sites.

To the best of our knowledge, circSLNN is the first 
sequence labeling model for identifying RBP-binding sites 
on circRNAs. Therefore, for the convenience of comparison, 
we need to process the output of the existing classification 
models, i.e. converting the labels for segments into labels for 
individual nucleotides. Specifically, for a full-length RNA, we 
divide it from beginning to end into 101-nt fragments. For 
each fragment, the circSLNN model is used to predict whether 
each base belongs to the binding site. If it belongs, it is marked 
as 1; otherwise, it is marked as 0. For the classification model, 
whether the fragment belongs to the binding site is predicted. 
If the fragment is predicted as positive, then all the bases in 
the sequence are labeled by 1, otherwise all bases are labeled 
by 0. In this way, we obtain the label sequences of full-length 
RNAs predicted by two different models. By comparing 
the predicted sequence labels with the actual labels, we can 
calculate the F1 score.

We collect a dataset of 100 full-length circRNAs that are 
bound to different RBPs. They are first segmented into 101-nt 
segments, and then fed to the classification models and sequence 
labeling model, respectively, to predict the binding sites. F1 scores 
are computed based on individual bases. The results are shown 
in Figure 6.

As can be seen from the results, circSLNN achieves the highest 
F1 on almost all circRNAs in the dataset. The average F1 score of 
circSLNN reaches 0.568, while the average F1 scores of iDeepE 
(Pan and Shen, 2018) and CRIP (Zhang et al., 2018) are 0.504 
and 0.494, respectively. This suggests that the sequence labeling 
model can more accurately identify the position of the binding 
site, which is important for further verification of the interaction 
regions using biological experiments.

Despite the advantages over other methods, we can find that 
the overall accuracy is much lower than that computed on the 
short segments (the average F1 of 37 test sets is 0.790 as shown 
in Table 1). It is mainly due to the extremely imbalanced class 

distribution in this new test set. In training sets, the positive-
to-negative ratio is 1:1, while when the full-length circRNAs are 
segmented, most of them contain no binding site at all. Although 
the model can handle imbalanced distribution to some extent as 
described in the Investigation on Positive-to-Negative Data Ratio 
section, the performance decreases greatly when the data set is 
severely imbalanced.

DISCUSSION
This study aims to develop a machine learning model 
for identifying RBP-binding sites on RNAs. The existing 
prediction methods consider this problem as a classification 
problem, which divide RNA sequences into fragments and 
predict whether or not binding sites exist in the fragments. 
To further predict the location and length of binding sites, 
we propose a sequence labeling model, circSLNN, which 
assigns a label to each base in fragments instead of the whole 
fragments, so as to provide more information of the binding 
regions. Besides, considering the lack of tools designed for 
circRNAs, circSLNN is specially trained by circRNA datasets. 
Although trained on circRNAs, circSLNN provides a general 
sequence labeling framework that can be applied to all types 
of RNAs.

Despite the enhancement of performance, this study is 
still a preliminary exploration on characterizing binding sites 
on circRNAs. The first limitation lies in the input features. 
As it is known that the interaction between RNAs and other 
molecules has complex mechanisms, especially the circRNAs 
that have not been well studies, the prediction of circSLNN 
is based only on circRNA sequences, which is a very limited 
information source. One future research direction is to 
incorporate more biological properties or domain knowledge 
related to circRNAs.

Second, although we have used a hybrid neural network, the 
proposed model structure is relatively simple. In recent years, not 
only new embedding training methods but also deep architecture 

FIgURe 5 | Performance on datasets with different positive-to-negative 
data ratios.

FIgURe 6 | F1 score on 100 full-length RNAs.
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have emerged in the field of natural language processing (Devlin 
et al., 2018), (Peters et al., 2018), which have achieved substantial 
improvement on a variety of tasks. Many of them could be 
adapted to biological sequence analysis, thus our network 
structure still has a lot of room for improvement.

Third, because the lengths of circular RNA sequences vary 
greatly, ranging from a few hundred to several millions, which 
seriously affects the training of the model. Most of the predictors 
including circSLNN are trained on short segments of RNAs, 
which may lose some information of whole RNAs and lead to 
high false-positive-rate. Better predictions based on full-length 
RNAs or longer segments are the focus of our future work.

CONCLUSION
This study proposes a sequence labeling neural network for 
predicting RBP-binding sites on circRNAs, called circSLNN. 
To fully exploit sequence information, we train continuous 
embedding vectors for 10-mers of RNAs using the whole 
human genome sequences, and we construct a hybrid CNN–
LSTM–CRF network to perform the sequence labeling task. 
The purpose of using a hybrid model is to combine the 
advantages of two deep architectures and to obtain better high-
level abstract feature representations for classification. We 
train circSLNN on 37 datasets of circRNA fragments, and the 
average F1 score is 0.790. The experimental results show that it 
is feasible to use the sequence labeling method for identifying 
binding sites on circRNAs. Both the RNA fragment embedding 

vectors and the hybrid architecture contribute to improved 
performance. Compared with the classification model, it can 
more accurately label the position of the binding site on the 
full-length RNAs. The proposed model will help researchers 
study the circRNA–RBP-interactions and reveal regulatory 
functions of circRNAs.
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Frin: An Efficient Method for 
Representing Genome Evolutionary 
History
Yan Hong and Juan Wang *

School of Computer Science, Inner Mongolia University, Hohhot, China

Phylogenetic analysis is important in understanding the process of biological evolution, 
and phylogenetic trees are used to represent the evolutionary history. Each taxon in a 
phylogenetic tree has not more than one parent, so phylogenetic trees cannot express 
the complex evolutionary information implicit in phylogeny. Phylogenetic networks can 
be used to express genome evolutionary histories. Therefore, it is great significance to 
research the construction of phylogenetic networks. Cass algorithm is an efficient method 
for constructing phylogenetic networks because it can construct a much simpler network. 
However, Cass relies heavily on the order of input data, i.e. different networks can be 
constructed for the same dataset with different input orders. Based on the frequency 
and incompatibility degree of taxa, we propose an efficiently improved algorithm of Cass, 
called as Frin. The experimental results show that the networks constructed by Frin are 
not only simpler than those constructed by other methods, but Frin can also construct 
more consistent phylogenetic networks when the treated data have different input orders. 
Furthermore, the phylogenetic network constructed by Frin is closer to the original 
information described by phylogenetic trees. Frin has been built as a Java software 
package and is freely available at https://github.com/wangjuanimu/Frin.

Keywords: evolution, phylogenetic network, incompatibility degree, frequency, genome

INTRODUCTION
Studying the evolution of species is helpful for humans to reveal biological secrets, prevent, and 
treat diseases. The purpose of phylogenetic analysis is to reveal the evolutionary relationships 
between different species or taxa and study the evolution of life on Earth (Huson and Scornavacca, 
2011). The evolutionary history is like the growth of trees, and all species can be traced back to a 
common ancestor. It makes sense to use trees to represent the evolutionary history, in which each 
node except the root has only one parent. There are a number of reticulate evolutionary events, 
such as reversal, translocation, and fusion, which have resulted in more than one parent of some 
taxa in the evolution (Gusfield et al., 2007a; Gusfield et al., 2007b; Kelk and Scornavacca, 2014; 
Wu, 2010; Van Iersel et al., 2017). Such a complex evolutionary history can be represented by the 
phylogenetic networks (Doolittle, 1999; Nakhle, 2010; Yu and Nakhleh, 2015; Huber et al., 2018). A 
network is a generalization of a tree in that it contains nodes with in-degree greater than one (Iersel 
et al., 2009). Phylogenetic networks are functionally classified into implicit networks and explicit 
networks (Huson et al., 2007; Huson and Rupp, 2008; Van Iersel et al., 2010). Implicit networks 
can be used to represent conflicting patterns due to the model misspecification. However, explicit 
networks can capture reticulate evolutionary events.
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In recent years, a lot of work has been developed on the 
methods for constructing phylogenetic networks (Albrecht 
2015; Albrecht et al., 2012; Bordewich et al., 2007; Francis et al., 
2018; Gambette et al., 2017; Linz and Semple, 2009; Makarenkov 
et al., 2006; Mirzaei and Wu, 2016; Jansson and Sung, 2006). 
Cluster network method uses the network-popping algorithm to 
construct an implicit network, which can be drawn as a cladogram 
(Huson and Rupp, 2008). Galled network method uses the seed-
growing algorithm to find the solution of RMCS (Restricted 
Maximum Compatible Subset) problem for input dataset, and 
then construct phylogenetic network (Huson et  al., 2007). The 
relationships between phylogenetic trees and networks are the 
basis for the reconstruction and verification of phylogenetic 
networks. TCP algorithm solved the problem whether or not 
certain existing phylogenetic trees are displayed in a phylogenetic 
network (Gunawan et  al., 2016; Gunawan et al., 2018). Cass is 
an efficient method to construct a phylogenetic network for any 
input trees, and is able to construct much simpler networks than 
other available methods (Van Iersel et al., 2010). But Cass usually 
constructs some different networks for the same dataset when it 
is input as different orders. The phylogenetic network constructed 
by Cass represents lots of redundant information except for the 
original information. Both factors considered it is obvious that 
Cass has poor practical application. Lnetwork improves the 
Cass by fixing the order of removed taxa in the construction 
process of phylogenetic networks. It saves the running time for 
us and reduces the dependence on the input data order (Wang 
et al., 2013a). BIMLR is also an improved algorithm of Cass by 
considering incompatibility of taxa in the construction process 
of phylogenetic network (Wang et al., 2013b). Such methods, 
including Cass, Lnetwork, and BIMLR, have the significant 
flexibility that they are not restricted to binary input trees and 
are not restricted to trees on the same taxa set. In addition, they 
can construct simpler networks for the same input than other 
methods, although they are relatively slow. Therefore, The above 
three methods are efficient and widely used in the construction of 
phylogenetic networks.

In this paper, we will introduce another improved Cass 
algorithm, Frin. It constructs phylogenetic networks with 
phylogenetic trees as input, just like Cass algorithm. Experiments 
show that Frin is less dependent on the input data order and runs 
faster than Cass. Moreover, Frin constructs a simpler network 
than other available methods.

PRELIMINARIEs

Related Knowledge
Given a set of taxa X, a subset of X, excluding the empty set and 
the complete set, is called a cluster. A cluster C is non-trivial if 
it contains more than one element. If two clusters ′C1  and ′C2  
are compatible if either ′ ′ =C C1 2 φ  or ′ ⊂ ′C C1 2  or ′ ⊂ ′C C2 1

. 
Otherwise, they are incompatible. For a set of cluster Y on X, Y 
is said to be compatible if any one pair of clusters are compatible. 
An incompatible cluster set is represented by an incompatible 
graph IG(Y) = (E, V), which consists of a node set and an edge 
set. The node set consists of all the non-trivial clusters in the Y 

and the edge set consists of edges connecting the incompatible 
clusters. The set of clusters represented by a rooted phylogenetic 
tree is compatible; on the contrary, any one compatible cluster set 
can be constructed into a rooted phylogenetic tree.

Supposed that N = (V, E) is a network on taxa set X. δ-(v) 
represents the in-degree of the node v. We introduce a concept 
used to describe the complexity of a network, which is called 
reticulation number. Reticulation number of a network is not 
necessarily equal to the number of reticulate nodes. It is defined as:

 

( ( ) ) | | | |
, -

δ ν
ν δ

−

∈ >

− = − +∑ 1 1
0V

E V

 

If each connected component of a network contains 
reticulation number at most k, then we call that it is a level-k 
network. A level-k network is called a simple level- < k network, 
which does not contain cut nodes. A node is a cut node if its 
removal disconnects the graph.

Each phylogenetic tree T is uniquely defined by the set of 
clusters. For a phylogenetic tree, an edge e=(u, v) represents the 
cluster containing those taxa that are descendants of v. Similarly, 
a phylogenetic network represents clusters in the soft-wired 
sense or in the hard-wired sense. For each reticulate node of the 
network N, we switch on its one incoming edge and switch off 
the others, and we called the network N represents the cluster C 
in the soft-wired sense if cluster C equals the set of all taxa that 
can be reached from v. On the other hand, if cluster C equals 
the set of taxa that are descendants of v, we said the edge (u, v) 
of a network represents the cluster C in the hard-wired sense. In 
this article, we research the representing in the soft-wired sense, 
whose pseudocode is shown by Algorithm 1.

ALGORITHM 1 | The clusters represented by a network in the soft-wired sense.

Input: a phylogenetic network (level-k)
Output: a cluster set Y
Begin
1. Y = null
2. i = k-1; j[k] = false
3. soft (N, i, j)
4.  for: v∈Vof N
5.   if i < 0 then
6.     if j = true then
7.        switch on the left incoming edge of each reticulate node and 

switch off the right one
8.     else
9.        switch off the left incoming edge of each reticulate node and 

switch on the right one
10.     end if
11.     for: v∈Vof N
12.        if out-degree(v) = 0 then
13.          add a cluster represented by v to Y
14.        else
15.          add clusters represented by the child of v to Y
16.        end if
17.     end for
18.   else
19.      j[i] ← true
20.      continue: soft (N, i-1, j)
21.      j[i] ← false
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22.      continue: soft (N, i-1, j)
23.   end if
24.  end for
25. return the cluster set Y
End

Cass, Lnetwork, BIMLR, and Frin all take the set of trees as 
the input when to construct a phylogenetic network. They first 
compute all clusters represented by input trees, and then construct 
a phylogenetic network representing those clusters. Assume that 
Y is the cluster set represented by the input file, N is a constructed 
network. Y′ is the cluster set represented by the network, which are 
greater than or equal to the clusters in the Y. The clusters in Y-Y′are 
called the redundant clusters. Both the reticulation number and 
the number of redundant clusters describe the complexity of a 
network. The best phylogenetic network should contain fewer 
reticulation numbers and have fewer redundant clusters.

Suppose that N is a network on taxa set X, e = (u, v) is an edge 
of N with parent node u and child node v. If each way from the 
root node to v passes through u, we called that u is the stable 
ancestor on v; otherwise, it is the unstable ancestor. For an edge 
e = (u, v), let P(e) = {x∈X| x is the stable ancestor on v}, Q(e) = 
{x∈X | x is the unstable ancestor on v}, S(e) = {x∈X | x is not 
a descendant of v}. We call {P(e), Q(e), S(e)} the tripartition of 
e. Θ( )N  represents all tripartition sets of network N. Given 
two networks N1 and N2, tripartition distance between them 
is computed by | ( ) ( )| /Θ ΘN N1 2 2 , of which Δ is symmetry 
variation. The tripartition distance measures the topology 
different between two phylogenetic networks. In this paper, we 
use the tripartition distance to measure the dissimilarity of the 
phylogenetic networks.

Cass Algorithm
We will have a brief description for Cass algorithm in the 
following. Given a set of clusters Y on taxa X, Cass algorithm is 
divided into four steps:

Step 1: Cass works out non-trivial connected component 
Y1,…,Yp of incompatibility graph IG(Y). Then, Cass collapses 
the maximal ST-sets for each non-trivial connected component 
Yi and gets Yi′ . Given a taxa set X and a subset S⊂X, each cluster 
C⊂Y removes the elements of subset S, and the remaining cluster 
set Y′ is called the restriction of Y to S, denoted by Y|s. The 
largest set of ST-set is called the maximal ST-set. Given |S|>1, if 
S is compatible with each cluster of Y, and Y|s are compatible, we 
called S is a strict tree set (ST-set) of Y. 

Step 2: Cass (k) constructs simple level- < k networks for 
each Yi′ , which is crucial step of Cass algorithm. For each non-
trivial connected component, Cass(k) loops all taxa and removes 
them from each cluster, and collapses all of the maximal ST-sets 
for the remaining cluster set. Cass(k) repeats above operations 
k times, until the remaining cluster set is compatible to 
construct phylogenetic trees. The removed taxon is added to the 
phylogenetic tree as children of reticulate nodes, which becomes 
a simple level- < k network.

Step 3: For each i∈{1,…,p}, Cass removes all clusters that are 
in Ci, adds a cluster Xi and each maximal subset X⊂Xi that is not 
separated by Ci. All above set become cluster set ′′C . Then Cass 

constructs a rooted phylogenetic tree T for ′′C , which is the 
whole frame of the resulting network.

Step 4: Cass adds all the simple level- < k networks constructed 
in step 2 to the rooted phylogenetic tree T by the method of 
ancestor nodes displacement.

When Cass starts constructing a simple level- < k network, 
it does not know the number of network level. Thus, it first sets 
k = 0 and runs Cass(0),which constructs a simple level- < 0 
network. If such a network exists, it outputs the result and halts. 
Otherwise, Cass continues to sets k = k + 1, and runs Cass(1), 
Cass(2),…, Cass(k), until the constructed network represents 
the given clusters sets the soft-wired sense. The process is 
very time-consuming, because Cass(k) loops over all taxa and 
repeatedly attempts to remove each taxon. The selection of 
removed taxa is highly uncertain, which makes the algorithm 
depend heavily on the order of input data, and it also reduces 
the speed of the construction.

METHOD
Given a set of clusters Y on taxa set X, the frequency of a taxon 
x∈X is the number of clusters containing taxon x, denoted by f(x). 
The number of edges of the graph IG(Y) is called incompatibility 
degree of Y, denoted by d(Y). The incompatibility degree of 
a taxon x∈X, denoted by d(x), is the result of subtracting the 
incompatibility degree of Y|X|{x} from that of Y, i.e. d(x) = d(Y) –d 
(Y|X|{x}). For example, given incompatible cluster set Y = {1, 2}, {2, 
3}, we can get taxa frequency f(1) = 1, f(2) = 2, f(3) = 1 and taxa 
incompatibility degree d(1) = 0, d(2) = 1, d(3) = 0. Moreover, 
we know that only by removing taxa 2, the remaining clusters 
are compatible. Frequency and incompatibility degree of taxa 
contribute a lot to the compatibility of a cluster set, which will 
affect the construction of phylogenetic networks. The premise of 
constructing a network is to construct a phylogenetic tree for the 
compatible cluster set, which is the result by removing some taxa 
from the originally incompatible set of clusters. The key of Frin 
method lies in the addition of taxa removal rules, which makes 
the algorithm select removed taxa more efficiently. Frin chooses 
the removed taxa based on its frequency and incompatibility 
degree. Such choices make the remaining cluster set compatible 
as quickly as possible.

Frin constructs phylogenetic networks in four steps; steps 1, 
3, and 4 are the same as Cass algorithm. Frin improves the step 
2 of the Cass for the construction of simple level- < k networks. 
Frin first find the non-trivial connected components of the 
incompatibility graph IG(Y); next it constructs simple level- < 
k network based on taxa frequency and incompatibility degree; 
then it constructs a unique phylogenetic trees for compatible 
clusters; finally it integrates simple level- < k networks into the 
resulting phylogenetic networks. Frin (k) constructs a simple 
level- < k network as follows.

For each taxon x∈X′, Frin(k) obtains the frequency and 
incompatibility degree, and then calculates the weighted value 
|equ_0013.eps| on the frequency and incompatibility degree, 
i.e. s(x) = p × f(x) + q × d(x), where p and are q weight values 
of its frequency and incompatibility degree. All taxon x∈X′ are 
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ordered according to the value of s. Frin(k) selects the taxon 
with the maximum s as the removed taxa each time, until the 
remaining cluster set is compatible to construct a phylogenetic 
tree. Then Frin(k) adds all the removed taxa to the tree as the child 
of reticulate nodes, and gets a resulting network representing all 
clusters. Here, we set the value of p and q, 0 < p ≤ 1, 0 ≤ q <1, p + 
q = 1, and step size is 0.1. Then we can get ten groups of p and 
q values, for each group of values, Frin(k) constructs only one 
network. To avoid the same network that can be constructed over 
and over again when it runs, we ignore constructing the same 
network as before by comparing the taxa removal process. Finally, 
Frin constructs one or more different networks, and records the 
network with less reticulation number and redundant clusters as 
the final phylogenetic network.

In addition, Frin sometimes adds dummy taxa to construct 
a network. The dummy taxa are removed before outputting the 
resulting network.

Example 3.1, given taxa set X = {1, 2, 3, 4, 5} and the cluster 
set Y = {{1, 2}, {1, 4}, {3, 4}, {1, 3, 4}, {4, 5}, {1, 2, 3, 4}, {2, 3}, {2, 
3, 4}, {2, 3, 4, 5}}, Frin constructs two different networks N1and 
N2 for Y, as shown in Figure 1. N1 is a level-3 network with r = 3, 
c = 3 and N2 is a level-3 network with r = 3, c = 6, where r is the 
reticulation number and c is the number of redundant clusters. 
The two networks have the same reticulation number, and N1 has 
fewer redundant clusters than N2. Therefore, Frin outputs N1 as the 
final network. The example shows that Frin can construct several 
different networks for each input trees due to the coefficients’ 
uncertainty of the taxa frequency and incompatibility degree. 
By comparing the number of reticulation nodes and redundant 
clusters, we select the optimal network from different networks 
as the output.

Example 3.2, we consider the taxa set X = {1, 2, 3, 4, 5, 6, 7, 
8, 9, 10} and the cluster set Y = {{7, 8, 9}, {2, 3, 4, 7, 8, 10}, {5, 
6, 7, 8, 9}, {2, 3, 4, 5, 6, 7, 8, 9}, {2, 3, 4, 5, 6}, {2, 3, 4, 10}, {2, 
3, 4, 5, 6, 7, 8, 10}}. We take the cluster set Y for example to 
illustrate that the input data order has different influence degree 
on Frin, Cass, BIMLR and Lnetwork. Then we need to give all 

permutations of input data, and construct networks for each 
permutation. We represent the difference between the resulting 
networks by tripartition distance. For all permutations of the 
input data, Frin can construct the same network N3, as shown 
in Figure 2. Cass constructs three different networks N4, N5, 
and N6, and the minimum, maximum, and mean tripartition 
distance between them are 1.5, 2, and 1.67 respectively, as 
shown in Figure 3 | N4, N5 and N6are the networks constructed 
by Cass for all permutations of input data in Example 3.2. 
BIMLR constructs three different networks N7, N8, and N9, 
and the minimum, maximum and mean tripartition distance 
between them is 1, 3, and 2, as shown in Figure 4. Lnetwork also 
constructs three different networks N10, N11, and N12, and the 
minimum, maximum, and mean tripartition distance between 
them is 1, 1.5, and 1.33, as shown in Figure  5. The example 
shows that Frin can construct more consistent networks than 
other methods for the same data with different input order, i.e. 
Frin reduces the influence of input data order. The conclusion 
will be demonstrated by the following section.

REsULTs
The experiments are performed on a personal computer with an 
Intel Core i5-4200U, 1.6GHz CPU, and 4GB RAM. All programs 
are written in Java.

We test the efficiencies of Frin, Cass, Lnetwork, and BIMLR 
on artificial and the practical dataset, which can be accessed 
from the website (https://sites.google.com/site/cassalgorithm/
data-sets). The results are shown in Tables 1–3. On the one hand, 
we use practical data to test the influence of input data order 
on constructing network (see Table 1). On the other hand, we 
compared the network complexity, i.e. the level; the reticulation 

FIGURE 1 | Two networks N1 and N2 are constructed by Frin for the cluster 
set of Example 3.1.

FIGURE 2 | N3 is the network constructed by Frin for all permutations of 
input data in Example 3.2.
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FIGURE 3 | N4, N5 and N6 are the networks constructed by Cass for all permutations of input data in Example 3.2.

FIGURE 4 | N7, N8 and N9 are the networks constructed by BIMLR for all permutations of input data in Example 3.2.

FIGURE 5 | N10, N11 and N12 are the networks constructed by Lnetwork for all permutations of input data in Example 3.2.
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TABLE 1 | The results of Frin, Cass, Lnetwork and BIMLR on practical datasets with clusters |C| and taxa |X| when input order is different.

Data Firm Cass Lnetwork BIMLR

|C| |X| n mean min max n mean min max n mean min max n mean min max

35 22 1 0 0 0 2 6.5 6.5 6.5 1 0 0 0 1 0 0 0
25 15 1 0 0 0 2 3 3 3 1 0 0 0 1 0 0 0
22 13 2 1.5 1.5 1.5 2 0.5 0.5 0.5 2 1 1 1 2 1.5 1.5 1.5
27 15 3 3.3 1 5 3 3 3 3 2 1 1 1 2 1 1 1
25 13 1 0 0 0 4 6.3 2 7.5 3 1.2 0.5 1.5 1 0 0 0
22 11 2 5.5 5.5 5.5 3 3 2.5 3.5 1 0 0 0 1 0 0 0
17 10 1 0 0 0 3 2 1.5 2.5 3 1.3 1 1.5 3 2 1 3
13 8 1 0 0 0 4 3.6 1.5 4 2 1 1 1 1 0 0 0
23 11 1 0 0 0 4 5.6 3 7.5 2 1 1 1 2 1 1 1
18 10 1 0 0 0 4 1.5 0.5 3 3 2.5 1.5 3.5 3 1.5 0.5 2.5
22 11 2 0.5 0.5 0.5 3 3.2 1.5 5 1 0 0 0 2 0.5 0.5 0.5
12 11 1 0 0 0 2 3 3 3 1 0 0 0 1 0 0 0
21 10 2 5.5 5.5 5.5 4 3.9 1.5 5.5 2 1.5 1.5 1.5 2 0.5 0.5 0.5
13 7 1 0 0 0 4 3.8 1.5 4 2 1 1 1 1 0 0 0
22 10 3 2.7 2 3.5 2 1.5 1.5 1.5 1 0 0 0 2 0.5 0.5 0.5
21.1 11.8 1.5 1.3 1.1 1.4 3.1 3.4 2.2 4.0 1.8 1.2 1.1 1.4 1.6 0.6 0.4 0.7

TABLE 2 | The results of Frin, Cass, Lnetwork and BIMLR on artificial datasets with clusters |C| and taxa |X|.

Data Frin Cass Lnetwork BIMLR

|C| |X| t k r c t k r c t k r c t k r c

86 37 14s 4 9 12 3s 3 8 27 4s 3 8 11 8s 3 8 23
38 20 33s 5 7 11 2s 4 6 25 25s 4 6 15 2s 4 6 25
43 22 1s 3 5 3 1s 2 4 12 1s 3 5 3 1s 3 5 11
72 27 32s 5 7 19 15s 5 7 43 3s 5 7 19 4s 5 7 29
52 22 27s 4 8 12 17s 4 7 33 3s 4 8 15 6s 4 8 15
79 27 3m54s 8 10 80 7m21s 6 8 89 47s 6 8 44 2m40s 8 10 52
38 16 1m44s 6 8 28 15s 5 7 50 4m22s 7 9 36 13s 6 8 25
41 16 2s 4 5 6 1s 4 5 29 1s 4 5 4 1s 4 5 7
12 8 1s 2 2 0 1s 2 2 2 1s 2 2 0 1s 2 2 0
45 20 1m51s 6 7 34 4h4m 6 7 66 35s 6 7 28 17s 6 7 47
22 11 44s 2 3 1 1s 2 3 5 1s 2 3 1 1s 2 3 4
17 10 1s 3 3 4 1s 3 3 8 1s 3 3 4 1s 3 3 7
46 16 6m8s 6 8 10 23s 5 7 34 7s 6 8 15 12s 6 8 22
22 11 41s 4 4 14 2s 4 4 23 3s 4 4 13 2s 5 5 21
22 10 54s 4 4 10 2s 4 4 21 6s 4 4 12 2s 5 5 19
42.3 18.2 1m2s 4.4 6 16 16m51s 3.9 5.5 31 24.9s 4.2 5.8 14.7 15.4s 4.4 6 20.5

TABLE 3 | The results of Frin, Cass, Lnetwork and BIMLR on practical datasets with clusters |C| and taxa |X|.

Data Frin Cass Lnetwork BIMLR

|C| |X| t k r c t k r c t k r c t k r c

14 4 1s 3 3 0 1s 3 3 0 1s 3 3 0 1s 3 3 0
30 5 1s 4 4 0 2s 4 4 0 2s 4 4 0 1s 4 4 0
62 6 6s 5 5 0 11s 5 5 0 6s 5 5 0 7s 5 5 0
42 10 1s 4 4 8 5s 4 4 34 1s 4 4 8 1s 4 4 8
39 11 23s 6 6 10 21s 5 5 7 13s 5 5 8 3s 5 5 8
61 11 23s 5 5 11 1m26s 5 5 48 5s 5 5 11 1s 5 5 11
75 30 1s 2 2 19 5s 2 2 122 1s 2 2 19 1s 2 2 19
180 51 8s 2 2 0 40s 2 2 0 4s 2 2 0 1s 2 2 0
70 56 1s 1 4 0 1s 1 4 0 1s 1 4 0 2s 1 4 0
270 76 1m7s 2 2 0 6m22s 2 2 0 12s 2 2 0 24s 2 2 0
404 122 4m1s 2 2 0 1h44m 2 2 0 27s 2 2 0 27s 2 2 0
113.4 34.7 43.7s 3.3 3.5 4.4 10m18s 3.2 3.5 10 6.6s 3.4 3.6 8.5 7.1s 3.2 3.5 4.2
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number and the redundant cluster number, of four methods on 
artificial and practical data (see Table 2 and 3).

We get all permutations of input order for each data, and then 
construct networks for each permutation. Since the running time of 
the experiment is factorial, we choose small-scale data as the input. 
In order to measure the influence of input data order, we record the 
number of different resulting networks and compute the tripartition 
distance between them. We use the tripartition distances to measure 
the dissimilarity between the networks. The experimental result is 
shown in Table 1. Each dataset consists of cluster number |C| and 
taxa number |X|. The table records the number of different networks 
(n) and mean (mean), minimum (min), maximum (max) values 
of the tripartition distance, and the last row is the average of the 
corresponding columns. Table 1 shows that the number of different 
networks constructed by Frin is less than other three methods for 
most data, and the tripartition distance between them is also smaller, 
especially compared with Cass algorithm. Hence, Frin constructs 
more consistent networks when the input data orders are different.

We test the complexity of the networks constructed by Frin, 
Cass, Lnetwork, and BIMLR, including the network level (k), the 
reticulation number (r) and the redundant cluster number (c), 
and as well as the running time (t) of those methods in h/m/s. The 
following tables show the results of experiment on artificial and 
practical data with the cluster number |C| and the taxa number 
|X|. The last row of the tables is the average of the corresponding 
columns. Table 2 compares Frin with other three methods in several 
artificial datasets. It shows that Frin consumes less time for the same 
input data compared with Cass, and Frin has significantly fewer 
redundant clusters than Cass and BIMLR. Table 3 compares the 
four methods in several practical datasets. It shows that the average 
reticulation number of Frin is slightly larger than the other methods, 
but it has fewer redundant clusters than Cass and Lnetwork in most 
cases. Thus, the network constructed by Frin is simpler than that 
constructed by other methods in the aspect of redundant clusters, 

and the execution time of Frin has also been greatly reduced compare 
with Cass, although it takes longer than the other two methods.

We describe the application of Frin to the Poaceae dataset 
and also compare it with other programs. The dataset consists of 
three phylogenetic trees of the Poaceae family, which are based on 
sequences data for three difference gene loci, petD, ndhB, and rpl2. 
The gene sequences are downloaded from NCBI database. We 
do sequence alignment on the obtained sequence using Clustalx, 
and construct a phylogenetic tree using Phylip. Frin constructs 
a level-5 network with 10 taxa, 5 reticulations and 31 redundant 
clusters for the three gene trees of poaceae datasets. The resulting 
network is shown in Figure 6 using Dendroscope3 (Huson et al., 
2007; Vaughan, 2017). For the same input, BIMLR constructs a 
level-5 network with r = 5, c  = 33 and Lnetwork constructs a 
level-5 network with r = 5, c = 37; while Cass algorithm cannot 
construct the network in a day. The result shows that the network 
constructed by Frin is the simplest. It illustrates that the network 
constructed by Frin which can describe real evolutionary history 
better than the other methods.

CONCLUsION
In this paper, we propose an efficient method called Frin 
to construct phylogenetic networks. In the process of 
construction, Frin considers the two factors that affect the 
compatibility of a cluster set, which are the frequency and 
incompatibility degree of taxa, respectively. Frin can construct 
several different networks, and select the simplest network 
from them as the resulting network. The experimental 
results show that Frin is an improved method. First, Frin can 
construct less different networks when the input data order 
is different than the other methods. Second, the networks 
constructed by Frin have less the number of redundant 
clusters than the other methods in the case of the level and 
the reticulation number of the networks not are increasing. 
Both facts indicate that Frin can better describe the biological 
evolutionary history.
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FIGURE 6 | Frin constructs a level-5 network with r = 5, c = 31 for the three 
gene trees of the Poaceae datasets.

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1261134

https://github.com/wangjuanimu/Frin
https://sites.google.com/site/cassalgorithm/data231 sets
https://sites.google.com/site/cassalgorithm/data231 sets
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FrinHong and Wang

8

REFERENCEs
Albrecht, B., Scornavacca, C., and Cenci, A. (2012). Fast computation of minimum 

hybridization networks. Bioinformatics 28 (2), 191–197. doi: 10.1093/
bioinformatics/btr618

Albrecht, B. (2015). Computing all hybridization networks for multiple binary 
phylogenetic input trees. BMC Bioinf. 16 (1), 1–15. doi: 10.1186/s12859-015-0660-7

Bordewich, M., Linz, S., and John, K. S. (2007). A reduction algorithm for computing 
the hybridization number of two trees. Evol. Bioinf. 3, 117693430700300. doi: 
10.1177/117693430700300017

Doolittle, W. F. (1999). Phylogenetic classification and the universal tree. Science 
284 (5423), 2124–2128. doi: 10.1126/science.284.54232124

Francis, A., Huber, K. T., and Moulton, V. (2018). Tree-based unrooted phylogenetic 
networks. Bull. Math. Biol. 80 (2), 404–416. doi: 10.1007/s11538-017-0381-3

Gambette, P., Huber, K. T., and Kelk, S. (2017). On the challenge of reconstructing 
level-1 phylogenetic networks from triplets and clusters. J. Math. Biol. 74 (7), 
1729–1751. doi: 10.1007/s00285-016-1068-3

Gunawan, A. D. M., Lu, B., and Zhang, L. (2016). A program for verification of 
phylogenetic network models. Bioinformatics 32 (17), i503–i510. doi: 10.1093/
bioinformatics/btw467

Gunawan, A. D. M., Lu, B., and Zhang, L. (2018). Fast methods for solving the 
cluster containment problem for phylogenetic networks. Bioinformatics 34 
(17), i680–i686. doi: 10.1093/bioinformatics/bty594

Gusfield, D., Bansal, V., and Bafna, V. (2007a). A decomposition theory for 
phylogenetic networks and incompatible characters. J. Comput. Biol. 14 (10), 
1247–1272. doi: 10.1089/cmb.20060137

Gusfield, D., Hickerson, D., and Eddhu, S. (2007b). An efficiently computed lower bound 
on the number of recombination in phylogenetic networks: theory and empirical 
study. Discrete Appl. Math. 155 (6-7), 806–830. doi: 10.1016/j.dam.2005.05.044

Huber, K. T., van Iersel, L., and Moulton, V. (2017). Reconstructing phylogenetic 
level-1 networks from nondense binet and trinet sets. Algorithm. 77 (1), 173–
200. doi: 10.1007/s00453-015-0069-8

Huson, D. H., and Rupp, R. (2008). Summarizing multiple gene trees using cluster 
networks. Int. Workshop Algo. Bioinf. 5251, 296–305. doi: 978-3-540-87361-7_25

Huson, D. H., and Scornavacca, C. (2011). A survey of combinatorial methods for 
phylogenetic networks. Genome Biol. Evol. 3, 23–35. doi: 10.1093/gbe/evq077

Huson, D. H., Rupp, R., Berry, V., Gambette, P., and Paul, C. (2007). Computing 
galled networks from real data. Bioinformatics 25 (12), i85–i93. doi: 10.1093/
bioinformatics/btp217

Huson, D. H., Richter, D. C., and Rausch C. (2007). Dendroscope: an interactive viewer for 
large phylogenetic trees. BMC Bioinf. 8 (1), 460–460. doi: 10.1186/1471-2105-8-460

Iersel, L. V., Keijsper, J., and Kelk, S. (2009). Constructing Level-2 phylogenetic 
networks from triplets. EEE/ACM Trans. Comput. Biol. Bioinform. 6, 667–681.
doi: 10.1109/TCBB.2009.22

Jansson, J., and Sung, W. K. (2006). Algorithms for combining rooted triplets into 
a galled phylogenetic network. SIAM J. Comput. 35, 1098–1121. doi: 10.1137/
S0097539704446529

Kelk, S., and Scornavacca, C. (2014). Constructing minimal phylogenetic networks 
from softwired clusters is fixed parameter tractable. Algorithm. 68 (4), 886–915. 
doi: 10.1007/s00453-012-9708-5

Linz, S., and Semple, C. (2009). Hybridization in Nonbinary Trees. IEEE/ACM 
Trans. Comput. Biol. Bioinf. 6 (1), 30–45. doi: 10.1109/TCBB.2008.86

Makarenkov, V., Kevorkov, D., and Legendre, P. (2006). Phylogenetic network 
construction approaches. Appl. Mycol. Biotechnol. 6 (06), 61–97. doi: 10.1016/
S1874-5334(06)80006-7

Mirzaei S., and Wu, Y. (2016). Fast construction of near parsimonious hybridization 
networks for multiple phylogenetic trees. IEEE/ACM Trans. Comput. Biol. 
Bioinf. 13 (3), 1–1. doi: 10.1109/TCBB.2015.2462336

Nakhleh, L. (2011). Evolutionary Phylogenetic Networks: Models and Issues.The 
Problem Solving Handbook for Computational Biology and Bioinformatics. 
Springer, pp.125-158.doi: 10.1007/978-0-387-09760-2_7

Van Iersel, L., Kelk, S., Rupp, R., and Huson, D. (2010). Phylogenetic networks 
do not need to be complex: using fewer reticulations to represent conflicting 
clusters. Bioinformatics 26 (12), i124–i131. doi: 10.1093/bioinformatics/
btq202

Van Iersel, L., Kelk, S., and Stamoulis, G. (2017). On unrooted and root-uncertain 
variants of several well-known phylogenetic network problems. Algorithm 80, 
2993–3022. doi: 10.1007/s00453-017-0366-5

Vaughan, T. G. (2017). IcyTree: rapid browser-based visualization for phylogenetic 
trees and networks. Bioinformatics 33 (15), 2392–2394. doi: 10.1093/bioinformatics/
btx155

Wang, J., Guo, M., Liu, X., Liu, Y., Wang, C., Xing, L., et al. (2013a). LNETWORK: 
an efficient and effective method for constructing phylogenetic networks. 
Bioinf. 29 (18), 2269–2276. doi: 10.1093/bioinformatics/btt378

Wang, J., Guo, M., Xing, L., Che, K., Liu, X., and Wang, C. (2013b). BIMLR: 
a method for constructing rooted phylogenetic networks from rooted 
phylogenetic trees. Gene 527 (1), 344–351. doi: 10.1016/j.gene.2013.06.036

Wu, Y. (2010). Close lower and upper bounds for the minimum reticulate network 
of multiple phylogenetic trees. Bioinformatics 26 (12), i140–i148. doi: 10.1093/
bioinformatics/btq198

Yu, Y., and Nakhleh, L. (2015). A maximum pseudo-likelihood approach for 
phylogenetic networks. BMC Genomics 16 (10), S10. doi: 10.1186/1471-2164- 
16-S10-S10

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as a 
potential conflict of interest.

Copyright © 2019 Hong and Wang. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License (CC BY). The use, 
distribution or reproduction in other forums is permitted, provided the original 
author(s) and the copyright owner(s) are credited and that the original publication 
in this journal is cited, in accordance with accepted academic practice. No use, 
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1261135

https://doi.org/10.1093/bioinformatics/btr618
https://doi.org/10.1093/bioinformatics/btr618
https://doi.org/10.1186/s12859-015-0660-7
https://doi.org/10.1177/117693430700300017
https://doi.org/10.1126/science.284.54232124
https://doi.org/10.1007/s11538-017-0381-3
https://doi.org/10.1007/s00285-016-1068-3
https://doi.org/10.1093/bioinformatics/btw467
https://doi.org/10.1093/bioinformatics/btw467
https://doi.org/10.1093/bioinformatics/bty594
https://doi.org/10.1089/cmb.20060137
https://doi.org/10.1016/j.dam.2005.05.044
https://doi.org/10.1007/s00453-015-0069-8
http://978-3-540-87361-7_25
https://doi.org/10.1093/gbe/evq077
https://doi.org/10.1093/bioinformatics/btp217
https://doi.org/10.1093/bioinformatics/btp217
https://doi.org/10.1186/1471-2105-8-460
http://doi.org/10.1109/TCBB.2009.22
https://doi.org/10.1137/S0097539704446529
https://doi.org/10.1137/S0097539704446529
https://doi.org/10.1007/s00453-012-9708-5
https://doi.org/10.1109/TCBB.2008.86
https://doi.org/10.1016/S1874-5334(06)80006-7
https://doi.org/10.1016/S1874-5334(06)80006-7
https://doi.org/10.1109/TCBB.2015.2462336
http://doi.org/10.1007/978-0-387-09760-2_7
http://doi.org/10.1093/bioinformatics/btq202
http://doi.org/10.1093/bioinformatics/btq202
http://doi.org/10.1007/s00453-017-0366-
https://doi.org/10.1093/bioinformatics/btx155
https://doi.org/10.1093/bioinformatics/btx155
http://doi.org/10.1093/bioinformatics/btt378
https://doi.org/10.1093/bioinformatics/btq198
https://doi.org/10.1093/bioinformatics/btq198
https://doi.org/10.1186/1471-2164-16-S10-S10
https://doi.org/10.1186/1471-2164-16-S10-S10
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Frontiers in Genetics | www.frontiersin.org

Edited by:
Lei Deng,

Central South University,
China

Reviewed by:
Li Hongdong,

Gannan Medical University,
China

Xiaowei Chen,
Institute of Biophysics (CAS),

China

*Correspondence:
Wenyuan Zhao

zhaowenyuan@ems.hrbmu.edu.cn

Specialty section:
This article was submitted to

Statistical Genetics and
Methodology,

a section of the journal
Frontiers in Genetics

Received: 22 September 2019
Accepted: 27 November 2019
Published: 09 January 2020

Citation:
Chang Z, Miao X and Zhao W (2020)
Identification of Prognostic Dosage-

Sensitive Genes in Colorectal
Cancer Based on Multi-Omics.

Front. Genet. 10:1310.
doi: 10.3389/fgene.2019.01310

ORIGINAL RESEARCH
published: 09 January 2020

doi: 10.3389/fgene.2019.01310
Identification of Prognostic
Dosage-Sensitive Genes in
Colorectal Cancer Based
on Multi-Omics
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Several studies have already identified the prognostic markers in colorectal cancer (CRC)
based on somatic copy number alteration (SCNA). However, very little information is
available regarding their value as a prognostic marker. Gene dosage effect is one
important mechanism of copy number and dosage-sensitive genes are more likely to
behave like driver genes. In this work, we propose a new pipeline to identify the dosage-
sensitive prognostic genes in CRC. The RNAseq data, the somatic copy number of CRC
from TCGA were assayed to screen out the SCNAs. Wilcoxon rank-sum test was used to
identify the differentially expressed genes in alteration samples with |SCNA| > 0.3. Cox-
regressionwas used to find the candidate prognostic genes. An iterative algorithmwas built
to identify the stable prognostic genes. Finally, the Pearson correlation coefficient was
calculated between gene expression and SCNA as the dosage effect score. The cell line
data from CCLE was used to test the consistency of the dosage effect. The differential co-
expression networkwas built to discover their function in CRC. A total of six amplified genes
(NDUFB4, WDR5B, IQCB1, KPNA1, GTF2E1, and SEC22A) were found to be associated
with poor prognosis. They demonstrate a stable prognostic classification inmore than 50%
threshold of SCNA. The average dosage effect score was 0.5918 ± 0.066, 0.5978 ± 0.082
in TCGA and CCLE, respectively. They also show great stability in different data sets. In the
differential co-expression network, these six genes have the top degree and are connected
to the driver and tumor suppressor genes. Function enrichment analysis revealed that gene
NDUFB4 and GTF2E1 affect cancer-related functions such as transmembrane transport
and transformation factors. In conclusion, thepipeline for identifying the prognostic dosage-
sensitive genes in CRC was proved to be stable and reliable.

Keywords: colorectal cancer, somatic copy number alteration, survival analysis, gene dosage effect, differential
co-expression

INTRODUCTION

Colorectal cancer (CRC), is the 3rd leading cause of cancer-associated deaths in the world
(Siegel et al., 2019). Studies have shown that somatic copy number alteration (SCNA) is one
of the most common and important structural mutations in CRC (Li et al., 2017; Oliveira et al.,
2018). SCNA genes are usually considered as the driver gene for cancer development and
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an important factor for the progression of CRC (Wang et al.,
2009; Rosenberg et al., 2018; Lee et al., 2019).

In addition to this few SCNA genes are also being considered
as prognostic markers for CRC patients (Roy et al., 2016; Sefrioui
et al., 2017). Previous research has shown that a high copy
number of mitochondrial DNA can help in identifying the poor
prognosis associated with advanced-stage CRC patients (Wang
et al., 2016). However, the reason for this specific attribute
is still unknown. SCNAs are generated by chromosomal
rearrangement. Another important mechanism of SCNA
influencing cancer progression is through the gene dosage
effect (Harel and Lupski, 2018; Salpietro et al., 2018). For a
gene in the region of SCNA, if its expression increases with
amplification of the copy number and vice versa, this gene would
be defined as dosage-sensitive gene. With respect to the unstable
and complex nature of expression regulation, the DNA copy
number is relatively more stable. Therefore, the copy number of
dose-sensitive genes is more likely to be used as a driver gene in
cancer. Some of the dosage-sensitive genes (DSGs) such as
CD274/PD-L1 gene amplification (Lee et al., 2018b), fibroblast
growth factor 1 amplification (Bae et al., 2019), RING-Finger
Protein 6 amplification (Steinman et al., 1979), have been shown
to be associated with poor prognosis, suggesting DSGs can also
be considered as prognostic markers.

The amount of SCNA can be considered as one important
indicator of cancer progression. Cancerous tissue may contain
both tumor and non-tumor cells, and the copy number of DNA
in all cells can be measured during detection. The copy number
value obtained from the whole tissue sample with respect to the
control sequence reflects the frequency of copy number
alteration in the whole sample. This value is often in parts.
However, identifying a threshold value of SCNA to be considered
as pathogenic or mutant needs a thorough investigation. Jianxin
Shi et al. identified significant CNVs using the FASST2 algorithm
and selected the number of probes per fragment >5 and log2ratio
greater than 0.3 as amplification gene (Shi et al., 2016). Villela
et al. also used 0.3 as the SCNA threshold (Kostolansky et al.,
1986; Villela et al., 2018). In addition, the copy number
amplification or deletion of 0.5 (i.e. half amplification or
deletion) is pathogenic (Birchler et al., 2001; Birchler and
Veitia, 2012). These results suggest that different threshold
values should be used as a measure of SCNA.

Due to the importance of DSGs and the fact that SCNA could
be a prognostic marker of CRC, we hypothesize that the dosage-
sensitive prognostic genes should also affect CRC progression.
TCGA is a milestone project of cancer genome covering CNV,
RNA-seq data, and patient-specific data of CRC. It can provide a
possibility for relatively large-scale excavation of prognostic
genes of CRC. In this paper, we have established a pipeline for
screening prognosis sensitive genes in CRC, organically
identified stable prognostic markers with dosage sensitivity of
copy number in CRC, and verified their dosage sensitivity by cell
line data. This analysis can help to further enhance our
understanding of the value of the prognostic gene of SCNA
and can lay a foundation for further analysis.
Frontiers in Genetics | www.frontiersin.org 2137
MATERIALS AND METHODS

Datasets and Processing
The data of CNA, RNA-seq data, and clinical data of CRC were
downloaded from the TCGA database. By mapping the copy
number probe across the reference genome of hg38, the SCNA at
gene level was calculated using Gistic2 software (Mermel et al.,
2011). The value of SCNA represents the portability of copy
number alteration and the q-value for the genes in aberrant
regions. The q-value > 0.1 and q-value < −0.1 were considered as
copy number amplified and deleted, respectively. For each gene,
the samples with SCNA value > = x (x represents the threshold of
SCNA with a value >0) were identified as copy number
amplification samples (CNAS), the samples with SCNA < = −x
were identified as copy number deleted samples (CNDS), and the
samples with | SCNA | < x were identified as copy number non-
altered samples (CNNS). The location information of
chromosomes was obtained from the HGNC database (Braschi
et al., 2019). RNAseq FPKM data was downloaded from
University of California Santa Cruz (UCSC, http://genome.
ucsc.edu/), and more than 80% of genes with 0 value were
filtered out. The test data-set was collected from the Cancer
Cell Line Encyclopedia (CCLE; http://www.broadinstitute.org/
ccle/home).
Filtering of Prognosis-Sensitive SCNA
Genes
PSGs of SCNA were screened in five steps as described below:

Step 1: Set x (x > 0) as the threshold for SCNA, then the samples of
CRC were classified into three groups, somatic copy number
amplification samples (CNAS), somatic copy number deletions
samples (CNDS), and somatic copy number non-alteration
samples (CNNS). The number of CNAS or CNDS was more
than or equal to 10. Wilcoxon rank-sum test was performed to
identify differentially expressed genes between CNAS and
CNNS and between CNDS and CNNS. The p-value was cor-
rected by the Benjamini-Hochberg method. As there were very
small differences in gene expression between SCNA and CNNS
samples their false discovery rate (FDR) < 0.1 and p < 0.01, fold
change >1.2 were considered as differential expression.

Step 2: In order to further screen the candidate genes on the basis
of Step 1. We identified genes with expression up-regulation
(p-value < 0.01 and FC > 1.2) and copy number amplification
(SCNA > x) in CNAS, and the genes with expression down-
regulation (p-value < 0.01 and FC < 1/1.2) and copy number
deletion (SCNA < −x) in CNDS as candidates for the dosage-
sensitive gene.

Step 3: The data of SCNA and survival time of all the samples for
each abnormal candidate gene was analyzed by Cox regres-
sion and the genes with p-value < 0.05 were identified as
candidate PSG.

Step 4: In order to further screen stable SCNA-PSGs, the SCNA
threshold x was raised from 0.1 to 0.5 with 0.02 steps, and the
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cancer samples were divided into CNAS, CNDS, and CNNS.
For each threshold of SCNA, the log-Rank test was used to
assess the significance of overall survival times in CNAS vs.
CNNS and CNDS vs. CNNS groups. The abnormal driver
genes with the number more than 50% number of the
thresholds were selected as a stable PSG.

Step 5: In order to further screen dosage-sensitive genes from
stable PSGs in different SCNA threshold, the prognostic
sensitive abnormal genes of DSGs were selected. Linear
regression was applied to assess the dosage-sensitivity. The R-
value represents the dosage-effect score. The genes with the p-
value < 0.05 and R > = 0.3 were considered as prognostic
dosage-sensitive genes (PDSGs).
Verification of DSGs in Cell Lines
In order to verify the stability of the dosage-sensitivity of PDSGs,
the correlation coefficients between gene expression and copy
number alteration were calculated with the RNA-seq of CRC and
CNA at gene level downloaded from the CCLE database. These
values were compared with the findings obtained from TCGA.

Building the Differential Co-Expression
Network
In order to further identify the genes affected by PDSGs, Pearson
correlation coefficients of these six PDSGs and other genes was
calculated as co-expression values in CNAS or CNDS, CNNS.
Gene pairs with correlation coefficients higher than 0.5 in one
group and less than 0.1 in another group were screened as
differentially co-expressing gene pairs. Network visualization
tools were executed using Cytoscape (Shannon et al., 2003).

Analysis
All the analysis was performed in the R computing environment.
Survival curves were estimated using the Kaplan-Meier method.
Gene function enrichment was performed using the Cluster
Profiler package (Yu et al., 2012).
RESULTS

PDSGs in CRC
A total of 448 CRC samples with SCNA and RNA-seq data were
downloaded from The Cancer Genome Atlas (TCGA). The
samples were screened for survival information. There were
22,752 genes, of these 17,442 were protein-coding and 14,688
were differentially expressed.

After applying FDR < 0.1 and FC > 1.2, 6,814 genes had up-
regulated expression in CNAS. Twenty-five genes had a down-
regulated expression in CNDS. Cox regression analysis was
applied to calculate the correlation between SCNA and survival
time. A total of 215 prognosis-sensitive genes (PSGs)
significantly related to SCNA were obtained, of these 214 were
amplified and one was deleted. Next, the 21 SCNA threshold
value was raised from 0.1 to 0.5 at a step of 0.02. For each
threshold, the samples were classified into CNNS, CNAS, CNDS
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group and logRank test between CNNS and CNAS, CNDS and
CNNS was performed. As shown in Figure 1, 73.02% of genes
didn’t show any significant classification with any threshold. A
total of 15 genes showed stable prognosis classification of
patients in more than 10 threshold values, suggesting these 15
genes can be considered as stable markers for prognosis
classification in CRC.

After further screening stable PSGs which are highly affected
by copy number dosage effect, the Pearson correlation coefficient
between copy number and corresponding expression value
(FPKM) of these 15 genes was calculated. Finally, six genes
(NDUFB4, WDR5B, IQCB1, KPNA1, and SEC22A) which are
stable PSGs (Figure 2) were identified. The average dosage effect
score was 0.5918 and the variance was 0.066.

Kaplan-Meier survival curve analysis revealed six (6) PDSGs
with similar results in a different threshold of SCNA. In the 0.1
SCNA threshold value, genes GTF2E1, NDUFB4, IQCB1, KPNA
1 andWDR5B had a significant classification effect (Figures 3A–
C). At the 0.3 threshold value of SCNA, all six genes had a similar
and significant classification effect (Figure 3D). At the 0.5
threshold value, five genes (GTF2E1, NDUFB4, IQCB1,
KPNA1, WDR5B) had similar classification effect (Figures 3E,
F). Although the statistical significance of the two classifications
(p-value = 0.087199 and p-value = 0.12643) in 0.5 SCNA
threshold was not significant, their classification curves were
distinctly separated. The non-significance can be primarily
attributed to the very small number of samples with SCNA
threshold >0.5.

Testing Dosage Effect of PDSGs in CCLE
In order to verify if the copy number of six PDSGs is dosage-
sensitive in the data from cell lines with 53 cell line samples, the
FIGURE 1 | Classification stability of gene prognosis. For each threshold of
somatic copy number alteration (SCNA) (from 0.1 to 0.5, at 0.02 step), the
p-value was calculated by the log-rank test in corresponding alteration and
CNNS samples. The Number of Threshold will increase if the p-value < 0.05.
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FIGURE 2 | The dosage sensitivity of six prognostic dosage-sensitive genes (PDSGs). The X-axis represents the somatic copy number alteration (SCNA) value and
Y-axis represents the FPKM of genes.
FIGURE 3 | The Kaplan-Meier curves of six PSDGs for samples in CNAS and CNNS. (A–C) with the somatic copy number alteration (SCNA) threshold 0.1, gene
GTF2E1 and NDUFB4 had similar prognostic classification efficacy. (D) with the SCNA threshold 0.3, all six PSDGs have similar efficacy. (E, F) with the SCNA
threshold 0.5, although the p-value was > 0.05, the two survival curves still separated from each other.
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dosage effect score of these six PDSGs in CRC from CCLE was
calculated. An average score of 0.5978 and variance was 0.082
consistent with the result from TCGA was obtained (Figure 4A).
The Pearson correlation coefficient was 1, suggesting that the
gene dosage effect is stable in CRC different data.

Six PDSGs Are Co-Alteration in CRC
Further to test similarity between survival curves of these six
PDSGs, we mapped them to chromosomes and found that they
all are located on 3q13.33–3q21.1. By computing the correlation
coefficients between the copy number of two pairs of genes an
average value of 0.9967 (Figure 4B) was observed. This indicates
that these six PDSGs are highly consistent with each other
during alteration.

Research have shown that heterogeneity of copy number
alterations exists in ongoing unstable chromosome in COAD
(Bolhaqueiro et al., 2019). There are some chromosomes fragile
sites in genome, the genes in fragile sites may break when they
fell external pressure. In order to determine the presence of
breakpoints in the region near to 6PDSGs, they were mapped on
the database of human chromosomes fragile sites (HumCFS,
http://webs.iiitd.edu.in/raghava/humcfs/). As a result, FRA3D
(3q25.32) and FRA3C were found to be near to six PDSGs.
Correlation analysis of SCNA in six PDSGs and the genes in
FRA3D and FRA3C was performed. Gene RSRC1 (R = 0.82),
MLF1(R = 0.82) in FRA4D, and LPP (R = 0.80) in FRA3C had
lowest relationship with PDSGs. Thus we infer that the
breakpoints in fragile site may explain the reason for the
nearby region and a similar SCNA value.

Building and Analysis of Differential Co-
Expression Network With PDSGs
In order to further explore if these six PDSGs can also affect the
expression of other genes in CRC, we screened genes with (R) >
0.5 and (R) < 0.1 in a different class of samples by calculating the
differences of gene co-expression between CNAS and CNNS. A
total of 234 co-expressed gene pairs were observed and 215 genes
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(Figure 5A) involved in differential co-expression networks were
identified. The whole network constitutes a component
suggesting that CRC is a disease involving multiple genes.
Among these 194 gene pairs were co-expressed in alteration
samples (R > 0.5), but not co-expressed in non-alteration
samples (R < 0.1), while the other 40 pairs behaved in a
reverse manner. In the network, gene NDUFB4, SEC22A had
the highest degree (109 and 45 respectively) consisting of 15 co-
linked genes. The genes CAPN14 and CMPK2 were affected by
three PDSGs (NDUFB4, SEC22A, and IQCB1). This suggests
that PDSGs are closely linked and interact with each other.

Each PDSG in the network was related to at least 13 genes and
22 genes were associated with more than one PDSG. We also
found that several PDSGs-associated genes were also COAD-
related. The co-expression of GTF2E1-WNT8B was activated in
CNAS(R = 0.59). WNT8B one member of the WNT signal was
differentially expressed in COAD (Neumann et al., 2014). In
addition to this, after mapping the PDSG-related genes to the
driver gene list from DriverDB (Liu et al., 2019), three genes
(C8orf33, LAPTM4B, PTP4A3) were found (Figure 5B), and
they all were co-expressed with gene NDUFB4 in CNAS but not
in CNNS. Mapping of PDSG-related genes on the tumor
suppressor database (TSGene, http://bioinfo.mc.vanderbilt.edu/
TSGene/) revealed 16 TSGs (Figure 5A, Triangle). Among these,
gene DCDC2, ISG15, RARRES3 can affect more than one PDSG.
Gene RARRES3 has been shown to be mutated, differentially
expressed and also inhibits metastasis in COAD (Lee et al.,
2018a). ISG15 is shown to have significant differential
expression in COAD (Yu et al., 2019; Zamanian-Azodi and
Rezaei-Tavirani, 2019).

Further to explore the possible functions of these six PDSGs,
linked genes were extracted and gene ontology function
enrichment analysis was performed. Genes linked to gene
NDUFB4 (Figure 5C) were mainly enriched in functions
such as “transmembrane receptor,” “transmembrane
transport,” “peptide receptor,” “G protein-coupled receptor,”
“transforming growth factor.” Genes linked to gene GTF2E1
FIGURE 4 | The dosage-sensitive and the correlation scores of somatic copy number alteration (SCNA) of prognostic dosage-sensitive genes (PDSGs). (A) The
correlation coefficient of SCNA and gene expression. Both results suggest strong concordance. (B) The heatmap of the SCNA of PDSG. All these six PDSGs show
high co-alteration in colorectal cancer (CRC).
January 2020 | Volume 10 | Article 1310

http://webs.iiitd.edu.in/raghava/humcfs/
http://bioinfo.mc.vanderbilt.edu/TSGene/
http://bioinfo.mc.vanderbilt.edu/TSGene/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Chang et al. Dosage-Sensitive Genes in Colorectal Cancer
were enriched (Figure 5D) in functions such as “cyclin-
dependent protease,” “ATP synthase transport proton-related
functions.” Previous studies have shown that transforming
growth factor can also promote tumorigenesis (De Miranda
et al., 2015; Yu et al., 2018; Kim et al., 2019). G-protein-
coupled receptors (GPCRs) are a member of the largest cell
surface molecule family involved in signal transduction and are
considered as the key molecule in the growth and metastasis of
tumors (Wielenga et al., 2015; Insel et al., 2018). Malignant cells
often hijack the normal physiological functions of GPCRs to
survive, proliferate independently, escape the epidemic system,
increase blood supply, invading the surrounding tissues and
spread to other organs.
Frontiers in Genetics | www.frontiersin.org 6141
DISCUSSION

In this manuscript, a series of screening methods were
established to identify PDSGs in CRC. A total of six PDSGs
identified in the present study not only have the robustness to
different SCNA threshold in prognostic classification but also
have the same dosage effect in CRC cell lines. This indicates that
our screening pipeline is suitable, reasonable, and effective. The
amplification of the copy number of these six PDSGs can lead to
poor prognosis, indicating that the SCNA of genes could serve as
an important prognostic marker in CRC.

In addition to the stable results, these PDSGs have been
shown to be associated with CRC. Gene NDUFB4 encodes a
FIGURE 5 | Differential co-expression network and function of enrichment of prognostic dosage-sensitive genes (PDSGs). (A) Differential co-expression networks, Triangle
represent tumor suppressor genes, lower triangular represent driver gene. Six PDSGs (NDUFB4, WDR5B, IQCB1, KPNA1, GTF2E1, and SEC22A) have the top degree.
The edge represents co-expression of the adjacent genes above 0.5 in one group and below 0.1 in another group. (B). The co-expression curve of gene (C) Normal and
abstained function of gene NDUFB4 using Cluster Profiler R package (D) Normal and abstained function of gene GTF2E1 using Cluster Profiler R package.
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non-catalytic subunit of the NADH. The NADH dehydrogenase
complex I is overexpressed in incipient metastatic murine CRC
cells (Marquez et al., 2019). Mutations in mitochondrial NADH
dehydrogenase subunit 1 (mtND1) gene were found in CRC
(Yusnita et al., 2010). WDR5B encodes a protein containing
several WD40 repeats, and it is reported as an important target of
miR-31. The knockout of microRNA-31 promotes the
development of colitis-associated cancer (Liu et al., 2017). The
protein encoded by gene SEC22A belongs to the member of
the SEC22 family of vesicle trafficking proteins. It has a similarity
to rat SEC22 and may act in the early stages of the secretory
pathway, which is related to CRC (Jilling and Kirk, 1996; Baron
et al., 2010).

Compared with the gene expression the DNA copy number
often occurs in arm-level, i.e. the same segment tends to have the
same copy number alteration (Roy et al., 2016; Xu et al., 2018).
The results of this study not only support this opinion but also
suggest that even in the same fragment the correlation between
different samples is not always 1. There are some differences
indicating that somatic alterations have some heterogeneity, and
demonstrates the diversity of alteration in CRC. In addition,
although chromosomes play a role through the dosage effect to
some extent they may be affected by the regulation of gene
expression. Six of the 15 genes obtained in this paper have a
strong dosage effect suggesting that not all gene copy number
amplification will lead to up-regulation of expression. The
contribution is a combination of copy number and dosage
effect. In future, if targeted drugs or therapies can be developed
to reduce the copy number of these six PDSGs, patients with
amplified copies of these six genes may receive a precise
treatment. This is also an important starting point and
foothold of this topic.

The ratio of amplified and non-amplified samples of CPCDGs
gene is 1:11, which indicates that these prognostic markers are
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valuable only for patients with high SCNA. Therefore, SCNA can
be an important part of precise medical treatment. Due to
computational limitations, the minimum alteration sample
selected in this paper is 10, which may reduce the excavation
of alteration genes to a certain extent. However, it is believed that
in the future, with the increase of the sample size, the increase of
different DNA copy number alteration types in CRC will lead to
the identification of much clinically relevant SCNA genes.

In summary, the findings of the present study suggest that
PDSGs obtained from the analysis of CRC have good application
value and can provide an important reference for the precise
treatment of CRC.
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Expression quantitative trait locus (eQTL) analyses are critical in understanding the
complex functional regulatory natures of genetic variation and have been widely used in
the interpretation of disease-associated variants identified by genome-wide association
studies (GWAS). Emerging evidence has shown that trans-eQTL effects on remote gene
expression could be mediated by local transcripts, which is known as the mediation
effects. To discover the genome-wide eQTL mediation effects combing genomic and
transcriptomic profiles, it is necessary to develop novel computational methods to rapidly
scan large number of candidate associations while controlling for multiple testing
appropriately. Here, we present eQTLMAPT, an R package aiming to perform eQTL
mediation analysis with implementation of efficient permutation procedures in multiple
testing correction. eQTLMAPT is advantageous in threefold. First, it accelerates mediation
analysis by effectively pruning the permutation process through adaptive permutation
scheme. Second, it can efficiently and accurately estimate the significance level of
mediation effects by modeling the null distribution with generalized Pareto distribution
(GPD) trained from a few permutation statistics. Third, eQTLMAPT provides flexible
interfaces for users to combine various permutation schemes with different confounding
adjustment methods. Experiments on real eQTL dataset demonstrate that eQTLMAPT
provides higher resolution of estimated significance of mediation effects and is an order of
magnitude faster than compared methods with similar accuracy.

Keywords: trans-eQTL, cis-eQTL, mediation analysis, multiple testing control, permutation test, gene regulation
INTRODUCTION

Understanding the complex functional natures of genome variants has been the focus of many
studies in recent years, which provides us with advanced insights into phenotype variability and
disease susceptibility (Cheng et al., 2017; Watanabe et al., 2017; Gallagher and Chen-Plotkin, 2018).
Vast genome variants relevant to disease risks and other traits have been unequivocally identified by
genome-wide association studies (GWAS) (Visscher et al., 2017). However, most of those traits-
associated variants localize in non-coding regions, intergenic, or intronic regions, indicating that
genomic variants are likely to be involved in gene regulation instead of exerting their effects through
January 2020 | Volume 10 | Article 13091144
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altering the protein sequence directly (Gallagher and Chen-
Plotkin, 2018). To understand the complex regulatory natures
of genomic variants, one of the fundamental tasks is to discover
target genes which can be regulated by variants in the cell. The
expression quantitative trait loci (eQTL) analysis has been
proven a powerful tool in achieving this goal.

An eQTL is essentially a variant at a specific genome location
with its genetic variance associates with gene expression
variation in a population. Most eQTL mapping studies access
the eQTL effects through association tests between the genotypes
of a variant and expression profiles of a gene using regression
models (Shabalin, 2012; Ongen et al., 2015). And eQTL summary
statistics have been widely used in the interpretation of GWAS
results and Mendelian randomization studies (Cheng et al.,
2018b; Peng et al., 2019a). eQTLs can exert their regulatory
effects on local gene transcriptions (cis-acting) and distant gene
transcriptions (trans-acting), defined by the physical distance
between an eQTL and a gene, usually using 1 Mb as a threshold
or on different chromosomes for trans-acting associations
(Ongen et al., 2015; GTEx Consortium, 2017). cis-acting or
trans-acting may reflect different underlying regulation natures.
For example, cis-eQTLs usually reside close to transcription
starting sites (TSS) and might affect the gene expression
directly through affecting transcription factor (TF) binding
process (Nica and Dermitzakis, 2013). However, very little
knowledge is known for trans-eQTLs due to multifaceted
reasons. First, trans-acting effects are usually weaker than cis-
acting, which requires a large sample size to detect the weak
signals (Yao et al., 2017). Second, the number of trans-eQTL
associations is an order of magnitude more than cis-eQTL
associations, which brings heavy computational burdens.
Third, the multiple testing problem in identifying trans-eQTLs
results in stringent significance thresholds. And trans-eQTLs
have been proven less replicable across studies (Innocenti et al.,
2011). Therefore, most eQTL studies only focus on cis-eQTLs,
and the mechanisms underling the regulatory effects of genetic
variation on the expression of distant genes and genes in other
chromosomes are largely unknown (Bryois et al., 2014).

Recent studies have shown that trans-eQTLs are likely
involved in indirect regulations, where the trans-eGene can be
mediated by the cis-eGene, which is known as the mediation
effect (Pierce et al., 2014; Brynedal et al., 2017; Yang et al., 2017;
Yao et al., 2017). These studies provide evidence of a cis-
mediated mechanism that explains distal regulation of trans-
eGenes by trans-eQTLs (Yao et al., 2017). Characterizing these
regulatory relationships will allow us to better understand
regulatory networks and the biological mechanisms underlying
trans-eQTLs (Westra et al., 2013). To discover the mediation
effect among cis-/trans-eQTL (L), cis-eGene (C) and trans-eGene
(T), represented by a trio (L!C!T), a recently proposed work
which aims to test the significance of the effect of cis-eGene on
trans-eGene controlled by the genotype of L and confounders
(Yang et al., 2017). Mathematically, by using a linear regression
model, with the formula T = a + b1C + b2G + GCov + ϵ, where G
represents the genotype of L (see details in Material and
Methods), the objective is to test the significance of b1. In
Frontiers in Genetics | www.frontiersin.org 2145
practice, this requires performing a large amount of association
tests in order to scan all possible candidate trios due to related
variants in linkage disequilibrium (LD). Thus, it will result in a
large number of nominal statistics, i.e., P values, and multiple
testing has to be considered in order to control the false discovery
rate. A traditional solution is to use Bonferroni correction
method, which multiplies the nominal P value with the total
number of tests to get an adjusted P value. However, the
Bonferroni method has been proven overly stringent in
genomic area due to the fact that a large number of tests are
not independent because of variants in LD, and this method will
result in a lot of false negatives (Ongen et al., 2015).

To solve this problem, a commonly adopted strategy is to use
the non-parametric permutation testing approach. The
permutation test can be performed by the following steps: first,
perform thousands of permutations on gene expression profiles
by randomly exchanging sample IDs. Notably, to break the
potential mediation effects from C to T while keeping the cis-
eQTL and trans-eQTL associations, the sample ID
rearrangement need to be performed within each genotype
group (i.e., AA, AB, or BB) (Yang et al., 2017). Second,
calculate a list of permutation statistics, under the null
hypothesis of no association, by performing associations using
genotypes and permuted expressions. Third, compare the
nominal statistics with the distribution of permutation
statistics to assess how likely the observed nominal association
statistics originates from the null distribution. The permutation
tests have been applied to multiple bioinformatics applications to
control for multiple testing, for example, eQTL mapping (Ongen
et al., 2015), allelic association analysis (Zhao et al., 2000), and
biological network analyses (Wang et al., 2019). In the context of
detecting mediation effect of cis-eGenes on trans-eGenes, a
recent ly proposed algorithm named GMAC adopts
permutation strategy to control for multiple testing (Yang
et al., 2017). However, it suffers from a main drawback: it
relies on performing a fixed number, usually thousands of
permutations per trio, to balance the running time and P value
resolution empirically estimated. For example, 10,000
permutations can derive P value at a resolution of 10−4 at the
best circumstance. There is no efficient built-in permutation
scheme, which makes its practical application very time-
consuming and not accurate in estimating significance of
mediation effects.

In this work, we present eQTLMAPT, an R package which
improves upon GMAC (Yang et al., 2017) by implementing
faster and more efficient permutation-based multiple testing
correction approaches. Besides the traditional fixed
permutation scheme, eQTLMAPT also provides 1) the
adaptive permutation scheme which prunes the permutation
process opportunely; 2) the approximation of the tail of null
distribution using generalized Pareto distribution (GPD) model,
which allows the user to accurately estimate adjusted P values at
any significance level in a short running time; and 3) flexible
choices of different confounding factors adjustment methods. In
addition, eQTLMAPT provides flexible interfaces for users to
combine different features and perform the proper permutation
January 2020 | Volume 10 | Article 1309

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Wang et al. Fast and Accurate eQTL Mediation Analysis
scheme based on their practical needs. Experiments on a real
eQTL dataset demonstrate that eQTLMAPT is an order of
magnitude faster than GMAC, and its estimated significance
has a much higher resolution than the compared method.
MATERIAL AND METHODS

Overview
To efficiently identify cis-eGene mediators of trans-eQTLs in
whole genome, we developed eQTLMAPT, an R package to
perform mediation analysis with multiple permutation schemes
and flexible covariate adjustment strategies. The core regression
models we used in mediation analysis is similar to the model
used in the recently proposed method, GMAC (Yang et al.,
2017). The models can be formalized as Equations 1, 2, and 3,
where G represents the genotype of single nucleotide
polymorphism (SNP)L; C, and T represent gene expression
levels of cis-eGene and trans-eGene, respectively; Cov
represents covariates; and ϵ represents the error term
following normal distribution. For the trio (L,C,T), we
assume L is significantly associated with C and T by testing
b1 ≠ 0 and b2 ≠ 0 in the linear models, with b estimated by least-
squares fitting. The statistic of mediation analysis here is to test
the mediation effect of cis-eGene C on trans-eGene T while
controlling for the effects of eQTL L, covariants Cov. The null
hypothesis is H0:b3 = 0.

C = a1 + b1G + G1Cov + e1 (1)

T = a2 + b2G + G2Cov + e2 (2)

T = a3 + b3C + b4G + G3Cov + e3 (3)

Our method can be separated into two main steps: first, we
calculate the nominal association statistic, z = b3/se, in Equation
3, where se represents the standard error of b3. Second, to
account for multiple testing in assessing the significance of the
mediation effect, we perform within-genotype group
permutations of cis-eGene transcripts C to empirically
characterize the null distribution of mediation effects (i.e., the
distribution of z scores expected under the null hypothesis of no
mediation effect, denoted by vector Z0). The purpose of within-
genotype group permutation is to break the potential mediation
effects from C to T within each genotype group (i.e., AA, AB, or
BB) while keeping the cis-eQTL and trans-eQTL associations.
The adjusted empirical P value of mediation test would finally be
calculated by comparing the observed mediation statistic z with
the permutation statistics Z0 under the null.

To obtain the null distribution of mediation effects, i.e., Z0, and
provide users with flexible choices, we implemented three
permutation schemes in our package: 1) fixed permutation
scheme, which generates N permutation datasets (Estimation of
P Values Under Fixed Permutation Scheme); 2) adaptive
permutation scheme, which prunes the permutation process
when there are too many null statistics better than the observed
z statistic (Calculate Empirical P Value Using Adaptive
Permutation Scheme); and 3) GPD approximation, which
Frontiers in Genetics | www.frontiersin.org 3146
models the tail of the null distribution via a drastically reduced
number of null statistics and estimates P value with higher
resolution (Model the Tail of the Null Distribution Using GPD).
To deal with complex hidden confounding effects, we also adopt
an adaptive confounder adjustment method (Yang et al., 2017)
and a fixed confounder adjustment method incorporating the
three permutation schemes (Confounding Factors Adjustment).

Estimation of P Values Under Fixed
Permutation Scheme
The associations of trios (L,C,T) we aim to test are not
independent due to the fact that multiple SNPs are correlated
because of LD. Traditional multiple testing correction methods
like Bonferroni and Benjamini–Hochberg correction, which give
a global significance threshold based on all nominal P values,
prove to be overly stringent and may result in false negatives in
such correlated genomic analyses. Thus, we adapt permutation-
based testing approaches to assess the significance in association
test for each trio (L, C, T) (Equation 3). Permutation test is a
widely used non-parametric method in many bioinformatics
applications. It generates a null statistic distribution by random
permutations and then assesses how likely the observed statistic
obtained in the nominal association originates from the
null distribution.

Assume the nominal mediation statistic z = b3/se is assessed
for a trio (L, C, T) by Equation 3, where se is the standard error of
b3. Given a fixed number of N, we perform N times permutations
within-genotype groups for cis-eGene C by randomly permuting
sample labels in each genotype group, i.e., AA, AB, and BB. It
will generate N null mediation statistics, denoted by Z0 =
f z10 , z20,…, zN0 g, where zi0 is in absolute value, i∈[1,N]. If M
null statistics in Z0 are stronger than the observed statistic |z|, the
empirical P value is assessed by Equation 4, where pseudo-count
1 is added to avoid meaningless denominator.

Pfixed =
M + 1
N + 1

(4)

The strategy of fixed permutation scheme is direct, easy to
implement, and adopted by most permutation testing
approaches. However, the adjusted P value has lower bound
limitation that Pfixed ≥

1
N+1. That means we have to increase the

fixed number of N to get precise P value estimates for strong
mediation effects with smaller P values, which will tremendously
increase the computational costs. For example, if the true P value
is 10−6 for a trio, at least 1 million permutations should be
performed to achieve the precise P value. But for most trios, with
true P values larger than 10−3, 1 million permutations would be a
waste of resources because thousands of permutations could lead
to precise P values. To solve this problem, we implemented an
adaptive permutation strategy in eQTLMAPT to prune
permutations once we observe too many null statistics stronger
than the nominal statistic z of mediation analysis.

Calculate Empirical P Value Using
Adaptive Permutation Scheme
The basic idea of adaptive permutation strategy is to perform
more permutations for significant trios while decreasing the
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number of permutations for insignificant trios. This is because
insignificant trios could be assessed with fewer permutations
than significant ones. By setting a significance level, a = 0.05 for
example, and a maximum permutation times N, in case of
indefinitely running the process, we define the pruning
threshold K = a*N, and usually K << N. For each trio (L,C,T),
if we observe more than or equal to K null statistics that jzi0j > jzj
or we reach the maximum permutation upper bound N, the
permutations process will be stopped. Suppose G times of
permutations are executed in total and M null statistics are
found to be stronger than the observed statistic |z|, the adjusted P
value is given by Equation 5.

Padaptive =
min K + 1,M + 1ð Þ
min G + 1,N + 1ð Þ (5)

For example, given N = 10,000 and a = 0.05, then K = 500,
and assume we have performed 800 times of permutation for a
trio and find K null statistics stronger than nominal statistic z.
Then, we stop performing further permutations and the final
adjusted P value = 501/801. In this case, only 800 times
permutations are needed instead of 10,000 times in the fixed
permutation scheme. This strategy tremendously reduces the
number of permutations required for insignificant trios;
however, the lower bound of adjusted P value still exists, which
is 1/(N + 1). To solve the lower bound problem, we approximate
the tail of null statistics distribution by generalized Pareto
distribution and estimate the small P values at any significance
level without the limitation of lower bound.

Model the Tail of the Null Distribution
Using GPD
It is critical to accurately estimate small P values especially in
large-scale genomic analyses, where huge numbers of
associations are simultaneously tested. To determine precise
small P values at any significance level without performing all
possible permutations, we implemented a P value approximation
method based on GPD, which has been widely used in modeling
extreme values (Knijnenburg et al., 2009). The basic
methodology is to estimate the small permutation P values
using extreme value theory by fitting extreme permutation
values originating from the tail of null distribution with
generalized Pareto distribution (Gumbel, 2012). And it has
been proven that the GPD approximation method can lead to
precise estimation of small P values using much fewer
permutations compared with fixed number of permutation
approach (Knijnenburg et al., 2009).

In our case, given permutation statistics set Z0 = f z10, z20,…,
zN0 g and nominal mediation statistic z of a trio (L,C,T), we
suppose both z and zi0 ∈ Z0 are in absolute value, and elements in
Z0 are sorted in decreasing order, i.e., zi0 ≥ zj0, i<j. Define Nexc as
the number of exceedances (extreme values), and Y0 = f z10, z20,
…, zNexc

0 g,Y0⊂Z0, and exceedance threshold t = (zNexc
0 + zNexc+1

0 )=2,
such that z0 > t, if z0∈Y0. Then, we calculate z0−t for each element
z0∈Y0 to get a vector of exceedances X0 = f x10, x20, :::xNexc

0 g, where
xi0 = zi0 − t, xi0 ∈ X0, z

i
0 ∈ Y0. Next, exceedances in X0 are used

to fit the tail of the null distribution modeling by GPD. The
Frontiers in Genetics | www.frontiersin.org 4147
GPD has cumulative distribution function (CDF) shown in
Equation 6.

F(x) =
1 – 1 – kx

a

� �1
k , k ≠ 0

1 − e
−x
a , k = 0

8<
: (6)

The a and k are scale parameter and shape parameter,
respectively, and the range of x requires 0 ≤ x ≤ a

k for k > 0,
and x ≥ 0 for k ≤ 0. If x falls out of these ranges, the GPD
estimated P values will be zeros, i.e., k > 0, x > a

k. Maximum
likelihood (ML) is used to estimate the two parameters a and k in
F(x) given X0. The goodness-of-fit test of the Anderson–Darling
statistic is used to evaluate whether the exceedances follow the
GPD (Choulakian and Stephens, 2001). Finally, the permutation
test P value of the GPD approximation is computed as shown in
Equation 7, where z represents the absolute value of the nominal
mediation statistic.

Pgpd =
Nexc

N
(1 − F(z − t)) (7)

Nexc is initialized as minimum value between 250 and number
of permutation tests by default. If it fails to fit GPD (goodness-of-
fit test P ≤ 0.05), then iteratively reduce Nexc by 10 until a good fit
is achieved. Besides, the GPD approximation can only be used
when the nominal mediation statistic z is in the range of extreme
permutation null statistics (tail of null distribution). For example,
if z is in the middle of the null distribution, this method cannot
be applied. To specify, let M be the number of permutation
values that exceed the test statistic z, if M < N*a, a = 0.01 in
default, GPD approximation will be performed; otherwise, fixed
permutation scheme will be performed. The detailed methods
have been described in Knijnenburg et al. (2009), and we
implemented this method with R language in our package to
accurately estimate the mediation significance with much
fewer permutations.

Confounding Factors Adjustment
The presence of heterogeneous known or latent unmeasured
covariates that affect genotype and phenotype (gene expression
in our context) is a major source of bias in the mediation
analysis, which needs to be adjusted. The common sources of
covariates, such as batch effects, age, sex, postmortem interval
(PMI), RNA integrity number (RIN), and population
stratification, are associated with either samples or individuals.
The latent unwanted covariates can be identified by methods like
principal component analysis (PCA) (Abdi and Williams, 2010),
surrogate variables analysis (SVA) (Leek et al., 2012), and
probabilistic estimation of expression residuals (PEER) (Stegle
et al., 2012).

In our package, we adopt two covariates adjustment
strategies: fixed confounder adjustment strategy and adaptive
confounder adjustment strategy. The first one is to directly pass
the user-given PCs/SVs or PEER factors together with known
covariates into the Cov variable in Equation 3 when performing
mediation analysis. The second way is proposed in GMAC (Yang
et al., 2017), which adaptively selects hidden covariates for each
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trio. In brief, this method first identifies a pool of hidden
covariates, represented by H, which can be supplied by users
or identified with PCA on expression profiles automatically [first
30 principal components (PCs) in default]. Then, for each trio (L,
C,T), only a small number of PCs will be selected from H for
adjustment based on the correlations between PCs and C,T. And
experiments demonstrated that this adaptive covariates selection
method improved power and precision in mediation analysis
(Yang et al., 2017). Notably, both covariates adjustment
strategies can be flexibly selected by users for each of the three
permutation schemes introduced above.

ROSMAP Dataset and Preprocessing
ROSMAP Study and Dataset
The Religious Orders Study (ROS) (A Bennett et al., 2012a) and
Memory and Aging Project (MAP) (A Bennett et al., 2012b) are
two longitudinal cohort studies of aging and Alzheimer’s disease
(AD). We downloaded the gene expression, genotype, and clinical
dataset of ROSMAP Study from Synapse platform (ID:
syn3219045) with approval. RNA samples were obtained from
the homogenate of the dorsolateral prefrontal cortex of 724
subjects and RNA sequencing (RNA-seq) data have been
processed into read count table using standard pipeline
(syn9702085) (Mostafavi et al., 2018). DNA samples were from
whole blood and genotype profiles of 1,179 subjects were calculated
from whole-genome sequencing (De Jager et al., 2018). Only
neuropathologically healthy individuals (cogdx score ≤3, no
Alzheimer’s disease and no dementia) with both genotype data
and RNA-seq data passing quality controls were used in eQTL
analysis, which downsized the sample size to N = 334.

Genotype Processing
We applied PLINK2 (v1.9beta) (Chang et al., 2015) and in-house
scripts to perform rigorous subject and SNP quality control (QC)
for genotype dataset derived from WGS. To QC in SNP level, we
removed SNPs with genotype call rate <95%, with Hardy–
Weinberg equilibrium testing P < 10−6, informative missingness
test P < 10−9, and with minor allele frequency (MAF) < 0.05
seperately. To QC in subject level, we removed subjects with call
rate <95%, with outlying heterozygosity rate based on
heterozygosity F score (beyond 4*sd from the mean F score), and
with gender mismatch. We also performed IBS/IBD filtering:
pairwise identity-by-state probabilities were computed for
removing both individuals in each pair with IBD > 0.98 and one
subject of each pair with IBD > 0.1875. To test for population
substructure, we performed PCAusing smartPCA in ENGINSOFT
(Patterson et al., 2006).

Gene Expression Profiles Processing
Stringent quality controls and normalization steps were also
performed for gene expression profiles. Gene read count derived
from RNA-seq was normalized to TPM (transcripts per kilobase
million) by scaling gene length (union of exon length) and
sequencing depth. We removed samples with gender mismatch
by checking gender-specific expression genes XIST and RPS4Y1.
Sample outliers with problematic gene expression profiles were
detected and removed based on hierarchical clustering (AC’t Hoen
Frontiers in Genetics | www.frontiersin.org 5148
et al., 2013). Genes with low expression were also removed by
keeping genes with >0.1 TPM in at least 20% of samples and ≥6
reads in at least 20% samples. For normalization, gene expression
values were quantile normalized after log10-transformed. SVA
package was applied for removing batch effect and adjusting age,
sex, RIN, PMI, and latent covariates. Residuals were outputted for
downstream eQTL analysis.

eQTL Mapping and Mediation Analysis
MatrixEQTL (Shabalin, 2012) was used for cis/trans-eQTL
mapping using additive linear model. In cis-eQTL analysis,
variants (SNPs and indels) within 1 M upstream and downstream
from the TSSwere tested for associationwith gene expression traits.
And variants beyond the ±1M window were associated with the
gene expression traits in trans-actingmanner. For cis-eQTL results,
a significance level offalsediscovery rate (FDR)≤0.05wasused.And
for trans-eQTL results, we adopt a global significance level P < 1 ×
10−8 because of the tremendous amount of trans-associations and
weak trans-eQTL effects.

For biological discovery, mediation analyses with adaptive
permutation scheme and GPD approximation (N = 10,000, a =
0.05) were applied for all candidate trios (L,C,T), where eQTL L
was significantly associated with cis-eGene C (FDR ≤ 0.05;
Equation 1) and trans-eGene T (P < 1 × 10−8; Equation 2). For
performance comparison, mediation analyses were performed in
multiple scenarios described in the Results section.
RESULTS

Candidate (L, C, T) Trios Detected
in ROSMAP Dataset
After stringent quality controls for both RNA-seq and
genotyping data (ROSMAP Dataset and Preprocessing), 26,662
gene transcripts and 6,736,714 variants (including SNPs and
indels) of 334 subjects were left for eQTL analysis. We detected
3,195,073 significant cis-eQTL associations, representing 5,711
unique cis-eGenes and 60,758 unique cis-eQTLs, and 145,153
trans-eQTL associations, representing 1,382 trans-eGenes and
66,847 unique trans-eQTLs, under significance thresholds of
FDR ≤ 0.05 (corresponding P < 1 × 10−3) and P < 1 × 10−8 for
cis- and trans-eQTL associations, respectively. Seventy-five
percent of trans-eQTLs were also identified as cis-eQTLs,
which is similar to previous findings (Pierce et al., 2014; Yao
et al., 2017). To detect the mediation effects, 999,725 candidate
trios (L,C,T) representing 6,217 unique gene pairs (C,T) were
derived from significant cis- and trans-eQTL associations. For
multiple correlated variants linked to each gene pair, we used
permutation schemes introduced in Material and Methods to
control for multiple testing, and for genome-wide unique gene
pairs, we used a FDR procedure to control for multiple testing.

Performance With Adaptive
Permutation Scheme
We first compared adaptive permutation scheme implemented
in our package with fixed permutation strategy which was
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commonly adopted by traditional methods, including GMAC
(Yang et al., 2017). For each unique gene pair (C,T) from
candidate trios, we selected the most significant cis-eQTL for
cis-eGene C, resulting in 6,217 trios. Mediation analyses with
fixed permutation scheme (with N = 10,000) and adaptive
permutation scheme (with N = 10,000, a = 0.05) were both
performed on those 6,217 trios. Empirical P values Pfixed and
Padaptive were shown in Figure 1A, with Pearson’s correlation r =
0.999, indicating the two schemes have similar precision. While
fixed scheme always executed 10,000 times of permutations for
each tested trio, adaptive scheme significantly reduced the
permutation times, as shown in the histogram in Figure 1B.
For example, 68% trios executed less than 2,000 times of
permutations. The total time used with adaptive scheme is less
than one-third of that with fixed permutation strategy (floating
bar plot in Figure 1B).

More Accurate P Values and Fewer
Permutations with GPD Approximation
Using generalized Pareto distribution to model the tail of null
distribution of permutation statistics could derive more precise
empirical P values with fewer number of permutations compared
with traditional fixed permutation strategy (Knijnenburg et al.,
2009). To test the performance of the GPD approximation
method implemented in eQTLMAPT, we first randomly
selected 1,000 (L,C,T) trios with fixed permutation P values
were less than or equal to 0.01 (N = 10,000). And then we
rerun mediation analyses for those trios with GPD
approximation under fixed permutation schemes with N =
1,000, 5,000, and 10,000. The reason that we only select trios
with P ≤ 0.01 is because only permutation P values at the tail of
null distribution can be estimated by the GPD approximation
method (see Model the Tail of the Null Distribution Using GPD).
Figures 2A–C show the GPD estimated P values versus P values
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derived from the fixed permutation scheme (N = 10,000, 5,000,
and 1,000, respectively), and we can see that GPD-estimated P
values have higher resolution than fixed permutation scheme.
For instance, GPD-estimated P values range from 10−2 to 10−8,
while fixed permutation-derived mediation P values range from
10−2 to 10−3, when N is set to 1,000. And GPD-estimated P values
are much smaller than fixed permutation-derived P values,
which demonstrates that the GPD approximation method has
the ability to detect mediation effect more accurately with higher
significance resolution.

To prove the accuracy of the GPD approximation strategy, we
first sampled 1,000 trios with P value equal to 0.01 under the
fixed permutation scheme with N = 100. It is reasonable to
suppose that the significance is likely to be underestimated
because of the small N (Pfixed ≤ 0.01). Then we rerun the
mediation analyses for those 1,000 trios with N set to 10,000,
where Pfixed ≤ 10−4. The density plot of P values of those 1,000
trios derived under the fixed permutation scheme (N = 10,000)
was shown in Figure 3A, where two peaks around 10−2 and 10−3

were shown. The peak around 10−2 indicates some trios have true
significance level around 10−2. However, the larger peak centers
around 10−3 indicate that the significance of a large number of
tests is underestimated when N = 100. Then we asked whether
using GPD approximation strategy can derive P values proxy for
true P values even when N was still set to 100. We extracted trios
with significance levels between (a,b) interval (shown in Figure
3A) and rerun mediation analyses with GPD approximation and
N was still set to 100. The distribution of the GPD
approximation-derived P values was shown as the boxplot in
Figure 3A, which were centered around 10−3, as expected.

The other advantage of using GPD approximation in
mediation effect analysis is that with fewer permutations large
amount of time cost can be avoided. To achieve a resolution of P
≤ 10−8, at least 108 permutations should be performed under
FIGURE 1 | Performance of mediation analysis with adaptive permutation scheme versus fixed permutation scheme. (A) Empirical P values of 6,217 (L,C,T) trios
derived from adaptive scheme (y-axis) and fixed scheme (x-axis) were shown in Panel A, and the portion of Pfixed < 0.05 was enlarged in −log10 scale. (B) Trios were
grouped by permutation times (in adaptive scheme) and were shown in histogram (left-side y-axis). Running time of each group (right-side y-axis) using two
permutation schemes was overlaid on the histogram with two colored dash lines, and the total running time was also shown in the floating colored bar plot. To be
noted, all trios were executed 10,000 times of permutations in the fixed permutation scheme.
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FIGURE 3 | Performance of eQTL mediation analysis with GPD approximation. (A) Density plot reflecting the distribution of empirical P values under fixed
permutation scheme (N = 10,000) of 1,000 selected trios with Pfixed = 0.01 when N = 100. The cyan area was selected based on the density >0.6, and fixed
permutation P values were around 10−3, when N = 10,000. For trios covered by the cyan area, GPD-estimated P values (N = 100) were shown in the floating
boxplot. (B) Time cost for analyzing the same set of trios under various permutation schemes. The color legend represents whether GPD estimation process is used.
P values were −log10-transformed.
FIGURE 2 | Significance level in mediation analysis estimated under fixed permutation schemes with or without GPD approximation strategy. X-axis represents P
values derived by different fixed permutation schemes (N = 10,000, 5,000, and 1,000, respectively) without GPD approximation. Y-axis represents P values derived
with GPD approximation under certain fixed permutation scheme. P values were −log10-transformed.
Frontiers in Genetics | www.frontiersin.org January 2020 | Volume 10 | Article 13097150

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Wang et al. Fast and Accurate eQTL Mediation Analysis
fixed permutation scheme, while the same resolution could be
achieved with only 103 permutations with GPD estimation (see
Figure 2). Figure 3B intuitively shows the time cost for
analyzing the mediation effect of a trio under different
permutation schemes. One hundred, 1,000, 5,000, and 10,000
permutations were performed in the mediation analysis of the
same collection of trios. We can see that the run time is
significantly correlated with permutation times. We also tested
the time cost caused by the GPD estimation under 10,000
permutations (the two right-most boxplots in Figure 3B). We
can see that the GPD estimation process only adds a few time
cost burden than without GPD estimation, which shows the
number of permutations are the most time-consuming.
However, P value estimates have larger variance for small N
and converge to the real Pperm when N is getting larger
(Knijnenburg et al., 2009). Experimentally, we recommend
users to use N ≤ 1,000, and the larger N will result in more
accurate estimated P values. In conclusion, by applying GPD
approximation strategy, eQTLMAPT can accurately estimate the
significance level with fewer permutation operations, which
makes the mediation analysis much more efficient.

Discover cis-Mediators of trans-eQTLS
Using ROSMAP Dataset
To test the speed and discovery performance, we compared
eQTLMAPT, combining adaptive permutation scheme and GPD
approximation strategy, with GMAC in the discovery of eQTL
mediation effects using ROSMAP dataset. For each unique gene
pair, we first selected the best trio showing the strongest mediation
effect based on the nominal P value, resulting in 6,217 candidate
trios. Then, we performed mediation analyses using eQTLMAPT
andGMACseparatelyon those6,217candidate trios. Bothmethods
adopt permutation tests to adjust P values for each trio, and FDR
procedure described by Storey and Tibshirani (ST) (Storey and
Tibshirani, 2003) to control for multiple testing of gene pairs. To
make the comparison comparable, both methods applied the
adaptive confounders selection strategy, taking all of the PCs
derived from expression profiles as the selection pool of hidden
confounders. And bothmethods adjusted the same fixed covariates
(age, sex, RIN, PMI, and batch). We performed N = 10,000
permutations for GMAC and performed N = 10,000, 5,000, 1,000,
and 500 permutations for eQTLMAPT, respectively. In our
program, we set a = 0.05 in adaptive permutation scheme.

Table 1 summarizes the performance between eQTLMAPT
and GMAC. Both methods detected similar number of trios with
suggestive mediation effects (permutation P ≤ 0.05) and similar
number of significant trios with FDR ≤ 0.25 (Storey and Tibshirani
multiple-test controlling method). The Venn diagram in Figure 4
demonstrated that most significant trios (with suggestive
permutation P ≤ 0.05 or FDR ≤ 0.25) detected by GMAC can
be discovered by eQTLMAPT with N = 10,000, 5,000, 1,000, and
even 500. For example, among the 113 significant trios with FDR ≤
0.25 detected by GMAC, 110 (97%) can be discovered by
eQTLMAPT with N = 10,000, and 104 (92%) can be discovered
by eQTLMAPT with N = 500. With the similar ability in
discovering significant trios, eQTLMAPT is about 90, 40, 8, and
4 times faster than GMACwhenN = 500, 1,000, 5,000, and 10,000,
Frontiers in Genetics | www.frontiersin.org 8151
respectively (Table 1). We also noticed that some significant trios
detected by eQTLMAPT were missed by GMAC, which might be
due to improved P value resolution. However, since there is no
“true” set of trios with mediation effects, we are not able to
compare the true positive rate and false positive rate. In
summary, with similar discovery ability, eQTLMAPT is order of
magnitudes faster than GMAC. The 519 trios intersected from the
five compared strategies with suggestive permutation P ≤ 0.05
were available in Supplementary Table 1.

Enrichment Analysis for eQTLs Among
GWAS SNPs
We first performed GWAS enrichment analyses for genome-wide
significant cis-eQTLs (FDR≤ 0.05) and trans-eQTLs (P≤ 1 × 10−8).
From the NHGRI GWAS catalog (July 2019), 70,971 unique SNPs,
reportedly associated with traits and genotyped in ROSMAP
dataset, were downloaded (Welter et al., 2013). After pruning
correlated SNPs in LD (r2 > 0.3) using PLINK and ROSMAP
genotype data, 30,894 independent trait-associated SNPs were left,
ofwhich, 16,398SNPshadGWASP≤5×10−8 and14,496SNPshad
GWASP≤ 5 × 10−8, respectively.Among SNPswithGWAS P≤ 5 ×
10−8, 28%were cis-eQTLs comparedwith 18% inSNPswithGWAS
P ≤ 5 × 10−8 (Fisher’s exact test OR= 1.75, with 95%CI = 1.66–1.85
and P = 1.83 × 10−93; Figure 5A). To be noted, the GWAS
enrichment method was the same as described in previous work
(Westra et al., 2013). In addition, we also observed GWAS
enrichment for trans-eQTLs (Fisher’s exact test OR = 2.58, with
95% CI = 1.8–3.76, and P < 2.51 × 10−8; Figure 5B). This
demonstrated that SNPs known to be associated with traits were
more likely to be cis/trans-eQTLs, which was consistent with
previous findings (Fehrmann et al., 2011; Pierce et al., 2014).

Next, we performed GWAS enrichment analysis for eQTLs
with significant mediation effects. Among the 999,725 candidate
trios, 67,906 trios, representing 27,100 unique SNPs, showed
suggestive mediation effects with permutation P ≤ 0.05 under
fixed permutation scheme (N = 10,000). Using the same GWAS
enrichment method, we found GWAS SNPs were more likely to
have mediation effects (Fisher’s exact test OR = 4.19, with 95% CI
= 2.16–8.9, and P = 1.47 × 10−6; Figure 5C), indicating that
mediation analysis can help to explain GWAS findings.

Transcription Factors May Act as
cis-Mediators
The 519 trios with suggestive permutation P ≤ 0.05
(Supplementary Table 1) represent 351 unique cis-mediators
(cis-eGenes). Among those cis-mediators, we found 14 are TFs,
including ZNF488, ZSCAN26, ZNF254, TBX1, FOXS1, ZFP57,
TABLE 1 | Summary table of performance on speed and discoveries of
eQTLMAPT and GMAC.

Software No. of
permutation

No. of trios
(adjusted P ≤ 0.05)

No. of trios
(FDR ≤ 0.25)

Time cost
(mins)

GMAC 10,000 578 113 4,438
eQTLMAPT 10,000 580 118 1,131

5,000 583 115 532
1,000 577 108 101
500 596 123 51
January 202
0 | Volume 10 |
 Article 1309

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Wang et al. Fast and Accurate eQTL Mediation Analysis
ZNF568, ZNF260, ZNF14, GTF2I, ZFX, CSDC2, GTF2IRD2B, and
GTF2IRD2. For example, we observed the trio (rs77969091, TBX1,
MSC), where TBX1 is the cis-eGene and MSC is the trans-eGene,
and MSC has been predicted to be the target of the transcription
factor TBX1 in brain tissue and central nervous system (Marbach
et al., 2016). This indicates that trans-eQTLs can exert their effects
on distant target genes through affecting TFs which act as
mediators. However, we did not observe overrepresentation of
TFs among cis-mediators (Fisher’s exact test P = 0.15, compared
with 1,665 TFs downloaded from HumanTFDB) (Hu et al., 2018).
DISCUSSION

There has been intense efforts to identify causal genes and other
biomarkers such as RNA, protein, and microbiota underlying
complex diseases (Cheng and Hu, 2018; Cheng et al., 2019). One
of these efforts is to discover genes regulated by GWAS variants
Frontiers in Genetics | www.frontiersin.org 9152
through eQTL analysis. However, less is known regarding how
trans-eQTLs work on distant genes. The eQTL mediation analysis
is a promising tool to uncover the mechanisms underlying trans-
eQTLs. In order to discover the eQTL mediation effects in whole
genome, millions of candidate associations of (eQTL, cis-eGene,
trans-eGene) trios need to be tested, which requires the
computational methods to control for multiple testing
appropriately. In practice, there are hundreds of variants on
average associated with eGenes in both cis- and trans-manner,
which result in huge numbers of candidate trios. For example, in
the ROSMAP dataset, nearly 1 million candidate trios need to be
tested, which only represent 6,217 unique (cis-eGene, trans-
eGene) pairs. To determine the genome-wide significance of a
nominal testing statistics, we need to account for two multiple-
testing levels: multiple genetic variants are tested per (cis-eGene,
trans-eGene) pair, and multiple (cis-eGene, trans-eGene) pairs are
tested genome-wide. We used permutation test to correct for the
former and FDR estimation to control for the latter.
FIGURE 5 | Diagram of two-way contingency tables for Fisher’s exact tests.
FIGURE 4 | Venn diagram of significant trios at suggestive permutation P ≤ 0.05 (A) and FDR ≤ 0.25 (B) derived by GMAC and eQTLMAPT with different numbers
of permutations.
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The traditional permutation scheme,which runs afixed number
of permutations, has to balance the time cost and the P value
resolution, which is limited by a lower bound. And there is no
efficient built-in permutation scheme in current tools aiming at
analyzing eQTL mediation effect. To fill this gap, we present
eQTLMAPT, which implements a fast and accurate eQTL
analysis method with efficient permutation procedures to control
for multiple testing. eQTLMAPT can correct for the multiple
correlated variants tested via three different permutation schemes:
the fixed permutation scheme, the adaptive permutation scheme,
and the generalized Pareto distribution (GPD) approximation,
which models the null distribution of no mediation effects using
GPD trained froma fewpermutation statistics and could accurately
estimate the adjusted P values without the limitation of lower
bound. These strategies implemented in eQTLMAPT greatly
accelerated the efficiency of multiple test controling in mediation
analyses and provided users higher resolution of estimated
significance which would help them distinguish the best signals.

In the analyses of the ROSMAP dataset, we detected 519 trios
with suggestive mediation effects (permutation P ≤ 0.05),
representing 351 unique cis-eGenes. Among those cis-mediators,
we found 14 are TFs, including ZNF488, ZSCAN26, ZNF254,
TBX1, FOXS1, ZFP57, ZNF568, ZNF260, ZNF14, GTF2I, ZFX,
CSDC2, GTF2IRD2B, and GTF2IRD2. This proves that TFs might
play a role in the mediation effects. We also tried to replicate these
significant trioswithmediation effects in theGTExdataset analyzed
by Yang et al. (2017), and 70 trios, identified by gene pairs, can be
replicated withmediation P ≤ 0.05 inmultiple tissues. For example,
the gene pair (MZT2A, AC018804.6) was observed with mediation
effects in multiple tissues including brain putamen, fibroblast,
colon, esophagus, lung, muscle, pancreas, pituitary, skin, thyroid,
and vagina. And the significance of themediation effect can reach 2
× 10−7 in GTExmuscle tissue. Thismight suggest a common trans-
eQTL regulatory mechanism across tissues.

There are some limitations of our method and discoveries in
the ROSMAP dataset. The discovery of trans-eQTLs requires a
large sample size because of smaller effect size of trans-eQTL
associations. A small sample size might cause less replicable
trans-eQTL signals across studies. The effective sample size of the
ROSMAP dataset used in the discovery study is relatively small,
which might be the reason that some trios were not able to be
replicated in the GTEx dataset, whose sample size is also limited.
Besides the transcription factors found in the cis-mediators, non-
coding genes such as long non-coding RNA (lncRNA),
microRNA, snRNA, antisense RNA, and pseudogene, were also
detected. The top 3 gene classes are protein coding, pseudogene,
and lncRNA genes. Although many studies have shown that
non-coding RNAs play key roles in the complex regulatory
networks in cell system, most of their functions are still
missing (Cheng et al., 2018a; Cheng et al., 2018d; Peng et al.,
2019b). Further computational methods and biological
experiments are still needed to understand these unknown
markers, such as using phynotypes, ontologies, deep learning
methods, etc. (Cheng et al., 2016; Cheng et al., 2018c; Peng et al.,
2019c; Peng et al., 2019d). In addition, since the gene expression
is tissue-specific and cell type-specific, the mediation effects
found in brain tissue might not show up in other tissues and
Frontiers in Genetics | www.frontiersin.org 10153
cell types. Thus, with the development of single-cell RNA
sequencing technologies, further studies should put more
attention on cell type-specific mediation effects.

In conclusion, we present eQTLMAPT, an R package which
aims to perform eQTL mediation analysis with efficient
permutation procedures in multiple testing correction
(Supplementary Figure 1). Experiments demonstrate that our
method provides higher resolution in estimated significance and
is an order of magnitude faster than the compared methods. Our
method will be helpful in identifying mediation effects, which
could allow us to better understand the biological mechanisms
underlying trans-eQTLs and the regulatory network in the cell.
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The computational prediction of interactions between drugs and targets is a standing
challenge in drug discovery. State-of-the-art methods for drug-target interaction
prediction are primarily based on supervised machine learning with known label
information. However, in biomedicine, obtaining labeled training data is an expensive
and a laborious process. This paper proposes a semi-supervised generative adversarial
networks (GANs)-based method to predict binding affinity. Our method comprises two
parts, two GANs for feature extraction and a regression network for prediction. The semi-
supervised mechanism allows our model to learn proteins drugs features of both labeled
and unlabeled data. We evaluate the performance of our method using multiple public
datasets. Experimental results demonstrate that our method achieves competitive
performance while utilizing freely available unlabeled data. Our results suggest that
utilizing such unlabeled data can considerably help improve performance in various
biomedical relation extraction processes, for example, Drug-Target interaction and
protein-protein interaction, particularly when only limited labeled data are available in
such tasks. To our best knowledge, this is the first semi-supervised GANs-based method
to predict binding affinity.

Keywords: drug-target affinity prediction, deep learning, semi-supervised, generative adversarial networks,
convolutional neural networks
INTRODUCTION

A basic task in the field of new drug design and development is to model the interaction between
known drugs and target proteins and to identify drugs with a high affinity for specific disease
proteins (Cheng et al., 2018a; Cheng et al., 2019b). However, this is a rather challenging and
expensive process even when only approximately 97M compounds reported by the PubChem
database (Bolton et al., 2008) and 12K drug entries reported by the DrugBank (Wishart et al., 2006
are considered. Computational methods, especially machine learning models, can considerably
accelerate the drug development process and save costs by guiding biological experiments.

Drug-target interaction (DTI) prediction (Yamanishi et al., 2010; Liu et al., 2016; Nascimento
et al., 2016; Keum and Nam, 2017) was modeled as a binary classification problem and solved by a
few traditional machine learning methods in recent decades. These methods have achieved
remarkable performancehowever, they still exhibit limitations because of their strong dependence
on handcrafted features.
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Apart from predicting DTI, the drug-target binding afï- nity
(DTA)(Pahikkala et al., 2014; He et al., 2017) attracts more interest
as it can indicate the strength of the interaction between a DT pair.
Therefore, predictingDTAcanconsiderablybenefit drugdiscovery,
because the searching space would be narrowed down by pruning
those DT pairs with low binding affinity scores. Kronecker
regularized least squares (KronRLS) Pahikkala et al. (2014) and
boostingmachines (SimBoost)He et al. (2017) are two state-of-the-
art methods for both DTI and DTA prediction. KronRLS is a
similarity-based method and can predict the interaction by
evaluating the structure similarity among compounds and targets.
On the contrary, SimBoost utilizes a gradient boostingmachine and
belongs to feature-based methods; its feature involves similarity
matrices of the drugs and those of targets He et al. (2017). The
similarity-based methods (Cheng et al., 2018b) generally rely on
similarities to predict the interaction of DT, which inevitably leads
to bias. For the feature-basedmethods,more information regarding
the DT are involved; but expert knowledge and feature engineering
are also required to construct appropriate features.

Deep learning can represent and recognize the hidden patterns
in the data well, therefore, deep-learning based methods have been
proposed to predict DTI or DTA utilizing deep neural networks
(DNN) (Peng-Wei et al., 2016; Tian et al., 2016; Hamanaka et al.,
2017), convolutional neural networks(CNN), (Jastrzebski et al.,
2016; Gomez-Bombarelli et al., 2018) recurrent neural networks
(RNNs) and stacked-autoencoders based architectures. These
methods facilitate the learning of the 3D structures provided and
the bimolecular interaction mechanism. However, on one hand,
this indeed improves the prediction as more important structural
information is exploited, on the other hand, when the 3D structure
is the input, these methods depend considerably on the availability
of the known 3D structure of the protein-ligand complex.

Another deep-learning based method, called DeepDTA, was
implemented to predict the binding affinities with CNN using
only 1D representation, that is, the sequences of the proteins and
simplified molecular input line entry system(SMILES)of the
compounds. In DeepDTA, two CNN blocks are employed as
feature extractors, and a fully connected layer receives the output
of the CNN blocks and outputs the final prediction results.
DeepDTA utilizes the strong representation of CNN, while
avoiding the dependence on the 3D structure information,
which results in remarkable performance over the other
traditional machine learning methods. However, similar to all
the state-of-the-art methods for DTA prediction, DeepDTA is
also primarily based on supervised machine learning with known
labels information. It is known that creating large sets of training
data is prohibitively expensive and laborious, particularly in
biomedicine, as domain knowledge is required.

An unsupervised learning method, generative adversarial
networks(GANs), devised by Goodfellow et al. in 2014
(Goodfellow et al., 2014) may address the challenge. The GANs
architecture is characterized by two differentiable functions that
play different roles in refining the system. One differentiable
function is known as a generator and the other as a
discriminator. The generator learns to produce data from a
learned probability distribution. The discriminator determines if
Frontiers in Genetics | www.frontiersin.org 2157
the produced data is valid by determining if the input comes from
the generator or from the actual data set. GANs and its variants
have achieved great success in many applications such as
computer vision and natural language processing. Additionally,
GANs are more attractive as they can learn representations by
reusing parts of the generator and discriminator networks as
feature extractors, which can be widely applied in many
supervised classification or prediction tasks. On the other hand,
there also exist some problems in GANs, for example, the better
the discriminator is, the more serious the gradient of the generator
disappears; the adversarial network may cause the collapse of the
model during training, this also brings inconvenience in the
practical application. In order to solve these problems,
researchers continue to push forward new improvement
methods, including least squares GAN(LSGAN) Mao et al.
(2017), Wasserstein GAN(WGAN) Arjovsky et al. (2017)
conditional GAN(CGAN) Mirza and Osindero (2014),
information maximizing GAN(infoGAN) Chen et al. (2016),
energy-based GAN(EBGAN) Zhao and Mathieu. (2016),
boundary-seeking GAN(BEGAN) Hjelm R D (2017) and so on.

Owing to the unsupervised characteristics of GANs, in this
paper, we propose a GANs-based method to predict binding
affinity, called GANsDTA for short. Our method comprises two
types of networks, two partial GANs for the feature extraction from
the raw protein sequences and SMILES strings separately and a
regression network using convolutional neural networks for
prediction. The contributions of this paper mainly include: We
proposed a semi-supervised framework for DTA prediction; we
adopted GAN to extract features of protein sequence and
compound SMILES in an unsupervised way. Therefore, the
proposed model can accommodate unlabeled data for the
training as feature extractor using GANs does not require labeled
data. This semi-supervised mechanism enables more datasets even
without labels available for our model to learn proteins drugs
features, leading to better feature representation and prediction
performance accordingly. To our best knowledge, this is the first
semi-supervised GAN-based method to predict binding affinity.
Our results suggest that utilizing such unlabeled data can
considerably help improve performance in various biomedical
relation extraction processes, particularly when only limited
labeled data (e.g. 2000 samples or less) is available in such tasks.
MATERIALS AND METHODS

Data Sets
We evaluated our proposed method using two benchmark data
sets, the Davis et al. (2011) and KIBA data set (Tang et al., 2014).
Table 1 and Figure 1 provides the statistics of these two datasets.
TABLE 1 | Data set.

Proteins Compounds Interactions

Davis 442 68 30056
KIBA 229 2111 118254
J
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Proposed Method
Overview of our Approach
Figure 2 provides an overview of the entire pipeline for our
method for drug-target binding affinity prediction. Our
approach comprises three elements: two feature extractors for
protein sequence and compound, respectively, and a regressor
for affinity value prediction. Each feature extractor is composed
of a feature representation modular from GANs while the
regressor is made up of a CNN. A two-round training pattern
is employed. In the first training round, the feature extractors
are trained in the context of GANs. First, fake samples are
generated according to a given noise distribution by the
generator of GANs, and then all the fake samples from the
generator and the real samples from the available data sets are
inputted to the discriminator network. In order to learn to
distinguish real and fake sequences of proteins and SIMILES of
compounds, the discriminator maps the input into a feature
space by a local feature extractor, which promotes the sample
classification. Thus, after the training of the whole GANs, a
local feature extractor is obtained from the discriminator that
can represent the characteristic of the input protein sequence or
SMILE sequence. This trained local feature extractor is utilized
as the feature representation of the proposed framework,
followed by a regressor or classifier for prediction or
classification task respectively. Finally, during the second
round of training, with the labeled data (SIMILES and protein
sequence) and fixed GANs-based feature extractor, the
regressor is trained to minimize the loss function, leading to
the optimal model parameters.
Frontiers in Genetics | www.frontiersin.org 3158
In the proposed method, the input proteins and drugs are
treated as sequence representations. In particular, drugs are
represented as SMILES strings – describing the chemical
structure in short ASCII strings, and similarly, protein
sequences are represented as a string of ASCII letters, which
are the amino acids. Having the inputs as strings of text, the
discriminator can learn the latent features of those sequences.

Feature Extracting Model
Goodfellow et al. (Goodfellow et al. (2014)) proposed a
framework using a minimax game to train deep generative
models, so called GANs. The GANs comprise two parts, a
generator G and a discriminator D. The generator network G
generates fake samples from the generator distribution PG by
transforming a noise variable z∼Pnoise(z) into a sample G(z). The
discriminators are to differentiate these generated samples
following distribution PG from the true sample distribution
Pdata. G and D are trained by playing against each other which
can be formulated by a minimax game as follows:

min
G

max
D

V(D,G)

= Exe Pdata
½log (x)� + Eze Pnoise½log (1 − D(G(z)))� (1)

Meanwhile, for a given generator G , the optimal
discriminator is D(x) = Pdata(x)/ (Pdata(x)+PG(x)).

The GANs employed in our framework is depicted in Figure
3 — in which the generator network is a four-layer fully
connected network and considers a noise vector as input —
and produce a sequence of proteins or SMILES. The
FIGURE 1 | Summary of the KIBA (left panel) and Davis (right panel) data sets.
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FIGURE 3 | Architecture of the generator and discriminator networks in the proposed method.
FIGURE 2 | Pipeline overview. We train the GANs on the unlabeled data set. Compound SMILES and protein sequences are encoded and two independent GANs
are applied to generate the fake samples. The trained discriminator of the GANs can then be used to project the labeled data sets into a feature latent space. Based
on this feature, we train a convolutional regression to predict the DT binding affinity.
Frontiers in Genetics | www.frontiersin.org January 2020 | Volume 10 | Article 12434159
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discriminator network is a three-layer fully connected network
and the output is a probability value between 0 and 1, where 1
means that the input is real and 0 means that the input is fake.

Typically, the discriminator network can be decomposed into
a feature extractor F (·;jf) and a sigmoid classification layer with
weight vector yl. Mathematically, given an input sequence s,
we have

D(s) = sigmoid (fT
l F(s; ff )) = sigmoid (fT

l f ) (2)

where f= (fffl) and sigmoid(z)=1/ (1+e−z). f=F (s;ff) is the
feature extractor of s in the last layer ofD, which is to be leaked to
the regression model.
Regression Model
To predict the binding affinity, we combine the intermediate
features learned by the two GANs and then apply a few 1D
convolution layers to learn the final regression output. The
convolution regression model conducts convolution operations
with the kernel size of 4 to acquire feature maps of the input
information. The dimension of the first convolution layer is
16×4. All the convolution layers are connected to activation
functions (ReLU function). The dimensions of the second and
third, convolution layers are 32×4, and 48×4. The activation
function of the output layer is a linear function (identity
function, i.e., y = x) that obtains a continuous value. This
network is trained by minimizing the loss function defined by
the mean square error (MSE) between the outputs p of this
network and depth values y included in the dataset:

MSE =
1
no

n

k=1

(pk − yk)
2

(3)
EXPERIMENTS AND RESULTS

We compared our proposed method with the state-of-the-art
DTA prediction models using the Davis and Kiba datasets. For
these two datasets, we used the same setting as DeepDTA, that is,
80% of data were split as training samples and 20% as testing
samples. In addition, our model is trained by both the labeled
and unlabeled instances. We apply the Adam optimizer with the
initial learning rate of 0.0001 to optimize the parameters of
the model. We manually tuned the hyperparameters based on
the testing results on the validation set. The performance of the
proposed model was measured by calculating the concordance
index (CI) and mean squared error (MSE) metrics. CI evaluates
the ranking performance of the models that output
continuous values.

CI =
1
Z o

dx>dy

h (bx − by) (4)

where bx is the prediction value for the larger affinity dx, by is
the prediction value for the smaller affinity dy, Z is a
normalization constant, and h(m) is the step function.
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h(m) =

1; ifm > 0

0:5; ifm = 0

0; ifm < 0

8>><
>>:

(5)

MSE is a common measure to quantify the difference between
the predicted values p and the actual values, which is defined
as follows:

We compared the predicted performance of our method with
DeepDTA and two machine-learning-based KronRLS and
SimBoost method. Both of our work and DeepDTA only
utilize the information of protein sequence and SMILES of the
compounds. The difference is that our method can extract
features of proteins and compounds in an unsupervised
manner. Tables 2 and 3 present the MSE and CI values for
different methods for Davis and KIBA datasets.

For the Davis dataset (Table 2), even the DeepDTA, with
Simith–Waterman as the protein’s representation form and
drugs in the 1D strings, achieves the best CI score (0.886),
slightly higher than our method - its MSE metric is much
higher than our methods. Whereas another DeepDTA, CNN
for protein and compound representation, achieves the best MSE
with 0.261 as well as the lower CI than our method.

A similar performance is observed for the Kiba dataset (Table
3). In particular, DeepDTA is the best baseline in both measures,
CI, at 0.863, andMSE, at 0.194, when both drugs and proteins are
represented as ‘words’. Regarding CI, the proposed GANsDTA
exhibits a slight improvement. The best CI GANsDTA gained
is 0.866.

To provide a better assessment of our model, we determined
the performances of GANsDTA, DeepDTA with two CNN
modules and two baseline methods with two different metrics:
r2m index and area under precision recall (AUPR) score as well. r2m
TABLE 2 | CI and MSE scores for the Davis dataset on the independent test for
our method and other methods.

Method Protein rep. Compound rep. CI MSE

DeepDTA Smith-Waterman Pubchem-Sim 0.790 0.608
DeepDTA Smith-Waterman CNN 0.886 0.420
DeepDTA CNN Pubchem-Sim 0.835 0.419
DeepDTA CNN Pubchem-Sim 0.878 0.261
KronRLS Smith-Waterman Pubchem-Sim 0.871 0.379
SimBoost Smith-Waterman Pubchem-Sim 0.872 0.282
GANsDTA GAN GAN 0.881 0.276
J
anuary 2020 | Volume
 10 | Article
Bolded texts mean the best results.
TABLE 3 | CI and MSE scores for the Kiba dataset on the independent test.

Method Protein rep. Compound rep. CI MSE

DeepDTA Smith-Waterman Pubchem-Sim 0.710 0.502
DeepDTA Smith-Waterman CNN 0.854 0.204
DeepDTA CNN Pubchem-Sim 0.718 0.571
DeepDTA CNN CNN 0.863 0.194
KronRLS Smith-Waterman Pubchem-Sim 0.782 0.411
SimBoost Smith-Waterman Pubchem-Sim 0.836 0.222
GANsDTA GAN GAN 0.866 0.224
Bolded texts mean the best results.
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index is a metric which defines the possibility of an acceptable
model. Generally, if the value of r2m the index is greater than 0.5
on a test set, we consider this model to be acceptable. The metric
is described in equation (6) where r2 and r0 are the squared
correlation coefficients with and without intercept, respectively.
The details of the formulation are explained in Pratim Roy et al.
(2009); Roy et al. (2013).

r2m = r2* ð 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r20

q
) (6)

The AUPR score is generally adopted for binary prediction.
To measure AUPR based performances, the Davis and KIBA
datasets should be converted into their binary forms via
thresholding. For the Davis dataset we selected a pKd value of
7 as the threshold, while for KIBA dataset the threshold is 12.1,
which is same as in the literature Öztürk et al. (2018).

Tables 4 and 5 list the r2m index and AUPR score of
GANsDTA and three baseline methods on the Davis and
Frontiers in Genetics | www.frontiersin.org 6161
KIBA datasets, respectively. The results suggest that SimBoost,
DeepDTA and GANsDTA are acceptable models for to predict
affinity with result to r2m value.

Figure 4 illustrates the predicted binding affinity values
against the actual values for our GANsDTA on the Davis and
KIBA datasets. Evidently, an ideal model is expected to enable
predictions (p) equal to the measured (y) values. For GANsDTA,
it can be observed that the density is high around the p = y line,
particularly for the KIBA dataset.

It can be observed that the proposed GANsDTA exhibits a
similar performance to DeepDTA from Tables 2-4. For the
Davis dataset, GANsDTA provides a slightly lower CI score
(0.881) than the state-of-the-art DeepDTA with CNN the feature
extraction (0.886), and a slightly higher MSE with 0.015. The
reason is that the training for GANs is insufficient due to the
small size of the Davis dataset which only includes 442 proteins,
68 compounds, and 30056 interactions. However, GANsDTA is
still the second-best predictor. The other benchmark KIBA
dataset includes 229 proteins, 2111 compounds, and 118254
interactions, enabling the GANs to be trained better, leading to
better prediction accuracy. This indicates that GANsDTA is
more suitable for the prediction task with a large dataset. In
the future, more possible datasets (Cheng et al., 2018c; Cheng
et al., 2019a) Cheng et al., 2016; Cheng et al., 2019a can be
utilized to improve the training of GANsDTA.

CONCLUSION

Predicting drug-target binding affinity is challenging in drug
discovery. The supervised-based methods heavily depend on
labeled data, which are expensive and difficult to obtain on a
large scale. In this paper, we propose a semi-supervised GAN-
based method to estimate drug-target binding affinity, while
effectively learning useful features from both labeled and
unlabeled data. We use GANs to learn representations from
TABLE 4 | r2m index and AUPR score for the Davis dataset.“4 r2m index and
AUPR score for the Davis dataset.”

Method Protein rep. Compound rep. r2m AUPR

DeepDTA CNN CNN 0.630 0.714
KronRLS Smith-Waterman Pubchem-Sim 0.407 0.661
SimBoost Smith-Waterman Pubchem-Sim 0.644 0.709
GANsDTA GAN GAN 0.653 0.691
TABLE 5 | The r2m index and AUPR score for the KIBA dataset.

Method Protein rep. Compound rep. r2m AUPR

DeepDTA CNN CNN 0.673 0.788
KronRLS Smith-Waterman Pubchem-Sim 0.342 0.635
SimBoost Smith-Waterman Pubchem-Sim 0.629 0.760
GANsDTA GAN GAN 0.675 0.753
FIGURE 4 | Predictions from DeepDTA model with two CNN blocks against measured (real) binding affinity values for Davis (pKd) and KIBA (KIBA score) datasets.
January 2020 | Volume 10 | Article 1243
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the raw sequence data of proteins and drugs and convolutional
regression when predicting the affinity. We compare the
performance of the proposed model with the state-of-art deep-
learning-based method as our baseline. By utilizing the unlabeled
data, our model can achieve competitive performance while
using freely available unlabeled data. However, because it is
difficult to train GANs, this approach is not comparative in the
scenarios of a small dataset, and the improved techniques for
training GANs should be employed to enhance the adaptability
of GANs.
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Epigenetic alteration is a fundamental characteristic of nearly all human cancers. Tumor
cells not only harbor genetic alterations, but also are regulated by diverse epigenetic
modifications. Identification of epigenetic similarities across different cancer types is
beneficial for the discovery of treatments that can be extended to different cancers.
Nowadays, abundant epigenetic modification profiles have provided a great opportunity
to achieve this goal. Here, we proposed a new approach TriPCE, introducing tri-clustering
strategy to integrative pan-cancer epigenomic analysis. The method is able to identify
coherent patterns of various epigenetic modifications across different cancer types. To
validate its capability, we applied the proposed TriPCE to analyze six important epigenetic
marks among seven cancer types, and identified significant cross-cancer epigenetic
similarities. These results suggest that specific epigenetic patterns indeed exist among
these investigated cancers. Furthermore, the gene functional analysis performed on the
associated gene sets demonstrates strong relevance with cancer development and
reveals consistent risk tendency among these investigated cancer types.

Keywords: epigenetic analysis, pattern discovery, tri-clustering, FP-growth algorithm, pan-cancer
INTRODUCTION

Cancer genetics and epigenetics are closely linked in driving the cancer phenotype (Bailey et al.,
2018). The vast majority of human cancers emerge from a gradual accumulation of somatic
alterations and epigenetic abnormalities, which together lead to the malignant growth (Jones et al.,
2016). Epigenetic changes can further enable tumor cells to escape from host immune surveillance
and various treatments (You and Jones, 2012). Epigenetic abnormalities are usually observed as
disrupted DNAmethylation patterns (Chiappinelli et al., 2015), abnormal histone post translational
modifications (Sawan and Herceg, 2010), and aberrant changes in chromatin organization (Allis
and Jenuwein, 2016). How to identify epigenetic modification patterns that lead to the
corresponding dysregulation in diverse cancers has become a critical research issue of cancer
studies (Dawson, 2017; Kelly and Issa, 2017).

Great advancements have been made in delineating the underlying mechanisms of human
cancers (Lawrence et al., 2014; Martincorena and Campbell, 2015). Extensive research has centered
on the genetic aspect of cancers, such as how mutational activation and inactivation of cancer genes
influence the cellular pathways (Vogelstein et al., 2013; Waddell et al., 2015). Recently, an increasing
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emphasis of drug discovery efforts has been targeting on the
cancer epigenome (Flavahan et al., 2017). Many epigenome
mapping projects have been gradually founded. The Cancer
Genome Atlas Network (TCGA), BLUEPRINT, and the
International Cancer Genome Consortium (ICGC) define the
genome-wide distribution of epigenetic marks in many normal
and cancerous tissues (Beck et al., 2012; Kundaje et al., 2015;
Weinstein et al., 2015). Given the genome-wide distribution of
epigenetic modifications of different cancers, it is urgent to
decipher common epigenetic patterns across cancers and to
understand the underlying mechanisms of tumorigenesis. Key
epigenomic similarities shared by different cancer types would
present an important opportunity to design effective cancer
treatment strategies among cancers regardless of tissue or
organ and enable the extension of effective treatments from
one cancer type to another (Karlic et al., 2010; Gan et al., 2018).

To detect significant epigenetic patterns, existing
computational methods mainly focus on identifying
combinatorial states of different epigenetic marks. Specifically,
CoSBI captures diverse histone modification patterns based on
the correlations of different histone signals (Ucar et al., 2011).
ChromHMM and HiHMM both apply a HMM model to
annotate genomic sequences by the co-occurrence of multiple
epigenetic marks (Ernst et al., 2011; Sohn et al., 2015). RFECS is
developed mainly based on random forests (Rajagopal et al.,
2013). IDEAS is able to jointly characterize epigenetic landscapes
in many cell types and detect differential regulatory regions
(Zhang et al., 2016). These methods have successfully
identified the combinatorial epigenetic pattern in specific cell
type. However, the relations among different cancer types still
need to be investigated. Because DNAmethylation in cancers has
been addressed elsewhere (Kretzmer et al., 2015; Yang et al.,
2016), here we only focus on the critical covalent histone
modifications that are altered in various cancers, particularly
the well-studied acetylation and methylation modifications.

In this paper, we proposed a tri-clustering approach, named
TriPCE, for integrative pan-cancer epigenomic analysis. The
method TriPCE adopts a tri-clustering strategy to identify the
coherent patterns of various epigenetic modifications across
different cancer types. We applied TriPCE to investigate six
critical epigenetic marks among seven cancer types, and
identified significant pan-cancer epigenetic modification
patterns. The results reveal that there exists consistent
epigenetic modification tendency among these cancer types.
Meanwhile, the gene function analysis demonstrates that these
associated genes are strongly relevant with the cancer
cellular pathway.
MATERIALS AND METHODS

Datasets
To detect epigenetic similarities among different cancers, we
analyzed the epigenome maps of seven cancer types, including
A549, K562, HepG2, HCT116, Hela-S3, multiple myeloma-Cell
Line, and sporadic Burkitt lymphoma-Cell Line. For the
Frontiers in Genetics | www.frontiersin.org 2165
epigenetic marks, we first filtered out those marks that are not
included in these seven cancer types, and then focused on six
widely studied ones, including H3K4me1, H3K4me3, H3K9me3,
H3K27ac, H3K27me3, and H3K36me3. Meanwhile, the RNA
expression profiles of these cancers were also collected. Totally,
we obtained 42 epigenome maps and 7 RNA expression profiles
for these cancers. The datasets were downloaded from the
website of NIH Roadmap Epigenome Project.
General Scheme of the TriPCE Approach
We developed a tri-clustering approach TriPCE to dissect the
pan-cancer epigenetic pattern. The method not only explicitly
detects combinatorial states of various epigenetic marks in
different genomic segments, but also mines similar epigenetic
patterns across different cancer types. The proposed TriPCE
model has three key components, as shown in Figure 1. Firstly,
preprocess the modification data of various epigenetic marks in
different cancer types. Secondly, identify bi-Clusters based on
FP-growth algorithm for each epigenetic mark. Thirdly, mine tri-
Clusters with coherent epigenetic modification patterns across
different cancer types.

Step 1. Preprocess the epigenetic modification data of different
cancer types. Firstly, the genome was divided into consecutive
genomic segments, with a typical segment size of 200 bps (Gan
et al., 2017). For each epigenetic modification map, we computed
the summary tag count of every segment. Then, each segment is
associated with the intensities of a set of epigenetic modifications
in each cancer type. To deduce the impact of the noise resulting
from spurious tag counts in the ChIP-seq experiments, raw
sequence read counts of each epigenetic modification were
further normalized by the total number of reads followed by
arcsine transformation (Pinello et al., 2014). Finally, according to
the genome annotation data, the epigenetic distribution in the
promoter regions was extracted.

After the preprocessing step, we gained six epigenetic profiles
of seven cancer types along the promoter regions. Let G = {ɡ1, ɡ2,
…, ɡn} be a set of n genes, let T = {t1, t2,…, t7} be the investigated
seven cancer types and let E = {e1, e2,…, e6} be the six epigenetic
marks. For each epigenetic mark, the epigenetic profiles of
different cancer types in the promoter regions of these genes
are organized as a matrix Dk = T � G = tki,j (with i ∈[1,2…,7], j
∈[1,2…, n], k ∈[1,2…,6]), where rows correspond to the cancer
types, and columns correspond to those genes, respectively. Each
entry tki,j is a vector representing the epigenetic profile of ek in the
ith cancer along the promoter region of gene j.

Step 2. Identify bi-clusters based on FP-growth algorithm for
each epigenetic mark. Given the preprocessed and reorganized
epigenetic modification data matrix of each epigenetic mark, we
first computed the Pearson correlation coefficients between the
epigenetic profiles of any two cancer types at every promoter
region, and then obtained a correlation coefficient matrix.

Specifically, for the promoter region ɡi, we computed the
Pearson correlation coefficients among the epigenetic
modification distribution vectors of any different cancer types.
If the calculated correlation coefficient is higher than a given
threshold, the epigenetic modification trend in these two cancer
January 2020 | Volume 10 | Article 1298
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types is regarded as coherent in this promoter region. Then, we
added this cancer type to the corresponding itemset, which
contains all the cancer types exhibiting similar epigenetic
patterns in this region. Based on extensive experimental
comparison, when the correlation coefficient threshold is set as
0.7, the identified epigenetic patterns are obviously coherent. For
each epigenetic mark, we respectively constructed the
corresponding similar itemsets for all promoter regions.
Frontiers in Genetics | www.frontiersin.org 3166
Based on the resulted itemset, we further identified the
significant coherent epigenetic patterns using FP-growth
algorithm (Han et al., 2004). FP-growth algorithm is a data
mining method that was originally developed for frequent
itemset mining in market basket analysis. Here, we adopted the
FP-tree model to represent in a compact way all the cancer types
with similar epigenetic patterns in different promoter regions.
Then, it can be used to mine potential frequent itemsets and
FIGURE 1 | The flowchart of the proposed TriPCE approach. (A) Preprocessing the epigenetic modification data of different cancer types. (B) For each epigenetic
mark, identifying bi-Clusters based on the FP-growth algorithm. (C) Mining tri-Clusters with coherent epigenetic modification patterns across different cancer types.
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filter out most of the unrelated data. In this context, a typical
frequent itemset represents a group of cancer types that share
similar epigenetic patterns in abundant promoter regions. To gain
the significant epigenetic states, we set the minimum support of
genes as 10% of the investigated genes. For each frequent itemset,
we then inversely identified the corresponding gene set and gained
the bi-Cluster. The resulted bi-Cluster is in the form (“genomic
regions,” “cancer types”), representing the cancer types exhibit
similar epigenetic patterns in these genes. Similarly, we obtained the
corresponding bi-Cluster sets for all investigated epigenetic marks.

Step 3.Mine tri-Clusters with coherent epigenetic modification
patterns across different cancer types. After obtaining the bi-
Cluster sets for each epigenetic mark, we further mined the tri-
Clusters. By enumerating the maximum subsets of different
epigenetic marks, we obtained the tri-Clusters. In detail, we
respectively computed the intersection of the bi-Cluster sets
from two epigenetic marks ek and el, which are kept with the
epigenetic marks to get possible tri-Clusters. Further, by filtering
out the candidates with the support lower than the predefined
minimum support, we obtained the significant tri-Clusters.
Iteratively, we continued the process with another epigenetic
mark until all the epigenetic marks were analyzed. We tried all
such paths and kept the maximal tri-Clusters only. Each tri-
Cluster is represented as (“genomic regions,” “cancer types,”
“epigenetic marks”), listing a gene set with similar trend of
epigenetic modifications in different cancer types. The resulted
tri-Clusters indicate that the conserved epigenetic signatures in
these genomic regions are shared by multiple cancer types.
Frontiers in Genetics | www.frontiersin.org 4167
Functional Analysis of the Genes
From the identified tri-Clusters, we can obtain the gene sets
associated with specific coherent epigenetic patterns. To
investigate the potential functions of these genes, we
performed the gene ontology (GO) enrichment analysis and
pathway enrichment analysis via DAVID bioinformatics
resources (Huang et al., 2007). The significant enrichment lists
were obtained with P-value < 0.005.
RESULTS

Identifying Similar Epigenetic Patterns
Across Different Cancer Types
We developed a tri-clustering approach, TriPCE, to capture
similar epigenetic patterns among different cancer types.
TriPCE was applied to the genome-wide epigenetic
modification maps of seven cancer types, including A549,
K562, HepG2, HCT116, Hela-S3, multiple myeloma-Cell Line,
and sporadic Burkitt lymphoma-Cell Line. For each epigenetic
mark, TriPCE first groups the promoter regions based on the
epigenetic modification profiles among different cancer types.
Figure 2 shows a typical bi-Cluster of epigenetic mark
H3K4me1, which contains abundant genes with similar
modification pattern in four cancer types, including Hela-S3,
HepG2, K562, and A549. From this figure, we observe that the
epigenetic profiles of these genes are similar in these cancer types.
FIGURE 2 | The profiles of epigenetic mark H3K4me3 in a typical bi-Cluster exhibit a similar pattern in four cancer types, including Hela-S3, HepG2, K562 and A549.
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Then, the epigenetic profile shared by a cluster of promoter
regions in multiple cancer types is considered to be an epigenetic
pattern. Meanwhile, different cancer types share similar
epigenetic patterns. This result is consistent with previous
finding that H3K9me3/me2 and H3K36me3/me2 frequently
observed in breast cancer (Liu et al., 2009), esophageal cancer
(Yang et al., 2000), MALT lymphoma (Vinatzer et al., 2008), and
lung sarcomatoid carcinoma (Italiano et al., 2006). Based on the
identified bi-Clusters of these investigated epigenetic marks, we
noted that cancers (HepG2 and HCT116) are clustered together
and share a larger number of epigenetic marks, implying that
they share more similar epigenetic regulation mechanisms.

To identify the significant modification patterns, we set the
minimal support of genes as 10% of the investigated genes. With
diverse correlation coefficient thresholds, we respectively gained
different numbers of bi-Clusters for epigenetic marks H3K4me1,
H3K4me3, H3K9me3, H3K27me3, H3K36me3, and H3K27ac,
among these cancer types, as shown in Figure 3. The comparison
indicates that the similarities of these epigenetic marks are quite
different. Under different threshold settings, the epigenetic mark
H3K4me3 has a relatively small number of bi-Clusters,
indicating that its profiles are less conserved and exhibit more
variable patterns among these cancer types than other epigenetic
marks. On the contrary, there are more similar epigenetic
patterns of H3K4me1 and H3K27me3 among different cancer
types (Baylin and Jones, 2016). The plasticity of epigenome
depends on diverse environmental factors. Thus, it is not
surprising that epigenotypes contribute to developmental
human disorders and adult diseases (Brien et al., 2016). As the
minimal support threshold slightly affects the trend among
different epigenetic marks, we chose the bi-Clusters with
threshold 0.7 for further analysis.

Identifying Coherent Patterns Among
Different Epigenetic Marks
From the above results, we notice that there are obvious
differences among the investigated epigenetic modifications. To
Frontiers in Genetics | www.frontiersin.org 5168
identify the conserved epigenetic states and explore the similar
patterns of these epigenetic modifications, we further clustered
these epigenetic marks based on the detected bi-Clusters. By
systematically computing the intersection of the bi-Cluster sets
from different epigenetic marks, we kept the tri-Clusters with the
support higher than the predefined minimum support. The
identified tri-Clusters are represented as triples (“genomic
regions,” “cancer types,” “epigenetic marks”). Each tri-Cluster
represents that the promoter region of these genes exhibits
similar epigenetic modification patterns in the related
cancer types.

Applying TriPCE to the data set, we initially obtained 175
significant tri-Clusters. Figure 4 shows the information of 15
typical clusters, including the epigenetic marks, the cancer types,
and the supports of these tri-Clusters. The results indicate that
specific genomic regions indeed share combinatorial epigenetic
patterns across different cancer types. For example, the changing
pattern of epigenetic modifications (H3K4me3, H3K9me3,
H3K27me3, and H3K36me3) are shared by a large number of
genes in cancer types A549, HepG2, and K562. On the contrary,
some epigenetic modification patterns are only coherent in
certain cancer types. Among these resulted clusters, we observe
that the similar patterns of H3K36me3, H3K27ac, and
H3kK27me3 exist in fewer cancer types, such as HepG2 and
sporadic Burkitt lymphoma-Cell Line. Notably, these identified
tri-Clusters reveal more information about the epigenetic
patterns among these cancer types.
Analyzing the Potential Roles of
Associated Genes
Based on the detected tri-Clusters, we further obtained those
gene sets that exhibit coherent epigenetic patterns in different
cancer types. Previous studies have shown that the modification
intensities are significantly distinct between high-expression
gene promoters and low-expression gene promoters, which
suggests that these chromatin components have significant
effect on gene regulation (Su et al., 2012). To investigate the
potential functions of those genes in the cellular control
pathways, we performed a systematic GO enrichment analysis
using DAVID tools (https://david.ncifcrf.gov/). Then, for the
associated gene sets in the identified tri-Clusters, we respectively
summarized the key biological processes and pathways that they
are involved in.

Overall, we found that those genes enriched in tri-Clusters
exhibit an enrichment for cancer-related functions. Table 1 lists
the significant GO terms of a typical tri-Cluster (P-value <
0.005). In this tri-Cluster, the genes exhibit coherent
modification patterns on epigenetic marks (H3K4me1,
H3K4me3, H3K9me3, H3K27ac, and H3K27me3) in cancer
types (HeLa-S3, HepG2, multiple myeloma-Cell Line, and
sporadic Burkitt lymphoma-Cell Line). In the table, terms
“positive regulation of cell proliferation” and “negative
regulation of apoptotic process” are enriched in these gene
sets. This result implies that the identified genes in this tri-
Cluster are essential for cell proliferation and apoptotic process,
which has been reported to be related to cancer development by
FIGURE 3 | The numbers of bi-Clusters with varied similarity thresholds for
different epigenetic marks.
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previous researches (Deng et al., 2016). Meanwhile, the term
“positive regulation of gene expression” is also enriched in the
gene set, further indicating that these genes might perform
important regulation roles in these cancers.
DISCUSSION

Identifying epigenetic patterns is important to understand
epigenetic mechanisms in various cancers. The detected
patterns among different cancers could demonstrate critical
cross-cancer similarities, which reveals some consistent clinical
risk among different cancer types and further suggests strong
clinical relevance. Our knowledge about the patterns of
epigenetic modifications and the cause and consequence of
them is still limited. Computational approach that exploits the
Frontiers in Genetics | www.frontiersin.org 6169
complex epigenomic landscapes and discovers significant
signatures out of them is required. Previous computational
methods for analyzing epigenomes primarily focus on the
combinatorial states of different epigenetic marks in a specific
cell type. Differently, we developed a tri-clustering approach
TriPCE for integrative pan-cancer epigenomic analysis. Based on
the FP-tree structure, TriPCE can compactly represent all similar
cancer types in the promoter regions for a specific epigenetic
mark. Using the constructed FP-tree, the frequent patterns are
then detected to yield the set of bi-Clusters of this epigenetic
mark, indicating the similar epigenetic pattern in these cancer
types along these genomic regions. TriPCE further mines the
final tri-Clusters based on the bi-Clusters of all investigated
epigenetic marks, explicitly detecting combinatorial epigenetic
states in different genomic segments and similar epigenetic
changes across different cancer types. In the proposed
FIGURE 4 | Typical epigenetic tri-Clusters. (A) The epigenetic marks (column) in each cluster (row). (B) The cancer types (column) in each cluster (row). Fold
enrichment was calculated as the ratio between the number of genes in the tri-Cluster to that of all genes.
TABLE 1 | Functional enrichment of genes in the identified tri-Clusters.

Term type Term name P-value Term type Term name P-value

BP Positive regulation of cell proliferation 2.84E-06 MF Protein binding 1.10E-12
BP Translational initiation 1.18E-05 MF Poly(A) RNA binding 3.90E-10
BP mRNA processing 2.72E-05 MF RNA binding 2.13E-05
BP Cell division 4.08E-05 MF Glutathione binding 7.85E-04
BP rRNA processing 2.70E-04 MF Enzyme regulator activity 4.02E-03
BP RNA splicing 4.04E-04 MF Nucleosomal DNA binding 4.25E-03
BP Positive regulation of gene expression, epigenetic 9.41E-04 MF Translation initiation factor activity 4.30E-03
BP Protein targeting to Golgi 8.87E-05 MF Glutathione transferase activity 8.00E-03
BP Nitrobenzene metabolic process 1.14E-04 MF Protein binding, bridging 4.33E-03
BP Xenobiotic catabolic process 1.13E-03 MF ATP binding 4.57E-03
BP mRNA splicing, via spliceosome 1.14E-03 CC Nucleoplasm 6.18E-13
BP Sister chromatid cohesion 2.13E-03 CC Cytosol 3.96E-07
BP SRP-dependent cotranslational protein targeting to membrane 1.06E-03 CC Membrane 7.68E-06
BP Negative regulation of transcription, DNA-templated 1.55E-03 CC Nucleus 2.34E-04
BP Negative regulation of apoptotic process 1.88E-03 CC Cytoplasm 2.69E-04
BP Nucleosome assembly 3.86E-03 KEGG Glutathione metabolism 1.09E-03
BP Glutathione derivative biosynthetic process 4.18E-03 KEGG Systemic lupus erythematosus 1.93E-03
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approach TriPCE, the tri-Cluster enumeration is an expensive
operation. In the future we plan to develop heuristic techniques
to efficiently prune the search space, and then improve the
efficiency of mining the tri-Clusters. We applied TriPCE to
uncover the similar patterns of six epigenetic marks among
seven cancer types and successfully identified significant cross-
cancer epigenetic modification similarities, which suggests that
there exhibits consistent epigenetic modification tendency
among these investigated cancer types. Furthermore, the gene
functional analysis demonstrates that these associated genes are
strongly relevant with the cancer cellular pathway.
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Clear-cell renal cell carcinoma (ccRCC) is the most common and lethal subtype of kidney
cancer. VHL and PBRM1 are the top two significantly mutated genes in ccRCC
specimens, while the genetic mechanism of the VHL/PBRM1-negative ccRCC remains
to be elucidated. Here we carried out a comprehensive analysis of single-cell genomic
copy number variations (CNVs) in VHL/PBRM1-negative ccRCC. Genomic CNVs were
identified at the single-cell level, and the tumor cells showed widespread amplification and
deletion across the whole genome. Functional enrichment analysis indicated that the
amplified genes are significantly enriched in cancer-related signaling transduction
pathways. Besides, receptor protein tyrosine kinase (RTK) genes also showed
widespread copy number variations in cancer cells. Our studies indicated that the
genomic CNVs in RTK genes and downstream signaling transduction pathways may
be involved in VHL/PBRM1-negative ccRCC pathogenesis and progression, and
highlighted the role of the comprehensive investigation of genomic CNVs at the single-
cell level in both clarifying pathogenic mechanism and identifying potential therapeutic
targets in cancers.

Keywords: copy number variations, single-cell exome sequencing, clear-cell renal cell carcinoma, receptor protein
tyrosine kinase, signaling transduction pathway
INTRODUCTION

Renal cell carcinoma (RCC) is one kind of kidney cancer, accounting for nearly 300,000 new cancer
cases per year worldwide (Hakimi et al., 2013). RCC includes several histological subtypes, among
which clear cell renal cell carcinoma (ccRCC) is the most common and lethal one (Hakimi et al.,
2016). Increasing studies have shown that the development of ccRCC seems to be shaped by
chromosomal lesions and a number of somatic mutations (Sato et al., 2013). VHL and PBRM1,
located within the chromosome 3p25 and 3p21 segments, are the top two significantly mutated
genes in ccRCC (Sato et al., 2013). Nearly 90% of ccRCCs undertake the deletion on chromosome
3p, leading to a very high frequency of VHL inactivation (Gnarra et al., 1994). Moreover, VHL and
PBRM1 are mutated in about 50 and 41% of sporadic ccRCC, respectively (Kaelin, 2004; Varela
et al., 2011). However, little is known about the genetic mechanisms in VHL/PBRM1-
negative ccRCC.
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Based on the next-generation sequencing technology,
previous studies identified many driver mutations in ccRCC
(Gnarra et al., 1994; Kaelin, 2004; Sato et al., 2013; Cheng et al.,
2019). However, limited insights are available on the genomic
diversity within tumor tissues (Wang et al., 2014). Generally,
tumor tissues may contain cancer cells from multiple clones and
noncancerous cells, which make it difficult to identify the
mutations in each clone and detect the driver genes during the
cancer progression (Xu et al., 2012; Casasent et al., 2018).
Fortunately, single-cell DNA sequencing has been developed to
meet this challenge, because it can provide unique insights into
intratumor heterogeneity, development, and diversity of cancers
at the single-cell level (Casasent et al., 2018). For example, Xu
et al. (2012) carried out the single-cell exome sequencing on a
ccRCC tumor and its adjacent normal tissue. They identified four
genes (i.e., AHNAK, SRGAP3, LRRK2, and USP6) as potential
driving factors for VHL/PBRM1-negative ccRCC development,
which provided new insights into the pathogenesis of the ccRCC.

Genomic copy number variations (CNVs) play an important
role in cancer progression, and emerging studies indicate that
genomic CNVs are associated with the ccRCC (Gerlinger et al.,
2014; Nouhaud et al., 2018) and other cancers (Waddell et al., 2015;
Secrier et al., 2016; Hong et al., 2019). Xu et al. (Xu et al., 2012)
performed a single-cell exome sequencing to elucidate the genetic
mechanisms of the ccRCC by identifying the single nucleotide
variants (SNVs). However, the authors did not examine whether
the genomic copy number variations play a crucial role in ccRCC.

To further investigate the potential roles of CNVs in VHL/
PBRM1-negative ccRCC, we performed a comprehensive single-
cell CNV analysis based on a dataset provided by Xu et al.,
(2012). We delineated the genomic copy number variation
landscape at the single-cell level and reclassified all single cells
based on the single-cell genomic CNVs. We also identified
several significantly amplified/deleted loci and genes in cancer
cells. Finally, we further investigated the biological pathways
which may be involved in the ccRCC pathogenesis.
METHODS

Datasets
The sample data and information used in our article came from a
previous study, and the original sequencing data were
downloaded from NCBI (http://www.ncbi.nlm.nih.gov/sra)
under the accession number SRA050201.

Quality Control
Quality control of the sequencing data was performed using
FastQC. The adapter and low-quality ends were trimmed from
reads using Trim-Galore version 0.5.0 (http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/).
Trimmed reads shorter than 20 bp were discarded.

Reads Mapping
The human reference genome sequence (Hg19) was used for
mapping (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/
Frontiers in Genetics | www.frontiersin.org 2173
bigZips/). Short read pairs were mapped to the reference
genome using Burrows-Wheeler Aligner (BWA) version
0.7.12-r1039 (Li and Durbin, 2009). In this process, we
adopted the BWA-MEM algorithm and adjusted the main
parameters, setting the minimum seed length to 19, the penalty
for a mismatch to 4, and shorter split hits were marked as
secondary. Then, Samtools was used to convert SAM files to
compressed BAM files, sort the BAM files by chromosomal
coordinates, and remove the PCR duplicates from BAM files.

Copy Number Variations Calling
In each cell, germline and somatic copy number variations were
called by Control-FREEC version 11.5 (Boeva et al., 2012).
Consider ing the exome enrichment during l ibrary
construction, read counts were calculated by exome region.
The target region file of exome capture was downloaded from
the Agilent website (https://earray.chem.agilent.com/suredesign/
index.htm). The germline CNVs were detected in each cell and
bulk normal tissue, respectively. Somatic CNVs were detected
only in single cells. Gene annotations were performed with
Annovar software (Wang et al., 2010) and OAHG database
(Cheng et al., 2016).

Dimensionality Reduction of Cells
T-distributed stochastic neighbor embedding (t-SNE) was
performed based on the germline CNVs of target regions. Both
25 single cells and bulk normal tissue were projected to 2D space
using the R package named “Rtsne.”

Significantly Somatic Copy Number
Variation Loci Analysis
Significantly amplified/deleted loci in tumor cells were identified
using GISTIC2.0 (Mermel et al., 2011). GISTIC2.0 was run on an
input defined as the log2()-1 of somatic copy number values, with
confidence (-conf) threshold of 0.9. Considering for downstream
analysis, thresholds suggested by GISTIC2.0 for copy number
variation were as follows: if GISTIC score ≥0.9, it means
amplification; 0.1 < GISTIC score <0.9, corresponding to gain;
−1.3 < GISTIC score < −0.1, loss; GISTIC score ≤ −1.3, deletion.

Receptor Protein Tyrosine Kinase Gene
Copy Number Profiling
To examine the landscape of copy number variations in RTK
genes, we derived GISTIC-equivalent scores by dividing the
germline copy numbers and classifying genes as amplified if
score ≥ 0.9, deleted if score ≤ −1.3, gained if score > 0.1, and loss
if the score < −0.1.

Function Analysis
The significantly amplified and deleted genes were identified
according to significantly somatic CNV loci (q-value < 0.0001) in
GISTIC2.0. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway function enrichment analysis was performed
using the Carcinogenic Potency Database (CPDB) (Kamburov
et al., 2013). In this study, the p-value threshold for KEGG
enrichment analysis is 0.05.
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RESULTS

Identification of Single-Cell Genomic Copy
Number Variations in Kidney Cancer and
Normal Cells
To identify genomic CNVs in ccRCC, we analyzed the
sequencing data from a ccRCC patient, which includes 20
single-cell exome sequencing data from the tumor tissue, 5
single-cell exome sequencing data from the adjacent normal
tissue, and a bulk exome sequencing data from the adjacent
normal tissue. Trim-Galore was used to remove the low-quality
and adapter segments and analyze the quality of sequencing
reads. The cleaned reads were mapped to the reference genome
with BWA software (Li and Durbin, 2009). The sequencing
depth was more than 20X (29.68 ± 5.68) in all single cells. The
genomic CNVs were called by using Control-FREEC (Boeva
et al., 2012).

Germline CNVs were identified in all the samples. The
comparison between cancer and normal cells revealed
widespread amplification and deletion across the whole
genome in tumor cells (Figure 1A). At the same time, some
deleted loci were found both in normal and cancer cells, which
may be caused by multiple displacement amplification (MDA)
amplification (Yilmaz and Singh, 2012) or exome capture during
DNA library preparation.
Frontiers in Genetics | www.frontiersin.org 3174
To remove the background mutations caused by germline or
technology flaws, somatic CNVs were identified in all cells using
bulk normal tissue as control. The somatic CNVs showed much
more amplification than germline CNVs in the cancer cells
remarkably (Figure 1B). Large-scale of somatic CNVs were
found in the ccRCC single cells, which was consistent with the
previous studies based on the bulk sequencing (Cancer Genome
Atlas Research, N, 2013; Gerlinger et al., 2014; Nouhaud et al.,
2018). What’s more, single-cell sequencing data revealed the
amplification of copy number showed a high degree of
consistency, which suggests the amplification may play an
important role in the progression of ccRCC. On the contrary,
the deletion showed higher intratumor heterogeneity in the
cancer cells.

Re-Classification of Kidney Cancer and
Normal Cells Based on Single-Cell Copy
Number Variations
Generally, surgically removed cancer tumors may contain both
cancer and normal cells (Xu et al., 2012). To reclassify all the
single cells accurately, the t-distributed stochastic neighbor
embedding (t-SNE) was performed based on the cell copy
number in exome target regions. The results of dimensionality
reduction (Figure 2, Supplementary Table S1) showed that
three cancer cells (CC-15, CC-17, and CC-20) clustered tightly
FIGURE 1 | The genomic copy number variations (CNVs) identified across all cells. (A) The germline CNVs in single cells and normal tissue. Genomic CNVs within
the whole genome are shown, the color scale ranges from blue (deletion) to red (amplification) with estimated copy numbers shown. The cell names are marked by
different cell types. (B) The somatic CNVs in single cells.
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with the normal cells and tissue, suggesting that they probably
were normal cells in the tumor tissue. These results were
consistent with the previous findings which based on the
single-cell SNVs (Xu et al., 2012). These three cells (CC-15,
CC-17, and CC-20) were excluded from the cancer cell group in
the downstream analysis. Focusing on the remaining cancer cells,
we found no subpopulation of cancer cells within the
cancer tissue.
Frontiers in Genetics | www.frontiersin.org 4175
According to the single-cell genomic CNVs, all the single cells
can be reclassified into three groups, namely cancer cell (CC),
normal cell (NC), and normal cell in cancer tissue (NCinCT). To
address whether the genomic CNVs were significantly different
between the three groups, we calculated the proportion of whole
genome that covered with amplification (copy number ≥ 4) and
loss (copy number = 0), respectively. The results (Figure 3)
showed that there were more amplified loci in CC group than NC
group (P = 3×10−4) and NCinCT group (P = 1.8×10−3). Besides,
there was no significant difference between NC and NCinCT
groups (P = 0.79). The lost loci also showed a similar result.
Single-cell genomic CNVs indicated that the genome of cancer
cells was in an extremely unstable state.

Loci Distribution of Significant Genomic
Copy Number Variations in Kidney Cancer
To investigate the loci distribution of the significant genomic
CNVs across all tumor single cells, GISTIC2.0 (Mermel et al.,
2011) was used to identify the significant genomic CNVs loci
based on the somatic CNVs in 17 cancer cells, but not including
germline CNVs which are not involved in cancer development
generally. The results indicated that copy numbers in the
significant CNV loci have a high degree of consistency across
all the cancer cells. Although lots of lost loci (more slight than
deletion, −1.3 < GISTIC score < −0.1) were identified, there was
no significantly deleted locus (GISTIC score ≤ −1.3) found in
cancer cells, which was consistent with high heterogeneity of
deletion region in our cancer cells.

Significantly amplified loci (Figure 4, Supplementary Table
S2A) according to GISTIC2.0 (12q13.3, 12p13.31, 5q35.3, etc.; q-
value < 0.05) comprised genes such as IGFBP4, ERBB2, ERBB3,
FGFR4, CDK2, FLT4, and so on. The IGFBP4 gene had been
reported to be associated with several types of cancer (Hallberg
FIGURE 2 | Population analysis based on the germline copy number
variations (CNVs). T-distributed stochastic neighbor embedding (T-SNE)
analysis of cancer cell (red), normal cell (blue), and normal cell in cancer tissue
(green) based on the germline CNVs.
FIGURE 3 | The coverage of genomic copy number variations (CNV) regions in three cell types. (A) The percentage of amplification region (copy number ≥ 4) across
the whole genome in different cell types. (B) The percentage of loss region (copy number = 0) across the whole genome in different cell types. In the two sub-graphs
(A) and (B), p-values between two groups (Wilcoxon signed-rank test) and all groups (Kruskal-Wallis test) were calculated.
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et al., 2000; Romero et al., 2011; Yang et al., 2017), it can promote
the RCC cell metastasis and activate Wnt/beta-catenin signaling
pathway in humans (Ueno et al., 2011). ERBB2 and ERBB3 genes
belong to the epidermal growth factor receptor (EGFR) family,
and they had been identified as common driver genes of multiple
cancer types by promoting solid tumor growth (Yarden, 2001;
Henson et al., 2017; Oldrini et al., 2017). The amplification of
EGFR also was found in other cancers, which contributed to the
EGFR excessive activation (Sigismund et al., 2018). FGFR4 gene
belongs to the fibroblast growth factor receptor family, and the
activation of FGFR4 can promote cell growth and angiogenesis in
cancer (Bai et al., 2015). CDK2 gene is commonly excessive
activation in human cancers, and dysfunction of CDK2 can lead
to uncontrolled cell growth (Mihara et al., 2001). FLT4 gene,
belonging to the vascular endothelial growth factor family, had
been reported to regulate cancer cell survival and proliferation
(Varney and Singh, 2015).

While the top significantly deleted loci (Figure 4,
Supplementary Table S2B) (1q21.3, 1p35.2, 16q24.3, 3p14.1,
etc.; q-value < 0.05) showed loss of Chmp1A, CADM2, PRAP1,
and ULK1 genes. Chmp1A and CADM2, belonging to cell
adhesion molecules family, had been found to be a tumor
suppressor gene in RCC. The overexpression of Chmp1A and
CADM2 significantly suppressed cancer growth and invasion
(You et al., 2012; He et al., 2013). PARP1 gene played an
important role in DNA repair and cell apoptosis (Tulin, 2011),
the cell with PARP1 deficiency show resistance to DNA damage-
induced programmed cell death and increased cancer risk
(Schiewer and Knudsen, 2014). ULK1 was an initiate
autophagy gene, and the down-regulation of ULK1 had been
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found in cancer (Zhang et al., 2017). ULK1 may play a pivotal
role in cancer by promoting cell death (Chen et al., 2014).

The genes in significantly amplified loci include a number of
known driver genes, which may promote the cancer progression
by the up-regulation of cell growth and cell cycle. Significantly
deleted loci include some tumor suppressor genes and autophagy
genes. The inactivation of these genes leads to uncontrolled
tumor growth, which may contribute to the VHL/PBRM1-
negative ccRCC pathogenesis and progression

Functional Analysis of Significant Genomic
Copy Number Variations in Kidney Cancer
To better understand the potential biological and functional
characteristics of the significantly amplified and deleted genes
in cancer cells, biological function pathways in ccRCC had been
further investigated. The KEGG functional enrichment analysis
was performed using the CPDB Database based on the
amplified and deleted genes, respectively. The amplified genes
showed significant enrichment (p-value < 0.05) for signal
transduction, metabolism, cell cycle, immunity, and other
cancer-related pathways (Figure 5, Supplementary Table S3).
In contrast to amplified genes, deleted genes only showed
significant enrichment for the fatty acid elongation pathway
(p-value = 7.6×10−3).

The most notable result is that a large portion of enrichment
pathways belong to the signaling transduction pathway. Both of
the HIF-1 (Posadas et al., 2013), ErbB (Liu et al., 2015), PI3K-Akt
(Linehan et al., 2010; Sato et al., 2013; Guo et al., 2015), Ras (de
Araujo Junior et al., 2015; Chen et al., 2018), Rap1 (Chen et al.,
2018), and MAPK signaling pathway (Liu et al., 2015) had been
FIGURE 4 | The significant genomic copy number variation (CNV) loci in
cancer cells. All CNV types in each cancer cell were counted for the top
frequency histogram, and q-value for each significant genomic CNV loci was
shown on the right. Only the loci with q-value < 0.0001 were shown.
FIGURE 5 | Kyoto Encyclopedia of Genes and Genomes (KEGG) functional
enrichment analysis for significantly amplified genes. The size of the point
means the gene number both in our amplified gene set and KEGG pathway
terms. The color of point means enrichment significance (−log10P). The
pathways were sorted by rich factor (the ratio of significantly amplified gene
number in this pathway term to gene number in this pathway term).
January 2020 | Volume 10 | Article 1379

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Zhou et al. Single-Cell CNVs Analysis in ccRCC
found involved in the pathogenesis of RCC. What’s more, the
results also showed that Th17 cells (Li et al., 2015) and
microRNAs (Gowrishankar et al., 2014) seem to have a
connection with the ccRCC pathogenesis. Interestingly, the
fatty acid elongation pathway was significantly deleted in
ccRCC, which may account for the fact that ccRCC tumors are
lipid-laden (Hakimi et al., 2016).

Receptor Protein Tyrosine Kinase Genes
Show Widespread Copy Number
Variations in Cancer Cells
Since lots of cancer-related signaling transduction pathways
showed significantly amplified in cancer cells, we then
Frontiers in Genetics | www.frontiersin.org 6177
examined the copy number variations in their upstream RTK
genes (Robinson et al., 2000; Secrier et al., 2016) to investigate
possible reasons for the negative results that tumor did not
appear known driver mutations in VHL and PBRM1.

The single cancer cells show widespread amplification and
deletion on multiple RTKs compared with the normal cells, the
NC and NCinCT groups show similar RTK gene profile. There
were some RTK genes (EPHB6, EPHA1, EPHB3, FGFR4,
PDGFRB, and FLT4) showing amplification in cancer cells. On
the contrary, EPHB2, ERBB4, FGFR1, PDGFRA, KDR, and FLT1
genes showed deletion in cancer cells (Figure 6). Genomic copy
number is varied across these RTKs and downstream pathways,
indicating that the genomic CNVs in RTKs and downstream
FIGURE 6 | The copy number of receptor protein tyrosine kinase (RTK) genes in all single cells. The copy number variations (CNVs) on RTK genes in both tumor
and normal cells were shown. The RTKs family and cell types were shown at the left and bottom of the plot. The mutation types in each cell and gene were counted
for the top and right frequency histograms, respectively.
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signaling transduction pathways may have important roles in the
pathogenesis and progression of the VHL/PBRM1-
negative ccRCC.
DISCUSSION

Previous studies have shown that VHL and PBRM1 are the top
two significantly mutated genes in ccRCC. However, the
pathogenesis in VHL/PBRM1-negative ccRCC is still unclear.
Our comprehensive analysis of CNVs in 25 single cells from a
ccRCC patient provided new insights into the pathogenesis of the
ccRCC. We reclassified all the single cells and identified
pathological mutations in VHL/PBRM1-negative ccRCC cells.
Similar to the genomic CNVs in other cancers, the pathogenesis
in VHL/PBRM1-negative ccRCC seems to be shaped by the
accumulation of amplification in driver genes (IGFBP4, ERBB2,
ERBB3, FGFR4, CDK2, and FLT4), the loss of function in tumor
suppressor genes (Chmp1A, CADM2) and autophagy genes
(PRAP1, ULK1).

Pathway analysis of these significantly amplified and deleted
genes identified several signaling transduction pathways,
including HIF-1, ErbB, PI3K-Akt, Ras, Rap1, and MAPK
signaling pathways, were affected by genomic amplification. At
the same time, RTK genes showed widespread copy number
variations in cancer cells specifically. Mutations on RTKs may
take part in the overactivity of downstream signaling
transduction pathways, leading to the uncontrolled growth of
ccRCC cells.

Overall, our single-cell analysis of the copy number in VHL/
PBRM1-negative ccRCC revealed that the genomic CNVs in
RTKs may cooperate with downstream signaling transduction
pathways to take part in VHL/PBRM1-negative ccRCC
pathogenesis and progression. Clinically, our findings may
provide more effective targeted therapeutic approaches for
patients with VHL/PBRM1-negative ccRCC. However, because
of the small number of cells and the high intratumor
heterogeneity, our findings need to be verified in larger cohorts.
Frontiers in Genetics | www.frontiersin.org 7178
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TABLE S1 | The results of dimensionality reduction based on the germline CNVs.
The name and coordinate in 2D space of all single cells were shown in this table.

TABLE S2 | The results of significantly amplified (Table S2A) and deleted (Table
S2B) loci according to GISTIC2.0. The cytoband name, q-value and gene names of
each amplification/deletion loci were shown in this table.

TABLE S3 | The results of KEGG enrichment analysis based on significantly amplified
(Table S3A) and deleted (Table S3B) genes according to the CPDB database. The
pathway name, p-value and gene sets of each pathway were shown in this table.
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Stroke ranks the second leading cause of death among people over the age of 60 in the
world. Stroke is widely regarded as a complex disease that is affected by genetic and
environmental factors. Evidence from twin and family studies suggests that genetic factors
may play an important role in its pathogenesis. Therefore, research on the genetic association
of susceptibility genes can help understand the mechanism of stroke. Genome-wide
association study (GWAS) has found a large number of stroke-related loci, but their
mechanism is unknown. In order to explore the function of single-nucleotide
polymorphisms (SNPs) at the molecular level, in this paper, we integrated 8 GWAS
datasets with brain expression quantitative trait loci (eQTL) dataset to identify SNPs and
genes which are related to four types of stroke (ischemic stroke, large artery stroke,
cardioembolic stroke, small vessel stroke). Thirty-eight SNPs which can affect 14 genes
expression are found to be associated with stroke. Among these 14 genes, 10 genes
expression are associated with ischemic stroke, one gene for large artery stroke, six genes for
cardioembolic stroke and eight genes for small vessel stroke. To explore the effects of
environmental factors on stroke, we identified methylation susceptibility loci associated with
stroke using methylation quantitative trait loci (MQTL). Thirty-one of these 38 SNPs are at
greater risk of methylation and can significantly change gene expression level. Overall, the
genetic pathogenesis of stroke is explored from locus to gene, gene to gene expression and
gene expression to phenotype.

Keywords: stroke, genome-wide association study, expression quantitative trait loci, mQTL, SMR, single-
nucleotide polymorphisms
INTRODUCTION

Stroke is a major cerebrovascular disease caused by a transient or permanent decrease of local
cerebral blood flow. It is characterized by arterial obstruction (Krishnamurthi et al., 2018), so it is
also called cerebral infarction (Dargazanli et al., 2018). According to the World Health
Organization, stroke affects more than 15 million people worldwide and directly kills about 5.7
million people. It also causes approximately 5 million people to have a lifelong disability, while
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about 4.3 million people died due to disability. At present,
thrombolytic therapy (Castellanos et al., 2018) (recombinant
tissue plasminogen activator) is the only acute treatment for
ischemic stroke with a narrow time window (3–4.5 hours).
Therefore, only 3.4%–5.2% of patients were treated within the
short time window. Researchers have been focusing on how to
improve the clinical diagnosis and treatment of cerebral
infarction beyond the time window of thrombolysis (Feil et
al., 2019).

The occurrence and development of ischemic stroke is
affected by a variety of risk factors, such as family history of
stroke (Zheng et al., 2019), history of heart disease (Beck et al.,
2018), history of diabetes (Zou et al., 2018), history of
hypertension, etc. According to the investigation and analysis
of Li et al. (2019), the prevalence rate of the family with a family
history of stroke is 10.52%. In recent years, a number of genetic
association studies have suggested that there are multiple genetic
risk factors for ischemic stroke, and multiple risk loci were found
to affect the susceptibility to ischemic stroke.

Cacabelos et al. (2018) and Yee et al. (2019) showed that the
C7673T polymorphism of APOB gene was significantly
associated with the risk of ischemic stroke. Chen et al. (2019),
Nordestgaard et al. (2018) confirmed that the polymorphism of ϵ
2,ϵ3,ϵ4 of APOE gene was associated with ischemic stroke.
APOB gene and APOE gene are both known ischemic stroke
susceptibility genes because of blood lipid level. In addition,
many studies have shown that the SG13S114 (rs10507391)
polymorphism of ALOX5AP gene and SG13S32 (rs9551963)
polymorphism are associated with susceptibility to ischemic
stroke. Zheng et al., (2018) found that carriers of SG13S114
polymorphism TT/TA genotype of ALOX5AP gene had a higher
risk of acute cerebral infarction. Naderi et al. (2019) showed that
SG13S114 polymorphism of ALOX5AP gene was associated with
acute cerebral infarction. Previous genetic studies have found
that some ischemic stroke susceptibility genes on chromosome
14, such as GCH1 gene (Wei et al., 2018), MEG3 gene (Han et al.,
2018), MMP-14 gene (Elgebaly et al., 2019), PRKCH gene
(Krupinski et al., 2018), are associated with the risk of
ischemic stroke.

Genome-wide association study (GWAS) reveals candidate
loci, susceptible genes and their loci related to the occurrence,
development and treatment of diseases by genome-wide high-
density genetic markers (Pei Li and Wang, 2015; Cheng et al.,
2019a; Cheng et al., 2019b). Since 2009, GWAS has been widely
used to explore and excavate candidate gene loci related to new
types of stroke. GWAS is generally believed to be able to identify
some previously undetected or identified biological markers
related to stroke (Ye et al., 2018; Cheng et al., 2019c), and
because of its large sample size, it can minimize false positive
results. The National Institute of Neurological Diseases (NIND)
has conducted the largest and most comprehensive GWAS to
explore the genetic loci of stroke and its subtypes. The results
supported the previously established genetic association of
ischemic stroke. New loci on chromosome 1p13 (such as
rs12122341 of TSPAN2 gene) have been found to be associated
with ischemic stroke. Although GWAS has many advantages and
Frontiers in Genetics | www.frontiersin.org 2181
is widely used, it is still very hard to understand the role of
nucleotide polymorphism (SNP) loci in diseases from the huge
results of GWAS.

Therefore, recently many researchers have tried to integrate
GWAS with expression quantitative trait loci (eQTL) to mine the
disease-related genes (Cheng et al., 2018a; Cheng et al., 2018b).
Since eQTL conveys gene expression information and GWAS
conveys disease-related SNPs information, combining the two
datasets, we could know the loci which are associated with
diseases because of affecting other genes expression. Zhao et al.
(2019) found many Alzheimer’s disease-related genes and SNPs
by GWAS and eQTL. Asthma-related genes were identified by Li
et al. (2015). by integrating GWAS and eQTL. Systematic
integration of Brain eQTL and GWAS were done by Luo et al.
(2015) and they identified ZNF323 as a novel Schizophrenia
risk gene.

Zhu et al. (2016) generalized Mendelian randomization to
SMR. SMR is used to test the association between a trait and the
expression level of each gene across the whole genome using
summary data fromGWAS and eQTL studies. SMR is a common
tool to identify the genes whose expression levels are associated
with a complex trait because of pleiotropy. Twenty-eight GWAS
datasets are used by Pavlides et al. (2016) to find genes whose
expression levels were associated with complex phenotype. Bone
mineral density (BMD)-related genes are studied by Meng et al.
(2018) using SMR. SMR is also used to identify genes and
pathways for Amyotrophic Lateral Sclerosis by Du et al.
(2017). Fan et al. (2017) found 6 genes are associated with
neuroticism by SMR. Liu et al. (2018) used SMR on doing
research on Obesity and found 20 BMI associated genes.
Veturi and Ritchie (2018) compared two popular methods: MP
and SMR by different datasets. Though these scholars’
researches, we could judge that SMR is an effective tool. In this
paper, summary-level data mendelian randomization (SMR) is
used to integrate GWAS and eQTL datasets. In this way, the
most functionally relevant genes at the loci identified in GWAS
for stroke are found.
METHODS

Work Frame
As shown in Figure 1, since GWAS has identified SNPs which
are related to stroke, and eQTL has identified SNPs which can
affect genes expression, SMR is used to identify SNPs that can
change gene expression and this should be the reason that they
are associated with stroke. Therefore, firstly, we should obtain
GWAS and eQTL data. Then, we checked the overlap between
these two datasets. Finally, SMR is used to screen SNPs.

SMR
z in summary data level Mendelian Randomization (SMR) is a
genetic variant (SNP), x is the expression level of a gene and y
denotes the trait, then the two-step least-squares estimate of the
effect of x on y from an MR analysis is:
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b̂ xy = b̂ zy=b̂ zx (1)

b̂ zy and b̂ zx are the least-squares estimates of y and x on z,
respectively. Then, b̂ xy denotes the effect size of x on y without
confounding from non-genetic factors. The variance of b̂ xy is:

TMR = b̂ 2
xy=var(b̂ xy) (2)

Here, TMR obeys a chi-square distribution with a degree of
freedom of 1. As we can see in equation (Dargazanli et al., 2018),
MR requires genotype, gene expression and phenotype to be
measured on the same sample. However, Zhu et al. have proved
that the power of detecting b̂ xy can be greatly increased using a
two-sample MR analysis. Therefore, the TMR can be replaced
by TSMR.

TSMR = b̂ 2
xy=var(b̂ xy) ≈

z2zyz
2
zx

z2zy + z2zx
(3)

zzy is the z statistics from GWAS and zzx is the z statistics
from eQTL.
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RESULTS

Data Description
GWAS
We used the data from Malik et al.’s research. Eight GWAS
datasets are used. Table 1 shows the detailed information about
these data.

We collected GWAS data for four different types of stroke
(ischemic stroke, large artery stroke, cardioembolic stroke, small
vessel stroke).

Figure 2 shows P value of SNPs in GWAS1 and GWAS2. The
SNPs are almost same in these GWAS dataset, but difference
races cause the difference of P value. We could know different
races have different stroke susceptibility genes.

eQTL
eQTL data is from a meta-analysis of GTEx brain (Consortium G,
2017), CMC (Fromer et al., 2016), and ROSMAP (Ng et al., 2017).
All the data are from brain. Only SNPs within 1Mb distance from
each probe are available. The estimated effective n is 1,194.
TABLE 1 | GWAS data description.

Dataset Disease Sample

GWAS 1 ischemic stroke Europeans (40,585 cases; 406,111 controls)
GWAS 2 ischemic stroke trans-ethnic meta-analysis (67,162 cases; 454,450 controls)
GWAS 3 large artery stroke Europeans (40,585 cases; 406,111 controls)
GWAS 4 large artery stroke trans-ethnic meta-analysis (67,162 cases; 454,450 controls)
GWAS 5 cardioembolic stroke Europeans (40,585 cases; 406,111 controls)
GWAS 6 cardioembolic stroke trans-ethnic meta-analysis (67,162 cases; 454,450 controls)
GWAS 7 small vessel stroke Europeans (40,585 cases; 406,111 controls)
GWAS 8 small vessel stroke trans-ethnic meta-analysis (67,162 cases; 454,450 controls)
FIGURE 1 | Workflow of SMR.
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mQTL
mQTL used in this paper is a set of brain data from a meta-
analysis of ROSMAP (Ng et al., 2017), Hannon et al. (2016) and
Jaffe et al. (2016). In the ROSMAP data, only SNPs within 5Kb of
each DNA methylation probe are available. In the Hannon et al.
data, only SNPs within 500Kb distance from each probe and with
PmQTL < 1.0e-10 are available. In the Jaffe et al. data, only SNPs
within 20Kb distance from each probe and with FDR < 0.1 are
available. The estimated effective n is 1,160.

Four Kinds of Stroke
Ischemic stroke is a kind of stroke which caused by arterial
obstruction. It accounts for approximately 85% of the total. large
artery stroke and cardioembolic stroke are the subgroup of this
kind of this stroke.

Large artery stroke is caused by blood clots (thrombus) which
are formed in the neck or cerebral arteries. There may be
accumulation of fatty deposits (often referred to as plaques) in
these arteries.

Cardioembolic stroke is caused by blood clots that reach the
brain and blocks the blood vessels. A common cause is the
formation of blood clots in the two upper atrial rhythm
abnormalities of the heart (atrial fibrillation).

Small vessel stroke is actually a transient stroke symptom that
usually lasts only a few minutes. small vessel stroke is caused by
transient blood supply to specific parts of the brain and does not
cause significant persistent effects on patients. However, it is
generally believed that the risk of stroke after small vessel stroke
is higher.

SNPs and Genes for Ischemic Stroke
10 SNPs which change six genes expression are screened by
Europeans dataset and 11 SNPs which change five genes
expression are screened by trans-ethnic dataset.

As we can see in Table 2, HSD17B12 is overlapped in the two
tests. Moreno et al. (2018) found upregulation of HSD17B12 is
Frontiers in Genetics | www.frontiersin.org 4183
associated ischemic stroke using 82 cases and 67 controls.
ALDH2 is generally considered as a gene (Guo et al., 2013)
which can protect against ischemic stroke, because
overexpression of ALDH2 rescued neuronal survival against 4-
HNE treatment in PC12 cells (Lee et al., 2012). These two genes
show the accuracy of our results.

SNPs and Genes for Large Artery Stroke
None SNP is screened by Europeans dataset for large artery
stroke. Three SNPs which correspond one gene ‘C3orf18’ are
screened by trans-ethnic dataset.

Phenotypes for C3orf18 Gene include Decreased homologous
recombination repair frequency, Decreased ionizing radiation
sensitivity, Upregulation of Wnt pathway, Increased vaccinia
virus (VACV) infection, Mildly decreased CFP-tsO45G cell
surface transport. It is considered to be associated with
cognitive function measurement.

SNPs and Genes for Cardioembolic Stroke
11 SNPs are significant in Europeans dataset and trans-ethnic
dataset. rs3807989 is screened more than one time in Europeans
dataset because it can affect more than one gene expression. Both
CAV1 and CAV2’s expression can be changed by this SNP.

As we can see in Table 3, 6 genes and 3 genes are screened by
SMR in Europeans dataset and Trans-ethnic dataset,
respectively. Three of them are overlapped.

SNPs and Genes for Small Vessel Stroke
13 SNPs and 4 SNPs are significant in Europeans dataset and
trans-ethnic dataset, respectively. None of these SNPs or their
corresponding genes are overlapped in these two tests. As we can
see in Table 4, although no overlap is found between these two
FIGURE 2 | P value of SNPs in GWAS1 and GWAS2.
TABLE 2 | SMR results of ischemic stroke.

SNP P-value Gene

Europeans dataset
rs9651613 4.17E-06 HSD17B12
rs648997 5.72E-06 ALDH2
rs11065976 6.36E-06 ALDH2
rs4286007 6.70E-06 CKAP2
rs847892 7.79E-06 ALDH2
rs66480035 7.97E-06 ALDH2
rs532436 7.99E-06 SURF1
rs487399 8.21E-06 CEP192
rs11618716 8.80E-06 CKAP2
rs11620062 9.24E-06 CKAP2
Trans-ethnic dataset
rs9651613 3.58E-07 HSD17B12
rs10838185 5.14E-06 HSD17B12
rs6599175 5.42E-06 ULK4
rs6801343 5.55E-06 ULK4
rs9874975 5.70E-06 ULK4
rs12774577 7.99E-06 C10orf32
rs10400343 8.38E-06 HSD17B12
rs3087681 8.47E-06 C10orf32
rs2371623 8.81E-06 ULK4
rs9825741 9.00E-06 ULK4
rs11191606 9.04E-06 C10orf32
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tests, some genes are overlapped between cardioembolic stroke
and small vessel stroke.

SNPs Changes Gene Expression Level
by Methylation
Since both genetic and environmental factors are key to cause
stroke, while methylation plays an important role in the interaction
between environmental factors and genetic expression, we
assumed that some of the SNPs identified above are at greater
risk of methylation and can change gene expression levels.
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Therefore, we integrated the SNPs found above with mQTL
data for research. Thirty-eight unique SNPs are found in four
different types of stroke. Thirty-one of these 38 SNPs are
significant in mQTL dataset. We draw the P value of these 31
SNPs as Figure 2. As shown in Figure 3, most of these SNPs are
associated with several genes expression. In addition, most of
SNPs have a quite low P value, which means that they can
significant change the expression of genes.

Case Study
ULK4
Guo et al. (2016) have found that genetic variants in LRP1 and
ULK4 are associated with acute aortic dissections. In their paper,
they also mentioned that ULK4 may contribute stroke.

CAV1
Shyu et al. (2017) discussed association of eNOS and CAV1 gene
polymorphisms with susceptibility risk of large artery
atherosclerotic stroke. A tendency toward an increased LAA
stroke risk was significant in carriers with the eNOS Glu298Asp
variant in conjunction with the G14713 A and T29107A
polymorphisms of the CAV1 (aOR = 2.03, P-trend = 0.002).

CAV2
Jolobe (2012) found that recurrent stroke is because of a novel
voltage sensor mutation in CAV2. They compared stroke mouse
and normal mouse to obtain this conclusion.
CONCLUSIONS

Stroke is the primary cause of disability in adults, which
constitutes a serious public health burden. Stroke is generally
believed to be caused by genetic and environmental factors.
Therefore, in this paper, we identified stroke-related genes and
loci from both genetic and environmental aspects.

GWAS identified a large number of stroke-related SNPs, which
were difficult to explain. We tried to identify the pathogenesis of
significant SNPs by combining SMR with eQTL data. Since eQTL
shows the SNPs that can significantly change genes expression
and GWAS shows the SNPs that are significant related to stroke,
we combined these two data to identify the genes whose
expression levels are associated with stroke because of pleiotropy.

38 SNPs which cause changes in 14 genes expression were
found by 8 GWAS data and brain eQTL. Those 8 GWAS data are
from two different races sample and include four types of stroke
(ischemic stroke, large artery stroke, cardioembolic stroke, small
vessel stroke). CAV1, SURF1, PLEKHH2, ECD, BNIP1, CAV2
are found to be associated with cardioembolic stroke and Small
vessel stroke in Europeans. ULK4 is a susceptibility gene for
ischemic stroke and small vessel stroke.

Since methylation (Lv et al., 2019) plays an important role in
the interaction between environmental factors and genetic
expression, we tried to find out whether 38 SNPs are affected
by methylation and lead to the changes in other genes expression
levels. Thirty-one of these 38 SNPs are significant in mQTL data
and most of them can affect more than one gene expression.
TABLE 3 | SMR results of cardioembolic stroke.

SNP P-value Gene

Europeans dataset
rs3807989 2.03E-05 CAV1
rs532436 4.03E-05 SURF1
rs72790984 4.68E-05 PLEKHH2
rs11773845 4.96E-05 CAV1
rs4745721 4.96E-05 ECD
rs1997571 5.62E-05 CAV1
rs507666 6.08E-05 SURF1
rs1997572 6.20E-05 CAV1
rs9313620 6.27E-05 BNIP1
rs76192127 6.35E-05 ECD
rs3807989 6.58E-05 CAV2
rs2519093 7.40E-05 SURF1
rs600038 9.67E-05 SURF1
Trans-ethnic dataset
rs4745721 2.21E-05 ECD
rs76192127 2.87E-05 ECD
rs532436 3.37E-05 SURF1
rs507666 4.15E-05 SURF1
rs616154 5.26E-05 SURF1
rs72790984 5.60E-05 PLEKHH2
rs2519093 5.92E-05 SURF1
rs72790983 6.37E-05 PLEKHH2
rs559723 7.26E-05 SURF1
rs183153921 7.34E-05 ECD
rs3878005 9.62E-05 ECD
TABLE 4 | SMR results of small vessel stroke.

SNP P-value Gene

Europeans dataset
rs3807989 2.03E-05 CAV1
rs532436 4.03E-05 SURF1
rs72790984 4.68E-05 PLEKHH2
rs11773845 4.96E-05 CAV1
rs4745721 4.96E-05 ECD
rs1997571 5.62E-05 CAV1
rs507666 6.08E-05 SURF1
rs1997572 6.20E-05 CAV1
rs9313620 6.27E-05 BNIP1
rs76192127 6.35E-05 ECD
rs3807989 6.58E-05 CAV2
rs2519093 7.40E-05 SURF1
rs600038 9.67E-05 SURF1
Trans-ethnic dataset
rs2501966 3.53E-06 CENPQ
rs6599175 4.49E-06 ULK4
rs2501965 4.77E-06 CENPQ
rs9874975 6.07E-06 ULK4
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Overall, integrating GWAS with eQTL, we found 38 SNPs
and 14 genes are related to stroke by SMR. Thirty-one of 38 SNPs
are at high risk of methylation which can also cause changes in
gene expression. These findings serve as a guide to
understanding the pathogenesis of stroke at the molecular level.
DATA AVAILABILITY STATEMENT

All the datasets used in this paper could be downloaded from
GWAS: ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_
statistics/MalikR_29531354_GCST006908/MEGASTROKE.2.
AIS.EU

R.out ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
MalikR_29531354_GCST005843/MEGASTROKE.2.AIS.TR

ANS.out ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_
statistics/MalikR_29531354_GCST006907/MEGASTROKE.3.
LAS.EU

R.out ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
MalikR_29531354_GCST005840/MEGASTROKE.3.LAS.TR

ANS.out ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_
statistics/MalikR_29531354_GCST005842/MEGASTROKE.4.
CES.TR

ANS.out ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_
statistics/MalikR_29531354_GCST006910/MEGASTROKE.4.
CES.EU
Frontiers in Genetics | www.frontiersin.org 6185
R.out ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
MalikR_29531354_GCST005841/MEGASTROKE.5.SVS.TR

ANS.out ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_
statistics/MalikR_29531354_GCST006909/MEGASTROKE.5.
SVS.EU

R . ou t eQTL : h t t p s : / / c n s g enom i c s . c om/ s o f twa r e /
smr/#eQTLsummarydata

m Q T L : h t t p s : / / c n s g e n o m i c s . c o m / s o f t w a r e /
smr/#mQTLsummarydata.

AUTHOR CONTRIBUTIONS

HuJ, Z-HL, and HoJ conceived and designed the experiments. SZ
analyzed data. SZ, HuJ, Z-HL, and HoJ wrote this manuscript.
All authors read and approved the final manuscript.

FUNDING

This study was supported by grants from the National Natural
Science Foundation of China (81671760 and 81873910), Scientific
Research Transformation Special Fund of Heilongjiang Academy
of Medical Sciences (2018415);Scientific Research Project of
Health and Family Planning Commission of Heilongjiang
Province (201812 and 201622), National Natural Science
Foundation of China (81871423), and Shanghai Municipal
Commission of Health and Family Planning (20160064).
FIGURE 3 | P value of 31 significant SNPs in mQTL.
January 2020 | Volume 10 | Article 1336

ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST006908/MEGASTROKE.2.AIS.EU
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST006908/MEGASTROKE.2.AIS.EU
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST006908/MEGASTROKE.2.AIS.EU
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST005843/MEGASTROKE.2.AIS.TR
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST005843/MEGASTROKE.2.AIS.TR
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST006907/MEGASTROKE.3.LAS.EU
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST006907/MEGASTROKE.3.LAS.EU
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST006907/MEGASTROKE.3.LAS.EU
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST005840/MEGASTROKE.3.LAS.TR
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST005840/MEGASTROKE.3.LAS.TR
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST005842/MEGASTROKE.4.CES.TR
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST005842/MEGASTROKE.4.CES.TR
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST005842/MEGASTROKE.4.CES.TR
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST006910/MEGASTROKE.4.CES.EU
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST006910/MEGASTROKE.4.CES.EU
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST006910/MEGASTROKE.4.CES.EU
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST005841/MEGASTROKE.5.SVS.TR
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST005841/MEGASTROKE.5.SVS.TR
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST006909/MEGASTROKE.5.SVS.EU
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST006909/MEGASTROKE.5.SVS.EU
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_29531354_GCST006909/MEGASTROKE.5.SVS.EU
https://cnsgenomics.com/software/smr/#eQTLsummarydata
https://cnsgenomics.com/software/smr/#eQTLsummarydata
https://cnsgenomics.com/software/smr/#mQTLsummarydata
https://cnsgenomics.com/software/smr/#mQTLsummarydata
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Zhao et al. Integrating Multi-Omics Data
REFERENCES

Beck, J. D., Moss, K. L., Morelli, T., and Offenbacher, S. (2018). Periodontal profile
class is associated with prevalent diabetes, coronary heart disease, stroke, and
systemic markers of C-reactive protein and interleukin-6. J. periodontol. 89 (2),
157–165. doi: 10.1002/jper.17-0426

Cacabelos, R., Lombardi, V., Fernández-Novoa, L., Carrera, I., Cacabelos, P., Corzo,
L., et al. (2018). “Basic and Clinical Studies With Marine LipoFishins and
Vegetal Favalins in Neurodegeneration and Age-Related Disorders,” in Studies
in Natural Products Chemistry, vol. 59. (Netherlands: Elsevier), 195–225.

Castellanos, M., van Eendenburg, C., Gubern, C., Kádár, E., Huguet, G., Puig, J.,
et al. (2018). Low levels of caveolin-1 predict symptomatic bleeding after
thrombolytic therapy in patients with acute ischemic stroke. Stroke 49 (6),
1525–1527. doi: 10.1161/strokeaha.118.020683

Chen, J.-X., Liu, J., Hu, F., Bi, Y., Li, M., and Zhao, L. (2019). Genetic variants on
chromosome 9p21 confer risks of cerebral infarction in the Chinese
population: a meta-analysis. Int. J. immunopathol. Pharmacol. 33,
2058738419847852. doi: 10.1177/2058738419847852

Cheng, L., Hu, Y., Sun, J., Zhou, M., and Jiang, Q. (2018a). DincRNA: a
comprehensive web-based bioinformatics toolkit for exploring disease
associations and ncRNA function. Bioinformatics 34 (11), 1953–1956. doi:
10.1093/bioinformatics/bty002

Cheng, L., Zhuang, H., Yang, S., Jiang, H., Wang, S., and Zhang, J. (2018b).
Exposing the causal effect of C-reactive protein on the risk of type 2 diabetes
mellitus: a mendelian randomization study. Front. In Genet. 9, 657. doi:
10.3389/fgene.2018.00657

Cheng, L., Qi, C., Zhuang, H., Fu, T., and Zhang, X. (2019a). gutMDisorder: a
comprehensive database for dysbiosis of the gut microbiota in disorders and
interventions. Nucleic Acids Res. 48 (D1), D554–D560 doi: 10.1093/nar/gkz843

Cheng, L., Wang, P., Tian, R., Wang, S., Guo, Q., Luo, M., et al. (2019b).
LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs
in human and mouse. Nucleic Acids Res. 47 (D1), D140–D144. doi: 10.1093/
nar/gky1051

Cheng, L., Zhuang, H., Ju, H., Yang, S., Han, J., Tan, R., et al. (2019c). Exposing the
causal effect of body mass index on the risk of type 2 diabetes mellitus: a
mendelian randomization study. Front. In Genet. 10, 94. doi: 10.3389/
fgene.2019.00094

Consortium G (2017). Genetic effects on gene expression across human tissues.
Nature 550 (7675), 204. doi: 10.1038/nature24277.

Dargazanli, C., Fahed, R., Blanc, R., Gory, B., Labreuche, J., Duhamel, A., et al.
(2018). Modified thrombolysis in cerebral infarction 2c/thrombolysis in
cerebral infarction 3 reperfusion should be the aim of mechanical
thrombectomy: insights from the ASTER Trial (Contact Aspiration Versus
Stent Retriever for Successful Revascularization). Stroke 49 (5), 1189–1196. doi:
10.1161/strokeaha.118.020700

Du, Y., Yan, W., Guo, X., Hao, J., Wang, W., He, A., et al. (2017). A genome-wide
expression association analysis identifies genes and pathways associated with
amyotrophic lateral sclerosis. Cell. Mol. Neurobiol. 38 (3), 1–5. doi: 10.1007/
s10571-017-0512-2

Elgebaly, M. M., Arreguin, J., and Storke, N. (2019). Targets, treatments, and
outcomes updates in diabetic stroke. J. Stroke Cerebrovasc. Dis. 28 (6), 1413–
1420 doi: 10.1016/j.jstrokecerebrovasdis.2019.02.005

Fan, Q., Wang, W., Hao, J., He, A., Wen, Y., Guo, X., et al.(2017). Integrating
genome-wide association study and expression quantitative trait loci data
identifies multiple genes and gene set associated with neuroticism. Prog. In
Neuropsychopharmacol. Biol. Psychiatry 28 (6), 1413–1420. doi: 10.1016/
j.pnpbp.2017.05.017

Feil, K., Reidler, P., Kunz, W. G., Küpper, C., Heinrich, J., Laub, C., et al. (2019).
Addressing a real life problem: treatment with intravenous thrombolysis and
mechanical thrombectomy in acute stroke patients with an extended time
window beyond 4.5 hours based on computed tomography perfusion imaging.
Eur. J. Neurol. 27 (1), 168–174 doi: 10.7861/clinmedicine.17-2-161

Fromer, M., Roussos, P., Sieberts, S. K., Johnson, J. S., Kavanagh, D. H., Perumal,
T. M., et al. (2016). Gene expression elucidates functional impact of polygenic
risk for schizophrenia. Nat. Neurosci. 19 (11), 1442. doi: 10.1038/nn.4399

Guo, J.-M., Liu, A.-J., Zang, P., Dong, W.-Z., Ying, L., Wang, W., et al. (2013).
ALDH2 protects against stroke by clearing 4-HNE. Cell Res. 23 (7), 915. doi:
10.1038/cr.2013.69
Frontiers in Genetics | www.frontiersin.org 7186
Guo, D-c, Grove, M. L., Prakash, S. K., Eriksson, P., Hostetler, E. M., LeMaire, S. A.,
et al. (2016). Genetic variants in LRP1 and ULK4 are associated with acute
aortic dissections. Am. J. Hum. Genet. 99 (3), 762–769. doi: 10.1016/
j.ajhg.2016.06.034

Han, X., Zheng, Z., Wang, C., and Wang, L. (2018). Association between MEG3/
miR-181b polymorphisms and risk of ischemic stroke. Lipids In Health Dis. 17
((1)), 292. doi: 10.1186/s12944-018-0941-z

Hannon, E., Spiers, H., Viana, J., Pidsley, R., Burrage, J., Murphy, T. M., et al.
(2016). Methylation QTLs in the developing brain and their enrichment in
schizophrenia risk loci. Nat. Neurosci. 19 (1), 48. doi: 10.1038/nn.4182

Jaffe, A. E., Gao, Y., Deep-Soboslay, A., Tao, R., Hyde, T. M., Weinberger, D. R.,
et al. (2016). Mapping DNA methylation across development, genotype and
schizophrenia in the human frontal cortex. Nat. Neurosci. 19 (1), 40. doi:
10.1038/nn.4181

Jolobe, O. M. (2012). Stroke and familial hemiplegic migraine. Lancet Neurol. 11
(6), 484. doi: 10.1016/s1474-4422(12)70123-0

Krishnamurthi, R. V., Barker-Collo, S., Parag, V., Parmar, P., Witt, E., Jones, A.,
et al. (2018). Stroke incidence by major pathological type and ischemic
subtypes in the Auckland regional community stroke studies: changes
between 2002 and 2011. Stroke 49 (1), 3–10. doi: 10.1161/strokeaha.117.019358

Krupinski, J., Carrera, C., Muiño, E., Torres, N., Al-Baradie, R., Cullell, N., et al.
(2018). DNA methylation in stroke. Update of latest advances. Comput. Struct.
Biotechnol. J. 16, 1–5. doi: 10.1016/j.csbj.2017.12.001

Lee, W.-C., Wong, H.-Y., Chai, Y.-Y., Shi, C.-W., Amino, N., Kikuchi, S., et al.
(2012). Lipid peroxidation dysregulation in ischemic stroke: plasma 4-HNE as
a potential biomarker? Biochem. Biophys. Res. Commun. 425 (4), 842–847. doi:
10.1016/j.bbrc.2012.08.002

Li, X., Hastie, A. T., Hawkins, G. A., Moore, W. C., Ampleford, E. J., Milosevic, J.,
et al. (2015). eQTL of bronchial epithelial cells and bronchial alveolar lavage
deciphers GWAS-identified asthma genes. Allergy 70 (10), 1309–1318. doi:
10.1111/all.12683

Li, W., Wang, D., Wang, X., Gong, Y., Cao, S., Yin, X., et al. (2019). The association
of metabolic syndrome components and diabetes mellitus: evidence from
China National Stroke Screening and Prevention Project. BMC Public Health
19 (1), 192. doi: 10.1186/s12889-019-6415-z

Liu, L., Fan, Q., Zhang, F., Guo, X., Liang, X., Du, Y., et al. (2018). A genomewide
integrative analysis of GWAS and eQTLs Data identifies multiple genes and
gene sets associated with obesity. BioMed. Res. Int. 2018, 3848560. doi:
10.1155/2018/3848560

Luo, X.-J., Mattheisen, M., Li, M., Huang, L., Rietschel, M., Børglum, A. D., et al.
(2015). Systematic integration of brain eQTL and GWAS identifies ZNF323 as
a novel schizophrenia risk gene and suggests recent positive selection based on
compensatory advantage on pulmonary function. Schizophr. Bull. 41 (6), 1294–
1308. doi: 10.1093/schbul/sbv017

Lv, H., Zhang, Z. M., Li, S. H., Tan, J. X., Chen, W., and Lin, H. (2019). Evaluation
of different computational methods on 5-methylcytosine sites identification.
Briefings In Bioinf. doi: 10.1093/bib/bbz048

Meng, X. H., Chen, X. D., Greenbaum, J., Zeng, Q., You, S. L., Xiao, H. M., et al.
(2018). Integration of summary data from GWAS and eQTL studies identified
novel causal BMD genes with functional predictions. Bone 113, 41–48. doi:
10.1016/j.bone.2018.05.012

Moreno-Ramírez, C. E., Gutiérrez-Garzón, E., Barreto, G. E., and Forero, D. A.
(2018). Genome-wide expression profiles for ischemic stroke: a meta-analysis.
J. Stroke Cerebrovasc. Dis. 27 (11), 3336–3341. doi: 10.1016/j.jstroke
cerebrovasdis.2018.07.035

Naderi,N., Yousefi,H.,Mollazadeh, S., SeyedMikaeili,A., KeshavarzNorouzpour,M.,
Jazebi, M., et al. (2019). Inflammatory and immune response genes: a genetic
analysis of inhibitor development in Iranian hemophilia A patients. Pediatr.
Hematol. Oncol. 36 (1), 28–39. doi: 10.1080/08880018.2019.1585503

Ng, B., White, C. C., Klein, H.-U., Sieberts, S. K., McCabe, C., Patrick, E., et al.
(2017). An xQTL map integrates the genetic architecture of the human brain’s
transcriptome and epigenome. Nat. Neurosci. 20 (10), 1418. doi: 10.1038/
nn.4632

Nordestgaard, L. T., Tybjærg-Hansen, A., Rasmussen, K. L., Nordestgaard, B. G.,
and Frikke-Schmidt, R. (2018). Genetic variation in clusterin and risk of
dementia and ischemic vascular disease in the general population: cohort
studies and meta-analyses of 362,338 individuals. BMC Med. 16 (1), 39. doi:
10.1016/j.atherosclerosis.2018.06.075
January 2020 | Volume 10 | Article 1336

https://doi.org/10.1002/jper.17-0426
https://doi.org/10.1161/strokeaha.118.020683
https://doi.org/10.1177/2058738419847852
https://doi.org/10.1093/bioinformatics/bty002
https://doi.org/10.3389/fgene.2018.00657
https://doi.org/10.1093/nar/gkz843
https://doi.org/10.1093/nar/gky1051
https://doi.org/10.1093/nar/gky1051
https://doi.org/10.3389/fgene.2019.00094
https://doi.org/10.3389/fgene.2019.00094
https://doi.org/10.1038/nature24277.

https://doi.org/10.1161/strokeaha.118.020700
https://doi.org/10.1007/s10571-017-0512-2
https://doi.org/10.1007/s10571-017-0512-2
https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.02.005
https://doi.org/10.1016/j.pnpbp.2017.05.017
https://doi.org/10.1016/j.pnpbp.2017.05.017
https://doi.org/10.7861/clinmedicine.17-2-161
https://doi.org/10.1038/nn.4399
https://doi.org/10.1038/cr.2013.69
https://doi.org/10.1016/j.ajhg.2016.06.034
https://doi.org/10.1016/j.ajhg.2016.06.034
https://doi.org/10.1186/s12944-018-0941-z
https://doi.org/10.1038/nn.4182
https://doi.org/10.1038/nn.4181
https://doi.org/10.1016/s1474-4422(12)70123-0
https://doi.org/10.1161/strokeaha.117.019358
https://doi.org/10.1016/j.csbj.2017.12.001
https://doi.org/10.1016/j.bbrc.2012.08.002
https://doi.org/10.1111/all.12683
https://doi.org/10.1186/s12889-019-6415-z
https://doi.org/10.1155/2018/3848560
https://doi.org/10.1093/schbul/sbv017
https://doi.org/10.1093/bib/bbz048
https://doi.org/10.1016/j.bone.2018.05.012
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.07.035
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.07.035
https://doi.org/10.1080/08880018.2019.1585503
https://doi.org/10.1038/nn.4632
https://doi.org/10.1038/nn.4632
https://doi.org/10.1016/j.atherosclerosis.2018.06.075
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Zhao et al. Integrating Multi-Omics Data
Pavlides, J. M. W., Zhu, Z., Gratten, J., Mcrae, A. F., Wray, N. R., and Yang, J.
(2016). Predicting gene targets from integrative analyses of summary data from
GWAS and eQTL studies for 28 human complex traits. Genome Med. 8 (1), 84.
doi: 10.1186/s13073-016-0338-4

Pei Li, M. G., and Wang, C. (2015). Xiaoyan Liu, Quan Zou: An overview of SNP
interactions in genome-wide association studies. Briefings In Funct. Genomics
14 (2), 143–155. doi: 10.1093/bfgp/elu036

Shyu, H.-Y., Chen, M.-H., Hsieh, Y.-H., Shieh, J.-C., Yen, L.-R., Wang, H.-W.,
et al. (2017). Association of eNOS and Cav-1 gene polymorphisms with
susceptibility risk of large artery atherosclerotic stroke. PloS One 12 (3),
e0174110. doi: 10.1371/journal.pone.0174110

Sun, W., Han, Y., Yang, S., Zhuang, H., Zhang, J., Cheng, L., et al. (2019). The
assessment of interleukin-18 on the risk of coronary heart disease.Med. Chem.
doi: 10.2174/1573406415666191004115128

Veturi, Y., and Ritchie, M. D. (2018). How powerful are summary-based methods
for identifying expression-trait associations under different genetic
architectures? Pac. Symp. Biocomput. Pac. Symp. Biocomput. 23, 228–239.
doi: 10.1142/9789813235533_0021

Wei, J., Zhang, Y., Li, Z., Wang, X., Chen, L., Du, J., et al. (2018). GCH1 attenuates
cardiac autonomic nervous remodeling in canines with atrial-tachypacing via
tetrahydrobiopterin pathway regulated by microRNA-206. Pacing Clin.
Electrophysiol. 41 (5), 459–471. doi: 10.1111/pace.13289

Ye, Z., Zhang, H., Sun, L., Cai, H., Hao, Y., Xu, Z., et al. (2018). GWAS-supported
CRP gene polymorphisms and functional outcome of large artery
atherosclerotic stroke in Han Chinese. Neuromol. Med. 20 (2), 225–232. doi:
10.1007/s12017-018-8485-y

Yee, J., Kim, W., Chang, B. C., Chung, J. E., Lee, K. E., and Gwak, H. S. (2019)
APOB gene polymorphisms may affect the risk of minor or minimal bleeding
complications in patients on warfarin maintaining therapeutic INR. Eur. J.
Hum. Genet. 27 (10), 1542–1549. doi: 10.1038/s41431-019-0450-1
Frontiers in Genetics | www.frontiersin.org 8187
Zhao, T., Hu, Y., Zang, T., Wang, Y., and Integrate, G. W. A. S. (2019). eQTL, and
mQTL data to identify alzheimer’s disease-related genes. Front. In Genet. 10,
1021. doi: 10.3389/fgene.2019.01021

Zheng, Z., Liu, S., Wang, C., and Han, X. (2018). A functional polymorphism
rs145204276 in the promoter of long noncoding RNA GAS5 is associated with
an increased risk of ischemic stroke. J. Stroke Cerebrovasc. Dis. 27 (12), 3535–
3541. doi: 10.1016/j.jstrokecerebrovasdis.2018.08.016

Zheng, X., Zeng, N., Wang, A., Zhu, Z., Peng, H., Zhong, C., et al. (2019). Family
history of stroke and death or vascular events within one year after ischemic
stroke. Neurol. Res. 41 (5), 466–472. doi: 10.1080/01616412.2019.1577342

Zhu, Z., Zhang, F., Hu, H., Bakshi, A., Robinson, M. R., Powell, J. E., et al. (2016).
Integration of summary data from GWAS and eQTL studies predicts complex
trait gene targets. Nat. Genet. 48 (5), 481. doi: 10.1038/ng.3538

Zhuang, H., Zhang, Y., Yang, S., Cheng, L., and Liu, S. L. (2019). A mendelian
randomization study of infant length and type 2 diabetes mellitus risk. Curr.
Gene Ther. 19 (4), 224–231(8) doi: 10.2174/1566523219666190925115535

Zou, Q., Qu, K., Luo, Y., Yin, D., Ju, Y., and Tang, H. (2018). Predicting diabetes
mellitus with machine learning techniques. Front. In Genet. 9, 515. doi:
10.3389/fgene.2018.00515

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Zhao, Jiang, Liang and Ju. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original author
(s) and the copyright owner(s) are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
January 2020 | Volume 10 | Article 1336

https://doi.org/10.1186/s13073-016-0338-4
https://doi.org/10.1093/bfgp/elu036
https://doi.org/10.1371/journal.pone.0174110
https://doi.org/10.2174/1573406415666191004115128
https://doi.org/10.1142/9789813235533_0021
https://doi.org/10.1111/pace.13289
https://doi.org/10.1007/s12017-018-8485-y
https://doi.org/10.1038/s41431-019-0450-1
https://doi.org/10.3389/fgene.2019.01021
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.08.016
https://doi.org/10.1080/01616412.2019.1577342
https://doi.org/10.1038/ng.3538
https://doi.org/10.2174/1566523219666190925115535
https://doi.org/10.3389/fgene.2018.00515
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Frontiers in Genetics | www.frontiersin.org

Edited by:
Lei Deng,

Central South University, China

Reviewed by:
Jiajie Peng,

Northwestern Polytechnical
University, China

Xuekun Ren,
Harbin Institute of Technology, China

Qiang Lei,
Harbin Institute of Technology, China

*Correspondence:
Xiujie Chen

chenxiujie@ems.hrbmu.edu.cn

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Statistical Genetics
and Methodology,

a section of the journal
Frontiers in Genetics

Received: 01 July 2019
Accepted: 09 January 2020

Published: 05 February 2020

Citation:
Zhang D, Huo D, Xie H, Wu L, Zhang J,
Liu L, Jin Q and Chen X (2020) CHG: A
Systematically Integrated Database of

Cancer Hallmark Genes.
Front. Genet. 11:29.

doi: 10.3389/fgene.2020.00029

ORIGINAL RESEARCH
published: 05 February 2020

doi: 10.3389/fgene.2020.00029
CHG: A Systematically Integrated
Database of Cancer Hallmark Genes
Denan Zhang1†, Diwei Huo2†, Hongbo Xie1†, Lingxiang Wu1†, Juan Zhang1, Lei Liu1,
Qing Jin1 and Xiujie Chen1*

1 College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China, 2 The 2nd Affiliated Hospital of
Harbin Medical University, Harbin, China

Background: The analysis of cancer diversity based on a logical framework of hallmarks
has greatly improved our understanding of the occurrence, development and metastasis
of various cancers.

Methods: We designed Cancer Hallmark Genes (CHG) database which focuses on
integrating hallmark genes in a systematic, standard way and annotates the potential roles
of the hallmark genes in cancer processes. Following the conceptual criteria description of
hallmark function the keywords for each hallmark were manually selected from the
literature. Candidate hallmark genes collected were derived from 301 pathways of
KEGG database by Lucene and manually corrected.

Results: Based on the variation data, we finally identified the hallmark genes of various
types of cancer and constructed CHG. And we also analyzed the relationships among
hallmarks and potential characteristics and relationships of hallmark genes based on the
topological structures of their networks. We manually confirm the hallmark gene identified
by CHG based on literature and database. We also predicted the prognosis of breast
cancer, glioblastoma multiforme and kidney papillary cell carcinoma patients based on
CHG data.

Conclusions: In summary, CHG, which was constructed based on a hallmark feature
set, provides a new perspective for analyzing the diversity and development of cancers.

Keywords: Hallmark genes, mutation, methylation, copy number variation, annotating Hallmark features, database
INTRODUCTION

In 2000, Weinberg et al. (2000) first proposed six hallmarks of cancer, including Sustaining
Proliferative Signaling (SPS), Evading Growth Suppressors (EGS), Resisting Cell Death (RCD),
Enabling Replicative Immortality (ERI), Inducing Angiogenesis (IA), and Activating Invasion and
Metastasis (AIM), which provided a logical framework for conceptualizing a variety of neoplastic
diseases. In 2011, they added another four hallmarks to more fully capture the features of cancers,
including Genome Instability and Mutation (GIM), Tumor-Promoting Inflammation (TPI),
Reprogramming Energy Metabolism (REM), and Evading Immune Destruction (EID) (Hanahan
and Weinberg, 2011). The hallmarks of cancer capture the most essential phenotypic characteristics
of malignant transformation and progression, but numerous factors involved in this multistep
February 2020 | Volume 11 | Article 291188
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process are still unknown to date. It is undoubtedly that the
framework constructed by hallmarks has greatly improved the
analysis on diversity of cancers. Balázs Győrffy et al. reviewed the
available techniques that are capable of and appropriate for
determining the characteristic features of each hallmark
(Menyhart et al., 2016). Hallmark capabilities are regulated by
partially redundant signaling pathways, and the significance of
these pathways depends on the tumor's underlying molecular
features. Recently, many studies have focused on the integration
of various cancer-related pathways or genes for analysis, and they
have found some significant results. In 2011, Jie Li et al. identified
high-quality breast cancer prognostic markers and metastasis
network modules by integrating hallmark-related genes from GO
terms (Li et al., 2010). In 2013, Naif Zaman et al. predicted breast
cancer subtype-specific drug targets by exploring the modules
(including apoptosis, cell proliferation and cell cycle) in a
signaling network assessment of mutations and copy number
variations (CNVs) (Zaman et al., 2013). These researches
strongly emphasized the importance of constructing gene sets
for hallmarks. Moreover, the advantages of the analysis based on
a hallmark framework are notable: 1) It reduces feature
dimension of cancer (more attention will be focused on the
significant genes in each hallmark rather than on all genes, which
will reduce the large number of passenger genes analyzed). 2) It is
explicable (the results of analysis are depicted more easily). 3) It
provides a potential avenue for exploring the mechanism of
carcinogenesis. However, the overlap rate of the hallmark genes
in current studies is low because the studies use different
extraction methods. Furthermore, no gene sets have been
systematically collected for the different hallmarks thus far,
which makes it difficult to clarify the gene alteration features
(including mutations, DNA methylations and CNVs) in each
hallmark (Wang et al., 2015).

To address this problem, we established a database called
Cancer Hallmark Genes in (CHG), which provides gene sets for
the ten hallmarks and the corresponding statistical analysis
results, including the frequency of different mutation types
(e.g., missense, deletion, insertion), methylation and CNV (e.g.,
loss or gain) for each gene. To maximize the usage of our
database, we collected a total of 22697 samples from TCGA
and analyzed the variations of mutation, CNV, and methylation
of hallmark genes across 34 cancer types.

Furthermore, we analyzed the relationship among ten
hallmarks by Fisher's exact test and unsupervised hierarchical
clustering (method 2). Eventually, the hallmarks were clustered
into four classes: 1) Reprogramming Energy Metabolism (REM).
2) Activating Invasion and Metastasis (AIM), Evading Growth
Suppressors (EGS), Enabling Replicative Immortality (ERI), and
Sustaining Proliferative Signaling (SPS). 3) Genome Instability
and Mutation (GIM). 4) Tumor-Promoting Inflammation (TPI),
Evading Immune Destruction (EID), Resisting Cell Death
(RCD), and Inducing Angiogenesis (IA).

Even though the hallmark genes identified in the database
came from the confirmed literature and databases, we manually
confirmed the top 10 altered (mutation, methylation, CNV)
genes of each hallmark to further ensure the accuracy of the
Frontiers in Genetics | www.frontiersin.org 2189
data. In addition, we also used several of cancers as examples for
further analysis with the CHG data to demonstrate the value of
this database at a practical level.

The CHG database is freely available at our website: http://
www.bio-bigdata.com/CHG/index.html.
MATERIALS AND METHODS

Data for Hallmarks
In this work, 301 pathways were downloaded from KEGG
(version 78.0) (Kanehisa et al., 2017). This data was used for
Lucene search and extraction of pathway genes. Gene variant
data (7,075 samples of mutation in 34 cancers, 6,177 samples of
methylation in 20 cancers, 9445 samples of CNV in 33 cancers)
from TCGA (Stratton et al., 2013) were downloaded, where the
methylated data was selected as JHU_USC (HumanMethylation
450) and BI (Genome_Wide_SNP_6) was selected for CNV data.
These data were used to calculate the frequency of gene variation,
and the proportion of different types of variation. The data in this
article across DNA methylation, mutation and CNV were from
the same samples of TCGA database. In the TCGA database,
there are strict rules for the sequencing, processing and analysis,
etc. of the samples data and provide standardized data
downloading. Human protein-protein interaction data was
downloaded from HPRD (Keshava Prasad et al., 2009),
STRING (Szklarczyk et al., 2011), BioGRID (Chatraryamontri
et al., 2013) and HTRIdb (Bovolenta et al., 2012). Human gene
regulation data was downloaded from HTRIdb. These data were
used to integrate an integrated gene interaction network. The
cDNA data (GRCh38 version and GRCh37 version) was
downloaded from Ensembl (Flicek et al., 2014). This data was
used for the processing of CNV data (Supplementary Table 3).

The Construction Process of the
CHG Database
Following the conceptual criteria description of hallmark
function in the article “Hallmarks of Cancer: The Next
Generation,” published in Cell in 2011, we searched the
relevant literature in PubMed, and screened the high-frequency
descriptive vocabulary appearing in the abstract of the literature
as the key words of the corresponding Hallmark. The core idea of
our CHG database is to transform the conceptual description of
Hallmark features into real biological processes and their
corresponding entities. So, we built a process that consists of
three main steps (Figure 1).

First, we identify the Hallmark description keyword. This step
is to materialize the conceptual description of the Hallmark
feature. The relevant literature is determined by searching the
Hallmark feature description in the literature, and the specific
descriptors associated with each Hallmark feature are
determined by identifying the high frequency vocabulary in the
relevant document abstract. In this step, we manually confirmed
the results from the literature scan. In addition to determining
that the identified keywords are related to the Hallmark feature,
some of the words without more information such as “cancer”
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and “tumor” are not directly provided to vocabulary. At the same
time, we also further enrich the identified Hallmark description
keywords through synonym expansion, for example, “apoptosis”
and “cell death” (Supplementary Table 1).

Second, we use a text mining software package Lucene to
identify the Hallmark-specific pathways in the literature and
KEGG database based on the Hallmark description keywords
identified in the previous step. The result of the identification is
manually confirmed again. The manual confirmation step does
not add any subjective results, and only in the case of certainty,
significant unrelated results due to software recognition errors
are removed (Supplementary Tables 1 , 2).

Finally, genes with potential specificity in the potential
Hallmark-specific pathway were screened from gene mutation
level, epigenetic level, and CNV level to construct CHG.

Cancer Type-Specific Variant Gene
Based on the variation data in TCGA (Montenegro et al.,
2015), we calculated the variations of mutation, methylation
and CNV for these hallmark genes in different types of
cancers. Mutation, CNV, and methylation signatures were
used as part of the filtration function in the Hallmark-
specific gene screening process in our construction of the
CHG database. This is because the relationship between
these features and cancer has been confirmed in extensive
and in-depth discussions in many previous studies (Kan
et al., 2010; Kandoth et al., 2013; Laddha et al., 2014; Wu
et al., 2017; Bouras et al., 2019; Sina et al., 2019; Tate et al.,
2019). The variations in the characteristics of these different
types of cancer not only provide more detailed information for
Frontiers in Genetics | www.frontiersin.org 3190
analysis based on the hallmarks but also can be used as a
“fingerprint” of cancer type or progression, and this cancer
classification can be used as further guidance in prognosis and
clinical treatment (Supplementary Table 3).

Gene Mutation
Based on the somatic mutation (level 2) data for the 34 types of
cancers in TCGA, the frequency of each mutated gene was
calculated in specific cancers(Chung et al., 2016). To account
for the specific action of different somatic mutations in different
types or periods of cancers, we mainly studied the following six
types of somatic mutations: insertion (INS), deletion (DEL),
missense mutations (SNP_mis), nonsense mutations
(SNP_non), splice site mutations (SNP_spl), and gene silencing
(SNP_sil) (Hu et al., 2018). The proportion of mutation types in
each type of cancer was also statistically analyzed (Kan et al.,
2010; Kandoth et al., 2013).

DNA Methylation
We carried out the following calculations for the level 3 data
from 20 human tumors derived from TCGA that simultaneously
contained both cancer and control samples (Bouras et al., 2019;
Sina et al., 2019):

a. Calculate the methylation beta value of each sample
(including cancer and normal samples). For genes with
multiple methylation sites, the average beta value represents
the gene methylation values. The average beta value of the
gene in all normal samples was calculated as the methylation
level of the control group (Tate et al., 2019);
FIGURE 1 | CHG construction flow chart. The CHG database uses a process consisting of three main steps to transform a conceptual description of Hallmark
features into real biological processes and their corresponding entities.
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b. When the gene methylation absolute beta value between the
cancer and control groups was more than 0.5, it was called a
methylation altered gene. We calculated the occurrence
frequency of methylation variation and the corresponding
beta value of each gene (Tate et al., 2019).

c. If the gene's methylated beta value was greater than 0.8 in the
cancer samples, it was labeled as H (high), whereas when the
methylated beta value was less than 0.2, it was labeled as L
(low). We calculated the proportion of genes belonging to H
or L (Tate et al., 2019).
Copy Number Variation
We analyzed gene segments for the CNV based on level 3 data
derived from TCGA and cDNA data from Ensembl in 33 human
tumors that simultaneously contained both cancer and control
samples. For each pair of samples, if the CNV occurred in only
one sample, the default value of the segment in any other sample
was 0. Based on experience, we chose 0.2 and -0.2 as the
thresholds for altered CNV genes; we marked the gene as a
“gain” when the segment value was greater than 0.2 in the cancer
samples and as a “loss” when the segment value was less than -0.2
(Laddha et al., 2014). We counted the frequency of CNV in the
genes and the proportion of genes belonging to the “gain” and
“loss” categories.

Analysis of Relationships of Hallmarks
We analyzed the relationships among the ten hallmarks by
Fisher's exact test and unsupervised hierarchical clustering
(Tan et al., 2011; Hashemi et al., 2013). We compared the
relationship between the specific gene sets of two hallmarks to
the final recognition of the overall relationships among the 10
hallmarks. We separately calculated the number of genes
belonging to two hallmarks, only one hallmark and all
hallmarks. Based on the null hypothesis of independence
between any two hallmarks, we calculated the similarity
through Fisher's exact test. Finally, we carried out hierarchical
clustering with the 1-P value as the similarity score.
RESULTS

The Features of Hallmark Genes
Across Cancers
Genome variation is a common phenomenon in cancer, and it is
essential to understanding the internal mechanism and
prognosis of the tumor in terms of whether the hallmark-
related genes have a generally or specifically altered pattern. To
this end, we processed the somatic mutation data, methylation
data and copy number variant data for 34 cancers in TCGA and
analyzed the frequency of somatic mutations, methylation and
CNVs in different cancer types (Table 1).

To promote the analysis of carcinogenesis, we mapped the
driven mutation, methylation and CNV gene data from TCGA
into hallmarks to analyze the altered percentages of all hallmark
genes. We found that, among all hallmark genes, 97.39% of the
Frontiers in Genetics | www.frontiersin.org 4191
genes were altered by mutation, 33.44% were regulated by
methylation, and 84.88% were influenced by CNV (Figure 2).
In each hallmark, the ratio of genes altered by mutation,
methylation and CNV was more than 95% (Table 2). These
results indicate that the genomic changes in cancer
are widespread.

We counted the number of hallmark genes that are mutated,
differentially methylated and copied in 34 different cancer types
(Figure 3). The results showed that the difference among the
number of mutated genes in different cancer types is large, and
there is a 9-fold difference between the maximum and the
minimum number of mutated genes, with 2644 in LIHC (liver
hepatocellular carcinoma) and 281 in LAML (acute myeloid
leukemia). The largest number of differentially methylated genes
is 490 in BRCA (breast invasive carcinoma), and the smallest
number is 34 in LUAD (lung adenocarcinoma). The largest
number of differentially CNV genes is 1972 in OV (ovarian
serous cystadenocarcinoma), and the smallest number is 267 in
THYM (thymoma).

We also found that different types of cancer have different
alteration characteristics. As shown in Figure 3, some cancers,
such as SKCM (skin cutaneous melanoma), ESCA (esophageal
TABLE 1 | Numbers of pathways and genes of 10 hallmarks.

Hallmarks of cancer Num. of pathway Num. of genes

AIM 9 1,101
ERI 4 302
EGS 4 678
RCD 24 1,150
SPS 27 1,263
EID 15 591
TPI 12 619
GIM 10 221
IA 3 483
REM 9 440
February 2020 | Volum
FIGURE 2 | Distribution of genomic changes in 10 hallmarks. The frequency
of mutation is about 97.39%, the frequency of methylation is about 33.44%
and the frequency of CNV is about 84.88%.
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carcinoma), LIHC (liver hepatocellular carcinoma), mainly
reflect the mutation pattern of the genome, and this is a
common pattern in most cancers. Some cancers, such as PCPG
(pheochromocytoma and paraganglioma), LAML (acute myeloid
leukemia), and OV (ovarian serous cystadenocarcinoma), mainly
reflect a pattern of CNV variation, which suggests that we should
analyze the specific alteration patterns in specific cancers when
uncovering the functional importance of the genomic alterations
and the underlying mechanisms that drive cancer development,
progression and metastasis in different cancer types.

Network of Hallmark Genes
The potential characteristics and relationships of hallmark genes can
be effectively revealed based on the topological structures of their
networks. Since the hallmark genes were identified from qualitative
analysis without any relevant interaction information, we mapped
these hallmark genes onto the integrated protein regulatory network
to collect data on the interaction and regulation relationships
between the hallmark genes and the extract interactions between
the hallmark genes, which resulted in the construction of 10
hallmark subnetworks. The average degree of the integrated
Frontiers in Genetics | www.frontiersin.org 5192
protein interactions is 36 and 54 in the regulation network and
the entire hallmark network (constructed by all the hallmark
interaction genes), respectively. This indicates that the interaction
between hallmarks is higher than the average level of integrated
protein interactions and shows that hallmark networks are more
closely linked. On average, for the 10 hallmark subnetworks, 94% of
the hallmark genes were involved in the network (Supplementary
Figure 1). We performed an analysis of the 10 subnetworks and
calculated the degree, betweenness and clustering coefficient of all
nodes. We found that, in addition to the GIM network in Figure 4,
the gene interactions inside each hallmark subnetwork were more
closely related than the interactions between the 10 hallmark
subnetworks. This result may be due to GIM as the basis of other
hallmarks; genetic diversity of GIM will lead to in other hallmark
features (Hanahan and Weinberg, 2011). At the same time, we also
analyzed the correlation between the degree and number of genes in
each subnetwork. The results showed that genes with large degrees
often also have larger betweenness, as there was a positive
correlation between these variables (Supplementary Figure 1).

Relationship of Hallmarks
Ten types of hallmarks described different aspects of the tumor
characteristics, but there were few relationships mentioned
between these characteristics on a pan-cancer scale. To this
end, we analyzed the relationship among the hallmarks and
divided the ten hallmarks into four classes (Figure 5).
Interestingly, we found two classes with only one hallmark,
namely, Reprogramming Energy Metabolism (REM) and
Genome Instability and Mutation (GIM). This result is
reasonable, as both of these hallmarks are clearly different
from the other hallmarks in terms of their mechanisms. As we
know, almost all types of cancers are caused by DNAmutation or
genome structure alterations and are followed by the appearance
of other hallmarks.

In addition, the similarity among the hallmarks Activating
Invasion and Metastasis (AIM), Evading Growth Suppressors
(EGS), Enabling Replicative Immortality (ERI) and Sustaining
Proliferative Signaling (SPS) is prominent. Many of the
TABLE 2 | Ratio of altered Genes in hallmarks.

Hallmarks Num. of
driven

Mutation
genes

Num. of
driven

Methylation
genes

Num. of
driven
CNV
genes

alteration
genes/all
driven
genes

Ratio of
altered
Genes

AIM 1,098 334 1,003 1,098/1,101 99.73%
ERI 301 88 277 301/302 99.67%
EGS 617 234 491 645/678 95.13%
RCD 1147 349 1,025 1,147/1,150 99.74%
SPS 1261 356 1,160 1,261/1,263 99.84%
EID 583 258 506 583/591 98.65%
TPI 614 230 537 614/619 99.19%
GIM 220 73 187 220/221 99.55%
IA 482 198 427 482/483 99.79%
REM 438 95 402 438/440 99.55%
For each hallmark, the ratio of genes altered by mutation, methylation, and CNVwere more
than 95%.
FIGURE 3 | Number of variant genes of Hallmarks in different cancer types. The number of hallmark genes with mutated, differentially methylated and copied in 34
different cancer types. It is showed that different types of cancer have different alteration characteristics.
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hallmarks in this set are related to the preliminary stage of
cancers (Hanahan andWeinberg, 2000; Hanahan andWeinberg,
2011). One confusing inclusion in the set is AIM, which is a
hallmark that is considered to be related to the end stage of
cancers. However, recent research has also found that AIM
occurs in early cancers as well (Hanahan and Weinberg, 2011).
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The last class includes Tumor-Promoting Inflammation (TPI),
Evading Immune Destruction (EID), Resisting Cell Death (RCD),
and Inducing Angiogenesis (IA). Noticeably, tumor-promoting
inflammation may activate the response of immune system, and
many recent studies have focused on the relationship between
inflammation and the immune system in cancers (Grivennikov
et al., 2010; Tan et al., 2011; Elinav et al., 2013; Hashemi
et al., 2013).

In addition, we further analyzed the patterns of characteristic
variation of the hallmark genes (Figure 6) in 34 different cancers
(Supplementary Table 3). We looked at the top 10 altered
features (e.g., mutation, CNV or methylation) of each hallmark
gene as the Typical Characteristics of the Hallmark Gene
(TCHG, Supplementary Table 4). In heat map analysis, we
can clearly find major differences between the TCHGs as altered
patterns in different types of cancer. In fact, these features can be
used as simple markers for distinguishing cancer types.

Validation of CHG Data
Although the hallmark-related genes identified in the database
came from the confirmed literature and databases, we manually
FIGURE 4 | The average degree of ten hallmarks. In addition to the GIM
network, the gene interactions inside each hallmark subnetwork were more
closely related than the interactions between the 10 hallmark subnetworks.
FIGURE 5 | Relationship among ten hallmarks. The relationship among the hallmarks on a pan-cancer scale. There are two classes with only one hallmark,
Reprogramming Energy Metabolism (REM) and Genome Instability and Mutation (GIM) and both of these hallmarks are clearly different from the other hallmarks in
terms of their mechanisms. In addition, the similarity among the hallmarks Activating Invasion and Metastasis (AIM), Evading Growth Suppressors (EGS), Enabling
Replicative Immortality (ERI), and Sustaining Proliferative Signaling (SPS) is prominent. Many of the hallmarks in this set are related to the preliminary stage of
cancers. The last class includes Tumor-Promoting Inflammation (TPI), Evading Immune Destruction (EID), Resisting Cell Death (RCD), and Inducing Angiogenesis (IA).
Noticeably, tumor-promoting inflammation may activate the response of immune system, and many recent studies have focused on the relationship between
inflammation and the immune system in cancers.
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confirmed the TCHG to further ensure the accuracy of the data.
Considering the very large dataset that we had to confirm, we
have currently verified only the top 10 altered (mutation,
methylation, CNV) genes of each hallmark. Over 92% of the
typical characteristic genes have explanations of their specific
hallmark functions in the literature, which demonstrates the
accuracy and precision of the CHG data on a theoretical level
(Supplementary Table 4).

In addition, we compared the results of this study with
existing Sanger Cancer Gene Census databases (Futreal et al.,
2004). The Sanger Cancer Gene Census database not only
describes the genomic features of cancer-related genes
themselves, but also includes information on tissue
distribution, mutation information and protein structure. We
also compared 699 cancer-related genes identified in the Sanger
Cancer Gene Census database with the Typical Characteristics of
the Hallmark Gene (TCHG) we identified. Of the 139 Hallmark-
related TCHG genes we identified, 69 were also included in the
Sanger database, accounting for 49.7%. These results also
confirm the accuracy of our results. For other genes that are
not included in the Sanger database, we also confirm their
important role in cancer-related biological processes through
literature verification, such as ETS1 (Watabe et al., 1998;
Fujimoto et al., 2004; Zhang et al., 2014; Li et al., 2015) and
RHOA (Lee et al., 2015; Zeng et al., 2015; Sun et al., 2016) in
hallmark “Activating Invasion and Metastasis”.

CHG Case Study
In addition, we used breast cancer data that was labeled
as recurrent or not recurrent as samples for further analysis
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based on the CHG data. These analyses can be used as
an example of the applications of the CHG database and can
also prove the value of this database at a practical level. We
performed a significant enrichment analysis of the differentially
expressed genes based on data from 159 breast cancer
patients from GEO with a significance level of p < 0.01. The
sample group and the control group were patient data with
and without recurrence, respectively. In particular, these
differentially expressed genes were filtered by hallmark genes
from the CHG database before performing the enrichment
analysis. We found that these genes were enriched in 2 out
of the 10 hallmarks, corresponding to the hallmarks whose
main functions include Genome Instability and Mutation
(GIM) and Tumor-Promoting Inflammation (TPI) (Table 3).
It is well known that tumor development is jointly promoted by
cell-intrinsic and cell-extrinsic factors. The hallmarks in Table 3
include risk factors for tumor recurrence that are both
extracellular (Tumor-Promoting Inflammation) and intracellular
(Genome Instability and Mutation). These results not only
expressed the theoretical interpretation of the enrichment
analysis but also reflected the significance of the hallmark genes
in the CHG database.
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FIGURE 6 | The pattern of characteristic variation of Hallmark genes in 34 different cancers. Heat map shows major differences between the altered features (e.g.,
mutation, CNV or methylation) of each hallmark gene as altered patterns in different types of cancer. In fact, these features can be used as simple markers for
distinguishing cancer types.
TABLE 3 | Hallmark function of differentially expressed genes based on 137
breast cancer data.

Hallmark P-value

Genome Instability and Mutation 0.000121
Tumor-Promoting Inflammation 0.004591
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The accuracy and specificity of the hallmark genes identified in
CHG can also be confirmed by our analysis of the survival data
for cancer patients. The survival analysis based on TCGA data
was carried out with only hallmark genes as a single block, and it
showed that patient groups with differentially expressed
(compared to the average expression level) hallmark markers
could clearly distinguish the prognosis of patients with high
statistical significance. Similar results have been found in many
types of cancer. For instance, in a survival analysis of 1183 breast
cancer patients and 156 glioblastoma multiforme patients, only
the expression level of hallmark genes could clearly distinguish
Frontiers in Genetics | www.frontiersin.org 8195
the length of the survival time in the prognosis (Figure 7). In
addition, the hallmark gene identified by CHG can also be used
as a marker to determine the recurrence of cancer to some extent.
An analysis of the survival data of 284 KIRP (kidney papillary
cell carcinoma) patients with 27 recurrence cases in Figure 8
shows that the hallmark genes identified in CHG have good
sensitivity for distinguishing cancer recurrence. These results
fully showed that the variation characteristics of the hallmark-
related genes in CHG were representative, and they could be
directly applied to rapid qualitative analysis.
DISCUSSION

Since Weinberg et al. firstly established the hallmarks for cancer
in 2000, many studies have focused on the analysis of cancer
based on a framework constructed by these hallmarks. In
addition, in 2011, the number of hallmarks increased to ten,
which indicates that the features of cancer may be exceedingly
complex. Perhaps unsurprisingly, in 2013, another hallmark,
Aberrant Alternative Splicing, was proposed by Michael
Ladomery (Ladomery, 2013). It has been reported that the vast
majority of human genes, possibly over 94%, are alternatively
spliced (Pan et al., 2008). In 2015, MF Montenegro et al. targeted
the epigenetic machinery of cancer cells and noted that there was
increasing evidence linking the aberrant regulation of
methylation to carcinogenesis (Montenegro et al., 2015), which
implied that it may be a potential hallmark for cancer. In 2015,
Mamatha Bhat et al. published a review about the translation
machinery in cancer. They mentioned that translation played a
major role in the regulation of gene expression, and the
dysregulation of this process is considered a hallmark of cancer.

The CHG database that we constructed is based on the ten
hallmarks that Weinberg proposed in 2011. As a specifically
designed framework constructed from a hallmark database, CHG
can provide a new perspective for an analysis of the diversity and
development of cancers as well as a convenient method for in-
depth data mining. The CHG database focused on integrating
FIGURE 7 | Hallmark genes could clearly distinguish the length of the survival
time in the prognosis. In a survival analysis of 1,183 breast cancer patients
(up) and 156 glioblastoma multiforme patients (down), only the expression
level of hallmark genes could clearly distinguish the length of the survival time
in the prognosis.
FIGURE 8 | CHG hallmark genes can be used as a marker to determine the recurrence of cancer. An analysis of the survival data of 284 KIRP (kidney papillary cell
carcinoma) patients with 27 recurrence cases shows that the hallmark genes identified in CHG have good sensitivity for distinguishing cancer recurrence.
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hallmark genes, annotating the potential roles of hallmark
features in human cancer processes, and evaluating the
relationships of the ten hallmarks by constructing hallmark
networks and calculating the degree and distance between
genes belonging to each network. Even though the hallmark-
related genes identified in the database have been confirmed by
consensus from the literature and databases, we manually
confirmed the top 10 altered (mutation, methylation, CNV)
genes in each hallmark to further ensure the accuracy of our data.

According to our plan, CHG database will be updated
regularly every year to supplement the new findings in
hallmark field or revise the existing results. We will also follow
up the study of cancer hallmarks, the update of important data
source (such as revision of TCGA or KEGG) and improve the
practicality of CHG database in mechanism interpretation and
clinical aspects. All of old version database would also be
maintained and access to downloaded. The difference of each
version of database would be listed.

Furthermore, over the past decade, analysis based on
the integration of multiple datasets has become quite prevalent.
In 2013, Du et al. (Du et al., 2013) analyzed clinically relevant
long noncoding RNAs in human cancer by integrating
SCNA (somatic copy number alteration), lncRNA and clinical
data. In 2014, Wu et al., (2014) predicted disease-causing
nonsynonymous single nucleotide variants by integrating
multiple genomic datasets. Sanchez et al., (2014) integrated an
analysis of Chip-Seq and RNA-Seq data to unveil an lncRNA
tumor suppressor signature. Many studies, such as the work of
Peng et al., have determined that miRNAs are a widely regulated
regulatory mechanism in cancer (Peng et al., 2019b). Hence, it is
worthwhile to integrate non-coding RNA (including miRNA,
lncRNA, etc.) (Cheng et al., 2016; Cheng et al., 2019), fusion
genes and drug information into a database. We have set out to
construct a network that is comprised of these non-coding
RNAs, genes and drugs. We hope that the next step will be to
provide an online analysis tool (such as Peng et al., 2019a; Peng
et al., 2019c) to provide further personalized analysis. We will
gather these resources into the database in the next version, and
we anticipate that the database will help promote the analysis of
cancer and the identification of valuable drug targets.
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State-of-the-art next-generation sequencing (NGS)-based subclonal reconstruction
methods perform poorly on somatic copy number alternations (SCNAs), due to not only it
needs tosimultaneouslyestimate thesubclonalpopulation frequencyand theabsolutecopy
number for each SCNA, but also there exist complex bias and noise in the tumor and its
paired normal sequencing data. Both existing NGS-based SCNA detection methods and
SCNA’s subclonal population frequency inferring tools use the read count on radio (RCR) of
tumor to its paired normal as the key feature of tumor sequencing data; however, the
sequencing error and bias have great impact on RCR, which leads to a large number of
redundant SCNA segments that make the subsequent process of SCNA’s subclonal
population frequency inferring and subclonal reconstruction time-consuming and
inaccurate. We perform a mathematical analysis of the solution number of SCNA’s
subclonal frequency, and we propose a computational algorithm to reduce the impact of
false breakpoints based on it. We construct a new probability model that incorporates the
RCRbiascorrectionalgorithm,andbystringing itwith the falsebreakpoint filteringalgorithm,
we construct a whole SCNA’s subclonal population reconstruction pipeline. The
experimental result shows that our pipeline outperforms the existing subclonal
reconstruction programs both on simulated data and TCGA data. Source code is publicly
available as a Python package at https://github.com/dustincys/msphy-SCNAClonal.

Keywords: somatic copy number alternation, subclonal reconstruction, subclonal frequency, absolute copy
number, bias correction
INTRODUCTION

Tumor heterogeneity introduces challenges in cancer tissue diagnosis and subsequent treatment
(Nowell, 1976). Tumor heterogeneity cannot be inferred by the properties of biomolecular through
the ontology or pathway analysis (Cheng et al., 2017; Cheng et al., 2018c), but could be inferred by
measuring thequantity of biomoleculars (Cheng et al., 2018b;Cheng et al., 2018d;Cheng et al., 2019). To
decipher cell composition in bulk cells, somatic copy number alternations (SCNAs), most commonly
found in tumor cells (Beroukhim et al., 2010), are utilized as the representative to determine tumor
subclonal populations in a tumor–normal tissue paired manner (Oesper et al., 2013; Li and Xie, 2015).
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The benefit of using SCNA to conduct subclonal reconstruction is
that theWGS data doesn’t have to be deeply sequenced (Li andXie,
2015), because SCNA affects large, multi-kilobase-sized or
megabase-sized regions of the genome, which allows the average
copy number of these regions to be accurately estimatedwithwhole
genome sequencing (WGS) (Deshwar et al., 2015).

SCNA’s subclonal reconstruction algorithms attempt to infer
the population structure of heterozygous tumors based on the
subclonal population frequency of SCNA (Deshwar et al., 2015).
However, the cellular prevalence and the absolute copy number are
intertwined and next-generation sequencing (NGS)-based
subclonal reconstruction needs to simultaneously estimate
population frequency and the absolute copy number for each
SCNA. The solution space of subclonal frequency of SCNA
remains poorly understood, and there might exist multiple
solutions for subclonal frequency for some SCNAs (Oesper et al.,
2013), which makes the infinite site assumptions (ISAs) (Kimura,
1969; Hudson, 1983; Jiao et al., 2014) invalid. ISA is the commonly
acceptedandpowerful assumption,whichposits that eachmutation
occurs only once in the evolutionary history of the tumor.

To infer the SCNA’s subclonal population frequency based on
NGS data, the location of SCNAs in the genome needs to be
obtained first. The SCNA breakpoints are detected through
multiple bin-merging processes, during which rcr of tumor to
its paired normal is used as a key feature (Xi et al., 2010).
However, the sequencing error and bias have great impact on
RCR, which leads to false positive breakpoints and incorrect
subclonal reconstruction (Please refer to Figures S2 and S3,
Tables S2 and S3 in the Supplementary). The higher sensitivity
the SCNA detection tools show, the more prone to the sequencing
error the tools would be. For example, BIC-seq (Xi et al., 2010)
first splits whole genome into small bins, then uses the Bayesian
Information Criterion as the bin merging and stopping criterion
to detect SCNA breakpoints. When sensitivity parameter l of
BIC-seq is very high, the true positive rate and the false discovery
rate will decrease simultaneously (Xi et al., 2010), which means
the SCNA regions will be separated into small fragments by the
false positive breakpoints (Xi et al., 2010). The choice of
parameter l is equivalent to setting type I error; in other words,
when performing the loop of combining windows, two
neighboring windows that should be combined are left
separated apart. Since the reconstruction algorithm of subclone
depends on the proportion of subclone populations of somatic
mutation to define mutation set and its subpopulation (Deshwar
et al., 2015) (Please refer to Figure S4 for the definition of
subpopulation and subclonal population), in order to more
precisely estimate the subclonal population ratio of every SCNA
fragment, we need to choose a smaller l to ensure the high true
positive rate of breakpoints, so as to more accurately estimate the
subclonal population frequency. However, the false positive
breakpoints split the SCNA regions into many small SCNA
fragments, which violates ISA and results in many redundant
input data and causes the subclone reconstruction process to be
extremely slow and time consuming.

Existing (NGS)based subclonal reconstructionmethods, suchas
ThetA (Oesper et al., 2013) and Mixclone (Li and Xie, 2015), use
Frontiers in Genetics | www.frontiersin.org 2199
expectation maximation (EM) or maximum likelihood method
(MLM) to infer the subclonal frequency and the absolute copy
number of every input data. To reduce the searching space,
MixClone assumes that the number of subclonal population is
less than 3, and this number (1 or 2) needs to be predefined.During
the maximization step of the EM process, MixClone assumes the
subclonal frequencies of all the subclonal population only equal to
several combinations of discrete values to further reduce the
searching space. Thus, MixClone’s accuracy is compromised for
speed of computation.On the other side, Theta (Oesper et al., 2013)
does not make any compromise on searching space. Thus, Theta is
extremely time consuming while search optimal subclonal
frequency in (0,1) for every input data, which makes it unable to
perform subclonal reconstruction for more than three
subclonal populations.

With the ever increasingdataofbiotechnology comes the chance
of developing computational toolkit (Cheng et al., 2016; Cheng
et al., 2018a;Chenget al., 2019) tofindout thepathogenyofdiseases;
in this article, we provide a pipeline for reconstructing SCNA’s
subclonal population-based NGS data. We first perform a
mathematical analysis of the solution number of SCNA’s
subclonal frequency, propose and prove the theorem of solution
number of SCNA’s subclonal frequency, and present a method to
filter out false SCNA breakpoints based on it. Then we propose a
probability model that incorporates rcr bias correction algorithm
we previously developed, and we construct an SCNA’s subclonal
population reconstruction pipeline by stringing it with the false
breakpoint filtering algorithm. We model the read depth of tumor
sample as a Poisson distribution with the expected tumor read
count proportional to the absolute copy number and subclonal
frequency. We use the tree-structured stick breaking Dirichlet
process (Prescott Adams et al., 2010) to generate the tree
structure of tumor’s evolutionary history, and use the Markov
Chain Monte Carlo (MCMC) to obtain the result of subclonal
reconstruction. The experimental result shows that our pipeline
outperforms the existing subclonal reconstruction programs both
on simulated data and TCGA data.
MATERIALS AND METHODS

Solution Space of SCNA’s Subclonal
Population Frequency
The RCR and the b-allele frequency (BAF) of the heterozygous
single nucleotide polymorphism (SNP) locus in the SCNA
segment are commonly used as input for the sequencing data-
based SCNA’s copy number and subclonal frequency inferring
tools (Wang et al., 2007; Oesper et al., 2013; Li and Xie, 2015).
Since the number of reads mapped in certain genome region is
proportional to the copy number of this region, the RCR is set to

be proportional to
�Cj

2 by existing tools (Oesper et al., 2013; Li and

Xie, 2015), where
�Cj

2 denotes its average copy number of the jth
SCNA segment. Let fj denote the subclonal population cellular
prevalence of the jth SCNA segment; CT

j denote its absolute copy

number; mT
jk represent the BAF of the kth heterozygous SNP
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locus in the jth SCNA segment; �mj represent the average BAF of
the kth heterozygous SNP locus in the jth SCNA segment. Then
we have the following equation set

�Cj = fj*C
T
j + (1 − fj)*2,

�Cj =
1
�mjk

fj*C
T
j *m

T
jk + (1 − fj)*2* 1

2

h i
, k = 1,…,Kj :

8<
: (1)

where Kj is the total number of heterozygous SNP loci in the jth
SCNA segment. Since the B allele locates either in paternal or
maternal haploid, both mT

jk and (1  − mT
jk) could possibly be the

BAF value in the same SCNA fragment and both �mjk and (1 − �mjk)
could possibly be the average BAF value in the same SCNA
fragment. To reduce the complexity, we use m̂T

jk to denote the
smaller one of mT

jk and (1  − mT
jk); b�mjk to denote the smaller one

of mT
jk and (1 − �mjk). Here we give a theorem to help answer the

solution space of equation set 1 and we prove it in the
Supporting Information.

THEOREM 1. Given �Cj and fb�mjkgKj

k=1 and let x =
CT
j m̂

T
jk−1

CT
j −2

, we have
the following conclusions:

1. If �Cj < 2, there is only one solution fj in Equation set 1.

2. If �Cj > 2 and �Cj <
1b�mjk there is only one solution of fj in

Equation set 1.
3. If �Cj > 2 and �Cj ≥

1b�mjk , there are infinite solutions of fj in

Equation set 1.
4. If �Cj > 2 and �Cj ≥

1b�mjk , there are multiple solutions of fj in

Equation set 1 on the curves of the family of function b�mjk =

x(1 − 2
�Cj
) + 1

�Cj
, under the restriction of maximum absolute

copy number Cmax. Suppose segment sj ′ and sj″ are the two

solutions for given �Cj and fb�mjkgKj

k=1, then
CT
j0 m̂

T
j0k−1

CT
j0−2

=
CT
j00 m̂

T
j00k−1

CT
j00−2

.

The multiple solution area would be �Cj ∈ (2, min(Cj′, Cj″)) and
b�mjk ∈ (min (m̂T

j0k, m̂
T
j00k), 2).

As shown in Figure 1, given the observation value �Cj and b�mjk

and maximum copy number Cmax = 15, only 7/43 of the curves of
the family of function b�mjk = x(1 − 2

�Cj
) + 1

�Cj
present multiple fj

solutions (Please refer to Table S1 for the detail information of
multi-solution range).

The Algorithm of Filtering Out False
Positive SCNA Breakpoints
We assume that there are no two adjacent SCNAs that present the
same �Cj and b�mjk andmeanwhile the different fj andCT

j according to
Theorem1.Weuse the samemethoddescribed in Li andXie (2015)
tomodel the read count ratio of tumor and its paired normal. Based
on the Lander–Waterman model (Lander and Waterman, 1988),
the probability of sampling a read froma given segment depends on
three main factors: 1) its copy number, 2) its total genomic length,
and 3) its mappability, which depends on factors such as repetitive
sequence andGCcontent (Li andXie, 2015). For each segment j, we
associate a coefficient j) to account for the effect of its mappability
and genomic length. Thus, the expected tumor read countsmapped
Frontiers in Genetics | www.frontiersin.org 3200
to segment j, which is denoted as lj, are proportional to �Cjqj. For
example, for segment x and segment y, we have

lx
ly

=
�Cxqx
�Cyqy

(2)

Because the mappability coefficients matter only in a relative
sense, we take qx=qy = DN

x =D
N
y , as these segments should have

the same sequence properties between the normal and tumor
samples. Thus, Equation 2 is transformed into

log (lx=D
N
x ) − log (ly=D

N
y ) =

�Cx
�Cy

: (3)

However, our previous study (Chu et al., 2017a) has shown
the RCR of tumor to its paired normal presents a log-linear GC
content bias, and has described a bias correction software “Pre-
SCNAClonal” (Chu et al., 2017a) to correct this bias specifically.

Let dDS
i =D

N
i denote the corrected read count ratio of tumor

sample and its paired normal, and let F() denote the bias

correction process. Then we havedDS
i =D

N
i = F(DS

i =D
N
i ) and

log dDS
i =D

N
i

� �
− log dDS

j =D
N
j

� �
= log

�Ci
�Cj

: (4)

Then we use the following steps to filter out false positive
SCNA breakpoints.

1. First, BIC-Seq with a small l is used to detect SCNA
breakpoints. Then the whole genome is separated into
SCNA fragments by these breakpoints. We use fsjgJj=1 to

denote this SCNA fragment set.
2. Next, Pre-SCNAClonal (Chu et al., 2017a) is used to correct

the bias of RCR.
3. Next, the hierarchical clustering algorithm is used to cluster

fsjgJj=1 based on log  (dDS
j =D

N
j ) of every segment with the

maximum amount of cluster predefined as Cmax * t, where
t is the number of subclonal populations. Suppose in this
step, there are N clusters obtained by the hierarchical
clustering algorithm. We denote the nth cluster as Sn where
n = 1, 2,…, N. For convenience, we call this step the
aggregation step.

4. Next, the MeanShift algorithm is used to perform an

unsupervised cluster search on ∪sj∈Sn fb�mjkgKj

k=1, where Sn is

obtained by step 3. Assume there are Mn BAF clusters

detected in ∪sj∈Sn fb�mjkgKj

k=1, and we use Y(b�mjk) ∈ f1,…,Mng
to represent the cluster index. Then for every sj ∈ Sn we define
the BAF cluster of sj to be the BAF cluster of fb�mjkgKj

k=1

with the largest number. Then each Sn is split into

subclusters fSn,mgMn
m=1 based on the BAF cluster of each sj.

For convenience, we call this step the decomposition step.
5. For each Sn,m, n = 1,2,…,N, m = 1,2,..,Mn, we merge two

adjacent SCNA fragments, which are on the same
chromosome and the distance between them is less than a
predefined threshold r.
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The space complexity of the algorithm of filtering out
false positive SCNA breakpoints is o(J2). The computational
complexity of “MeanShift” and “hierarchical clustering” are
o(oN

n=1(In*osj∈SnKj)
2) and o(J3), where In is the number of

iterations for Sn. Thus. the time complexity of the algorithm
of filtering out false positive SCNA breakpoints is o(J3 +

oN
n=1(In*osj∈SnKj)

2). The detail validation of this algorithm

are described in Section 4 in the Supplementary (Please
refer to Figures S5–S8 for the results).

Normal Segments Detection Method
The task of normal segments detection is to find out all the
segments that �Cj = 2, since the copy number CN

j in sj in normal
sample equals 2, normally. A cancer genome differs from the
reference genome by gains and losses of segments, or intervals, of
the reference genome (Oesper et al., 2013).

However, due to two different sequencing processes and the
coverage may not exactly be the same for tumor and its paired

normal,dDS
j =D

N
j does not always equal to 1 for the normal segments

(Li and Xie, 2015). In this paper, we use the same normal segments
detection method described in our previous work (Chu et al.,
2017a), which utilizes BAF information to detect normal segments.

Equation set 1 implies following conclusion

fj = 0 or CT
j = 2 ⇔ �Cj = 2,

fj = 0 or CT
j = 0 or mT

jk =
1
2 ⇔ �mT

jk =
1
2 :

(5)
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We detect the normal segments Ntm from Stm according to
Equation 5 by the following two steps. First, we filter out all the
segments sj ∈ Stm with �mT

jk ≠
1
2 for k = 1,…,Ksj . In the remaining

segments, the possible CT
j could be any one in {0, 2, 4,…}, since

all the possible genotypes GT
jk of allele at the kth site for mT

jk =
1
2

could be any one in {∅, PM, PPMM,…}. Next, we obtain all the
normal segments Ntm from these segments by selecting the

segments with the read depth dSjk at the kth heterozygous SNP site

equal to the coverage of the alignedWGS data of the tumor sample.

The Probability Model of Subclonal
Population Frequency
Figure 2 shows the probabilistic graphical model of SCNA’s
subclonal population frequency. In this figure, S denotes the set
of all the SCNA segments; N denotes the set of segments that
contain no SCNA. We use the same method described in Li’s
study (Li and Xie, 2015) to set the probability of BAF to obey
binomial distribution

bSjkjdSjk,mT
jk, fj  ∼ Binomial dSjk, b�mjk

� �
, (6)

where bSjk denotes the number of tumor reads that contain B
allele at the kth heterogeneous SNP locus and dSjk denotes the
total number of tumor reads mapped at this locus. In this figure,
GT
jk denote the allele’s genotype at the kth heterogeneous snp

locus in segment sj.
According to Equation 4, we have the expected tumor read

counts mapped to segment j
FIGURE 1 | The solution space of Equation set 1 given the observation value �Cj and b�mjk and maximum copy number Cmax = 15. In this figure, k denotes the

number of solutions; x =
CT

j m̂
T
jk−1

CT
j −2

, where CT
j is the absolute copy number of SCNA in the jth segment sj, m̂T

jk is the normalized BAF of tumor reads mapped at the kth

heterozygous SNP loci in the jth segments sj; b�mjk denotes the normalized average tumor reads mapped at the kth heterozygous SNP loci in the jth segments sj; �Cj

denotes the average copy number of segment sj; fj denotes the subclonal frequency of segment sj.
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lj = F−1
�Cj

�Ci
�dDS

i =D
N
i

� �
� DN

j (7)

where F−1() denotes the reverse process of bias correction. Let
|N| denote the number of baseline segments (Li and Xie, 2015)
(in which the absolute copy number CT

j = 2). We use
the average of read count’s log ratio of all the baseline

segments ϑ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
si∈N

dDS
i =D

N
i

−jNj

s
to calculate the expectation of
tumor read count, and model the tumor read count as a
Poisson distribution

DS
j jDN

j ,C
T
j , fj  ∼ Poisson F−1

�Cj

2
� ϑ

� �
� DN

j

� �
(8)

It could be deduced from the first equation in Equation set 1

that �Cj > 2 ⇔ CT
j > 2. Therefore, we may conclude thatdDS

j =D
N
j >

ϑ ⇔ CT
j > 2, since �Ci must equal 2 if si contains no SCNA. We set

CT
j obeys the categorical distribution

CT
j   ∼ Categorical ς ϑð Þð Þ, (9)

where function ς (ϑ) denotes CT
j ‘s range; ς (ϑ) = {0, 1, 2} if

dDS
j =D

N
j < ϑ; ς (ϑ) = {2, 3,…, Cmax} if

dDS
j =D

N
j > ϑ.
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The subclonal population frequency of certain mutation equals
the sum of all its subpopulation frequencies (for details, refer to
Figure S1 in the Supplementary), and all the subpopulation
frequencies in the tumor sample sums to 1. Therefore, all the
subpopulation frequencies in the tumor sample obey the Dirichlet
distribution, and this Dirichlet distribution obeys the tree-
structured Dirichlet process (DP) (Prescott Adams et al., 2010).
Suppose there are P subpopulations in a tumor sample; let x1,…, xp
denote all the subpopulation frequencies

x1,…, xP  ∼ Dirichlet(a1,…,aP), (10)

where a1,…, ap are the concentration parameters. In this paper, we
seta1 =… =ap = 1, then Equation 10 is transformed into a uniform
distribution of (p −1)-dimension simplex. Therefore, the prior
probability of subclonal frequency fj equals the probability of the
tree structure. In Figure 2, G denotes the tree-structured DP; H
denotes the base distribution;a and g are the scaling parameters ofG.

We use MCMC to obtain the prior distribution of fj since the
probability of tree-structured DP cannot be explicitly expressed.
We use the slice sampling method described in Prescott’s study
(Prescott Adams et al., 2010) to generate tree structure. The
complete posterior probability of the subclonal population
frequencies of all the SCNA segments

Pr fj
� �

sj∈SnNj DS
J

� �
sj∈SnN, bSjk

n oKj

k=1

	 

sj∈SnN

,T

 !

∝ Pr DS
J

� �
Sj∈SnN, bSjk

n oKj

k=1

	 

Sj∈SnN

j fj
� �

Sj∈S gN

 !

� Pr fj
� �

Sj∈SnN
� �

=
Y

N∈TCT
j ∈

o
0,1::: Cmaxf g

o
GT
jk∈z CT

j

� �
mT
jk

o
∈h GT

jk

� �
Y
Sj∈N

1

DS
j !

� F−1
�Cj

2
�jNj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
si∈N

dDS
i =D

N
i

s0
@

1
A� DN

j

0
@

1
A

DS
j

�

2
64

e−f
−1 �Cj

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
si∈N

dDS
i =D

N
i

jN

s0
@

1
A� DN

j

�
YKj

k=1

dSjk

bSjk

0
@

1
Ab�mbSjk

jk
1 − b�mjk

� � dSjk−b
S
jk

� �3
5 : (11)

where T denotes the tree structure, and N denotes a node in T.
We select the tree structure with maximum posterior probability

Tmax =
argmax Pr

T(i)
DS

j

� �
Sj∈SnN, bSjk

n oKj

k=1

	 

Sj∈SnN






 fj
� �(i)

Sj∈SnN,T
(i)

 !
, (12)

where T(i) and ffjg(i)sj∈SnN denote tree structure and subclonal
population frequencies of the ith sampling process. The absolute
copy number of the ith sampling process is
FIGURE 2 | Bayesian network model for subclonal population frequency. In
this figure, G denotes the tree-structured Dirichlet process; H denotes the
base distribution; a and g are the scaling parameters of G; fj denotes the

subclonal frequency of SCNA in segment sj; DS
j denotes the number of tumor

reads mapped in segment sj, while DN
j denotes the number of normal reads

mapped in segment sj; CT
j denotes the absolute copy number of SCNA in

segment sj; ϑ denotes the geometric mean of the read count ratio of all the
baseline segments N; Cmax is the maximum absolute copy number pre-

defined; GT
jk denotes the tumor genotype of the kth heterozygous SNP loci in

the jth segments sj; uTjk denotes the tumor BAF of the kth heterozygous SNP

loci in the jth segments sj;bS
jk and dS

jk denote the number of B-allele and the

total allele at the kth heterozygous SNP loci in the jth segments sj.
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where fCT
j g(i)sj∈SnN are absolute copy numbers with the maximum

posterior probability if the i'-th sampling process is the solution
of Equation 12.

The Pipeline for Reconstructing SCNA’s
Subclonal Population-Based NGS Data
As shown in Figure 3, the pipeline consists of five models. The
tumor and its paired normal sequence alignment sequencing
data in BAM format are used as input of the pipeline. The SCNA
segments are detected by BIC-seq (Xi et al., 2010), then the bias
of read count ratio is corrected by the correction model (Chu
et al., 2017a) we previously proposed. We filter out the false
positive breakpoints by the algorithm we proposed in this paper,
then we use the probability model of subclonal population
frequency proposed in this paper to infer the subclonal
frequency of each SCNA segment. Finally, we use the tree
structure learning algorithm (Prescott Adams et al., 2010) to
reconstruct the SCNA’s subclonal population.
RESULTS

In this section, we evaluate the performance of probabilistic
model on both simulated and real datasets and compare its
Frontiers in Genetics | www.frontiersin.org 6203
performance with existing tools. Existing tools such as Mixclone
(Li and Xie, 2015) and TheatA (Oesper et al., 2013) could not
calculate the subclonal frequencies of more than three subclonal
populations. Therefore, we use the simulated data, which contain
more than three subclonal populations and TCGA benchmark
data together to evaluate our model.

Results From Simulated Data
We use Pysubsim-tree (Chu et al., 2017b) to simulate a tumor’s
NGS read alignment data from Chromosome 21 with the
evolution history configuration shown in Figure 4 and the
acquired SCNA’s configuration listed in Table 1. In Figure 4,
each circle represents a subpopulation; the squares with character
a, b, c, d, e, and f represent five SCNAs; the number on the right
side of the circle is the frequency of the subpopulation.

We set the first 50 cycles of the MCMC sampling process as
burn-in and use the result of the following 300 cycles to calculate
the probability of the evolutionary relationship between
subpopulations. We set a = 1.0, g = 1.0, H to be the uniform
distribution. Figures 5A, B are the dot-plots of the distribution
of the output of subclonal population frequency model. Figure
5C shows the partial order plot (Jiao et al., 2014) of the
evolutionary relationship obtained by the model proposed in
this paper. The arrows in this figure denote the direct
evolutionary relationship of the two subpopulations. The width
of the arrow denotes the probability of this evolutionary
relationship present in the 300 cycles of the MCMC process.
Suppose fTigIi=1 denotes all the trees obtained in all the cycles of
the MCMC process, ab

!
denotes the evolutionary relationship

from subpopulation a to b. Then the probability of this
evolutionary relationship is
FIGURE 3 | The structure of the whole NGS data-based SCNAs’ subclonal reconstruction pipeline.
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According to Theorem 1, a and e have only one solution of fj
while the others are not. The distribution of absolute copy numbers
shown inFigure 5A is consistent with Theorem 1. The distribution
of e’s subclonal frequency is quite scattered inFigure5Bbecause the
small subclonal frequency and the absolute copy number of e
(closed to normal) cause the coverage to decrease by 5%, which is
almost the same as the noise. The subclonal frequencies of other
SCNAs are highly distributed at the positions of subclonal
frequencies listed in Table 1. Each SCNA’s absolute copy number
and subclonal frequency with the maximum posterior probability
are listed in Table 2. The subclonal frequencies of b and c are not
correct because they have multiple solutions of subclonal
frequencies according to Theorem 1, while the others are correct.
The distribution of absolute copy number and subclonal frequency
in Figure 5 and the result listed in Table 2 show that our SCNA
probabilitymodel could correctly calculate the subclonal frequency
of SCNA.

Results From Breast Cancer
Sequencing Data
We use the ngs data “HCC1954-spiked1-n25t35s40” and
“HCC1954-spiked1-n25t55s20” (denoted as “n25t35s40” and
“n25t55s20” for convenience) of Cancer Genome Atlas (TCGA)
Benchmark 4 dataset, which is publicly available at the National
Frontiers in Genetics | www.frontiersin.org 7204
Cancer Institute GDC Data Portal (https://gdc.cancer.gov/
resources-tcga-users/tcga-mutation-calling-benchmark-4-files) to
further validate the subclonal frequency model proposed in this
paper. HCC1954 is an immortal cell line derived from an invasive
ductal carcinoma of the breast diagnosed in a 61-year-old woman
(Bignell et al., 2007). “G15512.HCC1954.1” is the NGS data of this
cell line, which contains one subclonal population with purity 0.99;
however, this data has no ground truth of absolute copy number of
the SCNA regions. “HCC1954-spiked1-n25t35s40” is generated by
merging 35% of “G15512.HCC1954.1” with 25% of its paired
normal NGS data and 40% of “G15512.HCC1954.1” with some
SCNAs randomly spiked in it. Therefore, there are two subclonal
populations in the tumor sample “HCC1954-spiked1-n25t35s40,”
and their subclonal frequencies are 75% and 40%, respectively. The
ISA is invalid since each subclonal population contains multiple
SCNAs; thus, we set the prior probability of tree structure to obey
uniform distribution, and thus Equation 11 could be rewritten as
follows:
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Figure 6 shows the subclonal frequencies obtained by the
model proposed in this paper. In this figure, “P” denotes the
parent subclonal population (subclonal frequency 75%) and “C”
denotes the child subclonal population (subclonal frequency
40%). As shown in Figure 6, the subclonal frequencies of these
two population obtained by the model proposed in this paper are
72% and 42% for sample “n25t35s40” and 77% and 25% for
sample “n25t55s20,” which are the most closed to the fact in
comparison with MixClone and ThetA.
DISCUSSION

Generally, SCNAs with larger subclonal population frequency
could relatively be more precisely located. However, due to the
FIGURE 4 | The evolution process of subclonal population in the simulation
data. In this figure, each circle denotes a subpopulation; the number on the
left is its frequency; each square inside the circle denotes an SCNA; each
arrow points an offspring subpopulation.
TABLE 1 | The SCNA’s configuration for each subpopulation of the simulation data.

SCNA Chrom Position Length CT
j Gj fj

a chr21 17478172 500000 0 Ø 0.95
b chr21 27485802 500000 3 PPM 0.03
c chr21 30959067 500000 4 PPPM 0.01
d chr21 35841868 500000 5 PMMMM 0.05
e chr21 43277023 500000 1 M 0.03
f chr21 25056314 500000 7 MPPPPPP 0.01
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twice sequencing procedures of tumor and its paired normal, the
read information of the genomic regions with the same copy
number in tumor sample is not exactly the same as its paired
normal’s. Moreover, the lower read coverage of NGS makes the
noise/error more likely to be mistaken for an SCNA. As shown in
Figure 7, the number of SCNA breakpoints obtained by SCNA
detection tool is proportional to the subclonal population
frequency. If there exists a large proportion of false negative
Frontiers in Genetics | www.frontiersin.org 8205
breakpoints, it will cause the read count in the segments
incapable to reveal the copy number property, then it will
affect all the read count-based SCNA analysis tools. On the
other hand, if there exists a large proportion of false positive
breakpoints, the segment clustering step of filtering out the false
positive breakpoints could reduce the data size and make the
read count information more robust to noise by merging the
SCNA segments with the same absolute copy number and
subclonal population frequency. As shown in Theorem 1, the
SCNA segments with the same RCR and average B-allele
frequency are indistinguishable to the NGS-based SCNA
analysis tools. Merging two non-adjacent SCNA segments with
the same NGS properties could not affect the result of the NGS-
based SCNA analysis tools.

Tree-Structured Stick Breaking (TSSB) process (Prescott
Adams et al., 2010) could learn the tree structure of the
hierarchical data. A tree structure space could be generated
FIGURE 5 | The result of subclonal reconstruction based on simulation data. (A, B) Dot-plots of the distribution of absolute copy number and subclonal frequency
inferred by the 300 cycles of MCMC process. (C) The partial plot of the subclonal frequency.
TABLE 2 | The results of subclonal population frequency inferring based on
simulation data.

a b c d e f

CT
j result 0 7 5 5 1 7

CT
j fact 0 3 4 5 1 7

fj result 0.950 0.106 0.075 0.501 0.304 0.106
fj fact 0.95 0.30 0.10 0.50 0.30 0.10
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by intertwining two DP; then as described in Prescott’s paper
(Prescott Adams et al., 2010), one can imagine throwing a dart
(data) on the tree space and considering which node the dart
hits. If we know subclonal number L in advance, then we could
generate the tree structure in two steps. Step 1: generate a tree
using all the data; Step 2: sort nodes by the sum of the size of
the genome region hit, then find out the top L nodes and throw
the rest of the darts (data not in the L nodes) into these L nodes
Frontiers in Genetics | www.frontiersin.org 9206
randomly. Figure 7 shows that subclonal frequency affects the
number of breakpoints; thus, there might present false positive
or false negative breakpoints in the result of the SCNA
detection tool. The false positive breakpoints could be
filtered out by the algorithm in this paper. Even if there exist
false breakpoints, the redundant data that contains the same
SCNA might hit the same node in the tree space generated by
the TSSB process. Thus, the redundant data affects the time
FIGURE 6 | The subclonal proportion of SCNAs in HCC1954 data. In this figure, SCNAModel is the subclonal frequency inferring model proposed in this paper.
FIGURE 7 | Breakpoints distribution on chromosome 1 of mixed “HCC1954” samples. Here the “n5t95” to “n95t5” respectively denote the tumor sample from
“HCC1954.mix1.n5t95” to “HCC1954.mix1.n95t5.” “n0t100” denotes the tumor sample; “HCC1954” contains no normal contamination. Each of these samples
contains one tumor subclone. All the breakpoints are obtained by BIC-seq (Xi et al., 2010).
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and space consumption, but could not affect the result of
subclonal reconstruction theoretically.
CONCLUSION

In this paper, we first perform a mathematical analysis of the
solution space of SCNA’s subclonal frequency. Then based on
the mathematical analysis, we propose an algorithm to filter out
the false breakpoints and we construct a new probability model
to reconstruct SCNA’s subclonal population, which incorporates
the algorithms of RCR bias correction we previously proposed.
We use the tree-structured stick breaking DP (Prescott Adams
et al., 2010) to generate the tree structure space of tumor’s
evolutionary history. In the probability model, the BAF of the
heterozygous SNP locus in the SCNA segment is modeled as a
binomial distribution and the read depth of tumor sampling data
is modeled as a Poisson distribution with respect to the potential
bias in RCR. We generate the distribution of subclonal frequency
from the distribution of subpopulation frequency, which is
drawn from the tree structure space. By stringing the model
with the false breakpoint filtering algorithm, we construct a
whole SCNA’s subclonal population reconstruction pipeline,
which is capable of inferring SCNA’s absolute copy number
and its subclonal population frequency and its evolutionary
process while there are a lot of false positive SCNA breakpoints
and the RCR presents bias. The results show that the model
proposed in this paper could more accurately estimate the
absolute copy number of SCNA segments and their subclonal
population frequencies in comparison with existing methods
both on simulated data and TCGA data.
Frontiers in Genetics | www.frontiersin.org 10207
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Motivation: N4-methylcytosine (4mC) plays an important role in host defense

and transcriptional regulation. Accurate identification of 4mc sites provides a more

comprehensive understanding of its biological effects. At present, the traditional machine

learning algorithms are used in the research on 4mC sites prediction, but the complexity

of the algorithms is relatively high, which is not suitable for the processing of large data

sets, and the accuracy of prediction needs to be improved. Therefore, it is necessary to

develop a new and effective method to accurately identify 4mC sites.

Results: In this work, we found a large number of 4mC sites and non 4mC sites of

Caenorhabditis elegans (C. elegans) from the latest MethSMRT website, which greatly

expanded the dataset of C. elegans, and developed a hybrid deep neural network

framework named 4mcDeep-CBI, aiming to identify 4mC sites. In order to obtain the

high latitude information of the feature, we input the preliminary extracted features into the

Convolutional Neural Network (CNN) and Bidirectional Long Short TermMemory network

(BLSTM) to generate advanced features. Taking the advanced features as algorithm

input, we have proposed an integrated algorithm to improve feature representation.

Experimental results on large new dataset show that the proposed predictor is able

to achieve generally better performance in identifying 4mC sites as compared to the

state-of-art predictor. Notably, this is the first study of identifying 4mC sites using deep

neural network. Moreover, our model runs much faster than the state-of-art predictor.

Keywords: N4-methylcytosine, machine learning, deep neural network, CNN, BLSTM, integrated algorithm

1. INTRODUCTION

DNA methylation is a form of chemical modification of DNA, which alters genetic performance
without altering the DNA sequence. Numerous studies have shown that DNA methylation can
cause changes in chromatin structure, DNA conformation, DNA stability, and DNA-protein
interactions, thereby controlling gene expression (Wang and Qiu, 2012). In many species, the N-
methylation would inhibit Watson-Crick hydrogen bond formation with guanosine (Fazakerley
et al., 1987). The differential susceptibility of foreign DNA and self-DNA suggests that some
process, such as cytosine methylation, may be affording protection to nuclear DNA (Carpenter
et al., 2012). DNA methylation guided by specific methyltransferase enzymes occurs in both
prokaryotes and eukaryotes. These modifications can label genomic regions to control various
processes including base pairing, duplex stability, replication, repair, transcription, nucleosome

209

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00209
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00209&domain=pdf&date_stamp=2020-03-06
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fengzeng@csu.edu.cn
mailto:yao@hnu.edu.cn
https://doi.org/10.3389/fgene.2020.00209
https://www.frontiersin.org/articles/10.3389/fgene.2020.00209/full
http://loop.frontiersin.org/people/854433/overview


Zeng et al. Deep Neural Network Identifying 4mC

localization, X chromosome inactivation, imprinting and
epigenetic memory (Iyer et al., 2011; Allis and Jenuwein,
2016; O’Brown and Greer, 2016). The most widespread DNA
methylation modifications are N6-methyladenine (6mA), 5-
methylcytosine (5mC) and N4-methylcytosine (4mC) that have
been detected in both prokaryotic and eukaryotic genomes (Fu
et al., 2015; Blow et al., 2016; Chen et al., 2017). These
modifications are catalyzed by specific DNA methyltransferases
(DNMTs) that transfer a methyl group to specific exocyclic
amino groups (He et al., 2018). In eukaryotes, 5mC is the
most common DNA modification, which is essential for gene
regulation, transposon suppression and gene imprinting (Suzuki
and Bird, 2008). While 6mA and 4mC are very small, they can
only be detected in eukaryotes by high sensitivity techniques.
In prokaryotes, 6mA and 4mC are the majority, mainly used to
distinguish host DNA from exogenous pathogenic DNA (Heyn
and Esteller, 2015), and 4mc controls DNA replication and
corrects DNA replication errors (Cheng et al., 1995; Wei et al.,
2018). Moreover, 4mC as part of a restriction-modification
(R-M) system prevents restriction enzymes from degrading host
DNA (Schweizer et al., 2008; Wei et al., 2018).

Although extensive studies have been conducted on
modifications of 5mC and 6ma, studies on 4mC are relatively
limited due to the lack of effective experimental methods and
large amounts of data. Single-molecule real-time sequencing
(SMRT) technology can detect 4mC, 5mc, and 6mA base
modifications (Ecker, 2010; Flusberg et al., 2010; Clark et al.,
2013; Davis et al., 2013). However, SMRT sequencing is costly
and is not conducive to the analysis of various species. Recently,
Yu et al. (2015) proposed a method for the determination of
methylcytosine in genomic DNA by 4 mC-Tet-assisted bisulfite
sequencing, which can accurately generate a genome-wide,
single-base resolution map of 4mC, and finally identify the
4mC motif associated with the bacterial R-M system. Biological
experiments are laborious and expensive when performing
genome-wide testing. Therefore, it is necessary to develop a
calculation method for identifying 4mC sites.

So far, there are only four methods for identifying the 4mC
sites, all of which adopt the SVM model, including iDNA4mC,
4mCPred, 4mcPred-SVM and 4mcPred-IFL. The four predictors
are designed to predict 4mC sites directly from sequences.
The first 4mC site predictor, called iDNA4mC (Chen et al.,
2017), encodes DNA sequences using nucleotide chemistry
properties and frequency and is tested across different species.
The experimental results show that iDNA4mC has achieved
initial results in identifying 4mC sites. However, the low
predictive power is the main drawback of iDNA4mC. The
second 4mC site predictor, called 4mCPred (He et al., 2018),
proposes a new feature coding algorithm by combining position-
specific trinucleotide propensity and electron-ion interaction
pseudopotentials, which improves the accuracy of prediction.
The third 4mC site predictor, called 4mcPred-SVM (Wei et al.,
2018), proposes more useful sequence features in the predictor
and improves the feature representation capability through a
two-step feature selection method. However, the performance
of the experiment did not improve much. Recently, Wei et al.

(2019) proposed the fourth 4mC site predictor, called 4mcPred-
IFL, which uses an iterative feature representation algorithm
to learn probabilistic features from different sequential models
and enhance feature representation in a supervised iterative
manner. However, the complexity of 4mcPred-IFL is very high.
When the data set is large, it takes a long time to obtain the
results. Meanwhile, the prediction accuracy in 4mcPred-IFL can
be improved further.

In this work, we developed a deep learning framework called
4mcDeep-CBI to identify the 4mC sites. Deep learning related
methods are widely used in hot spots prediction of protein-
protein interfaces (Pan et al., 2018; Wang et al., 2018; Deng et al.,
2019; Liu et al., 2019), but we have not found any work with deep
learning in 4mC sites prediction, and all previous studies have
used SVMmachine learning methods. This work is the first study
of 4mC sites using deep learning. Especially, we have greatly
expanded the dataset which is used to evaluated the prediction
models of the 4mC sites. Experimental results demonstrate that
4mcDeep-CBI has better performance than other models. The
contributions of our work can be summarized as follows.

(1) We have greatly expanded the dataset of C. elegans, and the
number of samples was increased from 3,108 to 17,808, which
is beneficial for subsequent research.

(2) we developed a deep learning framework to identify the 4mC
sites. 3-CNN and BLSTM are used to extract deep information
from the acquired features and to obtain advanced features.
Experimental results show that advanced features have
achieved better performance in identifying the 4mC sites.

(3) We finally take probability feature matrix obtained by the
machine learning methods into the deep learning model,
which further improve the prediction accuracy. In our
experiment, compared with the state-of-art predictor, the
proposed model has the accuracy increased from 87 to 93%.

2. MATERIALS AND METHODS

2.1. Datasets
We obtained samples genomes of Caenorhabditis elegans (C.
elegans) from the latest MethSMRT website, found a lot of
4mC sites and non 4mC sites with the sequence lengths all
of 41 bp. Each 4mC sequence sample has several indicators:
position, coverage, IPDRatio (inter-pulse duration ratio), frac,
fracLow, fracUp, identificationQv. In order to construct a reliable
quality dataset, we did the following two steps. Firstly, as stated
in the Methylome Analysis Technical Note, the Modification
QV (modQV) score indicates that the IPD ratio is significantly
different from the expected background. Since the modQV score
of 30 is the default threshold for calling a position as modified,
we removed the sample with the modQV score more than 30.
Secondly, as elaborated in previous study (Chou et al., 2015), if
training and testing are conducted through this biased dataset,
the experimental results may have overestimated accuracy. To
eliminate redundancy and minimize the bias, the CD-HIT
software (Fu et al., 2012) with the cut off threshold set at
80% was used to remove those sequences with high sequence
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similarity. After the above two steps, we obtained 15, 639 samples
in C. elegans.

We combine the new samples with the C. elegans benchmark
dataset (Ye et al., 2017) that was used in the previous works
to form a new data set with 18, 747 samples. Some of the new
samples we extracted may be similar to the previous benchmark
dataset. Therefore, we use the CD-HIT software to remove
those samples with high sequence similarity. Finally, we get
the new C. elegans dataset with 17, 808 samples which contains
111, 73 positive samples and 663, 5 negative samples. The positive
samples are the sequences centroided with functional 4mC sites
detected by the SMRT sequencing technology, while the negative
samples are the sequences with the cytosines in the center but
not detected as 4mC (Wei et al., 2019). The new dataset can be
downloaded from our github, and the download link is given
in section 3.

2.2. Model of 4mcDeep-CBI
2.2.1. Preliminary Feature Extraction
We use the eight features mentioned in Chen et al. (2017),
He et al. (2018), Wei et al. (2018), and Wei et al. (2019) as
preliminary features. These features are obtained by encoding
the different sequence information by the feature representation
algorithm of the sequence. These features are BKF (Binary
and k-mer frequency), DBPF (Dinucleotide binary profile
and frequency), KNN (K-Nearest Neighbor), PCP (Physical-
Chemical Properties), MMI (Multivariate Mutual Information),
PseDNC (Pseudo dinucleotide composition), PseEIIP (Electron-
ion interaction pseudopotentials of trinucleotide) and RFHCP
(Ring-function-hydrogen-chemical properties). The related
feature extraction methods can be found in Wei et al. (2019).

2.2.2. 4mcDeep-CBI Network
As shown in Figure 1, 4mcDeep-CBI consists of 3-CNN layer,
BLSTM layer, fully connected layer, and a sigmoid classifier. The
input of 4mcDeep-CBI is one of eight preliminary features. First
of all, the preliminary feature is used as the input to 3-CNN layer,
which contains convolution layer, ReLU activation function and
max pooling operation. Next, the output of 3-CNN layer will be
imported to BLSTM layer to obtain an advanced feature.With the
eight features as the inputs, we can get eight advanced features,
respectively. Then, each advanced feature (matrix) will be further
converted to one-dimensional feature (vector) using the flatten
function, which will be finally connected to the fully connected
layer. The last layer is the sigmoid layer, which is used to obtain
advanced probability features and the prediction result of the first
step. At last, we get an eight-dimensional feature, which will be
the input of the integrated algorithm.

2.2.2.1. Convolutional neural network (CNN)
CNN has a powerful ability to extract abstract features, which
is not only suitable for image processing, but also for natural
language processing tasks. It consists of convolution, activation,
and max-pool layers.

In the model design, since we have verified in experiment
that the model with 3 CNN layers has the best performance, we
employ 3-CNN as an advanced feature extractor, and the input is

the preliminary feature extracted from DNA sequences. We first
put the preliminary features into the 3-CNN layer, respectively,
and set the weighting parameters of the convolution filter. Then,
the convolution layer outputs the matrix inner product between
the input preliminary feature and filters. After convolution, a
rectified linear unit (ReLU) is applied to sparsify the output of
the convolution layer. The Rectified Linear Unit (ReLU) (Nair
et al., 2010) takes the output of a convolution layer and clamps
all the negative values to zero to introduce non-linearity that
can not only reduce the computational cost, but also avoid the
phenomenon of vanishing gradient and over-fitting. Finally, a
max pooling operation is used to reduce the dimensionality and
over-fitting by taking the maximum value in a fixed-size sliding
window. The output of the convolution module is represented by
the following expression:

Oc = Pool
(

ReLU
(

Conv(S)
)

)

,

where Oc is the output tensor, S is the input preliminary feature
of the sequence. For BKF as an example, the dimension of S is
1 × 500 × 1 (input_shape). The nb_filter of 3-CNN are 16, 32,
64, respectively, and the filter_length of 3-CNN are all 8. The
parameters of max pool is 2. Therefore, the dimension of Oc is
1×223×64.

2.2.2.2. Long short term memory networks (LSTM)
LSTM is a recurrent neural network (RNN) architecture (an
artificial neural network) published in 1997 (Hochreiter and
Schmidhuber, 1997). Compered with traditional RNNs, LSTM
network is well-suited to learn from experience to classify,
process and predict time series, and it has advantages in dealing
with long term dependency. Especially, Bidirectional LSTM can
capture the bidirectional dependence of features and the outputs
of individual directions are concatenated, which can well mine
the deeper information in the features:

Or = BiLSTM(Oc ),

where Or is the output of BLSTM layer and is also advanced
feature of the sequence, Oc is the feature matrix of a sequence
obtained by the 3-CNN layer. A LSTM contains a forget gate
layer, an input gate layer and an output gate layer. When the
LSTM traverses each element of the input, it first determines what
information the forget gate layer is about to discard based on
the previous input. The input gate layer then determines what
information should be stored for the next layer and updates the
current state value. Finally, the output gate layer will only output
the part of our output that we determined (Pan and Shen, 2018).

2.3. Integrated Algorithm Model
In the integrated algorithmmodel, there are six machine learning
algorithms involved, which are K-nearest neighbor algorithm,
Logistic regression algorithm, Support vectormachine algorithm,
Naive Bayesian algorithm, Decision tree algorithm, and Random
forest algorithm, respectively. With the 8-D advanced feature of
the sequence as the input, we run these six different machine
learning algorithms to predict the labels, and get the best
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FIGURE 1 | A graphical illustration of the 4mcDeep-CBI model.

result. Then, the obtained probability value is combined with
the previous 8-D advanced feature vector to form a new 9-
D feature vector. Next, the 9-D feature are imported into the
integrated algorithm model for the new iteration. This process
will be repeated until performance reaches convergence. In each
iteration, the multi-dimensional input features are trained, and
the optimal algorithm is selected each time to obtain an one-
dimensional probability feature, and then the input and output
features are merged into a new feature vector which has onemore
dimension than the input and will be the new input for next
iteration. For example, it is supposed that the vectors f1, f2, . . . ,
f8 are the advanced features obtained by previous processing, and
with (f1, f2, . . . , f8) as the algorithm input, we can get the result
vector f9. Then, (f1, f2, . . . , f8, f9) will be the algorithm input of
the next iteration. If there are 5 iterations, we will get the result
(f1, f2, . . . , f8, f9, f10, f11, f12, f13) which will be the feature matrix
for the following processing. In the experiment, after less than
10 iterations, the algorithm can reach the state of convergence,
which can be shown in section 3.

2.4. Deep Learning Model
For the last part of 4mcDeep-CBI, a general neural network
model is used to get the optimal solution. The neural network has

2–4 intermediate layers, each with a different activation function.
In our experiment, we used two layers of intermediate layers, each
using the ReLU function as the activation function, and finally
used the sigmoid function as the output layer. We found that
inputting the advanced feature matrix obtained by the integrated
algorithm into the neural network model can further improve
the accuracy.

2.5. Performance Evaluation
For performance evaluation, we used the following five generally-
used metrics: Sensitivity (SN), Specificity (SP), Accuracy (ACC),
Mathew’s Correlation Coefficient (MCC) (Wei et al., 2019) and
Area Under the ROC Curve (AUC). The definition of each
evaluation metric is as follows:

SN =
TP

TP + FN
,

SP =
TN

TN + FP
,

ACC =
TP + TN

TP + TN + FN + FP
,

MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

,
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FIGURE 2 | Evaluate the performance of preliminary feature and advanced feature on the same data set.

where TP indicates that the actual result is a positive sample, and
the predicted result is also a positive sample; TN indicates that the
actual result is a negative sample, and the predicted result is also
a negative sample; FP indicates that the actual result is a negative
sample, and the predicted result is a positive sample (indicating
that the negative sample is predicted incorrectly); FN indicates
that the actual result is a positive sample, and the prediction
result is a negative sample (indicating that the positive sample
is predicted incorrectly).

The area under the ROC curve (AUC) is a comprehensive
used metric. The abscissa of the ROC curve is the false positive
rate and the ordinate is the positive rate. The AUC value is the
enclosed area value of the ROC curve and the coordinate axis,
and the value is between 0 and 1. The maximum value of AUC
is 1, which means that the performance of the model is perfect,
and all prediction results are correct. AUC value of 0 means that
the model performance is very poor, and all prediction results
are wrong.

3. RESULT AND DISCUSSION

We have done extensive experiments on the new dataset
using the proposed predictor (4mcDeep-CBI) and the state-
of-art predictor (4mcPred-IFL), respectively, then we make
a performance comparison between two models. The dataset
and code used in the experiment have been uploaded to our
GitHub (https://github.com/mat310/4mcDeep), which is shared
with other researchers. Due to limited space, part of experimental
results are listed in Supplementary Material.

3.1. Performance of Different Features
Used in Prediction
We put 8 preliminary features into the 3-CNN and BLSTM
models to obtain advanced features. Then the advanced feature
are sequentially passed through sigmoid classifier to obtain the
prediction result of the first step. We performed different types

FIGURE 3 | Acc-loss curve of AD_BKF based on 3-CNN and BLSTM models.

Where AD_BKF is a advanced feature of BKF.

of features for predictive performance analysis and compared
the experimental results of 4mcPred-IFL with 4mcDeep-CBI.
From Figure 2, we find that the predicted performance of the
four features BKF, DBPF, KNN, and RFHCP ranks in the top
four in the experimental results of both modes. In addition,
the performance metrics of the eight characteristic experimental
results have been improved in our model (The experimental
results can be found in Tables S1, S2). Figure 2 shows that
our proposed model performs better than 4mcPred-IFL in the
preliminary experimental results.

The experiment used a three-fold cross-validation. As shown
in Figure 3, this is the acc-loss curve of AD_BKF during
the preliminary experiment (acc-loss curves of other advanced
feature can be found in Figure S1). Epoch refers to the number
of times when all data were sent into the network to complete
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FIGURE 4 | Experimental result graph after using integrated algorithm.

FIGURE 5 | Performance evaluation of our predictor and the state-of-the-art

predictor on the same dataset.

one forward calculation and back propagation. As can be seen
from the figure, with the increase of epoch value, the accuracy
of the training set and verification set increased continuously,
and finally converged at epoch = 5. The loss function values of
the training set and verification set decreased continuously, and
finally converged when epoch = 5. Therefore, we can set epoch
= 5 to get the best experimental results. Figure 3 illustrates that
the prediction performance is continuously improved and there
is no over-fitting during the experiment.

3.2. Performance of the Integrated
Algorithm
In the previous section, we compared the experimental results
of different advanced features. Here, we combine the advanced
probability features obtained from the sigmoid classifier to

FIGURE 6 | ROC curves of our predictor and the state-of-the-art predictor on

the same dataset.

form a matrix with 8-D probabilistic feature. This matrix is
input into the integrated algorithm model and we get the
experimental results. To visually analyze the results, we plot
the ACC change with the increment of the feature size, which
is shown in Figure 4. In the figure, the X-axis represents the
number of iterations and the Y-axis represents the performance
in terms of accuracy. Before performing the iterative operation,
we have a matrix with 8-D probabilistic feature. As the number
of iterations increases, performance increases rapidly from the
beginning, reaching a maximum after 5 iterations when the
feature size of the matrix is 13 and ACC is 0.9274, then gradually
converge to a steady state. This suggests that the integrated
algorithm model can improve feature representation and surely
improve performance. 4mcPred-IFL adopted an iterative feature
representation algorithm, which reached the maximumwhen the
number of iterations was 30 and ACC was 0.9001, and then
gradually converges to a stable state. The details can be found
in Figure S2.

3.3. 4mcDeep-CBI vs. State-of-Art
Predictor on Performance
Our 4mcDeep-CBImodel shows the best predictive performance,
and we achieve ACC = 0.9294, MCC = 0.8498, SN = 0.9486, SP
= 0.8938, AUC = 0.9242. To further evaluate the performance
of our predictor 4mcDeep-CBI, we compared our predictor with
the state-of-art predictor: 4mcPred-IFL. The performances of
4mcDeep-CBI and 4mcPred-IFL are depicted in Figures 5, 6,
respectively. Figure 5 illustrates the performances in terms of
ACC, MCC, SN, SP, and AUC, while Figure 6 shows the ROC
curves of 4mcDeep-CBI and 4mcPred-IFL. The details of their
performances can be found in Table S3. It can be clearly seen
that 4mcDeep-CBI achieved better performance than 4mcPred-
IFL in all five metrics. Our predictor improves ACC by 3.26%.
It is worth noting that our predictor increased the MCC by
7.88%. MCC is essentially a correlation coefficient between the
actual classification and the prediction classification, and is a
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TABLE 1 | Running time of the main modules of 4mcPred-IFL and 4mcDeep-CBI.

Running_time (minute)

Sample size SVM_10 SVM_50 4mcDeep-CBI

1,000 31.3 9.2 3.1

4,000 1034.4 222.1 10.7

7,000 3123.6 698.4 19.8

10,000 6255.8 1365.6 24.5

13,000 9449.5 2173.2 35.1

16,000 15094.4 3261.3 48.2

relatively comprehensive metric. This shows that 4mcDeep-CBI
is better than 4mcPred-IFL in terms of comprehensiveness
and integrity.

The ROC curve between the different methods is shown in
Figure 6. As can be seen from the figure, the ROC curve of
4mcDeep-CBI is closer to the upper left corner, and the area
under the ROC curve is the largest, which is 4.35% larger than
that of 4mcPred-IFL. In summary, the above results illustrate
that the performance of 4mcDeep-CBI is better than 4mcPred-
IFL, and 4mcDeep-CBI can effectively improve the accuracy of
identifying 4mC sites.

3.4. 4mcDeep-CBI vs. State-of-Art
Predictor on Running Time
The running time of the main modules of 4mcPred-IFL
and 4mcDeep-CBI accounts for a large proportion in their
respective models. Among them, the main module of 4mcPred-
IFL refers to the preliminary experimental results obtained
by putting the extracted preliminary features into the SVM
model. The main module of the 4mcDeep-CBI model refers to
the preliminary experimental results obtained by putting the
extracted preliminary features into the deep learning model.
In order to explore the operational efficiency of the model,
we run the main modules of 4mcPred-IFL and 4mcDeep-CBI
separately on the same server. The preliminary feature is BKF as
an example. Experiments are carried out with different sample
sizes. The results obtained are shown in Table 1. 4mcPred-
IFL employed Sequential Forward Search (SFS) to determine
the optimal feature subset. In Table 1, “SVM_10” refers to the
distance of the SFS is 10, and “SVM_50” refers to the distance
of the SFS is 50. The smaller the distance setting, the greater
the possibility of better experimental results, and the longer the
experiment runs. In addition, when the distance range from 10
to 50, the optimal subset of features can be obtained. As we can
see in Table 1, our model runs much faster than the state-of-
art predictor. After running 16, 000 samples, 4mcDeep-CBI need
48.2 min only, but even if the distance is set to 50, 4mcPred-
IFL takes 3261.3 min to run. The running time is more than
50 times slower than us. Moreover, as the number of samples
increased, 4mcDeep-CBI grew more slowly than 4mcPred-IFL.
There are at least two reasons: (1) The efficiency of 4mcpred-
IFL using SFS method to obtain the optimal feature set is
very slow. (2) There are two important parameters (the penalty
parameter C and the kernel parameter γ ) in the SVM model

TABLE 2 | ACC of 4mcDeep-CBI with 4 CNN layers under different parameters.

nb_filter Filter_length ACC (%)

4, 8, 16, 32 4, 4, 4, 4 90.02

4, 8, 16, 32 8, 8, 8, 8 89.46

4, 8, 16, 32 16, 16, 16, 16 88.70

8, 16, 32, 64 4, 4, 4, 4 90.17

8, 16, 32, 64 8, 8, 8, 8 90.02

8, 16, 32, 64 16, 16, 16, 16 89.25

16, 32, 64, 128 4, 4, 4, 4 89.78

16, 32, 64, 128 8, 8, 8, 8 89.37

16, 32, 64, 128 16, 16, 16, 16 89.18

32, 16, 8, 4 4, 4, 4, 4 89.36

32, 16, 8, 4 8, 8, 8, 8 89.29

32, 16, 8, 4 16, 16, 16, 16 88.31

64, 32, 16, 8 4, 4, 4, 4 89.89

64, 32, 16, 8 8, 8, 8, 8 88.72

64, 32, 16, 8 16, 16, 16, 16 87.97

128, 64, 32, 16 4, 4, 4, 4 90.03

128, 64, 32, 16 8, 8, 8, 8 89.96

128, 64, 32, 16 16, 16, 16, 16 89.09

used by 4mcPred-IFL. Meanwhile, 4mcPred-IFL takes a lot of
time to call SVM algorithm over and over again to optimize
the penalty parameter C and the kernel parameter γ by using
the grid search method. Consequently, the complexity of the
4mcpred-IFL model is much higher than our proposed model.

3.5. Impact of Different CNN Layers on
4mcDeep-CBI
In the proposed model 4mcDeep-CBI, we have three CNN layers
which can efficiently extract the features from input data. In the
experiment, with the CNN layers given, we obtain the accuracy
of the 4mcDeep-CBI, and we make a performance comparison
according to different CNN layers. For feature RFHCP, Table 2
shows the experimental results of the 4mcDeep-CBI with 4
CNN layers. Parameters are set as batch_size = 32, 64, 128,
256; maxpool1D = 1, 2, 3; learning rate = 0.001, 0.005, 0.0001;
dropout ratio = 0.1, 0.2, 0.5. It can be found from Table 2

that the maximum ACC value is 90.17% when the 4mcDeep-
CBI has 4 CNN layers. Similarly, we do experiments based on
different (2, 3, 5, and 7) CNN layers. The experimental results
are shown in Figure 7. As can be seen from Figure 7, maximum
ACC value is 90.57% when the 4mcDeep-CBI has 3 CNN layers.
For other features, the experiment has the same result. Therefore,
the experiment verifies that 3-CNN layer model has the best
performance, that is why we choose 3 CNN layers in the model
design of the 4mcDeep-CBI.

4. CONCLUSION

In this paper, we propose a deep neural network named
4mcDeep-CBI, which can further boost the performance of
identifying 4mC sites. Moreover, we found a large number of
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FIGURE 7 | Impact of different CNN layers on ACC.

4mC sites and non 4mC sites of C. elegans from the latest
MethSMRT website, which greatly expanded the data set of C.
elegans. The proposed model 4mcDeep-CBI uses 3-CNN and
BLSTM modules to mine deep information of features to obtain
advanced features. By experimental comparisonwith the state-of-
art predictor, we found that our proposed framework performed
better than the state-of-art predictor, and our model did not
appear to have an over-fitting phenomenon. In addition, we
have proposed an integrated algorithm to generate informative
features. By analyzing the accuracy of the model during the
iterative process, we find that the integrated algorithm is
constantly improving the performance of the model. Finally,

we evaluated our proposed 4mcDeep-CBI with the state-of-
art predictor, and the results demonstrate that our model can
achieve better performance in identifying 4mC sites and runs
more efficiently. We hope that 4mcDeep-CBI can be an useful
bioinformatics tool for identifying 4mC sites and promoting the
DNA methylation analysis.

Deep learning is an important way of sequence analysis. For
feature selection, we can use the most popular word embedding
training method: Word2Vec algorithm, which can be combined
with the secondary structure of DNA to predict 4mC sites.
Moreover, the sequence length provided by the MethSMRT
website is 41 bp, and we need longer DNA sequence fragments,
such as 80, 100, and 150 bp to do further research.
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Interactions between genetic factors and environmental factors (EFs) play an important

role in many diseases. Many diseases result from the interaction between genetics

and EFs. The long non-coding RNA (lncRNA) is an important non-coding RNA that

regulates life processes. The ability to predict the associations between lncRNAs and

EFs is of important practical significance. However, the recent methods for predicting

lncRNA-EF associations rarely use the topological information of heterogenous biological

networks or simply treat all objects as the same type without considering the different

and subtle semantic meanings of various paths in the heterogeneous network. In

order to address this issue, a method based on the Gradient Boosting Decision

Tree (GBDT) to predict the association between lncRNAs and EFs (GBDTL2E) is

proposed in this paper. The innovation of the GBDTL2E integrates the structural

information and heterogenous networks, combines the Hetesim features and the

diffusion features based on multi-feature fusion, and uses the machine learning algorithm

GBDT to predict the association between lncRNAs and EFs based on heterogeneous

networks. The experimental results demonstrate that the proposed algorithm achieves a

high performance.

Keywords: long non-coding RNA, environmental factor, heterogenous network, HeteSim score, gradient boosting

decision tree, random walk with restart

1. INTRODUCTION

The environment factor (EF) is a biological or non-biological factor that affects a living organism.
Non-biological factors include physical factors, chemical factors, and social factors. Biological
factors include parasites and viruses. Many studies have demonstrated that Gene-Environment (G–
E) interactions play an important role in the etiology and progression ofmany complex diseases (Xu
et al., 2019). Alzheimer’s disease (AD), for example, is a disease that manifests as many intertwined
factors, including environmental factors and the like (Eid et al., 2019). Moreover, fetal death and
coronary-heart-disease (CHD) could also be caused by G–E interactions (Moreau et al., 2019).

According to the central law of molecular biology, genetic information is mainly saved in DNA
sequences. Genetic information is transcribed from DNA into RNA, which is then translated into
proteins. Genome sequence analysis shows that the protein-coding sequences account for about
2% of the human genome, and 98% are non-encoding protein sequences (Bertone et al., 2004). In
biology, RNAs that do not code are called non-coding RNAs (ncRNAs). In ncRNAs, ncRNAs with a
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length between 200 and 100,000 nt are called Long non-coding
RNAs (lncRNAs), and these play an important role in the
understanding of life sciences (Deng et al., 2018). LncRNAs
are significant in many aspects, such as in cellular biological
processes, gene expression regulation at transcriptional and post-
transcriptional levels, and others (Zhang Z. et al., 2019).

There are many studies on the biological mechanism and
interaction between genes, microRNAs (miRNAs), lncRNAs, EFs,
and diseases, such as the relationship between genes and diseases,
miRNAs and diseases, lncRNAs and diseases, miRNAs and EFs,
etc. Among them, microRNA (miRNA) is a kind of non-coding
RNA that has only about 21–25 nucleotides (Deng et al., 2019b).

For the association between genes and diseases, a data
synthesis platform based on gene variation and gene expression
was established by Luo et al.. This method applies the method
of network analysis to predict the interaction between genes and
diseases (Luo Z. et al., 2018). The recent advances in predicting
gene–disease associations have been reviewed by Opap and
Mulder (2017). An understanding of the association between
genetics and disease is an important step in understanding the
etiology of diseases. There are many other studies about the
association between genes and diseases. Due to the limitation of
space, only a few studies have been introduced here.

For the association between miRNAs and diseases, KBMF-
MDI was proposed by Lan et al. KBMF-MDI predicts the
association between miRNAs and diseases based on their
similarities to diseases (Lan et al., 2018), and this is a method
that is based on the dynamic neighborhood regularized logical
matrix factorization (DNRLMF-MDA) proposed by Yan et al.
(2017). The IMCMDA (Chen et al., 2018) was subsequently
proposed by Chen et al.. The IMCMDA is an inductive matrix
filling model. A new computational model, called heterogeneous
graph convolutional network (HGCNMDA) (Li et al., 2019),
was presented by Li et al., and another method, the double
Laplace regularization (DLRMC) matrix completion model, is
proposed by Tang et al. (2019). Those studies have proven that
the computational model could effectively predict the potential
miRNA-disease associations and provide convenience for the
verification experiment of biological researchers.

For the association between lncRNAs and diseases, a method
to predict the association between human lncRNAs and diseases
based on the randomwalk of the global network was proposed by
Gu et al. (2017). The BRWLDA proposed by Yu et al. is a method
to predict the lncRNA-disease associations based on the double
random walk of heterogeneous networks (Yu et al., 2017). A
global network-based framework named LncRDNetFlow (Zhang
J. et al., 2019) was proposed by Zhang et al. LncRDNetFlow
utilizes a flow propagation algorithm to predict lncRNA-disease
associations. The calculation method LDASR was proposed by
Guo et al. (2019). The LDASR analyzes the relationships between
known lncRNAs and diseases to identify the relationships
between lncRNAs and diseases. A bipartite graph network based
on the known lncRNA-disease associations was constructed by
Ping et al. (2018), and a bilateral sparse self-representation
(TSSR) algorithm was proposed by Ou-Yang et al. (2019) to
predict lncRNA-disease associations. A new method of lncRNA-
disease-gene tripartite mapping (TPGLDA) was proposed by

Ding et al. to predict the associations of lncRNA-disease, which
combined the associations of gene-disease and lncRNA-disease
(Ding et al., 2018). A new potential factor mixture model
(LFMMs) estimation method was constructed by Caye et al.
(2019), and the model is implemented in the updated version
of the corresponding computer program. The ILDMSF is a
novel framework that was proposed by Chen et al. (2020).
Furthermore, a method named LDAH2V (Deng et al., 2019a)
was proposed by Deng et al., and the HIN2Vec is used to
calculate the meta-path and feature for each lncRNA-disease in
the heterogeneous networks.

For the association between miRNAs and EFs, the
MiREFRWR was proposed by Chen et al., and it uses the
Random Walk with Restart algorithm in a complex network to
predict interactions (Chen, 2016). The MEI-BRWMLL (Luo H.
et al., 2018) method to reveal the relationships of miRNAs and
EFs was proposed by FLuo et al.. In this approach, multi-label
learning and double random walk are used to predict the
associations between miRNAs and EFs. These studies provide
directional guidance for the analysis of complex diseases and the
association between miRNAs and EFs in clinical trials (Chen
et al., 2012; Qiu et al., 2012).

With the application of computing technology in the field
of biology, more and more public biological databases have
also been established, such as HMDD (Huang et al., 2018),
miR2Disease (Jiang et al., 2008), DrugCombDB (Liu et al., 2020),
and gutMDisorder (Cheng et al., 2020).

The development of genomics and bioinformatics facilitated
the identification of lncRNA. LncRNA has also been found to
interact with various EFs, such as chemicals, smoking, and air
pollution (Flynn and Chang, 2014). It has been found that these
lncRNAs and EFs may be the cause of some diseases (Chen
and Yan, 2013). However, compared with protein-coding genes
and miRNAs, there are fewer methods using bioinformatics
and computational methods to study the association between
lncRNAs and EFs, and these are also less effective. Based
on the restart random walk model, the RWREFD method
and a lncRNA-EF associations database, LncEnvironmentDB,
were designed by Zhou et al. (2014). A method based on a
binary network and resource transfer algorithm to predict the
associations of lncRNA-EF was designed by Zhou and Shi (2018).
The KATZ measure and Gaussian interaction profile kernel
similarity are used to predict new potential associations between
lncRNAs and EFs, as proposed by Vural and Kaya (2018). Three
computational models for predicting the relationship between
lncRNAs and EFs using the similarity of gaussian interaction
properties of lncRNAs and EFs were proposed by Xu (2018). They
are the predictionmethods of lncRNAs and EFs association based
on the Laplacian regularized least square method, the KATZ
method, and the double random walk algorithm. The above
studies show that the computational approach can improve the
speed and reduce the cost.

However, the aforementioned studies for predicting the
association between disease-related lncRNAs and EFs usually
use traditional similarity search methods, which focus on
measuring the similarity between objects of the same type. Those
existing methods to study the association between disease-related
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lncRNAs and EFs simply treat all objects as the same type without
considering different subtle semantic meanings of different paths
in the heterogeneous network. This will reduce the accuracy
and persuasiveness of the results. In this paper, we have
proposed a high-performance method to predict the correlation
between lncRNAs and EFs based on heterogeneous networks.
The proposed method integrates the structural information and
heterogenous networks and combines the Hetesim features and
the diffusion features as data features and uses the GBDT
algorithm as a prediction model. The HeteSim features are a
path-based measurement method in heterogeneous networks
and can measure the relationship between objects of the same
or different types. The Hetesim has not been used to predict the
association between lncRNAs and EFs. It is the first time that the
Hetesim is integrated as a fusion feature in the step of feature
extraction for predicting the association between lncRNAs and
EFs. Themethod GBDT is used in the proposed algorithm, which
is an integrated learning method in machine learning, and has
superior accuracy compared with other algorithms. It is also the
first time that the integrated learning method GBDT is used to
investigate the association between lncRNAs and EFs. From our
perspective, on the one hand, our proposed method provides an
efficient calculation method for mining the association between
lncRNAs and EFs, which greatly saves manpower and material
resources. On the other hand, it also helps biologists to explore
the influence of environmental factors on diseases.

For the rest of the paper, the materials and methods have been
presented in section 2, the experimental results and evaluates
have been discussed in section 3, and, finally, we have concluded
this paper in section 4.

2. MATERIALS AND METHODS

The data used in this experiment are downloaded from the
DLREFD database (Sun et al., 2017). The data include 475
lncRNAs and 152 environmental factors. After the duplicate data
are removed, the number of correlations between lncRNAs and
EFs was 735. The set of lncRNAs and the set of EFs are shown
in Supplementary Material.

A method based on the Gradient Boosting Decision Tree
(GBDT) to predict the association between LncRNA and EFs
(GBDTL2E) has been proposed in this section. The GDDTL2E
integrates the structural information and heterogenous networks,
combines the Hetesim features and the diffusion features
based on multi-feature fusion, and uses the machine learning
algorithm GBDT to predict the association. This mainly includes
several steps: (1) according to the lncRNA-EF correlations
dataset downloaded from the public database DLREFD, after
the duplicate data are removed, the set of lncRNAs and EFs
and the association matrix A of the lncRNA-EF correlations
are obtained, respectively. Then, the gaussian interaction profile
kernel similarity of lncRNA (KL) and the gaussian interaction
profile kernel similarity of EFs (KE) are calculated, respectively.
(2) The chemical structure similarity matrix E between EFs is
calculated by using the published tool SimComp. (3) The lncRNA
similar information (KL) is transformed by the logistic function

to obtain lncRNA similarity information SL, and the chemical
structure similarity matrix E and the gaussian interaction profile
kernel similarity matrix (KE) are then used to construct a
similarity matrix SE of EFs. (4) A global heterogeneous network
is constructed by integrating the three subnets of association
matrix A, similarity matrix SL of lncRNA, and similarity matrix
SE of EFs to construct adjacency matrix G of the global
heterogeneous network. On the heterogeneous network, the
RandomWalk with Restart (RWR) algorithm is used to calculate
the diffusion score and obtain the diffusion features, and singular
value decomposition (SVD) is used to reduce the dimension
of the diffusion features. (5) The Hetesim feature (score) for
the lncRNAs-EFs pair is calculated. (6) The feature data set is
obtained by combining the diffusion feature and the HeteSim
score. The obtained combined feature is used to train the
Gradient Boosting Decision Tree (GBDT) for predicting the
relationship between lncRNAs and EFs. Figure 1 shows that the
overview of the proposed method. Each step of GBDTL2E are
described in the following section.

2.1. Calculate Gaussian Interaction Profile
Kernel Similarity
In this section, the calculation of the gaussian interaction
profile kernel similarity was presented first. The association
matrix A of lncRNAs and EFs was obtained by the known
lncRNA-EF correlations. The gaussian interaction profile kernel
similarity matrix of lncRNA and the gaussian interaction profile
kernel similarity matrix of EF were calculated. Let A(li, ej)
indicate whether the lncRNA li is associated with ej. Specifically,
A(li, ej) = 1 if there is an association between li and ej; otherwise,
A(li, ej) = 0, which is given by

A
(

li, ej
)

=

{

1 li is associated with ej
0 otherwise

(1)

The gaussian interaction profile kernel similarity matrix KL
of lncRNA was constructed. For a given lncRNA li, IP(li) is
defined as the ith row of the adjacency matrix A. Then the
gaussian interaction profile kernel similarity between lncRNA li
and lncRNA lj for each lncRNA pair is calculated, which can be
written as

KL
(

li, lj
)

= exp
(

−γl||IP
(

li
)

− IP
(

lj
)

‖2
)

(2)

γl = γ ′
l /





1

nl

nl
∑

i=1

‖ IP
(

li
)



 ‖2



 (3)

where γl is used to control the frequency band of Gaussian
interaction profile kernel similarity. It represents the normalized
frequency band of Gaussian interaction profile kernel similarity
based on the new frequency band parameter γ ′

l
. Denote nl as the

number of lncRNA. Denote KL as the gaussian interaction profile
kernel similarity matrix of lncRNA, and denote KL

(

li, lj
)

as the
gaussian interaction profile kernel similarity score of lncRNA li
and lncRNA lj.
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FIGURE 1 | Flowchart of our method: (A) Obtained the association matrix A; Calculated the gaussian interaction profile kernel similarity of lncRNA and EF respectively.

(B) Calculated the chemical structure similarity matrix E. (C) Obtained lncRNA similarity information SL and construct a similarity matrix SE of EF. (D) Integrated three

subnets A, SL, and SE to construct a global heterogeneous network. (E) Constructed the adjacency matrix G and obtain the diffusion feature. (F) Calculated the

Hetesim score. (G) Combined the diffusion feature and the HeteSim score. (H) Trained the Gradient Boosting Decision Tree classifier (GBDT).
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Similarly, the known lncRNA-EF correlations were used to
construct the gaussian interaction profile kernel similarity matrix
of EFs. For a given EF ei, IP

′(ei) is defined as the ith column of
the adjacency matrix A. KE represents the gaussian interaction
profile kernel similarity matrix of environmental factors. Denote
KE

(

ei, ej
)

as the gaussian interaction profile kernel similarity
score of EFs ei and ej, which is given by

KE
(

ei, ej
)

= exp
(

−γe||IP
′ (ei) − IP′

(

ej
)

‖2
)

(4)

γe = γ ′
e/

(

1

ne

ne
∑

i=1

‖IP′ (ei)

)

‖2

)

(5)

where γe represents normalized gaussian interaction kernel
similarity bandwidth based on the frequency width parameter γ ′

e .
Denote ne as the number of EFs.

2.2. Calculate Chemical Structure Similarity
In this section, the computation of the chemical structure
similarity has been given. The chemical structural similarity
matrix between EFs is calculated using the SimComp tool
(Hattori et al., 2010). With the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database entry number corresponding to EFs
in the DLREFD database as the parameter, the SimComp tool
is used to calculate the chemical structure similarity score. By
calling SimComp’s API, the chemical structure similarity score
E
(

ei, ej
)

of each pair of environmental factors ei and ej was
calculated. SimComp (Similar Compound) is a kind of method
based on a graph that is used to compare the chemical structure.
It has been implemented in a KEGG system to search for similar
chemical structures in a chemical structure database.

2.3. Obtain the Similarity Matrix
The structural information and heterogenous networks were
integrated in the proposed GBDTL2E. The transformed
similarity matrix SL and integrated similarity matrix calculation
SE have been described in this section. The lncRNA similarity
matrix KL was transformed by logistic function to obtain
lncRNA similar matrix SL. The similarity matrix SE of EFs was
constructed by using the chemical structure similarity matrix
E of EFs and the gaussian interaction profile kernel similarity
matrix KE of EFs, given by

SL
(

li, lj
)

=
1

1+ ec·KL(li ,lj) + v
(6)

where c = −15, v = log(9999);

SE
(

ei, ej
)

=

{

ew · E
(

ei, ej
)

+ (1− ew) · KE
(

ei, ej
)

E
(

ei, ej
)

6= 0

KE
(

ei, ej
)

otherwise
(7)

where ew is the weight of correlation information of two EFs
in SE.

2.4. Obtain Low-Dimensional Network
Diffusion Features
In this section, the association matrix A of lncRNA-EF, the
similarity matrix SL of lncRNA, and the similarity matrix SE
of EFs were integrated to construct a global heterogeneous
network. In heterogeneous networks, the Random Walk with
Restart (RWR) is used to calculate the diffusion score and
obtain the diffusion features. Due to the fact that the higher-
dimensional features in model training are more susceptible to
noise interference, the singular value decomposition (SVD) is
used to reduce the dimension of the diffusion features. The details
of each sub-steps were as follows.

2.4.1. Construct of Roaming Network
In this section, the roaming network was constructed firstly. The
adjacency matrix G of the global heterogeneous network was
obtained. The matrix G has nl + ne dimensions, where nl is the
number of lncRNA and ne is the number of EFs, respectively. G
is given by

G =

[

SL A

AT SE

]

(8)

where AT represents the transpose of A, and SL and SE are given
by (6) and (7), respectively. T is the transition probability matrix
of G, which is given by

T(i, j) =
G(i, j)

∑nl+ne
k=1 G(k, j)

(9)

where T(i, j) represents the probability of node i transferring to
node j in the global network. For any two given nodes i and j in
the wandering network, if T(i, j) is not 0, there is an edge between
them. If T(i, j) is 0, and node i has no relationship with node j.

2.4.2. Obtain the Diffusion Features Using RWR
The RWR algorithm (Liu et al., 2016) is used to obtain the
diffusion features of each node on the global network in this
section. Based on the transition probability matrix T, the
diffusion features of all nodes P =

[

Pi
]

were obtained by RWR,
where i ∈ {1, 2, . . . n}. Pi represents the diffusion features of node
i, n = nl + ne, and nl + ne is the total number of nodes in
the global heterogeneous network. Starting from a node i in the
global heterogeneous networks, each step prompted two choices:
randomly select the neighboring node or return the starting node.
The process of restarting the random walk is given by

Pit+1 = (1− r) ∗ T ∗ Pit + r ∗ Pi0 (10)

where r is the restart probability; Pit is an n-dimensional
probability distribution vector of node i, and its jth element
represents the probability of accessing node j at step t, and j ∈
{1, 2, . . . , n}. Pi0 represents the initial transition probability, which
is given by

Pi0 =

(

1

n
,
1

n
,
1

n
. . .

1

n

)

(11)

Frontiers in Genetics | www.frontiersin.org 5 April 2020 | Volume 11 | Article 272222

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Wang et al. GBDTL2E

FIGURE 2 | Example of understanding HeteSim masure. Different color circles

denote three different kinds of objects in the heterogeneous network. (A–C)

represent three different nodes in the heterogeneous network.

The initial assumption is that the transition probability value
of each node is 1/n, and n is the total number of nodes. After
several iterations, when (Pt+1 − Pt) is less than 10−10, the final
diffusion features were obtained.

2.4.3. Calculate Low-Dimensional Diffusion Features
The calculation of low-dimensional diffusion features has been
given in this section following the diffusion features obtained
by RWR. As the number of nodes increases, the diffusion state
increases in dimension as well. Singular value decomposition
(SVD) (Golub and Reinsch, 1971; Cho et al., 2015) is used
to reduce the dimension of diffusion features. The high-
dimensional diffusion feature matrix is decomposed:

P = U6VT (12)

P = U61/261/2VT (13)

where U and V represent the left singular matrix and the right
singular matrix, respectively. The U and V are units on an
orthogonal matrix, 6 only has value on the diagonal, and the
other elements are 0. We refer to these non-zero values as
singular values and order these values in 6 from largest to
smallest. Singular values can be thought of as representing values
of a matrix, or as representing information about the matrix.
The larger the singular value, the more information it represents.
Therefore, in order to reduce the computation, we only need to
take the first 50 maximum singular values, and we can basically
restore the data itself. Therefore, we take the first 50 singular
values and eigenvectors, which are given by

X = Un∗d (6d∗d)
1/2 (14)

TABLE 1 | The paths from a lncRNA to an environmental factor in our

heterogeneous network with a length of less than 5.

Id Path Meaning Length

1 LLE lncRNA-lncRNA-EF 2

2 LEE lncRNA-EF-EF 2

3 LLLE lncRNA-lncRNA-lncRNA-EF 3

4 LELE lncRNA-EF-lncRNA-EF 3

5 LLEE lncRNA-lncRNA-EF-EF 3

6 LEEE lncRNA- EF-EF-EF 3

7 LLLLE lncRNA-lncRNA-lncRNA-lncRNA-EF 4

8 LLLEE lncRNA-lncRNA-lncRNA-EF-EF 4

9 LLELE lncRNA-lncRNA-EF-lncRNA-EF 4

10 LLEEE lncRNA-lncRNA-EF-EF-EF 4

11 LELLE lncRNA-EF-lncRNA-lncRNA-EF 4

12 LELEE lncRNA-EF-lncRNA- EF-EF 4

13 LEELE lncRNA-EF-EF-lncRNA-EF 4

14 LEEEE lncRNA-EF-EF-EF-EF 4

W = (6d∗d)
1/2 (Vd∗n)

T (15)

where X is the low-dimensional node featurematrix derived from
the high-dimensional diffusion feature. Each row of matrix X is
the low-dimensional feature vector of each node in the network.
W is the low-dimensional context eigenmatrix derived from the
high-dimensional diffusion feature. Thus, we obtain the diffusion
feature X after dimensionality reduction.

2.5. Calculate the Hetesim Score
In order to obtain high performance, apart from the diffusion
feature obtained in the above section, the proposed method
combines the Hetesim features and the diffusion features based
on multi-feature fusion. Another important feature is that
HeteSim (Shi et al., 2014) is used to calculate the relevance
between objects in the heterogeneous network in this section.
HeteSim is a path-based measure. For each pair object (of the
same or different types) in the heterogeneous network, it could
obtain one single score, which means their relatedness based on
an arbitrary path. Figure 2 illustrates a HeteSim score.

As we can see from Figure 2, the number of paths from A
to C is three and the number of paths from B to C is two. The
number of paths from A to C is larger than B to C, which might
mean that A is closer to C than B. But, based on HeteSim, B is
closer to C than A to C because there are two edges for B to C,
which account for two-thirds of the edges starting fromB to other
objects. However, A only has a small part of the edges connected
with C. In our proposed method, the HeteSim is used to measure
the similarities between lncRNAs and EFs. Under the constraint
of length less than five, there are 14 different paths from lncRNA
to the EFs, as shown in Table 1.

The HeteSim score between lncRNA and EF is calculated:

Step (1): The transition probability matrix MLP from lncRNA
to EF, lncRNA to lncRNA, EF to lncRNA, and EF to
EF in global heterogeneous networks are calculated.
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The calculation formula of transfer probability matrix
MLP(i, j) is given by

MLP(i, j) =
ILP(i, j)

∑

k=1 ILP(i, k)
(16)

where L and P represent two types of objects in the
global heterogeneous network, and i and j represent
two nodes in the global heterogeneous network.
Matrix I is the incidence matrix of L and P. If both L
and P are environmental factors, matrix I is matrix SE.
If both L and P are lncRNAs, matrix I is matrix SL. If L
and P are lncRNA and EFs respectively, then matrix I
is matrix A. The four transfer probability matrices can
be obtained asMLE,MLL,MEL, andMEE respectively.

Step (2): The path = (h1, h2, · · · , hm+1) is divided into
two parts. When the path length m is even, divide
the path into pathL =

(

h1, h2, · · · , hmid

)

and
pathR =

(

hmid, h2, · · · hm+1

)

, mid = (m/2) + 1;
Otherwise, when the length of path m is odd, we need
to take mid = ((m + 1)/2) and mid = ((m + 3)/2),
respectively. Then, we can get different HeteSim scores
when taking the two mid, and the final score is the
average of the two HeteSim scores.

Step (3): The reachable probabilitymatrixRpath under pathL and
pathR is calculated. The reachable probability matrix
RpathL and RpathL are given by

RpathL = Mh1 ,h2 ,Mh2 ,h3 · · ·Mhmid−1 ,hmid
(17)

RpathR = Mhmid ,hmid+1
,Mhmid+2 ,h,id+3

· · ·Mhm−1 ,hm (18)

Step (4): The HeteSim score of path path is calculated, which is
given by:

Hetesim =
RpathL

(

Rpath−1
R

)T

∥

∥RpathL

∥

∥

2
∗

∥

∥

∥
Rpath−1

R

∥

∥

∥

2

(19)

where path−1
R is the reverse path of pathR. There are

in total 14 different paths from a lncRNA to an EF
under the constraint of length <5. So, we obtain 14-
dimensional HeteSim features for each node in the
heterogeneous networks.

2.6. Train the Gradient-Boosting Decision
Tree Classifier
After themulti-features were combined, theHetesim features and
the diffusion features were obtained. The method for training
the GBDT classifier model to predict the association between
lncRNAs and EFs based on heterogeneous networks has been
presented in this section. The 50-dimensional diffusion features
and 14-dimensional HeteSim scores were combined to get the

64-dimensional features data set. The features of the data were
used for training the Gradient Boosting Decision Tree (GBDT)
(Friedman, 2001) classifier. The classifier was used to predict the
correlation between lncRNAs and EFs.

GBDT is an effective machine learning method for
classification and regression problems. GBDT is composed
of multiple decision trees, and the final answer is obtained
via the sum of the conclusion of all trees. GBDT generates a
weak classifier in each iteration through multiple rounds of
iteration. Each classifier is trained on the basis of the gradient
(residual value) of the previous round of classifiers. The final
total classifier is obtained by weighted summation of the weak
classifier obtained in each round of training, which is the
addition model. The model training steps have been presented:

Step (1): The initialization model is given by:

20(x) =
1

2
∗ log

(

∑N
i=1 yi

∑N
i=1 1− yi

)

(20)

where N is the number of training samples, and yi is
the real label. The loss function is given by:

L
(

y,2m−1 (xi)
)

= log
(

1+ exp
(

−y2m−1 (xi)
))

(21)
where y is the real class label, and 2m (x) is the weak
model in themth round.

Step (2): Cycle m in turn, where m= 1,2,...M
A: The calculation for the negative gradient of the

loss function of the ith sample in the mth round is
given by:

rm,i = −
∂L
(

yi,2m−1 (xi)
)

∂2m−1 (xi)
=

yi
(

1+ exp
(

yi
)

2(xi)
)

(22)
where i = 1, 2, . . .N.

B: Construct themth decision tree, and then get the
corresponding leaf node area Rm,j,wherej = 1, 2, ..., J,
and the J is the number of leaf nodes in the tree.

C: For the samples in each leaf node, we calculated
the cm,j, whichminimizes the loss function, namely, the
best output value of fitting the leaf node, given by:

cm,j = argmin
c

∑

x∈Rm,j

log
(

1+ exp
(

−yi2(xi) + c
))

(23)
D: Updatemth weak model:

2m(x) = 2m−1(x)+ lr ∗

J
∑

j=1

cm,jI
(

x ∈ Rm,j

)

(24)

where I
(

x ∈ Rm,j

)

means that if x falls on a leaf node
corresponding to Rm,j, then the corresponding term is
1, and lr means learning rate.
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TABLE 2 | The experimental parameters of GBDTL2E.

Notation Value Definition

nl 475 The number of lncRNAs

ne 152 The number of EFs

n 627 The sum number of EFs and lncRNAs

γ ′
l 1 The frequency band of gaussian interaction profile

kernel similarity of lncRNA

γ ′
e 1 The frequency band of gaussian interaction profile

kernel similarity of EF

ew 0.7 The weight parameter of correlation information of

two environmental factors in SE

m 5 The length constraint in Hetesim

d 50 The dimension of the low-dimensional diffusion

features

r 0.5 The restart probability in the random walk with

restart

N 600 The number of training samples

M 10 The number of training iterations

E: Judge whether m is greater than M. If m is less
than M, then m=m+1 and jump to Step(1) for the next
iterations. Otherwise, it means that m weak learners
have been constructed, and we then jump to Step(3)
to end the training.

Step (3): Obtain the final Strong Model:

2(x) = 20(x)+ lr ∗

M
∑

m=1

J
∑

j=1

cm,jI
(

x ∈ Rm,j

)

(25)

2.7. GBDTL2E Algorithm
In this section, the proposed GBDTL2E algorithm to predict the
association between lncRNAs and EFs based on heterogeneous
networks has been described in Algorithm 1. From lines four
to nine of Algorithm 1, the low-dimensional diffusion feature
matrix X was obtained by using the random walk with restart
algorithm and singular value decomposition. In lines 10–41 of
Algorithm 1, the Hetesim score was obtained. In lines 42–58
of Algorithm 1, the training data is obtained and used to train
the GBDT classifier. Furthermore, the final classification model
is obtained.

3. RESULT AND DISCUSSION

3.1. Data Sets
We randomly selected 300 positive samples and 300 negative
samples for training the model. Positive samples were that
samples with a correlation between lncRNA and EF, while
negative samples were samples without a correlation between
lncRNA and EF. For objective performance evaluation, an
independent test set was built by randomly selecting 300 positive
samples and 300 negative samples. Note that all the positive and
negative samples in these test sets were independently chosen and
excluded from the training set.

Algorithm 1 GBDTL2E algorithm

Input: lncRNAs set, EFs set, The association matrix of the
lncRNA-EFs A;

Output: The gaussian interaction profile kernel similarity
matrices KL and KE. The chemical structural similarity
matrix, E. The similarity matrices SL and SE.

1: Construct the adjacency matrix G;
2: Initialize the global transition probability matrix T;
3: Initialize the transition probability vector for each node Pi0 =
(

1
n ,

1
n ,

1
n . . . 1

n

)

4: while Pit+1 − Pit > 10−10 do:
5: Obtain the updated probability vector:
6: Pit+1 = (1− r) ∗ T ∗ Pit + r ∗ Pi0;
7: end while

8: P = Un∗d6d∗dV
T
d∗n

9: X = Un∗d6
1/2
d∗d

10: Input L,P to caculateMLP(i, j)
11: if L ∈ EFs and P ∈ EFs then
12: MLP(i, j)=MEE(i, j) =

SEEE(i,j)
∑

k=1 SEEE(i,k)

13: end if

14: if L ∈ lncRNAs and P ∈ EFs then
15: MLP(i, j)=MLE(i, j) =

ALE(i,j)
∑

k=1 ALE(i,k)

16: end if

17: if L ∈ EFs and P ∈ lncRNAs then

18: MLP(i, j)=MEL(i, j) =
AT
EL(i,j)

∑

k=1 A
T
EL(i,k)

19: end if

20: if L ∈ lncRNAs and P ∈ lncRNAs then
21: MLP(i, j)=MLL(i, j) =

SLLL(i,j)
∑

k=1 SLLL(i,k)

22: end if

23: for n = 1 → 5 do
24: Divide the path into two parts.
25: if n%2 == 0 then
26: mid = (m/2)+ 1
27: pathL =

(

h1, h2, · · · , hmid

)

28: pathR =
(

hmid, h2, · · · hm+1

)

29: end if

30: if n%2! = 0 then
31: mid1 = ((m+ 1)/2)
32: mid2 = ((m+ 3)/2)
33: pathL1 =

(

h1, h2, · · · , hmid1

)

34: pathR1 =
(

hmid1+1, h2, · · · hm+1

)

35: pathL2 =
(

h1, · · · , hmid2

)

36: pathR2 =
(

hmid2+1, · · · hm+1

)

37: end if

38: RpathL = Mh1 ,h2 ,Mh2 ,h3 · · ·Mhmid−1 ,hmid

39: RpathL = Mh1 ,h2 ,Mh2 ,h3 · · ·Mhmid−1 ,hmid

40: Hetesim =
RpathL

(

R
path−1

R

)T

∥

∥

∥
RpathL

∥

∥

∥

2
∗

∥

∥

∥

∥

R
path−1

R

∥

∥

∥

∥

2

41: end for

42: Combined with the diffusion feature and HeteSim score to
get the data set

43: Dtrain =
{(

x1, y1
)

,
(

x2, y2
)

, . . . ,
(

xN , yN
)}

, Dtest =
{(

x1, y1
)

,
(

x2, y2
)

, . . . ,
(

xN , yN
)}
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44: Use Dtrain to train the Gradient Boosting Decision Tree
(GBDT).

45: Initialize the model as 20(x)
46: form = 1 → M do

47: for i = 1 → N do

48: Calculate loss function: L
(

y,2m−1 (xi)
)

49: Calculate the residuals: rm,i

50: end for

51: Construct themth decision tree,
52: Get the corresponding leaf node area Rm,j, j = 1, 2, ..., J
53: for J = 1 → J do
54: Calculate cm,j

55: end for

56: Update weak model: 2m(x)
57: end for

58: Get the strong model 2M(x)

3.2. Performance Measures
The 10-fold cross-validation was used to measure the
performance of the GBDTL2E. The GBDTL2E parameters
used are listed in Table 2. The detailed process of 10-fold cross-
validation has been described as: the training set was randomly
divided into 10 groups of roughly the same size subsets. Each
subset was used for validation data in turn, and the remaining
nine subsets were used for training data. This process was
repeated 10 times, and performance assessments were performed
using average performance measures of more than 10 times. The
experiment used a variety of methods to evaluate performance,
including recall (REC), F1-score, accuracy (ACC), Matthews
correlation coefficient (MCC), and the area under the receiver
operating characteristic curves (AUC). They were defined:

Recall =
TP

TP + FN
, (26)

Accuracy =
TP + TN

TP + TN + FP + FN
, (27)

F1− Score =
2× TP

2TP + FP + FN
, (28)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(29)

where TP and FP represent the numbers of correctly predicted
positive and negative samples, and FP and FN represent the
numbers of wrong predicted positive and negative samples,
respectively. The AUC score is computed by varying the cutoff
of the predicted scores from the smallest to the greatest value.

3.3. Performance Comparison With
Existing Machine Learning Methods
In this section, the proposed GBDTL2E method was compared
with the following schemes, which include the k-nearest neighbor
algorithm (KNN) (Cover and Hart, 1967), random forest

TABLE 3 | The performance comparison with other machine learning methods.

Method ACC RECALL F1-score MCC AUC

KNN 0.953 0.937 0.952 0.907 0.985

RF 0.863 0.827 0.849 0.739 0.912

SVM 0.966 0.967 0.966 0.933 0.988

GBDTL2E 0.975 0.967 0.976 0.949 0.997

(RF) (Liaw et al., 2002), and support vector machine (SVM)
(Burges, 1998). The 10-fold cross-validation was used by the
four algorithms. For the KNN classifier, five nearest neighbors
were used. The RF algorithm constructed multiple decision tree
classifiers for training on a set of randomly selected benchmark
samples to improve performance. For the SVM, we used the
radial basis function (RBF) as the kernel function to optimize the
penalty c and γ parameters. In addition, we set c and γ as 64 and
0.0001, respectively. Table 3 and Figure 3 show the predictive
performance comparison of the machine learning approach used
with other machine learning approaches. It can be seen that the
method used in the present invention had the best performance.
In order to further prove the performance of this model, we also
compared the performances of these different machine learning
methods on the independent test set. The ROC curve compared
on the independent test set is shown in Figure 4. The AUC of
GBDTL2E, KNN, RF, and SVM were 0.91, 0.82, 0.88, and 0.88,
respectively. The results show that the performance using GBDT
was better than that of other machine learning methods.

3.4. Performance Comparison With
Different Topological Features
In order to verify the performance of combined diffusion and
Hetesim features in GBDTL2E, we compared the performance by
using two separate features and combined features in this section.
Figures 5, 6 show the Performance comparison with different
topological features, In the Figure 5, we denote the “Hete+Diff,”
“Hete,” and “Diff” as the Hetesim and diffusion combined
feature, HeteSim feature, and diffusion feature, respectively. As
we can see from Figure 5, the Hetesim and diffusion combined
features achieved higher performance than the two separate
features. The results show that the combination of the two
features can improve the prediction performance. Figure 6 shows
the ROC curve comparison with different feature groups, which
is the method using GBDTL2E only with diffusion feature,
using GBDTL2E only with HeteSim feature, and GBDTL2E
with combined feature. We also used 10-fold cross validation
to verify the influence of different feature groups on the
experimental results. We can see, from Figure 6, that GBDTL2E
with combined features can obtain higher performances than
other two algorithms. The GBDTL2E with the Hetesim feature
only could obtain a better performance than the GBDTL2E with
the diffusion feature only.

3.5. Performance Comparison With
Existing Methods
In this section, the GBDTL2E algorithm was compared with the
existing methods for predicting associations between lncRNAs
and EFs. However, there were a few studies that predicted new
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FIGURE 3 | The ROC curve comparison with other machine learning methods. (A) The ROC curve with using KNN. (B) The ROC curve with using RF. (C) The ROC

curve with using SVM. (D) The ROC curve with using GBDT.

FIGURE 4 | The ROC curves comparison with other machine learning

methods on independent dataset.

potential associations between lncRNAs and EFs. Three methods
were chosen to compare with the proposed GBDTL2E method.
These were KATZ (Vural and Kaya, 2018), MPALERLS (Xu,
2018), and BIRWAPALE (Xu, 2018).

• KATZ: The KATZ method, based on the KATZ, was used
to find potential new associations between lncRNAs and

FIGURE 5 | The performance comparison of different feature groups

(Diffusion, HeteSim and combined feature).

EFs; it uses the DLREFD database as well and contains
proven associations between lncRNAs and EFs. The KATZ
and Gaussian interaction profile kernel similarity was used
to predict new potential associations between lncRNAs and
EFs. In this method, the parameters β and k are to 0.01 and
3, respectively.
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FIGURE 6 | The ROC curve comparison with different feature groups. (A) The ROC curve only with diffusion feature. (B) The ROC curve only with HeteSim feature.

(C) The ROC curve with combined feature.

• MPALERLS: The MPALERLS method used the Laplace
operator for regularization, built the cost function and
minimized it, and finally obtained the optimal classifier of
lncRNAs space and EFs space. Finally, the two optimal
classifiers were transformed into a unified classifier to calculate
the probability matrix of lncRNA-EFs association relation.
They used the classifier to calculate the probability of
lncRNA-EFs association relation and to rank the lncRNA-EF
association according to the probability score. We set the
weight of lncRNAs classifier and EFs classifier to 0.4 and
3, respectively.

• BIRWAPALE: The BIRWAPALE method is a double random
walk algorithm on heterogeneous networks. Finally, the
double randomwalk converged in the heterogeneous network,
and the probability score of lncRNAs and EFs association
relationship could be obtained. The parameters α, l, and r are
set to 1, 2, and 3.

Figure 7 shows the comparison results. The experimental
results show that the GBDTL2E algorithm can obtain a better
performance than the other three algorithms. This was for
several reasons: (1) Computing the HeteSim score of different
paths from lncRNA to EFs in the heterogenous network to
obtain the HeteSim features, and combining the HeteSim

features and diffusion features as the data feature, could make
better use of the topological characteristics of heterogeneous
networks and thus obtain better performance. (2) The GBDT
algorithm is an effective prediction model. As far as we know,
we have been the first to apply both diffusion and HeteSim
features to predict lncRNA-EFs interactions. As result show that,
combine the diffusion and HeteSim features can further improve
the performance.

3.6. Case Study
To further measure the performance of our proposed algorithm,
we investigated an environmental factor “Cisplatin,” which
is an effective chemotherapy drug for many cancers (Florea
and Büsselberg, 2011). The proven associations between
“Cisplatin” and many lncRNAs have been discovered. In
this study, we attempted to use our model to predict
the association between “Cisplatin” and lncRNA. First, all
associations between “Cisplatin” and lncRNA were deleted from
the training set.

After processed by our algorithm, we sorted the correlation
values between “Cisplatin” and ordered LncRNA from largest
to smallest. We found that all the top 10 lncRNAs were
related to “Cisplatin,” and these lncRNAs are confirmed to be
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FIGURE 7 | The Roc curve comparison with existing method. (A) The ROC curve only of KATZ. (B) The ROC curve only of MPALERLS. (C) The ROC curve of

BIRWAPALE. (D) The ROC curve of GBDTL2E.

TABLE 4 | The TOP 10 predicted lncRNAs related to cisplatin.

Number LncRNA name PubMedID

1 AK12669 23741487

2 AC015818.3 25250788

3 ABCC6P1 25250788

4 GABPB-AS1 24036268

5 CASC2 28495512

6 PSORS1C3 25250788

7 H19 28189050

8 AK125699 25250788

9 SRGAP3-AS2 25250788

10 XLOC_001406 25250788

related to “Cisplatin” in the DLREFD database. The 10 lncRNAs
and their corresponding PUBMED reference ID are shown
in Table 4.

4. CONCLUSIONS

Recent studies have shown that the interaction between lncRNA
and EF is closely related to the production of diseases. As more
andmore computational methods are used to deal with biological

problems, which can greatly save manpower, it is possible to
use computational methods to predict the interaction between
lncRNAs and EFs. In this paper, we proposed a method to
predict the association between lncRNAs and EFs. The proposed
method combined theHetesim features and the diffusion features
based on multi-feature fusion, and used the machine learning
algorithm GBDT to predict the association between lncRNAs
and EFs based on heterogeneous networks. The 10-fold cross
validation was used to evaluate our method. We also compared
our method with others. An environmental factor in the case
study was also be used to compare our performance. The results
show that the GDBTL2E can obtain high performance. In future,
adding the expression profile of lncRNAs to further improve the
performance will be investigated.
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