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Editorial on the Research Article

The Future of Nuclear Structure: Challenges and Opportunities in the Microscopic Description
of Nuclei

The past two decades have witnessed tremendous progress in the microscopic description of atomic
nuclei. Within this approach, nuclei are described in terms of nucleons interacting via realistic two-
and three-body forces, constrained to accurately reproduce a large body of data for few nucleons
systems. The goal of the nuclear theory community is to gain an accurate and predictable
understanding of how the properties of many-body systems, along with their dynamics and
structure, emerge from internucleon correlations induced by the strong interaction.

Progress in the microscopic (or, ab initio) theory has been quite notable and it has been supported
by two major pillars: First, thanks to the advent of Effective Field Theories (EFTs), we can now
systematically develop nuclear Hamiltonians that are rooted in the fundamental properties and
symmetries of the underlying theory of QCD. Second, advances in computational resources and
novel powerful algorithms allow us to solve 1) the many-nucleon problem efficiently, and 2) quantify
the degree of reliability of theoretical calculations and predictions. In many cases, microscopic
computations achieve an accuracy that is comparable or superior to the precision delivered by
current EFT interactions. This sparked a renewed interest to further broaden the focus of ab initio
theory and address open problems in nuclear physics.

While the status of the first pillar has been recently discussed by “The Long-Lasting Quest for
Nuclear Interactions: The Past, the Present and the Future” Topical Review on this Journal, here we
focus on the exciting new developments in microscopic theory. At present, ab initio computations of
nuclear structure include up to medium-mass isotopes. The heaviest systems currently
reached—with different degrees of accuracy—have mass number A ≈ 140. These computational
limits are constantly being pushed forward. At the same time, the community is expanding into new
directions, in particular toward the study of electroweak observables and nuclear reactions, that
nowadays require predictions with an accuracy never reached before for similar mass ranges.

In collecting the contributions for this Research Topic, we sought to gather contributions from
authors who could summarize the current state-of-the-art microscopic calculations in Nuclear
Theory, favoring a selected but broad view over an attempt to cover every application. All presented
contributions stem from well-established methods in computational nuclear structure, and indicate
recent theoretical advances and prospective outlooks, challenges and opportunities for Nuclear
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Theory. Most importantly, it is our hope that this collection will
confer a big picture, including references to basic material, that
will be valuable for young researches who intend to enter this
exciting discipline.

The richness of applications in modern ab initio nuclear theory
can be appreciated inHergert’s contribution that provides us with a
general overview of the most successful microscopic many-body
approaches currently in use. Traditionally, the refinement and
sophistication of these computational tools has given fundamental
support to advance the theories of nuclear forces. QuantumMonte
Carlo (QMC) techniques allow to solve the many-body
Schrödinger equation with high accuracy for light nuclei up to
masses A ∼ 16–40. Gandolfi et al. discuss the use of QMC
methods (namely, Variational, Green’s Function, and Auxiliary
Diffusion Monte Carlo methods) in combination with local chiral
interactions in coordinate space. QMC methods are used in lattice
effective field theory, where the EFT Lagrangian is implemented in
momentum space with nucleons and pions placed on a lattice. Lee
discusses the basic features of this approach and its high potential
for understanding clustering phenomena.

For heavier isotopes, ab initio theories can be pushed to masses
A ∼ 140 provided that one retains only the relevant nuclear
excitations, as it is done through all-orders resummations. Among
these methods, the self-consistent Green’s function (SCGF) theory
gives direct access to the spectral information probed by a wide
range of experiments as reviewed in detail by Somà’s
contributions. Once in the region of the nuclear chart that
corresponds to medium masses, open shell isotopes become the
next challenge to be addressed by the theory. In fact, resolving the
degeneracy in uncorrelated systems requires large scale
configuration mixing. Coraggio and Itaco demonstrate how this
can be handled by projecting the correlated many-body states into
a shell model Hamiltonian, using the so-called “Q-box”
formalism. A similar strategy is shared by other computational
frameworks, such as coupled cluster and in-medium SRG, that are
touched upon in the contribution by Hergert. A less conventional
approach to open shells is to break SU(1) symmetry (in short,
allowing for breaking particle number conservation). This is
discussed by Somà within SCGFs and by Tichai et al. in the
framework of many-body perturbation theory.

The remainder of this topical review focuses on selected open
challenges in Nuclear Theory that require an ab initio approach.

Two contributions show different aspect of studying infinite
nucleon systems and the implications for astrophysical
scenarios. Tews covers QMC calculations of the equation of
state (EoS) of dense matter in neutron stars. With the recent
observation of star mergers and the birth of multi-messenger
astronomy, it has become of prime importance to understand the
finite temperature properties of the EoS. Rios discusses this topic
and how the structure of neutronmatter depends on temperature,
using SCGF theory.

In the quest for physics beyond the Standard Model, Nuclear
Theory, and in particular accurate calculations of neutrino-
nucleus interactions at all energy scaler, plays a crucial role.
This is carefully analyzed by Rocco’s contribution that address
this challenge with emphasis on impacts to neutrino oscillations
experimental programs. The last contribution of this Topical
Review addresses one of the hardest open challenges in the
interpretation of experimental data: the lack of a truly first-
principles theory that can describe consistently both structure
and reaction processes. Rotureau highlights recent steps in
deriving an ab inito optical potential using the coupled cluster
method (that, together with SCGF, is one of the two possible
approaches to this problem).

We are really grateful to all the scientists participating in this
project and hope that the reader will enjoy this Topical Review.
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A Guided Tour of ab initio Nuclear
Many-Body Theory
Heiko Hergert*
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Over the last decade, new developments in Similarity Renormalization Group techniques

and nuclear many-body methods have dramatically increased the capabilities of ab

initio nuclear structure and reaction theory. Ground and excited-state properties can

be computed up to the tin region, and from the proton to the presumptive neutron

drip lines, providing unprecedented opportunities to confront two- plus three-nucleon

interactions from chiral Effective Field Theory with experimental data. In this contribution,

I will give a broad survey of the current status of nuclear many-body approaches, and I

will use selected results to discuss both achievements and open issues that need to be

addressed in the coming decade.

Keywords: similarity renormalization group, nuclear theory, many-body theory, ab initio nuclear structure, ab initio

nuclear reactions

1. INTRODUCTION

Over the past decade, the reach and capabilities of ab initio nuclear many-body theory have grown
exponentially. The widespread adoption of Renormalization Group (RG) techniques, in particular
the Similarity Renormalization Group (SRG) [1], and Effective Field Theory (EFT) [2–4] in the
2000s laid the foundation for these developments. Consistent two-nucleon (NN) and three-nucleon
(3N) interactions from chiral EFT were quickly established as a new “standard” inputs for a variety
of approaches, which made true multi-method benchmarks possible. The SRG equipped us with
the ability to dial the resolution scale of nuclear interactions, accelerating model-space and many-
body convergence alike. Suddenly, even (high-order) Many-Body Perturbation Theory (MBPT)
became a viable tool for rapid benchmarking [5, 6], and exact diagonalization approaches were
able to extend their reach into the lower sd-shell [7–9]. A variety of computationally efficient
techniques with controlled truncations were readied, like the Self-Consistent Green’s Function
method (SCGF) [10], the In-Medium SRG (IMSRG) [11] and Coupled Cluster (CC) [12], the
prodigal son [13, 14] who returned home after finding success in foreign lands, i.e., quantum
chemistry and solid state physics.

At the start of the last decade the race was on, and Figure 1 documents the progress that ensued.
Calculations started at closed-shell nuclei [15–19] and their vicinity before extending to semi-magic
isotopic chains with the development of the Multi-Reference IMSRG [20, 21] and Gor’kov SCGF
[22, 23] techniques, and just a couple of years later, the use of CC [24, 25] and IMSRG [26, 27]
techniques to construct valence-space interactions opened all nuclei that were amenable to Shell
Model calculations for exploration. Owing to very recent developments that extend these combined
approaches to multi-shell valence spaces, the open region between the nickel and tin isotopic chain
is poised to be filled in rapidly [28]. Development of the no-core versions of these methods has
continued as well, and made direct calculations for intrinsically deformed nuclei possible [29].
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The growing reach of ab initio many-body methods made
it possible to confront chiral NN+3N forces with a wealth of
experimental data, revealing shortcomings of those interactions
and sparking new efforts toward their improvement. There were
other surprises along the way, some good, some bad. Due to the
benchmarking capabilities and further developments in many-
body theory, we are now often able to understand the reasons
for the failure of certain calculations (see, e.g., reference [27])—
hindsight is 2020, as they say1.

The present collection of Frontiers in Physics contributions
provides us with a timely and welcome opportunity to attempt a
look back at some of the impressive results from the past decade
and the developments that brought us here, as well as a look
ahead at the challenges to come as we enter a new decade.

Let us conclude this section with a brief outline of the
main body of this work. In section 2, I will discuss the main
ingredients of modern nuclear many-body calculations: The
input interactions from chiral EFT, the application of the SRG
to process Hamiltonians and operators, and eventually a variety
of many-body methods that are used to solve the Schrödinger
equation. I will review key ideas but keep technical details to a
minimum, touching only upon aspects that will become relevant
again later on. Section 3 presents selected applications from the
past decade, and discusses both the advances they represent as
well as open issues. This will provide a starting point for section
4, which presents ideas for addressing the aforementioned issues
and highlights important directions for the next decade.

Naturally, the discussion in sections 3 and 4 is highly
subjective. While this work grew from a more restricted scope
into a rambling, albeit not random, walk through the landscape
of modern nuclear many-body theory, it still cannot encompass
the field in its entirety. The upside is that this reflects the breadth
of ideas that are being pursued by the ab initio nuclear theory
community, including those with cross-disciplinary impact, as
well as our community’s ability to attract junior researchers. The
downside is that the present work can only scratch the tip of the
iceberg of impressive results from the past decade. I hope that the
readers will use it as a jumping-off point for delving into the cited
literature, including the contributions to this volume.

2. PLAYERS ON A STAGE: ELEMENTS OF
NUCLEAR MANY-BODY THEORY

2.1. Interactions From Chiral Effective Field
Theory
Quantum Chromodynamics (QCD) is the fundamental theory
of the strong interaction between quarks and gluons. One of its
characteristic features is that the strong coupling, which governs
the strength of interaction processes, is sufficiently small to
allow perturbative expansions at high energies, but large in the
low-energy domain relevant for nuclear structure and dynamics
[30, 31]. This makes the description of all but the lightest
nuclei at the QCD level inefficient at best, and impossible at
worst. However, strongly interacting matter undergoes a phase

1This exhausts my contractually allowed contingent of 2020 vision puns, I swear.

transition that leads to the confinement of quarks in composite
hadronic particles, like nucleons and pions. These particles can
be used as the degrees of freedom for a hierarchy of EFTs that
describe the strong interaction across multiple scales.

Following Weinberg [32, 33], one can construct effective
Lagrangians that consist of interactions that are consistent with
the symmetries of QCD and organized by an expansion in
(Q/3). Here, Q is a typical momentum of the interacting
system, and 3 is the breakdown scale of the theory, which
is associated with physics that is not explicitly resolved. In
chiral EFT with explicit nucleons and pions, 3 = 3χ is
traditionally considered to be in the range 700 − 1000 MeV,
although newer analyses of observable truncation errors using
Bayesian methods favor slightly lower values [34–36]. From a
chiral EFT Lagrangian, one can then construct a systematic
low-momentum expansion of nuclear interactions, as shown in
Figure 2 (see references [2, 3, 32, 37, 39]). These interactions
consist of (multi-)pion exchanges between nucleons, indicated by
dashed lines, as well as nucleon contact interactions. The different
types of vertices are proportional to the low-energy constants
(LECs) of chiral EFT, which encode physics that is not explicitly
resolved because it involves either a high momentum scale or
excluded degrees of freedom. Eventually, one hopes to calculate
these LECs directly from the underlying QCD either through
matching or renormalization group evolution of the couplings
(see section 2.2), but at present, the LECs are fit to experimental
data [3, 4, 39–41].

The power counting scheme shown in Figure 2 yields
consistent two-, three- and higher many-nucleon interactions,
and explains their empirical hierarchy, i.e.,VNN > V3N > V4N >

. . .. Moreover, one can readily extend the chiral Lagrangian with
couplings to the electroweak sector by gauging the derivatives. In
this way, nuclear interactions and electroweak currents depend
on the same LECs, and one can use electroweak observables to
constrain their values [42–45]. Last but not least, the existence of
a power counting scheme offers inherent diagnostics for assessing
the theoretical uncertainties that result from working at a given
chiral order [34–36]. This is especially useful since issues relating
to the regularization and renormalization of these interactions
remain (see, e.g., references [2, 46–51] and section 4.4).

2.2. The Similarity Renormalization Group
Renormalization group methods are a natural companion to the
hierarchy of EFTs for the strong interaction. They provide the
means to systematically dial the resolution scales and cutoffs of
these theories, and this makes it possible, at least in principle,
to connect the different levels in our hierarchy of EFTs. The
RGs also expand the diagnostic toolkit for assessing the inherent
consistency of EFT power counting schemes, e.g., by tracing
the enhancement or suppression of specific operators, or by
identifying important missing operators.

In nuclear many-body theory, the SRG has become the
method of choice. In contrast to Wilsonian RG [52], which
is based on decimation, i.e., integrating out high-momentum
degrees of freedom, SRGs decouple low- and high-momentum
physics using continuous unitary transformations. Note that this
concept is not limited to RG applications: we can construct
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FIGURE 1 | Progress in ab initio nuclear structure calculations over the past decade. The blue arrow indicates nuclei that will become accessible with new advances

for open-shell nuclei in the very near term (see section 2.3).

transformations that adapt a many-body Hamiltonian or other
observables of interest to our needs, e.g., to extract eigenvalues
[11, 53], or impose specific structures on the operator [1, 26, 27,
54, 55].

We define the flowing Hamiltonian

H(s) = U(s)H(0)U†(s) , (1)

where H(s = 0) is the starting Hamiltonian, and the flow
parameter s parameterizes the unitary transformation. Instead of
making an ansatz for U(s), we take the derivative of Equation (1)
and obtain the operator flow equation

d

ds
H(s) = [η(s),H(s)] , (2)

where the anti-Hermitian generator η(s) is related to U(s) by

η(s) =
dU(s)

ds
U†(s) = −η†(s) . (3)

We can choose η(s) to achieve the desired transformation of the
Hamiltonian as we integrate the flow Equation (2) for s → ∞.
Wegner [56] originally proposed a class of generators of the form

η(s) ≡ [Hd(s),Hod(s)] , (4)

that is widely used in applications, although it gives rise to stiff
flow equations, and more efficient alternatives exist for specific
applications [1, 11, 53]. Wegner generators are constructed by
splitting the Hamiltonian into suitably chosen diagonal (Hd(s))
and off-diagonal (Hod(s)) parts. These labels are a legacy of
applying this generator to drive finite-dimensional matrices
toward diagonality. For our purposes, they reflect the desired
structure of the operator in the limit s → ∞: We want to keep
the diagonal part and drive Hod(s) to zero by evolving it via
Equation (2) (see references [1, 11, 53, 56, 57]).

To implement the operator flow equation (23), we need to
express η(s) and H(s) in a basis of suitable operators {Oi}i∈N,

η(s) =
∑

i

ηi(s)Oi , (5)

H(s) =
∑

i

Hi(s)Oi(s) , (6)

where ηi(s) and Hi(s) are the running couplings of the operators.
If the algebra of the operators Oi is closed naturally or with some
truncation, we have

[Oi,Oj] =
∑

k

cijkOk (+ . . .) (7)
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FIGURE 2 | Chiral two-, three-, and four nucleon forces through next-to-next-to-next-to-leading order (N3LO) (see, e.g., [2, 37, 38]). Dashed lines represent pion

exchanges between nucleons. The large solid circles, boxes and diamonds represent vertices that are proportional to low-energy constants (LECs) of the theory (see

text).

and Equation (2) becomes a system of flow equations for the
coupling coefficients:

d

ds
Hi(s) = fi(c, η(s),H(s)) , (8)

where the bold quantities collect the algebra’s structure constants
and the running couplings, respectively. From this discussion, it
is clear that the choice of the Oi can have a significant effect on
the size of the system of flow equations, as well as the quality of
any introduced truncations.

An important application of the SRG in nuclear many-body
theory is the dialing of the operators’ resolution scales. This is
achieved by using the Wegner-type generator

η(λ) = [T,H(λ)] (9)

to band-diagonalize the Hamiltonian in momentum space, and
thereby decouple low- and high-momentum physics in the
operators and eigenstates. As indicated in Equation (9) the flow

is typically re-parameterized by λ = s−1/4, which characterizes
the width of the band in momentum space and controls the
magnitude of the momentum transferred in an interaction
process. For example, |ki − kf | . λ in a two-nucleon system
[1, 58].

Nowadays, the momentum space evolution is regularly
performed for two- and three-nucleon forces [1, 59–62]. In light
of the previous discussion, it can be understood as choosing the
operator basis

B = {a†
paq, a

†
pa

†
qasar , a

†
pa

†
qa

†
r auatas, . . .}pqrstu...∈N , (10)

with creation and annihilation operators referring to
(discretized) single-particle momentum modes, and truncating
four- and higher-body terms that appear when the commutators
of the basis operators are evaluated. Since the commutator of an
M-body and an N-body operator in the basis (10) acts at least
on K = max(M,N) particles, the SRG evolution is exact for
A ≤ 3 systems under this truncation [59, 61]. It is implemented
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by working with the matrix representations of H(s) in two- and
three-nucleon systems, whose entries correspond to the coupling
constants in our chosen operator basis (cf. Equation 6). For
efficiency, an additional basis change is made to center-of-mass
and relative coordinates.

In principle, the strategy for evolving nuclear interactions
toward some form of “diagonality” could be used to determine
eigenvalues of many-body Hamiltonians, but the computational
cost for dealing either with exponentially growing matrix
representations or induced terms of high particle rank is
prohibitive. This motivates the implementation of the flow
equation with a different choice of basis operators in the In-
Medium SRG (see section 2.3.3).

2.3. Many-Body Methods
Let us now discuss commonly used many-body methods for
solving the nuclear Schrödinger equation. Roughly speaking, they
fall into two categories: configuration space methods that expand
the nuclear eigenstates on a basis of known many-body states,
or coordinate-space methods that work directly with the wave
function and optimize them in some fashion. Our goal is to
use approaches that systematically converge to an exact result,
e.g., by adding more and more particle-hole excitations of a
selected reference state to the many-body basis of a configuration
space, or by exhausting the distribution of meaningful wave
function parameters.

The discussion in the following sections will be light on
mathematical details, which can be found in more specialized
articles and reviews, including other contributions to the present
volume. The goal is to review only certain ideas that will become
relevant later on.

2.3.1. The Many-Body Problem in Configuration

Space
Let us briefly discuss the general setup of the configuration-
space approaches. We choose a single-particle basis, e.g., the
eigenstates of a harmonic oscillator, and use it to construct a
basis of Slater determinants for the many-body Hilbert space.
Usually, themany-body basis is organized by selecting a reference
state |8〉 and constructing its particle-hole excitations in order
to account for the natural energy scales of the system under
consideration. For further use, we define

|8a...
i... 〉 ≡ {a†

a . . . ai . . .} |8〉 , (11)

where particle (a, b, . . .) and hole (i, j, . . .) indices run over
unoccupied and occupied single-particle states, respectively2.
The parentheses indicate that the strings of creation and
annihilation operators are normal ordered with respect to the
reference state. They are related to the original operators by

a†
paq = {a†

paq} + Cqp , (12)

a†
pa

†
qasar = {a†

pa
†
qasar} + Crp{a

†
qas} − Csp{a

†
qar} (13)

+ Csq{a
†
par} − Crq{a

†
pas} + CrpCsq − CspCrq ,

2This labeling scheme is commonly used in chemistry [63], and it is used with
increasing frequency in nuclear physics as well.

where the indices p, q, . . . run over all single-particle states, and
the contractions are defined as

Cqp ≡ 〈8| a†
paq |8〉 = ρqp (14)

(see, e.g., references [11, 53] for more details).
Let us now consider a Hamiltonian containing up to two-body

interactions, for simplicity. In normal-ordered form, it is given by

H = E0 +
∑

pq

fpq{a
†
paq} +

1

4

∑

pqrs

Ŵpqrs{a
†
pa

†
qasar} , (15)

where E is the energy expectation value of the reference state,
while f and Ŵ are the mean-field Hamiltonian and residual
two-body interaction, respectively [11, 53]. Our task is to
solve the many-body Schrödinger equation for this Hamiltonian
to determine its eigenvalues and eigenstates, either in an
approximate fashion or by exactly diagonalizing its matrix
representation, which is shown in Figure 3A.

2.3.2. Many-Body Perturbation Theory
Many-Body Perturbation Theory (MBPT) is the simplest
configuration-space approach for capturing correlations in
interacting quantum many-body systems. It has enjoyed
widespread popularity in treatments of the many-electron system
since the early days of quantum mechanics, and it comes in
a myriad of flavors (see, e.g., reference [64] and references
therein). A major factor in its success is that the Coulomb
interaction is sufficiently weak to make perturbative treatments
feasible. Applications in nuclear physics had long been hindered
by the strong short-range repulsion and tensor interactions in
realistic nuclear forces, despite the introduction of techniques
like Brueckner’s G matrix formalism that were meant to resum
the strong correlations from these contributions [65–68]. These
issues were overcome with the introduction of the SRG evolution
to low resolution scales, which makes nuclear interactions
genuinely perturbative, albeit at the cost of inducing three-and
higher many-body interactions [1]. As a consequence, MBPT has
undergone a renaissance in nuclear physics in the past decade
[69], leading to efficient applications for the computation of
ground-state properties [5, 6, 70] and the construction of effective
Shell Model interactions and operators (see, e.g., references [71–
74], or the reviews [75, 76], and references therein). These
successes have also motivated the development of novel types of
MBPTs [69, 77, 78].

In a nutshell, MBPT assumes that the Hamiltonian can be
partitioned into a solvable part H0 and a perturbation HI ,

H = H0 +HI , (16)

which then allows an order-by-order expansion of its eigenvalues
and eigenstates in powers of HI , usually starting from a mean-
field solution. In the Rayleigh-Schrödinger formulation ofMBPT,
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A B C

FIGURE 3 | Decoupling of particle-hole excitations from a 0p0h reference state: the schematic matrix representation of the initial Hamiltonian H0 (A) and the

transformed Hamiltonians obtained from IMSRG (B) and CC (C), respectively (see text for details).

which is widely used for its convenience,

|9〉 = |8〉 +

∞
∑

n=1

(

HI

H0 − E(0)

)n

|8〉 , (17)

E = E(0) +

∞
∑

n=0

〈8|HI

(

HI

H0 − E(0)

)n

|8〉 , (18)

where E(0) is the unperturbed energy. If we assume that
the reference Slater determinant |8〉 has been variationally
optimized by solving the Hartree-Fock equations, E0 in
Equation (15) is the Hartree-Fock energy and f is diagonal. Then
we can introduce the so-called Møller-Plesset partitioning,

H0 = E0 +
∑

p

fp{a
†
pap} , HI =

1

4

∑

pqrs

Ŵpqrs{a
†
pa

†
qasar} , (19)

and note that the Slater determinants of the basis introduced in
section 2.3.1 are eigenstates of H0:

H0 |8
a...
i... 〉 = (E0 + fa + . . . − fi − . . .) |8a...

i... 〉 . (20)

The eigenvalues of H0 then become the unperturbed energies
appearing in Equations (17), (18), and the energy including
a finite number of correction terms can be evaluated
straightforwardly. For example, the ground-state energy
through second order is given by

E = E0 −
1

4

∑

abij

|Ŵabij|
2

fa + fb − fi − fj
. (21)

For a more detailed discussion, we refer to reference [69] and
references therein.

The expression (21) can serve to illustrate both advantages
and drawbacks of an MBPT treatment of nuclei. We see that
the second-order energy can be evaluated very efficiently, since

it requires a non-iterative calculation whose computational
effort scales polynomially in the single-particle basis size N,
namely as O(N4). The reason is that the construction of the
Hamiltonian matrix (Figure 3A) can be avoided. In fact, the
computational scaling is even more favorable, because we can
distinguish particle and hole states and achieveO(N2

pN
2
h
), and we

typically have Nh ∼ A ≪ Np. Although there is a proliferation
of terms with increasing order [63, 69, 79], MBPT is still
fundamentally polynomial and therefore more efficient than
an exact diagonalization, whose cost scales exponentially with
N. It is also clear from Equation (21) that the expansion of
the exact eigenvalue will break down if one (or more) of the
energy denominators become small due to (near-)degeneracies
of the unperturbed energies. Thus, MBPT works best for ground
states in systems with a strong energy gap, i.e., closed-shell
nuclei, although extensions for more complex scenarios exist (see
references [63, 68, 69] and references therein). A noteworthy
new development is BogoliubovMBPT, in which particle number
symmetry is broken and eventually restored [77, 80, 81].

As mentioned at the beginning of this section, MBPT can
be used to derive effective interactions and operators. The
primary tool for such efforts is the Q̂-box or folded-diagram
resummation of the perturbative series (see references [75, 76, 82]
and references therein).

2.3.3. In-Medium Similarity Renormalization Group
As already mentioned in our discussion of the SRG in section
2.2, we could envision applying SRG techniques not only
to preprocess the nuclear interactions, but also to compute
eigenvalues and eigenstates. For all but the lightest nuclei,
applying the SRG to the Hamiltonian matrix is hopeless, so we
work with the operators instead.

Let us again consider the matrix representation shown in
Figure 3A. We want to design a transformation that will
decouple the one-dimensional 0p0h block in the Hamiltonian
matrix, spanned by a reference state Slater determinant |8〉, from
all excitations as the flow equation (2) is integrated. The matrix
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element in this block will then be driven toward an eigenvalue (up
to truncation errors), and the unitary transformation becomes
a mapping between the reference Slater determinant and the
exact eigenstate (see below). In principle, we could use a suitably
chosen reference to target different eigenstates, e.g., by taking
references which are expected to have a large overlap with the
target state (see section 10.3 in reference [58]). In practice, we
usually target the ground state by using a Hartree-Fock Slater
determinant as our reference.

To implement the operator flow, we need to choose an
operator basis to express H(s) and the generator η(s). Instead
of using the basis (10), we switch to operators that are normal
ordered with respect to the reference state |8〉:

B =
{

{a†
paq}, {a

†
pa

†
qasar}, {a

†
pa

†
qa

†
r auatas}, . . .

}

pqrstu...∈N
. (22)

Commutators of these operators can feed into terms of lower
particle rank: For instance, a commutator of M-body and
N−body operators generates |M − N|-body through (M +

N − 1)-body operators, while the lower bound for the basis
(10) is max(M,N) (cf. section 2.2). As a result, the complexity
of the flow equations for the operators’ coupling coefficients
increases due to the appearance of additional terms that depend
on the contractions introduced in Equations (12) and (13).
These contractions translate into density matrices (or occupation
numbers)—hence the name In-Medium SRG. At the same time,
we achieve a reduction of the truncation error because only the
residual, contraction-independent parts of the operators (12) and
(13) are omitted. In the majority of applications to date, we
truncate all operators and their commutators at the two-body
level, defining the IMSRG(2) truncation scheme.More details can
be found in references [11, 53, 58, 76].

In the chosen basis we now identify the parts of the
Hamiltonian that are responsible for coupling the reference
state to 1p1h and 2p2h excitations, and define the off-diagonal
Hamiltonian (cf. 2.2) as

Hod ≡
∑

ai

fai{a
†
aai} +

1

4

∑

abij

Ŵabij{a
†
aa

†
b
ajai} +H. c. . (23)

We use this Hod to construct a generator, either using Wegner’s
ansatz (4) or an alternative choice [11, 53]. Plugging the
generator into the operator flow equation (2), we obtain a
system of flow equations for the energy E(s) and the coefficients
fpq(s),Ŵpqrs(s), . . . (cf. Equation 8 and references [11, 53, 76]).
By integrating these flow equations, we evolve the Hamiltonian
operator so that its matrix representation assumes the shape
shown in Figure 3B. We note that the suppression of Hod not
only leads to the desired ground-state decoupling, but also
eliminates the outermost band in the Hamiltonian matrix. This
simplification makes the evolved Hamiltonian an attractive input
for other approaches, e.g., configuration interaction (CI) or
equation-of-motion methods (see references [27, 29, 76, 83–86]
and discussion below).
Valence-space IMSRG. Soon after introducing the IMSRG in
nuclear physics [87], Tsukiyama, Bogner, and Schwenk proposed

the use of the IMSRG flow to derive Hamiltonians (and other
effective operators) for use in nuclear Shell Model calculations
[88]. This is achieved by partitioning the single-particle basis
into core, valence, and beyond-valence states, normal ordering
all operators with respect to a Slater determinant describing the
closed-shell core, and extending the definition of the off-diagonal
Hamiltonian (23) to include all terms that couple valence and
non-valence states. The eigenvalue problem for the evolved
Hamiltonian can then be solved in the valence space with widely
available Shell model codes [89–93]. After a study of the oxygen
isotopic chain revealed an increasing overbinding away from the
chosen core [26], we adopted a normal-ordering scheme that uses
an ensemble of Slater determinants to account for partially filled
shells in open-shell nuclei [27, 54]. This improved operator basis,
along with the valence decoupling procedure and subsequent
Shell Model diagonalization defines what is nowadays called
the valence-space IMSRG (VS-IMSRG)—see reference [76] for a
recent review.
Correlated reference states and multi-reference IMSRG.

Another important development was the extension of the
IMSRG formalism to correlated reference states, in the so-called
Multi-Reference IMSRG (MR-IMSRG) [20, 53, 58]. The unitarity
of the IMSRG transformation allows us to control to what extent
correlations are described by either the Hamiltonian or the
reference state. We can see this by considering the stationary
Schrödinger equation and applying U(s):

[

U(s)HU†(s)
]

U(s) |9k〉 = EkU(s) |9k〉 . (24)

The transformation shifts correlations from the wave
function into the evolved, RG-improved Hamiltonian
H(s) = U(s)HU†(s), and any many-body method that uses
this Hamiltonian as input now needs to describe U(s) |9k〉,
which should be less correlated than the exact eigenstate |9k〉.
In the extreme cases, U(s) = 1 and the wave function carries
all correlations, or U(s) has shifted all correlations into the
Hamiltonian and |8〉 = U(s) |9〉 is a simple Slater determinant.

Correlated reference states can be particularly useful for the
description of systems with strong static or collective correlations,
like open-shell nuclei with strong intrinsic deformation or
shape coexistence. Reference states that describe these types
of correlations efficiently, e.g., through symmetry breaking and
restoration (also see section 2.3.4), are an ideal complement to
the IMSRG transformation, which excels at capturing dynamic
correlations, involving the excitation of a few particles up to
high energies. This complementarity is schematically illustrated
in Figure 4: Collective correlations that would require as much
as an IMSRG(A) calculation in the conventional approach are
built into the reference state, and an MR-IMSRG(2) calculation
is sufficient to treat the bulk of the dynamical correlations in
the system.

Reference state correlations are built into the MR-IMSRG
framework by using a generalized normal ordering [53, 94, 95]
that is extended with contractions of higher rank, namely the
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FIGURE 4 | Schematic view of correlations in nuclei. Solid circles indicate

nucleons, transparent circles hole states, and dashed ellipses indicate

correlations between nucleons. Certain 2p2h, 3p3h and higher correlations

(indicated in blue) are built into a correlated wave function that then serves as

the reference state for an MR-IMSRG(2) calculation (capturing correlations

indicated in red), while up to an IMSRG(A) calculation would be needed for an

equivalent description in the conventional framework.

irreducible k-body density matrices λ(k):

λpq ≡ ρpq , (25)

λpqrs ≡ ρpqrs − ρprρqs + ρqrρps , (26)

etc. The irreducible densities matrices encode the correlation
content of an arbitrary reference state |8〉, hence they vanish
for Slater determinants. While the basis of normal-ordered
operators superficially is the same as in the conventional
IMSRG, shown in Equation (22), the inclusion of the irreducible
densities (cf. Equations 12 and 13) equips the basis with the
capability to describe the correlations that are present in the
reference state, which in turn should help to reduce MR-IMSRG
truncation errors. To understand this, let us assume that we
know the ground state of our system, and we normal order the
Hamiltonian with respect to this correlated state. Then the zero-
body part of the normal ordered Hamiltonian already is the
exact ground-state energy, and the normal-ordered one-, two-,
and higher-body parts do not matter at all for our result, and
neither does their evolution under an exact or truncated MR-
IMSRG flow. Thus, the better the reference state matches the
ground state, the less work the MR-IMSRG evolution and any
subsequent many-body method have to do to obtain the correct
ground-state energy.
Computational scaling and Magnus expansion. The
computational scaling of all three IMSRG flavors discussed
here—traditional, VS-IMSRG, and MR-IMSRG—is governed
by the truncation scheme. If we truncate operators and
commutators at the two-body level, as briefly mentioned
above, the number of flow equations scales as O(N4) with the
single-particle basis size N, and the computational effort for
evaluating the right-hand sides as O(N6). This holds despite
the greater complexity of the MR-IMSRG flow equations, which
contain terms containing irreducible two- and higher-body
density matrices.

Any observables of interest must, in principle, be evolved
alongside the Hamiltonian for consistency, which would create

a significant overhead. In practice, we can address this issue by
using the so-called Magnus formulation of the IMSRG [58, 76,
83, 96]: Assuming that the IMSRG transformation can be written
as an explicit exponential, U(s) = exp�(s), we can solve a single
set of flow equations for the anti-Hermitian operator�(s) instead
of evolving observables separately. All operators of interest can
then be computed by applying the Baker-Campbell-Hausdorff
expansion to O(s) = exp[�(s)]O exp[−�(s)].
IMSRG hybrid methods. As noted earlier in this section, the
conventional IMSRG evolution makes the matrix representation
of the Hamiltonian more diagonal by suppressing couplings
between the npnh excitations of the reference state. This implies a
decoupling of energy scales of the many-body system, analogous
to the decoupling of momentum scales by the free-space SRG,
although there are differences in detail that are associated with
the operator bases in which the flow is expressed (cf. Equations 10
and 22).

From this realization, it is not a big step to consider using the
IMSRG to construct RG-improved Hamiltonians for applications
in other methods, defining novel hybrid approaches. In fact, even
the original IMSRG formulation can be understood from this
perspective: The evolution generates a Hamiltonian that yields
the exact ground-state energy (up to truncations) in a Hartree-
Fock calculation, except the HF equations are automatically
satisfied for the evolved H, and we can read off the ground-state
energy directly. The same Hamiltonian can then be used as input
for EOM methods to compute excitation spectra [83]. Likewise,
the VS-IMSRG produces an RG-improved Hamiltonian that
serves as input for a Shell Model diagonalization.

Applying the same logic as in the VS-IMSRG case, the
IMSRG has been merged with the No-Core Shell Model
(NCSM, see section 2.3.6) into the In-Medium NCSM [84,
97]. In this approach, the IMSRG improves the Hamiltonian
with dynamical correlations from high-energy few-nucleon
excitations that would require enormously large model spaces
in the conventional NCSM, and the exact diagonalization in
a small model space describes the dynamics of many-nucleon
excitations. The NCSM as the “host” method is rooted in the
same particle-hole expansion picture as the IMSRG itself, but
this is not a requirement. Another new hybrid method is the In-
Medium Generator Coordinate Method (IM-GCM), which relies
on the GCM as a host method to capture collective correlations
[29, 85, 86]. In this approach, a many-body basis is generated
by restoring the symmetries of mean field solutions with various
types of shape and gauge configuration constraints, which is very
different from the particle-hole excitation basis discussed so far.

2.3.4. Coupled Cluster Methods
The Coupled Cluster (CC) method [12, 63] is an older cousin of
the IMSRG approach. It can also be understood as a decoupling
transformation of the Hamiltonian, but in contrast to the
IMSRG, it relies on a non-unitary similarity transformation
(see Figure 3). Traditionally, CC is motivated by an exponential
ansatz for the exact wave function of a system,

|9CC〉 = eT |8〉 , (27)
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where |8〉 is a reference Slater determinant, and T is
the so-called cluster operator. This operator is expanded on
particle-hole excitations,

T =
∑

ph

tai{a
†
aai} +

1

4

∑

abij

tabij{a
†
aa

†
b
ajai} + . . . , (28)

with the cluster amplitudes tai, tabij, . . .. In practical applications,
the T is truncated to include up to 2p2h (CC with Singles and
Doubles, or CCSD) or 3p3h terms (CCSDT, including Triples).
Various schemes exist for iteratively or non-iteratively including
subsets of Triples [12, 63, 98–100]. When it acts on the reference
state |8〉, eT admixes arbitrary powers of few-particle, few-hole
excitations. Note, however, that the cluster operator T is not anti-
Hermitian because it lacks de-excitation operators, and therefore
eT is not unitary.

The cluster amplitudes are determined by demanding that the
transformed Hamiltonian,

HCC ≡ e−THeT , (29)

does not couple the reference to 1p1h and 2p2h states
(see Figure 3). Using notation introduced in section 2.3.1,
the decoupling conditions lead to the following system of
non-linear equations:

〈8| e−THeT |8〉 = ECC , (30)

〈8a
i | e

−THeT |8〉 = 0 , (31)

〈8ab
ij | e

−THeT |8〉 = 0 . (32)

Here, ECC is the CC ground-state energy, which corresponds
to the one-dimensional block in the upper left of Figure 3C

and is analogous to the zero-body part of the IMSRG-evolved
Hamiltonian, as discussed in the previous section. The other
blocks in the first column of the matrix vanish because of the CC
Equations (30)–(32).

Since the CC transformation is non-unitary, one needs
to be careful when one evaluates observables using the
CC wave function, or uses HCC as input for equation-
of-motion calculations or other applications [12, 63]. For
instance, the non-Hermiticity of HCC forces us to consider
left and right eigenstates separately. This is a drawback
compared to unitary transformation methods like the
IMSRG. Coupled Cluster also has advantages, though: For
instance, the Baker-Campbell-Hausdorff expansion appearing
in Equations (30)–(32) automatically terminates at finite order
because the cluster operator only contains excitation operators.
For the same reason, Equation (31) will automatically solve
the Hartree-Fock equations, so any Slater determinant is
equally well-suited as a reference state, while MBPT, IMSRG,
and even exact diagonalization approaches exhibit (some)
reference-state dependence.
Symmetry breaking and collective correlations. While most
applications of CC theory in nuclear physics have enforced and
exploited spherical symmetry, the capabilities for performing
M-scheme calculations that allow nuclei to develop intrinsic

deformation have existed for more than a decade. This is a
more natural approach for capturing collective correlations than
the construction of Triples, Quadruples (4p4h), and ever higher
particle-hole excitations of a spherical reference (cf. section
2.3.3). Converging such calculations is challenging because the
single-particle basis typically grows by an order of magnitude
or more, and the broken symmetries must eventually be
restored. The formalism for symmetry restoration in CC has
been developed in references [101–104]. In fact, the work of
Duguet et al. forms the basis of recent works on symmetry
breaking and restoration in MBPT [77, 80, 81]. Applications are
currently underway.
Shell-model CC. Like the IMSRG, the CC framework can be used
to construct effective interactions and operators for Shell model
calculations. Initial work in that direction applied Hilbert space
projection techniques (cf. section 2.3.6) to construct a so-called
CC effective interaction (CCEI) [24, 105], but the construction of
the model spaces via Equation-of-Motion CC methods proved
to be computationally expensive. The CCEI approach is now
superseded by the Shell Model CC method [25], which applies
a second similarity transformation to HCC in Fock space, similar
to VS-IMSRG decoupling (cf. section 2.3.3).
Unitary CC. While almost all applications of CC in nuclear
physics use the traditional ansatz (27), unitary CC (UCC)
approaches that parameterize the wave function as |9UCC〉 =

eT−T†
|8〉 have been used in numerous studies in quantum

chemistry (see, e.g., [106, 107]). Unitary CC wave functions
have also become a popular ansatz for the Variational Quantum
Eigensolver (VQE) algorithm on current and near-term quantum
devices [108, 109]. It is also worth noting that the recently revived
Unitary Model Operator Approach (UMOA) is closely related to
UCC [110, 111].

2.3.5. Self-Consistent Green’s Functions
Self-Consistent Green’s Function (SCGF) theory is another
prominent approach for solving the nuclear many-body
problem with systematic approximations [112–115]. The Green’s
Functions in question are correlation functions of the form

gpq...rs ≡ 〈9A
0 | T [ap(tp)aq(tq) . . . a

†
s (ts)a

†
r (tr)] |9

A
0 〉 , (33)

which describe the propagation of nucleons in the exact ground
state |9A

0 〉 of the system. UsingWick’s theorem, the exactA-body
propagator (33) can be factorized into products of irreducible
one-, two-, etc. propagators, similar to the decomposition of
density matrices briefly touched upon in section 2.3.3. One can
then formulate coupled equations of motion for propagators, and
introduce truncations to obtain polynomially scaling methods,
again somewhat analogous to IMSRG and CC. We must remain
aware that the propagators of SCGF, the induced operators of
IMSRG, and the CC amplitudes are all different objects, and
while their definitions may make the seem complementary to
each other, there are subtle distinctions. One of these is that
the g(k) are formally defined with respect to the exact wave
function, while IMSRG and CC use definitions with respect to a
reference state.
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Practical implementations of the SCGF technique usually
work with the Fourier transforms of the propagators to the energy
domain. One needs to solve integral equations of motion of
the form

g = g0 + g06g , (34)

where g0 is the propagator of the non-interacting system and
6 a kernel that encodes the particles’ interactions, which is
constructed using diagrammatic techniques. For example, the
one-body propagator is obtained by solving

gpq(ω) = g
(0)
pq (ω)+

∑

rs

g
(0)
pr 6rs(ω)gsq , (35)

the so-called Dyson equation. From this propagator, one can
compute the one-body density matrix

ρpq = 〈9A
0 | a

†
qap |9

A
0 〉 =

∫

C+

dω

2π i
gpq(ω) , (36)

where C+ indicates an integration contour in the complex upper
half plane. Higher-body density matrices are connected to the
corresponding higher-body propagators in analogous fashion.
Using the density matrices, one can then evaluate any operator
expectation values of interest. For more details, we refer to the
contributions [10, 115] to the present volume, and the works
cited therein.

Current applications of SCGF techniques in nuclear physics
make use of the so-called Algebraic Diagrammatic Construction
(ADC) scheme, with increasing orders, denoted by ADC(n),
converging to an exact solution. For closed-shell nuclei,
calculations up to ADC(3) are be performed regularly, which
contain correlations that are roughly comparable to IMSRG(2)
with a perturbative 3p3h correction (see section 2.3.3 and
references [83, 86, 116]) and CCSD(T) (cf. section 2.3.4). Somà
and collaborators have extended the ADC scheme to open-
shell nuclei by using Gor’kov Green’s Functions with explicitly
broken particle number symmetry [117, 118]. Applications of
this framework have used a self-consistent second-order scheme,
denoted Gor’kov-ADC(2), and the extension to Gor’kov-ADC(3)
as well the integration of particle-number projection to restore
the broken number symmetry are in progress [80, 114].

While the computation of the Green’s Functions tends to be a
more involved task than solving the IMSRG flow equations or CC
amplitude equations, the propagator contains more information
from a single computation than these other methods. For
instance, one can immediately extract spectral information about
the neighboring nuclei and the response of the system [119,
120], which requires the application of additional techniques
in the IMSRG [83] and CC approaches [12, 121, 122], or,
indeed, the computation of the Green’s Function using similarity-
transformed operators. Furthermore, the kernels of the equations
of motion (34) are energy-dependent effective interactions that
govern the dynamics of (few-)nucleon-nucleus interactions. For
example, the one-nucleon self-energy in Equation (35) is an ab
initio version of an optical potential, as used in reaction theory
[123–125]. We will return to this discussion in section 4.5.

2.3.6. Configuration Interaction Approaches
No-core configuration interaction methods. The most
straightforward but also most computationally expensive
approach to solving the many-body Schrödinger equation is to
exactly diagonalize the Hamiltonian in a basis of many-body
states. In general, we refer to such approaches as No-Core
Configuration Interaction (NCCI). “No core” makes it explicitly
clear that all nucleons are treated as active degrees of freedom, in
contrast to the nuclear Shell model discussed below.

In light nuclei, the exact diagonalization can be directly
formulated in Jacobi coordinates, using translationally invariant
harmonic oscillator [126] or hyperspherical harmonic wave
functions [127, 128]. Since the construction of the basis states
themselves and the matrix representation of the Hamiltonian
becomes increasingly complicated and computationally
expensive as the particle number grows, one eventually has to
switch to Slater determinants in the laboratory system, using a
construction along the lines discussed in section 2.3.1.

A common choice for the single-particle basis in the
laboratory system are spherical harmonic oscillator (SHO) states,
because they allow an exact separation of center-of-mass and
intrinsic degrees of freedom provided one uses an energy-based
truncation for the model space [129, 130]. These choices define
what we specifically call the No-Core Shell Model (NCSM). A
disadvantage of using SHO orbitals is that they are not optimized
to the energy scales of specific nuclei, and they are poorly suited
for describing physical features like extended exponential wave
function tails. Other popular choices are Hartree-Fock single-
particle states, and perturbatively [131] or non-perturbatively
enhanced natural orbitals [132–134]. Model spaces built on
these bases no longer guarantee the separation of center-of-
mass and intrinsic coordinates, but fortunately, center-of-mass
contaminations either remain small automatically [135], or they
can be suppressed using techniques like the Lawson method
[136].
Importance truncation and symmetry adaptation. As indicated
above, themain issue with exact diagonalization approaches is the
exponential (or greater) growth of the Hilbert space dimension,
which is proportional to

(N
A

)

with single particle basis size N and
particle number A. A variety of strategies can be used to address
this often-quoted “explosion” of the basis size. One direction is to
avoid the construction of the full model space basis by applying
importance-based truncation or sampling methods, leading to
the Importance-TruncatedNCSM [9] orMonte-Carlo (No-Core)
CI approaches [137, 138].

Another important research program is the exploration of
many-body states that are constructed from the irreducible
representations (irreps) of the symplectic group Sp(3,R), which
describes an approximate emergent symmetry of finite nuclei
[139, 140]. An exact diagonalization in such a symmetry-adapted
basis will offer a much more efficient description of nuclear
states with intrinsic deformation than the conventional NCSM,
which would need to use massive model spaces with many-
particle-many-hole excitations. This reduction of the model
space dimensions also allows such symmetry-adapted NCSM
[139, 140] and NCCI approaches [141] to reach heavier nuclei
than the conventional versions.

Frontiers in Physics | www.frontiersin.org 10 October 2020 | Volume 8 | Article 37915

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Hergert Ab initio Nuclear Many-Body Theory

Interacting nuclear shell model with a core (valence CI). Instead
of treating all of the nucleons as active, one can also factorize
the nuclear wave function by introducing an inert core and only
treat the interactions of a smaller number of valence nucleons via
appropriately transformed interactions:

|9〉 = |9〉core ⊗ |9〉valence . (37)

This, of course, is the traditional nuclear Shell model approach.
Even with the substantial reduction of the single-particle basis
to a relatively small number of valence orbitals, the numerical
cost for an exact diagonalization quickly becomes unfeasible for
many medium-mass and heavy nuclei, especially if one needs
multi-shell valence-spaces to capture complex nuclear structure
features like coexisting intrinsic shapes.

In previous sections, we have discussed how a variety of many-
body methods can be used to derive valence-space interactions,
hence it is not a surprise that this is possible in NCCI
approaches as well. One strategy is to project solutions of no-
core calculations for the core and its neighboring nuclei onto a
valence-configuration space to extract the effective Hamiltonian.
The viability of this approach has been demonstrated in several
publications [142–145], although there are ambiguities in the
extraction of the valence-space Hamiltonian, and the initial
NCCI calculations that serve as input for the projection rapidly
become expensive.
Description of continuum effects and nuclear dynamics. An
important breakthrough in ab initio calculations for light nuclei
has been the merging of the NCSM with resonating group
method (RGM) techniques [130, 146]. This makes it possible
to describe clustered states as well as reactions between light
projectile(s) and targets. In the original NCSM/RGM approach,
compact clusters of nucleons are described by NCSM states,
which are then used to construct a basis of configurations |χi〉

that place such clusters at different relative distances. In this basis,
one can then solve the generalized eigenvalue problem, known as
the Griffin-Hill-Wheeler equation [147] in the RGM context:

H |9〉 = EN |9〉 , (38)

whereH andN are the so-called Hamiltonian and norm kernels.
The latter appears because the chosen basis configurations are
not orthogonal in general. The dimension of Equation (38)
is typically small, certainly compared to the NCSM model
space, but the computation of the kernels is computationally
expensive since it relies on the construction of up to three-body
transition density matrices. In recent years, the NCSM/RGM has
been extended to the NCSM with Continuum (NCSMC), which
accounts for the coupling between the NCSM and RGM sectors
of the many-body basis [130]. It requires solving the generalized
eigenvalue problem

(

h h̄

h̄ H

) (

8

χ

)

= E

(

1 n̄
n̄ N

) (

8

χ

)

, (39)

where h and1 are theHamiltonian and norm kernel in theNCSM
sector (the latter being diagonal), H and N the corresponding

kernels in the RGM sector (cf. Equation 38), and h̄ and n̄ encode
the coupling between the sectors of the basis.

Alternative approaches to the description of continuum effects
in the NCSM are the Single-State HORSE (Harmonic Oscillator
Representation of Scattering Equations) method [148–150], for
which the nomen is omen, as well as the No-Core Gamow
Shell Model (GSM), a no-core CI approach that constructs
Slater determinants from a single-particle Berggren basis [151]
consisting of bound, resonant and scattering states [152–155].

2.3.7. Quantum Monte Carlo
The most commonly used Quantum Monte Carlo (QMC)
techniques in nuclear physics make use of many-body wave
functions in coordinate space representation [156–159]. As such,
they are well-suited for the description of nuclear states with
complex intrinsic structures, and they can readily use interactions
with a high momentum cutoff, as opposed to the configuration
space methods which would exhibit poor convergence in such
cases. This allows QMC calculations to explore physics across
the interfaces of the hierarchy of EFTs for the strong interaction
(cf. sections 2.1 and 4.4), e.g., for processes that explore energies
approaching the breakdown scale of chiral EFT [160–163].

A typical ansatz for a QMC trial state is

|8T〉 ≡ F(a) |8(b)〉 , (40)

where F(a) is an operator that explicitly imprints correlations
on the mean-field like state |8(b)〉, and a, b are vectors of
tunable parameters. The first step of most QMC calculations is
a variational minimization of the energy in the trial state ,

min
a,b

〈8T |H |8T〉

〈8T |8T〉
≥ E0 , (41)

followed by an imaginary-time evolution to project out the true
ground state in a quasi-exact fashion:

|90〉 ∝ lim
τ→∞

e−(H−ET )τ |8T〉 . (42)

This projection can be implemented using Monte Carlo
techniques in a variety of ways, which gives rise to different
approaches like Green’s Function Monte Carlo (GFMC) or
Auxiliary-Field Diffusion Monte Carlo (AFDMC) [156, 158].

A major challenge in QMC calculations is that most
commonly used algorithms suffer from some form of sign
problem [156, 158]. Many quantities of interest like the wave
functions or local operator expectation values in these wave
functions are not positive definite across their entire domain,
which means that they cannot be immediately interpreted as
probability distributions that the algorithms sample. This is one
of the main reasons why QMC methods can only be used with
Hamiltonians that are either completely local, or have a non-
locality that is at most quadratic in the momenta, e.g., p2 or l2.

While QMC applications in ab initio nuclear structure have
been focused on coordinate space, there are a wide variety of
approaches that merge QMC techniques with the configuration
space approaches discussed in previous sections. Examples
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include sampling the intermediate-state summations in MBPT
[164], diagrammatic expansions [165–167], or the coefficients of
correlated CC [168] or (No-Core) CI wave functions [137, 138,
169–171].

2.3.8. Lattice Effective Field Theory
Lattice methods are nowadays widely used to simulate the
dynamics of non-perturbative field theories on finite space-
time lattices. The most prominent example is Lattice QCD,
but implementations of various Effective Field Theories
on the Lattice have been developed and applied with
impressive outcomes in the past two decades—see, for example,
references [172–175] and references therein, which also provide
pedagogical introductions to Lattice EFT for nuclear systems.

Lattice EFT simulations are built around the partition
function, which is defined for a pure state |9〉 as

Z(τ ) = 〈9(τ = 0)| exp (−Hτ) |9(τ = 0)〉 . (43)

Here, H is an EFT Hamiltonian, typically truncated at a given
order of the EFT’s power counting scheme. In practice, the
partition function is evaluated as a path integral in which field
configurations are sampled using Monte Carlo techniques. At
large τ , one can extract information about the ground state and
low-lying excited states of the system directly from Z (cf. section
2.3.7), and general expectation values can be evaluated using

〈O〉τ =
1

Z(τ )
〈90| exp(−Hτ/2)O exp(−Hτ/2) |90〉 . (44)

The use of discretized spatial lattices makes Lattice EFT
particularly suited for the description of nuclear states with
complex geometries like cluster structures [176–178]. Depending
on the size of the lattices, it will also typically require less
computational effort than the imaginary-time evolution of states
that are formulated in continuum coordinates, as in AFDMC or
GFMC (see section 2.3.7). Moreover, the development of the so-
called adiabatic projection method (APM) [179, 180] in recent
years hasmade it possible to compute scattering cross sections for
reactions of (light) clusters on the lattice. Conceptually, the APM
is reminiscent of the resonating-group method used to describe
reactions in the NCSMC framework discussed in section 2.3.6.

Of course, Lattice EFT is not free of disadvantages, which
are usually caused by the discretization of space(time). The
finite size and lattice spacing are related to infrared (long-range,
low-momentum) and ultraviolet (short-range, high-momentum)
cutoffs of a calculation, which need to be carefully considered.
Since the recognition of cutoff scales is an inherent aspect of
EFTs, one can systematically correct for these effects [181, 182].
The discrete lattice also breaks continuous spatial symmetries
that may need to be restored approximately or exactly before
comparisons with experimental data are made [172, 182].

3. THE PAST IS PROLOGUE:
ACHIEVEMENTS IN THE LAST DECADE

In this section, I will discuss selected achievements of the ab
initio nuclear many-body community in the past decade, and

the issues that were encountered in the process. As stated in the
introduction, this selection is subjective, and giving full justice
to the breadth of research accomplishments is beyond the scope
of this work. I hope that the present discussion will serve as an
invitation for further exploration, for which the cited literature
may serve as a useful starting point.

3.1. Benchmarking Nuclear Forces
One of the biggest issues in nuclear theory was the lack
of comparability between different approaches for describing
the structure of medium-mass or heavy nuclei. These nuclei
were well in reach of the Shell Model and nuclear Density
Functional Theory (DFT), but whenever issues emerged, it was
unclear whether they resulted from approximations in the many-
body method, or deficiencies in the effective interactions, i.e.,
the valence-space Hamiltonians or energy density functionals
(EDF). Moreover, one cannot simply perform a valence CI
calculation with an EDF, or a DFT calculation with a Shell Model
interaction, because the interactions are tailored to their specific
many-body method.

The development of the RG/EFT and many-body methods
discussed in section 2 has opened up a new era for benchmarking
the same nuclear interactions across multiple approaches, and on
top of that, these methods provide a systematic framework for
analyzing, and eventually quantifying, the reasons for differences
between the obtained results.

One of the earliest testing grounds for ab initio calculations of
medium-mass nuclei was the oxygen isotopic chain, which was
accessible to all of the approaches that emerged at the beginning
of the past decade. Figure 5 shows the ground-state energies of
even oxygen isotopes for the same chiral NN+3N interaction,
obtained with several of the configuration space approaches
introduced in section 2.3. In addition, results for applying various
types of MBPT to the same interaction and nuclei are presented
in reference [69]—I only refrained from including them here
to avoid overloading the figure. As we can see, the ground-
state energies obtained from the different approaches are in
good agreement with each other and with experiment. Since
our results include quasi-exact IT-NCSM values, the deviation
of the other methods’ energies from these values provide us
with an estimate of the theoretical uncertainties due to any
employed truncations, which is on the order of 1–2%. As we
can see from Figure 5, essentially all of the used many-body
methods place the drip line in the oxygen isotopic chain at 24O,
although the signal is exaggerated. Continuum effects that have
been omitted in these calculations would lower the energy of the
26O resonance, which is experimentally constrained to be a mere
18(7) keV above the two-neutron threshold [185], and produce a
very flat trend in the energies toward 28O. Similar features were
found in calculations for other isotopic chains and other chiral
interactions [21, 114, 118, 186]. The 16O ground state energies
obtained for the employed chiral NN+3N Hamiltonian are also
compatible with a Lattice EFT result that was obtained at a similar
resolution scale [177].

This last comparison shows that some obstacles to the ideal
cross-validation scenario still remain. Since coordinate-space
approaches like Lattice EFT or QMC are truly complementary
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FIGURE 5 | Ground-state energies of the oxygen isotopes for various many-body approaches, using the chiral NN+3N(400) interaction at λ = 1.88 fm−1 [183]. Details

on the Lattice EFT calculation can be found in reference [177]. Gray bars indicate experimental data [184].

to configuration-space methods, it would be highly desirable
to test the same chiral NN+3N Hamiltonians in both types of
calculations. However, the Hamiltonians used in configuration
space are typically given in terms of harmonic oscillator matrix
elements (especially if SRG evolved) instead of the coordinate-
space operators required by Lattice EFT or QMC calculations.
Furthermore, Lattice EFT and QMC cannot handle all possible
types of non-locality in the Hamiltonian (cf. section 2.3.7),
including the forms generated by the non-local regulators that
are favored for configuration-space Hamiltonians. Conversely,
local chiral interactions that have been constructed explicitly for
QMC applications [4, 158, 187–190] exhibit slow model-space
convergence in configuration-space calculations because they still
tend to require a significant repulsive core at short distance to
describe nucleon-nucleon scattering data, albeit a far weaker one
than interactions like Argonne V18 [191].

3.2. Extending the Reach of ab initio Theory
The reach of ab initio many-body theory has increased
dramatically over the past decade. Figure 1 illustrates this
growing coverage of the nuclear chart, but it tells only part of
the story. The expansion has happened in many “dimensions”
besides the mass number A, namely by pushing toward exotic
nuclei via improved treatments of the continuum degrees of
freedom, filling in gaps in the coverage that are occupied by
doubly open-shell nuclei with strong intrinsic deformation, and
expanding the types of observables that can be computed from
first principles. Recalling section 3.1, the ongoing push against
the limitations of our many-body approaches will continue to
grow the opportunities for benchmarking current- and next-
generation chiral Hamiltonians.

3.2.1. Pushing the Mass Boundaries
First calculations for selected nuclei and semi-magic isotopic
chains up to tin were already published in the first half of the
last decade [19, 21, 23]. For the most part, they were using a

family of chiral NN+3N interactions that gave a good description
of the oxygen ground-state energies (cf. Figure 5) as well as
the spectroscopy of the lower sd-shell region [24, 26]. However,
the same interactions underpredict nuclear charge radii [192],
and start to overbind as we approached the calcium chain
(cf. Figure 7), eventually leading to an overbinding of 1 MeV per
nucleon in tin. While model-space convergence in CC, IMSRG
and SCGF calculations suggested that calculations for heavier
nuclei would have been technically possible, it made little sense
to pursue them.

The growing number of results for medium-mass nuclei and
the problems they revealed motivated a new wave of efforts
to refine chiral interactions. One direction of research aimed
to achieve a simultaneous description of nuclear energies and
radii up to 48Ca by including selected many-body data in the
optimization protocol of the chiral LECs. This work resulted
in the so-called NNLOsat interaction [194]. While NNLOsat

definitely improved radii [195], its model-space convergence was
found to become problematically slow already in lower pf -shell
nuclei [114, 196, 197].

Simultaneously with the efforts to develop new interactions,
attention also turned toward an older, less consistently
constructed family of chiral NN+3N interactions that exhibited
reasonable saturation properties in nuclear matter calculations
[198, 199]. These forces are referred to as EMλ/3, where λ

indicates the resolution scale of the NN interaction, the SRG-
evolved N3LO potential of Entem and Machleidt [200], and
3 is the cutoff of an NNLO three-nucleon interaction whose
low-energy constants have been adjusted to fit the triton binding
energy and 4He charge radius [198, 199]. In CC calculations for
the nickel isotopes, Hagen et al. demonstrated that the EM1.8/2.0
interaction, in particular, allowed a good description of the
energies of nuclei in the vicinity of 78Ni [196]. As shown in
Figure 6, these findings have been reinforced by subsequent
VS-IMSRG calculations, as well as the experimental observation
of the first excited 2+ state in this nucleus [201].
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FIGURE 6 | Energies of the first excited 2+ states from VS-IMSRG [201] and

Equation-of-Motion CC [196] calculations for several chiral two- plus

three-nucleon interactions. Experimental values [201, 202] are indicated as

black bars. Data courtesy of J. D. Holt, J. Menéndez, and G. Hagen.

Since this initial application in medium-mass nuclei,
the EMλ/3 family has seen widespread use in ab initio
calculations due to its empirical quality, although the
Hamiltonian’s theoretical uncertainties are less well-defined
than for interactions that obey the chiral power counting more
rigorously. Indeed the EM1.8/2.0 interaction was used in VS-
IMSRG calculations to produce what is to my knowledge the first
attempt at producing an ab initio mass table for nuclei up to the
iron isotopes [186]. For selected nuclei up to the tin region, it also
yields converged energies for ground and low-lying states that
are in good agreement with experimental data [203, 204]. It also
yields slightly larger radii than previous interactions, although
the underprediction is not eliminated entirely (see references
[195, 203] and section 3.2.3).

Multiple applications of the EMλ/3 Hamiltonians in support
of spectroscopy experiments have been published in recent
years (see, e.g., [197, 205–208]), and additional studies are
underway, including an effort to better understand what makes
the EM1.8/2.0 Hamiltonian so successful. Furthermore, a new
generation of chiral NN+3N interactions is now available for
applications in medium-mass and heavy nuclei [46, 114, 209–
211].

3.2.2. Toward the Drip Lines
Neutron-rich nuclei are excellent laboratories for
disentangling the interplay of nuclear interactions, many-
body correlations and the continuum. Thus, data from the
experimental push toward the drip line can offer important
constraints for the refinement of chiral interactions if
the many-body truncations and continuum effects are
under control.

In practice, ab initio results for observables like the absolute
energies of states still exhibit significant scale and scheme
dependence due to truncations that are made in the EFT,

the potential implementation of SRG evolutions, and the
many-body methods. Since such variations tend to be
systematic within families of interactions (and sometimes
even across multiple families), differential quantities like
separation and excitation energies or transition matrix elements
often exhibit a weaker scale and scheme dependence—
note, for example, the small systematic variation of the
first excited 2+ states of the neutron-rich nickel isotopes
for EMλ/3 interactions. This makes energy differences
an ideal observable for confronting ab initio results with
experimental data.

Let us consider two-neutron separation energies as a concrete
example. Sudden drops in these observables are a signal of
(sub)shell closures (albeit not universally [195]) and in the
neutron-rich domain, they are important indicators for the
proximity of the drip line. Figure 7 shows MR-IMSRG ground-
state and two-neutron separation energies of the calcium
isotopes, obtained with the NN+3N(400) interaction used in
Figure 5, as well as the NNLOsat and EM1.8/2.0 interactions
briefly discussed in the previous section.We note the overbinding
produced by NN+3N(400) and the baffling accuracy of the
EM1.8/2.0 results, given the approximations that went into
the construction of this force, as well as the MR-IMSRG
truncation. Common to all three interactions is the emergence
of a very flat trend in the ground-state and separation
energies in neutron-rich calcium isotopes, which will likely be
further enhanced by the inclusion of continuum effects, and
extended beyond the shown mass range. Similar flat trends
emerge in many isotopic chains, as shown both in ab initio
surveys based on chiral interactions [10, 114, 186] as well
as a sophisticated Bayesian analysis of empirical EDF models
[212]. Naturally, this will make the precise determination
of the neutron drip line in the medium-mass region a
challenging task, but also suggests that interesting features
like alternating patterns of unbound odd nuclei and weakly-
bound even nuclei with multi-neutron halos could emerge.
This is an exciting prospect for the experimental programs at
rare-isotope facilities.

With the exception of the NCSMC and HORSE methods
discussed in section 2.3.6, the inclusion of continuum degrees
in configuration-space techniques has been focused on the
use of the Berggren basis [151]. While such calculations
are challenging due to the significantly increased single-
particle basis size and the difficulties of handling the resulting
complex symmetric Hamiltonians, applications in CC (see
references [12, 213] and references therein), both valence
and No-Core Gamow Shell Model [153–155, 214, 215] and
IMSRG [216] calculations have been published. Common to
all these approaches is that a configuration space interaction
that is given in terms of SHO matrix elements is expanded
on a basis containing SHO and Berggren states, hence it is
still an open question how a direct implementation of the
interactions in a basis with continuum degrees of freedom
might modify existing results. It is worth noting that such
a construction has been achieved for phenomenological GSM
interactions that have been tuned for light nuclei [217–
222].
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FIGURE 7 | Ground-state and two-neutron separation energies for several chiral NN+3N interactions from MR-IMSRG(2) calculations. Experimental data are indicated

by black bars [184, 193].

FIGURE 8 | NCSMC spectrum of 11Be with respect to the n+10 Be threshold. Dashed black lines indicate the energies of the 10Be states. Light boxes indicate

resonance widths. See reference [223] for details. Figure reprinted with permission from the American Physical Society.

In light nuclei, the NCSMC has been applied with impressive
success to describe a variety of exotic nuclei with up to
three-cluster structures. For example, Calci et al. [223] carried
out NCSMC calculations for 11Be with several chiral NN+3N
interactions to investigate the parity inversion of the ground
and first-excited states in this nucleus from first principles.
The authors found that the coupling between the NCSM and
RGM sectors of the generalized eigenvalue has strong effects,
but that among the tested interactions, only NNLOsat can
produce the experimentally observed ordering of the states (see
Figure 8). However, it still underpredicts the splitting of these
levels and as a result, overestimates the cross section for the
photodisintegration 11Be(γ , n)10Be. Additional applications of
the NCSMC for exotic nuclei can be found in the review [130]
and references therein, as well as the more recent works [224–
226].

3.2.3. Accessing More Observables
The capabilities of ab initio approaches have also significantly
expanded when it comes to the evaluation of observables other
than the energies.
Nuclear radii. Figure 9 shows MR-IMSRG results for the charge
radii of calcium isotopes. The left panel illustrates the reasonable
reproduction of the 40Ca and 48Ca charge radii that can be
obtained for NNLOsat. The MR-IMSRG(2) results are slightly
smaller than the experimental data due to differences in the
truncations from the CCSD charge radius calculations that were
used in the NNLOsat optimization protocol [194]. Note the
steep increase in the experimental charge radii beyond 48Ca:
At the time of the measurement, NNLOsat was the only chiral
NN+3N interaction exhibiting this feature, although other more
recent interactions can replicate this trend as well [10, 114]. Also
note that none of the calculations are able to reproduce the
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inverted arc of the charge radii between 40Ca and 48Ca. In a CI
picture, it is caused by strong mixing with 4p4h excitations into
the pf -shell [229]. Since the MR-IMSRG(2) calculations shown
here included only up to (generalized) 2p2h excitations and
used particle-number projected Hartree-Fock Bogoliubov vacua
as reference states that do not contain collective correlations
(cf. section 2.3.3), it is not surprising that the inverted arc
cannot be reproduced. We will return to this issue of missing
collectivity later.

While the EMλ/3 interactions underpredict the absolute
charge radii, they fare quite well in the description of radius
differences, as suggested in the previous section. Figure 9B

is adapted from a recent study that suggests a correlation
between the charge radius difference of mirror nuclei, 1Rch,
and the slope of the symmetry energy in the nuclear
matter equation of state [228]. We see that the MR-IMSRG
results for 1Rch are actually compatible with results from
a multitude of Skyrme EDFs, and the value for the magic
EM1.8/2.0 interaction falls into the uncertainty band of the
experimental result.
Electromagnetic transitions. Since the second half of the past
decade, ab initio calculations for transitions in medium-mass
nuclei have become more frequent, owing to the appropriate
extensions of the IMSRG, CC and SCGF methods [205, 230,
231]. While results for transitions that are dominated by a
few nucleons, e.g., M1 transitions [230] or β decays (see
reference [232] and the discussion below) can be quite good,
the description of collective transitions is hampered by inherent
truncations of these many-body methods, which are better suited
for dynamical, few-particle correlations (see sections 2.3.3 and
2.3.4). Results from the SA-NCSM [139, 140] and the IM-
GCM discussed in section 2.3.3 show that the modern chiral
interactions themselves adequately support the emergence of
nuclear collectivity.

Consider for example Figure 10, which shows VS-IMSRG(2)
results for the quadrupole transition from the first excited 2+

state to the ground state in 14C, 22O and 32S [230]. The picture
is fairly consistent for all four chiral NN+3N interactions that
were used in the study: The 2+ energies are described quite well,
but energies are not very sensitive to the details of the nuclear
wave functions. In 14C, the E2 transition is weakly collective, so
the E2 matrix element is reasonably reproduced, while the matrix
element for the collective transition in 32S is underpredicted by
25–50%. The NN+3N(400) interaction gives a particularly poor
result, but this is also related to the significant underestimation
of the point-proton radius we obtain for this Hamiltonian, as
discussed earlier.

The result for 22Odeserves special attention. The E2 transition
matrix element is only a third of the experimental value, although
the transition is only weakly collective. However, 22O only has
neutrons in an sd valence space, so the E2 matrix element would
vanish in a conventional Shell Model calculation unless the
neutrons have an effective charge. Such effective charges must
be introduced by hand and fit to data in phenomenological Shell
Model calculations. Here, we see that the VS-IMSRG decoupling
naturally induces a non-vanishing quadrupole moment through
an effective neutron charge in the one-body transition operator

as well as an induced two-body contribution (see reference [230],
and reference [231] for an analogous effort in SCGF theory). It is
likely that the E2 strength could be improved by performing the
VS-IMSRG calculation in a psd valence space, so that the proton
dynamics is treated explicitly instead of implicitly by valence-
space decoupling. Until recently, we were unable to perform
such a multi-shell decoupling because of the IMSRG version of
the intruder-state problem, but a promising workaround was
introduced in reference [28].
Gamow-Teller transitions. In recent years, there have been
concerted efforts to understand the mechanisms behind
the empirically observed quenching of Gamow-Teller (GT)
transitions in medium-mass nuclei, in part due to its relevance
to neutrinoless double-beta decay searches (see below). In
reference [232], the authors show that this issue is largely
resolved by properly accounting for the scale and scheme
dependence of configuration-space calculations. By dialing the
resolution scale to typical values favored by approaches like
NCSM, CC, and VS-IMSRG, correlations are shifted from the
wave functions into induced two- and higher-body contributions
to the renormalized transition operator, just as in the quadrupole
case discussed above.

The transition operator, including two-body currents, is
consistently evolved to lower resolution scale alongside the
nuclear interactions, keeping the induced contributions. The
transition matrix elements of the evolved operator are then
computed with the NCSM in light nuclei, and VS-IMSRG in sd-
and pf -shell nuclei, leading to agreement with experimental GT
strengths within a few %. In contrast, the bare GT operator must
be quenched by 20–25% via the introduction of an effective axial
coupling, geffA < gA, to yield agreement with experimental beta
decay rates.

The GT transitions in light nuclei have also been evaluated
in the GFMC, most recently with consistently constructed local
chiral interactions and currents [234, 235]. Interestingly, the
inclusion of two-body currents seems to consistently enhance the
GT matrix elements, while it tends to quench the matrix element
in NCSM calculations. Since this is almost certainly related to
the differences in the resolution scale and calculation scheme,
the disentanglement of these observables might yield further
insights into the interplay of wave function correlations and the
renormalization of the transition operators.
Neutrinoless double beta decay. Due to the high impact the
observation of neutrinoless double beta decay (or lack thereof)
would have on particle physics and cosmology, the computation
of nuclear matrix elements (NMEs) for neutrinoless double beta
decay is a high priority for nuclear structure theory. Precise
knowledge of the NMEs for various candidate nuclei is required
to extract key observables like the absolute neutrino mass scale
from the measured lifetimes (or at least, any new bounds that
would be provided by experiment). Most calculations of the
NME to date were subject to the lack of comparability between
phenomenological nuclear structure results that was discussed in
section 3.1, hence a new generation of ab initio calculations with
quantified uncertainties is required.

A major step in that direction was the first calculation of the
NME for the decay 48Ca →48 Ti based on chiral interactions
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FIGURE 9 | (A) Calcium charge radii from MR-IMSRG(2) calculations with NNLOsat The shaded area indicates uncertainties from basis convergence. Black bars and

orange circles indicate experimental data [195, 227]. (B) Mirror charge radius difference of 36Ca and 36S vs. the slope of the symmetry energy, L, at nuclear saturation,

for the EMλ/3 interactions (symbols as indicated in the legend), compared to Skyrme functionals (solid circles) and Relativistic Mean Field models (crosses). The band

indicates the experimental result from the BECOLA facility at NSCL. See reference [228] for details.

FIGURE 10 | Energies of the first excited 2+ state, proton mean square radius and quadrupole transition matrix elements for selected nuclei, based on VS-IMSRG(2)

calculations with multiple chiral NN+3N interactions. See references [76] and [230] for more details. Experimental values (with uncertainties indicated by bands) are

taken from [227, 233]. Figure courtesy of R. Stroberg.

[29]. The IM-GCM approach discussed in section 2.3.3 was used
to describe the structure of the intrinsically deformed daughter
nucleus 48Ti, achieving a satisfactory reproduction of the low-
lying states and their quadrupole transitions (see Figure 11).
Since the initial publication (blue spectra in Figure 11A),
the description of the excited states has been improved

further through the admixing of cranked configurations (red
spectra), without affecting the NME (Figure 11B). Work on
quantifying the uncertainties due to the many-body method,
the Hamiltonian, and the transition operator is underway, in
preparation for the computation of the NMEs of more realistic
candidate nuclei like 76Ge and 136Xe.
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A B

FIGURE 11 | IM-GCM description of the neutrinoless double beta decay 48Ca →48 Ti, using EMλ/3 interactions: Low-lying spectrum of 48Ti and its compression

through the admixing of cranked configurations (A) and the nuclear matrix element vs. B(E2) transition probability (B). See text and reference [29] for details. (A)

courtesy of J. M. Yao, (B) reprinted with permission from the American Physical Society.

3.2.4. Response and Scattering
From the computation of transitions between low-lying
levels, it is only a small step to the computation of
nuclear response functions and cross sections, although the
implementation can be challenging and the applications are
often computationally expensive.
Nuclear response functions. In light nuclei, GFMC is a
powerful yet numerically heavy tool for computing exact nuclear
response functions (see, e.g., references [236, 237]). In medium-
mass nuclei, applications of SCGF and CC techniques to the
computation of the nuclear response have been published in
recent years. As mentioned in section 2.3.5, the Green’s functions
computed in the standard or Gor’kov ADC Green’s function
schemes inherently contain information about the nuclear
response that has been used to study both electromagnetic and
weak processes of medium-mass nuclei [119, 120, 238–240].

In the Coupled Cluster framework, response functions have
been computed by merging CC with up to Triples excitations
with the Lorentz Integral Transformation (LIT) technique [241–
245]. Immediately after its inception, this approach was used
to for the first ab initio calculations of dipole response and
the related photodisassociation cross section of medium-mass
closed-shell nuclei [241, 242]. More recently, it was used to
compute the electric dipole polarizability αD of nuclei like 48Ca
[243, 244, 246] and 68Ni [247]. Together with measurements
of the charge radius, this quantity can be used to constrain ab

initio calculations that will in turn allow the theoretical extraction
of the neutron point radius as well as the thickness of the
neutron skin.

An important application for nuclear response calculations
is to map out the neutrino response of 40Ar, the primary
target material in detectors for the short-baseline [248] and
long-baseline neutrino experiments, like the Deep Underground
Neutrino Experiment (DUNE) Far Detector [249, 250]. At low
energies, the cross section for coherent neutrino elastic scattering
is essentially determined by the weak form factor of 40Ar, which

has recently been computed using CC techniques [251]. This
work is complementary to SCGF calculations of the neutrino
response in the region of the quasi-elastic peak by Barbieri
et al. [238].
Nuclear reactions. As discussed in section 2.3, there has been
enormous progress in the development of unified treatments of
ab initio nuclear structure and reactions. Here, I want to highlight
two among a bevy of impressive results. Figure 12A shows S−
and D−wave phase shifts for α − α scattering, computed order
by order in Lattice EFT [179, 180]. These calculations are made
possible by the lattice’s capability to describe clustered states (also
see references [176–178]), as well the development of the APM
and associated algorithms. The results for the phase shifts show
the desired order-by-order improvement, and the inclusion of
higher-order terms of the chiral expansion is expected to improve
agreement with experimental data. The near identical NLO and
NNLO phase shifts in the S−wave appear to be the result of
an accidental cancellation that is not occurring in the D−wave
phase shifts.

In reference [252], the authors studied deuterium-tritium (D-
T) fusion using the NCSMC. One of the main results of this
work is shown in Figure 12B, which compares the NCSMC D–T
reaction rates for polarized and unpolarized fuels to each other, as
well as rates obtained with several widely used parameterizations
of the D–T fusion cross section. The NCSMC calculations
indicate that for an experimentally realizable polarized fuel with
aligned spins, a reaction rate of the same magnitude as for
unpolarized fuel can be achieved at about half the temperature.
Naturally, this suggests that polarized D-T fuels will allow a more
efficient power generation in thermonuclear reactors.

3.3. Emergence of Empirical Nuclear
Structure Models From ab initio

Calculations
The progress in ab initio calculations over the past decade has not
only led to impressive results for nuclear observables, but also
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FIGURE 12 | Ab initio calculations of nuclear reactions. (A) S (δ0) and D-wave phase shifts (δ2) for α-α scattering at various orders in Lattice EFT. For details, see

references [179, 180]. Figure courtesy of S. Elhatisari. (B) NCSMC results for the deuterium-tritium (D–T) fusion cross section (top) and reaction rate (bottom). The

figure compares the rates for unpolarized and polarized fuel, as well as rates obtained from widely adopted parametrization of the fusion cross section (see

reference [252] for details). The arrows are included to the guide the reader’s eye (see text). Figure reprinted from Hupin et al. [252] under a CC BY 4.0 license.

revealed the long-surmised underpinnings of empirical models
of nuclear structure. In many cases, the ideas that led to the
formulation of such models were shown to be correct, but they
could not be verified at the time because RG and EFT techniques
or sufficient computing power for a more thorough exploration
were not available.
The Nuclear Shell Model. The first prominent example I want
to discuss is the nuclear Shell Model and some of the “folklore”
surrounding it. We can immediately make the observation
that the Shell model picture is inherently a low-momentum
description of nuclear structure. It is based on the assumption
that nucleons are able to move (almost) independently in a mean
field potential, and that nuclear spectra can be explained by
the mixing of a few valence configurations above an inert core
via the residual interaction. As we know now, the existence of
a bound mean-field solution and a weak, possibly perturbative

residual interaction relies on the decoupling of low and high
momenta in the nuclear Hamiltonian [1, 6, 253], e.g., by an SRG
transformation. Historical approaches to exploit this connection
to construct the Shell model from realistic nuclear forces [254–
256] failed in part because the decoupling of the momentum
scales via Brueckner’s G−matrix formalism [65–67] was not as
good as believed [1].

In addition to the momentum-space decoupling, one must
also decouple the valence space configurations from the
excluded space. This can be achieved using a variety of
techniques (cf. sections 2.3.3–2.3.6), and either by performing
transformations in sequence, or designing a single procedure that
achieves both types of decoupling simultaneously. In practice,
the former strategy tends to be more efficient and less prone
to truncation errors—an example is the VS-IMSRG decoupling
of Hamiltonians that have been evolved to a low resolution
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scale by means of a prior SRG evolution (see sections 2.2 and
2.3.3, as well as reference [76]). An added benefit of using low-
momentum interactions is that the Shell Model wave functions
will qualitatively resemble those obtained by a no-core method
using the same Hamiltonian without valence decoupling. This
facilitates qualitative comparisons and allow us to apply the same
intuitive picture. For quantitative comparisons, the effects of all
unitary transformations must be carefully taken into account
[257].

Figure 13 illustrates the effect of the discussed
transformations via the deviations between the computed
and experimental energies of close to 400 levels in the sd-shell.
Since the EM1.8/2.0 interaction used in these calculations has
a low resolution scale, simply using the valence-space matrix
elements of the input Hamiltonian without any further valence-
space decoupling yields a root-mean-square (rms) deviation of
“only” about 1.7 MeV, which is not outright disastrous. When
we apply the VS-IMRSG to decouple the valence space, the newly
evolved interaction yields a much improved rms deviation of
∼ 650 keV, which is better than for some of the older sd-shell
interactions, albeit not as good as the USDB Hamiltonian,
which is shown for comparison [258, 259]. This is not really
surprising: USDB essentially represents the best possible fit to
experimental data under the model assumptions, i.e., the choice
of a pure sd-shell valence space, the restriction to a two-body
Hamiltonian, the omission of isospin-breaking effects from
the Coulomb interaction and the nuclear interactions, and
the empirical A-dependence multiplying the two-body matrix
elements (TBMEs). The accuracy of the VS-IMSRG results,
on the other hand, is affected by possible deficiencies in the
input Hamiltonian and the use of the VS-IMSRG(2) truncation.
Naturally, both of these aspects will be improved systematically
in future calculations.

Phenomenological adjustments of effective Shell Model
interactions like the A-dependent scaling factors in the USD
Hamiltonians or Zuker’s monopole shift [260] are typically
attributed to the changes in the nuclear mean field away from the
core, as well as missing three-body interactions. In reference [76],
the VS-IMSRG is used to demonstrate that this is indeed the case.
As described in section 2.3.3, upon normal ordering, the three-
body force gives contributions to operators of equal and lower
particle rank, which in the Shell Model case amounts to the core
energy, single-particle energy, and two-bodymatrix elements. All
of these contributions become A-dependent in the VS-IMSRG,
but one can shift the A-dependent parts completely into the
TBMEs, like in phenomenological interactions, without changing
the Hamiltonian matrix in the many-body Hilbert space or
its eigenvalues.

Procedures like the VS-IMSRG decoupling also let us track
in detail how operators besides the nuclear interactions evolve
when they are subject to the valence-decoupling transformation.
Recall from the discussion in section 3.2.3 that this can
even quantitatively explain the quenching of the Gamow-Teller
strength in phenomenological Shell Model calculations, provided
two-body current contributions to the initial transition operator
are taken into account as well. For electromagnetic transitions,
the renormalization of the one-body transition operator and

the appearance of induced terms generate at least some part
of the usual phenomenological effective charges, but a more
complete treatment of nuclear collectivity (cf. section 2.3.3) as
well the inclusion of current contributions to these operators are
developments that need to be undertaken in the coming years.
Emergence of collectivity. Both NCCI and VS-IMSRG
calculations with chiral NN+3N interactions have demonstrated
that these interactions do indeed produce the telltale features of
collective behavior in nuclear spectra [26, 141, 213, 261, 262].
Upon a bit of reflection, it is not surprising that reasonable
results on rotational bands, for instance, should be found in these
approaches: While they rely on particle-hole type expansions,
the exact diagonalization is done in a complete model space of
up to AvhAvp excitations, where Av is the number of valence
nucleons. In contrast, equation-of-motion methods that typically
employ 1p1h or 2p2h truncations struggle with the description
of collectivity in low-lying states [83, 122, 204], but they do work
reasonably well for giant resonances [241, 242].

As argued in sections 2.3.3 and 2.3.6, bases built on particle-
hole type expansions are not ideally suited to the description
of collective correlations. The SA-NCSM [139] instead uses
irreducible representations of SU(3) or Sp(3, ), the dynamical
symmetry groups of collective models [263], to achieve a much
more efficient description of collective behavior in nuclei. This
is illustrated for the case of 20Ne in Figure 14. The SA-NCSM
calculations [140] based on the two-nucleon NNLOopt potential
[264] describe the ground-state rotational band extremely well,
all the way to the J = 8+ state. It is dominated by a single SU(3)
irrep, associated with the axially elongated shape of the computed
intrinsic density profile that is also shown in the figure.

4. THE FUTURE TO BE WRITTEN: A LOOK
AT THE CHALLENGES AHEAD

4.1. Rethinking the Many-Body Expansion
A substantial part of the appeal of methods like CC, IMSRG and
SCGF is their polynomial scaling. For the purposes of uncertainty
quantification (UQ), we need to be able to evaluate at least two
consecutive truncation levels to assess the convergence of the
many-body expansion in nuclei for which exact calculations are
not feasible. Efforts in that direction have been in progress for
some time, and while somemethods are at a more advanced stage
than others, the improved truncations should be available for
regular use within the next couple of years [10, 12, 86, 100, 116,
244, 265]. In part, this is owing to the development of computer
tools that automate tasks like diagrammatic evaluation or angular
momentum coupling [266, 267]. The computational scaling of
these approaches will be of order O(N8) or O(N9), which makes
applications a task for leadership-class computing resources for
the foreseeable future. It is clear that it will not be feasible to just
push the calculations further, since we would then face a (naive)
O(N12) scaling.

Applications where we would expect to need high-order
truncations involve nuclear states with strong collective
correlations, provided we work from a spherical reference
state. As explained in section 2.3, this issue can likely be
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FIGURE 13 | Deviations between theoretical and experimental excitation energies of 391 sd-shell states, for (A) the EM1.8/2.0 interaction without valence

decoupling, (B) the same interaction transformed with VS-IMSRG, and (C) the USDB interaction [258]. The points correspond to the respective root-mean-square

deviations for each interaction. Figure courtesy of R. Stroberg.

A B

FIGURE 14 | SA-NCSM results for 20Ne in an SU(3)-adapted basis, using the two-nucleon interaction [264]. (A) Excitation energies (horizontal axis) of the

ground-state rotational band (Jπ = 0+ through 8+) and 0+ states, and the dominant shape in each state (vertical axis), indicated using the ab initio one-body density

profiles in the intrinsic (body-fixed) frame. (B) Distribution of the equilibrium shapes that contribute to the ground state and first excited 2+ state, indicated by the

average deformation parameters (β, γ ). See reference [140] for additional details. Figure reprinted with permission from the American Physical Society.

addressed either by using mean-field reference states with
spontaneously broken symmetries (cf. section 2.3.4) or using
correlated reference states in the first place (cf. section 2.3.3),
and the first applications of the IM-GCM give credence to that
idea. Moreover, there is first evidence that the CC and IMSRG

truncations converge much more rapidly for observables that
are sensitive to collectivity [268], i.e., the current state-of-the-art
truncations may be sufficiently precise.

The IMSRG framework also offers perspectives for the
construction of further IMSRG hybrid methods (cf. section
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2.3.3). Based on the successes of both the IM-NCSM and
IM-GCM it would be worthwhile to use IMSRG-evolved
Hamiltonians in the SA-NCSM or techniques like the Density
Matrix Renormalization Group, which is also capable of
efficiently describing strong collective correlations under certain
conditions [269, 270].

4.2. Leveraging Computational and
Algorithmic Advances
The progress in ab initio many-body calculations is not simply
due to the availability of increasingly powerful computational
resources, but also due to dedicated collaborations with
computer scientists to ensure that the available high-performance
computers are used efficiently. Such collaborations will only
grow more important as hardware architectures change rapidly
and a growing demand for computing time requires users
to demonstrate sufficient efficiency to be granted access
to supercomputers.

Measures to boost the numerical efficiency can also be taken at
the many-body theory level. Efficient calculations rely on finding
optimal representations of the relevant physical information
that is encoded in the Hamiltonian. Algorithmic gains are
possible whenever there is a mismatch, either because we made
convenient choices, e.g., by expanding many-body states in terms
of simple Slater determinants, or because we were not able
to recognize simplifications beforehand, e.g., due to hidden or
dynamical symmetries.

The SRG has played a key role in addressing the first
points at the level of the nuclear interaction over the past
two decades, and SRG and IMSRG can be applied in novel
ways to explore dynamical symmetries [55]. In the construction
of a configuration space, the selection of the single-particle
basis leaves room for optimization. Indeed, the natural orbitals
introduced in reference [131] lead to faster model-space
convergence in NCSM and CC calculations, implying a more
compact Hamiltonian matrix in natural orbital representation.
The efficiency of this representation can be leveraged further
by making robust importance truncations based on analytical
measures, e.g., in MBPT, CC, or IT-NCSM [9, 271].

The aforementioned steps make use of prior theoretical
knowledge, e.g., to identify desired decoupling patterns in
interactions, or define analytical measures for the importance
of basis states. If such knowledge is not available, or we
want to avoid bias, we can leverage a myriad of Principal
Component Analysis (PCA) methods to factorize interactions
or intermediate quantities in many-body calculations [271, 272].
This can potentially even give us control over the computational
scaling of nuclear many-body methods (see, e.g., [273–277]).

A very noteworthy development with origins in nuclear
physics is Eigenvector Continuation (EVC) [278, 279], a method
for learning manifolds of eigenvector trajectories of parameter-
dependent Hamiltonians. The method has been employed in
several contexts, e.g., to stabilize high-order MBPT expansions
[81] and to construct emulators for nuclear few- and many-body
calculations [280, 281]. As an example, Figure 15 shows a global
sensitivity analysis of CC results for 16O under variations of the

chiral LECs [281]. Eigenvector continuation was used to learn
representations of the CCSD Hamiltonian and charge radius
operators in a 64-dimensional subspace of the space of CCSD
ground-state wave functions for interactions with 16 varying
LECs. The subspace-projected Hamiltonian was then sampled
more than amillion times on laptop, while full CCSD calculations
of the same ensemble would be completely unfeasible. The
successful applications of EVC suggest that the method should be
further explored as a tool for improvement, emulation and UQ in
other many-body methods in the (near) future.

4.3. Uncertainty Quantification
In typical nuclear many-body calculations as discussed in
sections 2 and 3 the main sources of theoretical uncertainties
are the EFT truncation of the observables and the many-body
wave function, either due to many-body expansion and/or model
space truncations in configuration space approaches, lattice
discretization effects in Lattice EFT, or the specific form of the
wave function ansatz in QMC. If an SRG evolution is applied,
there is an additional uncertainty associated with the truncation
of induced operators (see section 2.2).

The application of Bayesian methods has led to enormous
progress in the quantification of the EFT uncertainties [34–
36, 282–285], and it would be highly desirable to apply the
same approach to the many-body uncertainties as well. The
most challenging amongst these are the truncation of the many-
body expansion in methods like CC, IMSRG or SCGF, and the
truncation of the free-space SRG flow of observables. In contrast,
the infrared effects of finite-basis size truncations in HO bases—
or general orbitals that are at some point expanded in an HO
basis—are well-understood for the energy and other observables,
and they can be systematically corrected for [286–290]. The
situation is less clear for ultraviolet basis-size errors [291], but
this error can be suppressed by working at appropriate values of
the HO frequency.

An ideal uncertainty analysis would combine the exploration
of EFT and many-body uncertainties for nuclear observables
of interest, using EC or Machine Learning (ML) to construct
emulators that allow an efficient sampling of the parameter space.
In such an effort, the generation of sufficient training data poses
a significant challenge, because it would require calculations at
several truncation levels (see section 4.1). A possible strategy for
mitigating this issue is to combine non-perturbative methods
with cheaper high-order MBPT in Bayesian mixed models (see
references [212, 292, 293] for applications in nuclear physics).
The successful application of factorizationmethods to the nuclear
many-body problem could likely resolve the issue once and for all
by reducing the computational scaling of high-order truncations,
at the cost of introducing an additional uncertainty from the
factorization procedure.

On the road toward the destination represented by such
a “complete” UQ framework, the intermediate milestones will
already provide valuable insights into open issues in the EFTs of
the strong interactions, and enable the design of better protocols
for constraining and refining EFT-based interactions and
operators (see, e.g., references [294, 295] and references therein).
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A

B

FIGURE 15 | Sensitivity analysis using subspace-projected CC (SPCC) method [281]. (A) illustrates the capability of the SPCC Hamiltonian constructed from 3 to 5

sample points to predict full CCSD ground-state energies and charge radii for 16O over a wide range of values of the chiral LEC C1S0
. (B) Shows the global sensitivity

of the 16O ground-state energy and charge radius to chiral LECs, determined by evaluating over 1,000,000 quasi-MC samples from a 64-dimensional SPCC

Hamiltonian. Vertical bars indicate 95% confidence intervals. For details, see reference [281]. Figure reprinted with permission from the American Physical Society.

4.4. Strengthening and Employing the
Hierarchy of Strong Interaction EFTs
Strong interaction physics is a multi-scale problem, and there are
good reasons for making better use of the hierarchy of Effective
(Field) Theories at our disposal. At the top level, we have QCD,
followed by EFTs involving hyperons that can be eliminated
progressively until we arrive at the “traditional” pionful and
pionless chiral EFTs (see references [296, 297] and references
therein). At even lower scales, one can formulate an EFT for
nuclear halos (or clusters) [297] and make the connection to
nuclear DFT and collective models, which can be understood as
EFTs as well [298–305].

At least in principle, the different levels of this hierarchy can
be connected either by computing observables with different
theories and matching the LECs, or using RG flows to track
in detail how the theories evolve from one into another.
While matching procedures have been applied successfully to
modern EFts in nuclear physics [306–311] as well as efforts
to match more traditional models of nuclear structure to ab
initio calculations [312–314], making the connection through
RG methods is a more daunting task. While I must admit
to bias in this regard, I still consider this an effort worth
undertaking. The success of SRG techniques in nuclear physics
demonstrate how these methods reveal the most effective degrees
of freedom even in situations were the separation of scales is
not perfectly clear. Moreover, RGs would also reveal unexpected
features of the power counting schemes, like the enhancement or
inadvertent omission of certain operators (see reference [51] and
references therein).

Tackling power counting issues. Throughout this work, I have
alluded to shortcomings and issues of the current generation
of chiral interactions, like the struggle to achieve a good
simultaneous description of nuclear binding energies and radii
(see section 3.1). Recent efforts to construct new, accurate
chiral interactions have revealed that this issue is connected to
the use of local or non-local regulators, with the latter being
favored for better descriptions [114, 209]. In another exploration
of non-locally regularized chiral forces [210, 211], a tension
between the simultaneous description of nuclear matter and
finite was observed in the attempts to fit the chiral LECs. In
QMC calculations, it was demonstrated that the use of local
regulators breaks the equivalence of parameterizations of the
interaction that are connected by Fierz identities, in certain
cases with disastrous consequences [188]. Meanwhile, Epelbaum
et al. have proposed the use of a more nuanced semilocal
regularization scheme that applies local regulators to the long-
range pion exchange and non-local regulators to the short-range
contact terms [3, 46]. While physical arguments can be made in
favor of different regularization schemes, perhaps especially the
semilocal one, the significant scheme dependence is at odds with
the principles of EFT, which would predict regulator artifacts to
be pushed beyond the order at which one currently works.

It has also been suggested that the scales of the chiral
EFT interaction and the inherent scales of the many-body
configuration space (e.g., IR and UV cutoffs inherited from a HO
basis, see section 4.3) or coordinate space wave functions should
not be treated independently, and that by doing so, currentmany-
body approaches might at least contribute to power counting
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issues. There have been a few efforts to explore this problem, but
more work is clearly required [315–320].
Application needs. Aside from the formal need to make progress
on the power counting issue, there are also concrete application
needs that call for a tighter coupling between QCD and the
nuclear EFTs. For example, the chiral EFT transition operator
for neutrinoless double-beta decay (see section 3.2.3) contains
counter terms whose LECs can only be determined from Lattice
QCD [321–324].

The dawning of a new age in our understanding of neutron
stars, heralded by the detection of gravitational waves from
the neutron-star merger GW170817, has taken the demand for
accurate neutron and nuclear matter equations of state to a new
level (see, e.g., reference [159] and references therein). While
ab initio calculations of infinite matter up to the saturation
region based on chiral interactions are reasonably well-controlled
[159, 190, 285, 325], the supranuclear densities probed in merger
events are beyond the range of validity of regular pionful
chiral EFT. To increase its validity, hyperons must be taken
into account as dynamical degrees of freedom (see [296] and
references therein), and the entire set of nuclear and hyperon
LECs must be readjusted at the increased breakdown scale. For
the NN sector, this is unproblematic due to the plethora of
available scattering data. Since no direct experiments on three-
neutron or three-proton systems are feasible, the only available
experimental constraints come from finite nuclei, which implies
that the corresponding channels of the 3N interaction are only
constrained at sub-saturation densities. The world database of
hyperon-nucleon scattering data is also quite limited. Thus, a
high-precision interaction for describing the equation of state
at high density can only be constructed with the help of Lattice
QCD constraints on the 3N and hypernucleon LECs.

4.5. Interfacing With Reaction Theory
The final important research direction for the coming decade I
want to discuss here are efforts to interface the advanced ab initio
nuclear structure methods at our disposal with reaction theory
[326].

As discussed in sections 2.3.6 and 3.2.4, the NCSMC has been
applied with great success to the reactions of light nuclei at low
energies, but its computational complexity makes this approach
unfeasible for nuclei beyond A ≈ 10 − 20. Work has begun
on a similar approach that combines SA-NCSM with the RGM,
leveraging the efficiency of the symmetry-adapted basis to reach
medium-mass nuclei [327] (cf. sections 2.3.6 and 3.3). Since the
RGM is just a special case of a Generator Coordinate Method,
the IM-GCM discussed in sections 2.3.3 and 3.2.3 is a promising
candidate for extending this type of reaction calculations to even
heavier nuclei.

Methods that are similar in spirit to these combinations of
structure approaches with the RGM are the APM, which can
provide an interface between structure and scattering in Lattice
EFT (cf. sections 2.3.8 and 3.2.4), as well as the GSM Coupled
Channel (GSM-CC) approach, which was developed to describe
reactions between light projectiles and targets that are treated in
the GSM with a core [221, 328, 329]. Thus far, applications of the
GSM-CC have been based on phenomenological valence-space

interactions, but new efforts are underway to directly construct
suitable Hamiltonians based on EFT principles [220, 330], or
derive the effective interactions from chiral forces with the
techniques discussed in section 2.3 (see [214, 215]). Of course,
the GSM-CC ideas could also be applied to the No-Core GSM
[153, 155, 218], although the computational complexity would
limit such an approach to light nuclei.

A complementary strategy for bridging nuclear structure and
reactions for medium-mass nuclei is the construction of optical
potentials for use in traditional reaction calculations. In SCGF
theory, the optical potential for elastic nucleon-nucleus scattering
is given by the one-body self energy, which is obtained as a
byproduct of a nuclear structure calculation, and can be used
with little effort in reaction codes [125]. Similarly, Rotureau
et al. constructed optical potentials by extracting the self-energy
from the Coupled Cluster Green’s Function [123, 124, 331]. One
can roughly view this procedure as performing a GF calculation
with the similarity-transformed CCHamiltonian, which does not
require self-consistent iterations because of the CC decoupling
(cf. section 2.3.4). Optical potentials can also be constructed by
folding scattering T-matrices with ab initio density matrices.
This technique was applied for NCSM density matrices by
two collaborations in references [332, 333] and [334, 335],
respectively, and more applications are underway.

While the published results from the optical-potential
based approaches are promising, an important aspect of
these calculations must be checked carefully in the near
term: The optical potential depends on the resolution scale
of the used chiral interactions, and the calculation scheme,
which encompasses the truncations in the operators and
many-body method, as well as the choice of regulator in
the interaction [257, 336]. To produce scale- and scheme-
independent observables, these choices must be matched by
the reaction theory. Matching the resolution scales is probably
the easier of the two checks, but it will require the analysis
of free-space SRG transformations on the reaction theory side.
Once structure and theory are defined at a matching resolution
scale, any residual scheme dependence of the observables
will give rise to the remaining theoretical uncertainty of the
combined calculation.

5. EPILOGUE

Thus concludes our little excursion through the landscape of
state-of-the-art ab initio nuclear many-body theory, but of
course, the road goes ever on. I hope that this guided tour
has contributed to your appreciation of the immense progress
the community has made in the last 10 years, as well as the
challenges that we are facing on the next stage of the road.
None of the obstacles in our path are unsurmountable, and
while we chip away at them, results from ab initio calculations
can make meaningful contributions to the analysis and planning
of nuclear physics and fundamental symmetry experiments.
With new facilities launching in the next couple of years, the
fun will begin in earnest, so here’s looking forward to the
next decade!
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GLOSSARY

ADC Algebraic Diagrammatic Construction (for Self-Consistent Green’s

Functions)

AFDMC Auxiliary Field Diffusion Monte Carlo

APM Adiabatic Projection Method (in Lattice EFT)

BMBPT Bogoliubov Many-Body Perturbation Theory

CI Configuration Interaction

CC Coupled Cluster

CCSD Coupled Cluster with Singles and Doubles excitations

CCSDT Coupled Cluster with Singles, Doubles and Triples excitations

CCSD(T) Coupled Cluster with Singles, Doubles and perturbative Triples excitations

χEFT Chiral Effective Field Theory

DFT Density Functional Theory

EVC Eigenvector Continuation

EDF Energy Density Functional

EFT Effective Field Theory

GCM Generator Coordinate Method

GFMC Green’s Function Monte Carlo

GHW Griffin-Hill-Wheeler (equation)

HF Hartree-Fock

HFB Hartree-Fock-Bogoliubov

IM-GCM In-Medium Generator Coordinate Method (a combination of IMSRG and

GCM)

IM-NCSM In-Medium No-Core Shell Model (a combination of IMSRG and NCSM)

IMSRG In-Medium Similarity Renormalization Group

LEFT Lattice Effective Field Theory

LO Leading Order (Effective Field Theory)

MBPT Many-Body Perturbation Theory

MR-

IMSRG

Multi-Reference In-Medium Similarity Renormalization Group

NCCI No-Core Configuration Interaction

NCSM No-Core Shell Model

NCSMC No-Core Shell Model with Continuum

NLO Next-to-Leading Order (EFT)

NNLO Next-to-Next-to-Leading Order (EFT)

N3LO Next-to-Next-to-Next-to-Leading Order (EFT)

N4LO Next-to-Next-to-Next-to-Next-to-Leading Order (EFT)

QCD Quantum Chromodynamics

QMC Quantum Monte Carlo

RG Renormalization Group

RGM Resonating Group Method

SCGF Self-Consistent Green’s Functions

SRG Similarity Renormalization Group

TBME two-body matrix elements (typically in the discussion of Shell Model

interactions)

UCC Unitary Coupled Cluster

UMOA Unitary Model Operator Approach

UQ Uncertainty Quantification

VMC Variational Monte Carlo

VS-

IMSRG

Valence-Space In-Medium Similarity Renormalization Group
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Quantum Monte Carlo methods are powerful numerical tools to accurately solve the

Schrödinger equation for nuclear systems, a necessary step to describe the structure

and reactions of nuclei and nucleonic matter starting from realistic interactions and

currents. These ab-initio methods have been used to accurately compute properties

of light nuclei—including their spectra, moments, and transitions—and the equation of

state of neutron and nuclear matter. In this work we review selected results obtained by

combining quantum Monte Carlo methods and recent Hamiltonians constructed within

chiral effective field theory.

Keywords: quantum Monte Carlo methods, variational Monte Carlo, Green’s function Monte Carlo, auxiliary field

diffusion Monte Carlo, chiral effective field theory, nuclear Hamiltonians, nuclear structure

1. INTRODUCTION

The study of nuclear properties as they emerge from the individual interactions among protons and
neutrons is a fascinating long-standing problem, subject of both theoretically and experimentally
research activities. From a theoretical point of view, a truly ab-initio description of nuclei is still very
challenging at present. The underlying theory of strong interactions, Quantum Chromodynamics
(QCD), that describes how quarks and gluons interact to form nucleons and nuclei, in the low-
energy regime is non-perturbative in its coupling constant. Despite remarkable progresses [1, 2],
realistic computations of many-body nuclear systems in terms of the fundamental degrees of
freedom of QCD—quarks and gluons—are still extremely challenging.

A more feasible approach to the problem consists in assuming that at the energy regime relevant
to the description of atomic nuclei, quarks, and gluons are confined within hadrons. The latter
are the active degrees of freedom at soft scales, and they interact among themselves through
non-relativistic effective potentials that are consistent with the symmetries of QCD. The solution
of nuclear many-body problems requires two main ingredients: an Hamiltonian that accurately
models the interactions among the nucleons, and reliable numerical many-body methods to solve
the corresponding Schrödinger equation.

Microscopic nuclear Hamiltonians, capable of reproducing nucleon-nucleon scattering data
and the properties of few-body systems, have been successfully used to describe light nuclei.
For example, the highly-realistic Argonne v18 two-body potential [3] combined with the
phenomenological Illinois-7 three-body force have been employed to predict several properties of
nuclei up to A = 12 with great accuracy [4]. Several calculations of energies, rms radii, transitions,
and densities turn out to be in excellent agreement with experimental data. The main limitation
of these phenomenological Hamiltonians is that it is not clear how they can be systematically
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improved, and how to quantify theoretical, i.e., systematic,
uncertainties related to the specific interaction model. Another
approach that became very popular in the last two decades consist
in deriving nuclear interactions within the framework of chiral
Effective Field Theory (χEFT). The advantage of this approach
is that it provides the necessary tools to systematically improve
the interaction models, to estimate uncertainties related to the
truncation of the chiral expansion, and to consistently derive
electroweak currents.

Several many-body methods have been developed to
numerical solve the many-body Schrödinger equation. Most
of them rely on basis expansions, for example the coupled
cluster method [5, 6], the no core shell model [7], the similarity
renormalization group [8], and the self consistent Green’s
function [9]. Each of these methods has distinct advantages,
and many are able to treat a wider variety of nuclear interaction
models. These many-body techniques are very effective and
achieve a good convergence only when relatively soft potentials
are used.

Quantum Monte Carlo (QMC) methods are ideally suited
to study strongly correlated many-body systems, and have no
difficulties in treating “stiff” nuclear interactions, but are limited
to nearly local nuclear potentials. For this reason, until fairly
recently, the applicability of QMC methods was limited to
phenomenological interactions, as χEFT Hamiltonians were
typically written inmomentum space. Over the past few years, the
situation has drastically changed with the development of local
χEFT potentials, both with [10, 11] and without explicit delta
degrees of freedom [12, 13], that have provided a way to combine
an EFT-based description of nuclear dynamics with precise QMC
techniques. In this work we will review selected results of nuclei
obtained using QMCmethods and chiral Hamiltonians.

2. NUCLEAR INTERACTIONS

The microscopic model of nuclear theory assumes that nuclear
systems can be described as point-like nucleons, whose dynamics
is characterized by a non-relativistic Hamiltonian

H =
∑

i

Ti +
∑

i<j

vij +
∑

i<j<k

Vijk + · · · , (1)

where Ti is the one-body kinetic energy operator, vij is the
nucleon-nucleon (NN) interaction between particles i and j, Vijk

is the three-nucleon (3N) interaction between particles i, j, and k,
and the ellipsis indicate interactions involving more than three
particles. There are indications that four-nucleon interactions
may contribute at the level of only ∼ 100 keV in 4He [14] or
pure neutron matter [15], and therefore are negligible compared
to NN and 3N components. Hence, current formulations of
the microscopic model do not typically include them (see, for
example, reference [4]).

The NN interaction term in the nuclear Hamiltonian is
the most studied of all, with thousands of experimental data
points at laboratory energies (Elab) from essentially zero to
hundreds of MeV. It consists of a long-range component, for
inter-nucleon separation r & 2 fm, due to one-pion exchange

(OPE) [16], and intermediate- and short-range components, for,
respectively, 1 fm . r . 2 fm and r . 1 fm, derived,
up to the mid 1990’s, almost exclusively from meson-exchange
phenomenology [3, 17, 18]. These models fit the large amount of
empirical information about NN scattering data contained in the
Nijmegen database [19], available at the time, with a χ2/datum ≃

1 for Elab up to pion-production threshold. Two well-known and
still widely used examples in this class of NN interactions are the
CD-Bonn [18] and the Argonne v18 (AV18) [3] potentials.

The AV18 interaction is a local, configuration-space NN
potential that has been extensively and successfully used in
a number of QMC calculations. It is expressed as a sum
of electromagnetic and OPE terms and phenomenological
intermediate- and short-range parts:

vij = v
γ
ij + vπij + vIij + vSij . (2)

The electromagnetic term v
γ
ij has one- and two-photon exchange

Coulomb interaction, vacuum polarization, Darwin-Foldy, and
magnetic moment terms, with appropriate form factors that keep
terms finite at r = 0 (see reference [3] for more details). The
OPE part includes the charge-dependent (CD) terms due to the
difference in neutral (mπ0) and charged pion (mπ± ) masses, and
in coordinate-space it reads

vπij =
[

vπστ (r) σ i · σ j + vπtτ (r) Sij
]

τ i · τ j +
[

vπσT(r) σ i · σ j + vπtT(r) Sij
]

Tij ,

(3)

where σ adn τ are the Pauli matrices that operate over the spin
and isospin of particles, and Sij = 3 σ i · r̂ij σ j · r̂ij − σ i · σ j and
Tij = 3 τizτjz − τ i · τ j are the tensor and isotensor operators,
respectively. The functions, vπστ (r), v

π
tτ (r), v

π ,
σT(r), and vπtT(r) are

defined as

vπστ (r) =
Y0(r)+ 2Y+(r)

3
, vπtτ (r) =

T0(r)+ 2T+(r)

3
,

vπσT(r) =
Y0(q)− Y+(r)

3
, vπtT(r) =

T0(r)− T+(r)

3
, (4)

where Yα(r) and Tα(r) are the Yukawa and tensor functions
given by

Yα(r) =
g2A
12π

m3
πα

(2 fπ )2
e−xα

xα
, Tα(r) = Yα(r)

(

1+
3

xα
+

3

x2α

)

,

(5)

with xα = mπα r, and gA = 1.267, fπ = 92.4MeV being the
axial-vector coupling constant of the nucleon and the pion decay
constant, respectively.

The intermediate-range region, vIij, is parametrized in terms of
two-pion exchange (TPE), based on, but not consistently derived
from, a field-theory analysis of box diagrams with intermediate
nucleons and 1 isobars [20]. The short-range region, vSij, is
instead represented by spin-isospin and momentum-dependent
operators multiplied by Woods-Saxon radial functions [3].
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The AV18 model can be written as an overall sum of eighteen
operators (N = 18)

vij =

N
∑

p=1

vp(rij)O
p
ij , (6)

where the first eight are given by

O
p=1−8
ij =

[

1, σ i · σ j, Sij, L · S
]

⊗
[

1, τ i · τ j

]

, (7)

with the spin-orbit contribution expressed in terms of the relative
angular momentum L = 1

2i (ri − rj) × (∇i − ∇j) and the total

spin S = 1
2 (σ i + σ j) of the pair. There are six additional charge-

independent operators corresponding to p = 9 − 14 that are
quadratic in L

O
p=9−14
ij =

[

L2, L2 σ i · σ j, (L · S)2
]

⊗
[

1, τ i · τ j

]

, (8)

while the p = 15− 18 are charge-independence breaking terms

O
p=15−18
ij =

[

Tij,Tij σ i · σ j,Tij Sij, τi,z + τj,z
]

. (9)

The AV18 model has a total of 42 independent parameters.
A simplex routine [21] was used to make an initial fit to the
phase shifts of the Nijmegen partial-wave analysis (PWA) [19],
followed by a final fit direct to the database, which contains 1,787
pp and 2,514 np observables for Elab up to 350MeV. The nn
scattering length and deuteron binding energy were also fit. The
final χ2/datum = 1.1 [3]. While the fit was made up to 350MeV,
the phase shifts are qualitatively good up to much larger energies,
E ≤ 600MeV [22].

Simplified versions of these interactions, including only a
subset of the operators in Equation (7), are available. For instance,
the Argonne v′8 (AV8′) contains a charge-independent eight-

operator projection,O
p=1−8
ij =

[

1, σ i · σ j, Sij, L · S
]

⊗
[

1, τ i · τ j

]

,
of the full NN potential, constructed to preserve the potential in
all S and P waves as well as the 3D1 and its coupling to the 3S1,
while over-binding the deuteron by 18 keV due to the omission
of electromagnetic terms [23]. The main missing features of these
simplified interactions is the lack of terms describing charge
and isospin symmetry breaking, as well as a slightly poorer
description of nucleon-nucleon scattering data in higher partial
waves. However, these contributions are very small, as outlined
in reference [23].

Already in the 1980s, accurate three-body calculations showed
that contemporary NN interactions did not provide enough
binding for the three-body nuclei, 3H and 3He [24]. In the late
1990s and early 2000s this realization was also extended to the
spectra (ground and low-lying excited states) of light p-shell
nuclei, for instance, in calculations based on QMC methods [25]
and in no-core shell-model studies [26]. Consequently, the
microscopic model with only NN interactions fit to scattering
data, without the inclusion of a 3N interaction, is no longer
considered realistic.

In addition to NN forces, sophisticated phenomenological
3N interactions have been then developed. They are generally

expressed as a sum of a TPE P-wave term, a TPE S-wave
contribution, a three-pion-exchange contribution, and a 3N
contact [4]. More specifically, two families of 3N interactions
were obtained in combination with the AV18 potential: the
Urbana IX (UIX) [27] and Illinois 7 (IL7) [28] models. The
UIX potential contains two parameters fit to reproduce the
ground-state energy of 3H and the saturation-point of symmetric
nuclear matter, while the IL7 potential involves five parameters
constrained on the low-lying spectra of nuclei in the mass
range A = 3− 10.

Despite their success in predicting a wide range of nuclear
properties [4], the phenomenological potentials suffer from
several drawbacks. For example, the resulting AV18+IL7
Hamiltonian leads to predictions of ≈ 100 ground- and excited-
state energies up to A = 12 in good agreement with the
corresponding empirical values. However, when used to compute
the neutron-star equation of state, such Hamiltonian does
not provide sufficient repulsion to guarantee the stability of
the observed stars against gravitational collapse [29]. On the
other end, the AV18+UIX model, while providing a reasonable
description of s-shell nuclei and nuclear matter properties, it
somewhat underbinds light p-shell nuclei.

Thus, in the context of the phenomenological nuclear
interactions, we do not have a Hamiltonian that can explain
the properties of all nuclear systems, from NN scattering
to dense nuclear and neutron matter. Furthermore, this
phenomenological approach does not provide a rigorous scheme
to consistently derive two- andmany-body forces and compatible
electroweak currents. In addition, there is no clear way to
properly assess the theoretical uncertainty associated with the
nuclear potentials and currents.

These shortcomings were addressed when a new phase in
the evolution of microscopic models began in the early 1990’s
with the emergence of χEFT [30–32]. χEFT is a low-energy
effective theory of QCD and provides the most general scheme
accommodating all possible interactions among nucleons and
pions (1-less χEFT) compatible with the relevant symmetries
and symmetry breakings—in particular chiral symmetry—of
low-energy QCD. In some modern approaches, the choice of
degrees of freedom also includes the 1 isobar (1-full χEFT),
because the1-nucleon mass splitting is only 300MeV ∼ 2mπ .

By its own nature, the χEFT formulation has an expansion
in powers of pion momenta as its organizing principle. Most
chiral interactions employed in recent nuclear structure and
reaction calculations are based on Weinberg power counting.
Within Weinberg power counting, the interactions are expanded
in powers of the typical momentum p over the breakdown
scale 3b ∼ GeV, Q = p/3b, where the breakdown scale
denotes momenta at which the short distance structure becomes
important and cannot be neglected and absorbed into contact
interactions anymore (see references [33–36] for recent review
articles). It is important mentioning that alternative power-
counting schemes have been also suggested [37–42] but not
fully explored.

This expansion introduces an order by order scheme, defined
by the power ν of the expansion scale Q associated with each
interaction terms: leading order (LO) for ν = 0, next-to-leading
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order (NLO) for ν = 2, next-to-next-to-leading order (N2LO)
for ν = 3 and so on. Similarly as for nuclear interactions,
such a scheme can also be developed for electroweak currents.
Therefore, χEFT provides a rigorous scheme to systematically
construct many-body forces and consistent electroweak currents,
and tools to estimate their uncertainties [43–48].

Chiral nuclear forces are comprised of both pion-exchange
contributions and contact terms. Pion-exchange contributions
represent the long-range part of nuclear interactions and some of
the pion-nucleon (πN) couplings entering sub-leading diagrams
can consistently be obtained from low-energy πN scattering
data [49–54, 54–56]. On the other end, contact terms encode the
short-range physics, and their strength is specified by unknown
low-energy constants (LECs), obtained by fitting experimental
data. Similarly to the phenomenological interactions, the LECs
entering theNN component are obtained by fittingNN scattering
data up to 300MeV lab energies, while the LECs involved in
the 3N terms are fixed by reproducing properties of light-nuclei.
This optimization procedure involves separate fit of the NN and
3N terms. Recently, a different strategy has been introduced
by Ekström et al. [57]. This new approach is based on a
simultaneous fit of the NN and 3N forces to low-energy NN data,
deuteron binding energy, and binding energies and charge radii
of hydrogen, helium, carbon, and oxygen isotopes.

Within χEFT,many studies have been carried out dealing with
the construction and optimization ofNN and 3N interactions [34,
42, 44, 49, 57–81] and accompanying isospin-symmetry-breaking
corrections [82–84]. These interactions are typically formulated
in momentum space, and include cutoff functions to regularize
their behavior at large momenta. This makes them strongly
non-local when Fourier-transformed in configuration space, and
therefore unsuitable for use with QMC methods. In this context,
an interaction is local if it depends solely on the momentum
transfer q = p − p′ (p and p′ are the initial and final relative
momenta of the two nucleons), which, upon Fourier transform,
leads to dependencies solely on r. However, interactions in
momentum-space can also depend on the momentum scale k =

(p′ + p)/2, whose Fourier transform introduces derivatives in
coordinate space. These k dependencies, and thus non-localities,
come about because of (i) the specific functional choice made to
regularize the momentum space potentials in terms of the two
momentum scales p and p′, and (ii) contact interactions that
explicitly depend on k.

In recent years, local configuration-space chiral NN
interactions have been derived by two groups. On the one
side, the authors of references [12, 85] constructed NN local
chiral potentials within 1-less χEFT by including one- and
two-pion exchange contributions and contact terms up to N2LO
in the chiral expansion. The contact terms are regularized
in coordinate space by a cutoff function depending only
on the relative distance between the two nucleons, and use
Fierz identities [86] to remove completely the dependence
on the relative momentum of the two nucleons, by selecting
appropriate combinations of contact operators. Their strength is
characterized by 11 LECs, fixed by performing order by order χ2

fit to NN phase shifts from the Nijmegen PWA up to 150MeV
lab energy. The fitting procedure is carried out for different
values of the cutoff R0 in the range of R0 = 1.0 − 1.2 fm. The

motivations why the authors of references [12, 85] truncated the
chiral expansion of these local potentials at N2LO is because at
this order it is (i) possible to have a fully local representation of
the NN chiral interactions and (ii) the inclusion of consistent 3N
force is straightforward. In their models, the unknown 3N LECs
are obtained by reproducing the binding energy of 4He as well as
the P-wave n− α elastic scattering phase shifts. In addition, they
explore different parametrization for the 3N, force accordingly
to Fierz identities [87–89]. In the present work, we are referring
to a set of these local chiral interactions, specifically the (D2, Eτ )
model with R0 = 1.0 fm of reference [89], as GT+Eτ -1.0.

On the other side, the authors of references [10, 90]
developed a different set of NN local chiral interactions by
(i) including diagrams with the virtual excitation of 1-isobars
in the TPE contributions up to N2LO (1-full χEFT), ii)
retaining contact terms up to N3LO. The LECs entering the
NN contact interactions in this model are constrained to
reproduce NN scattering data from the most recent and up-
to-date database collected by the Granada group [91–93]. The
contact terms are implemented via a Gaussian representation of
the three-dimensional delta function with RS as the Gaussian
parameter [10, 90, 94]. The pion-range operators are regularized
at high-value of momentum transfer via a special radial function
characterized by the cutoff RL [10, 90, 94]. There are two classes
of these potentials. Class I (II) are fit to data up to 125MeV
(200MeV). For each class, two combinations of short- and long-
range regulators have been used, namely (RS,RL) = (0.8, 1.2) fm
(models NV2-Ia and NV2-IIa) and (RS,RL) = (0.7, 1.0) fm
(models NV2-Ib and NV2-IIb). Class I (II) fits about 2,700
(3,700) data points with a χ2/datum . 1.1 (. 1.4) [10, 90].
In conjunction with these models, two distinct sets of 1-full
3N interactions have also been constructed up to N2LO. In the
first, the 3N unknown LECs were determined by simultaneously
reproducing the experimental trinucleon ground-state energies
and neutron-deuteron (nd) doublet scattering length for each
of the NN models considered, namely NV2-Ia/b and NV2-
IIa/b [11, 95]. In the second set, these LECs were constrained by
fitting, in addition to the trinucleon energies, the empirical value
of the Gamow-Teller matrix element in tritium β-decay [94].
The resulting Hamiltonians were labeled as NV2+3-Ia/b and
NV2+3-IIa/b (or Ia/b and IIa/b for short) in the first case, and
as NV2+3-Ia∗/b∗ and NV2+3-IIa∗/b∗ (or Ia∗/b∗ and IIa∗/b∗) in
the second.

The interactions between external electroweak probes—
electrons and neutrinos—and interacting nuclear systems is
described by a set of effective nuclear currents and charge
operators. Analogously to the nuclear interactions, electroweak
currents can also be expressed as an expansion in many-body
operators that act on nucleonic degrees of freedom. Electroweak
currents have been developed in both meson-exchange and
χEFT approaches. We refrain to discuss them in this work,
redirecting the interested reader to dedicated reviews [4, 96–98]
and references therein.

3. QUANTUM MONTE CARLO METHODS

The χEFT Hamiltonians and the consistent electroweak
currents discussed in the previous section are the main
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input of sophisticated many-body methods aimed at solving
with controlled approximations the nuclear many-body
Schrödinger equation

H|9n〉 = En|9n〉 . (10)

This is a highly non-trivial problem, mainly because of the non-
perturbative nature and the strong spin-isospin dependence of
realistic nuclear forces. In this work, we will focus on QMC
techniques, namely the variational Monte Carlo (VMC), the
Green’s function Monte Carlo (GFMC), and the auxiliary-field
diffusion Monte Carlo (AFDMC) methods.

3.1. Variational Monte Carlo
The variational Monte Carlo method is routinely used to
obtain approximate solutions to the many-body Schrödinger
equation for a wide range of strongly interacting nuclear systems,
including few-body nuclei, light closed-shell nuclei, and nuclear
and neutron matter [4]. The VMC algorithm relies on the
Rayleigh-Ritz variational principle

〈9T |H|9T〉

〈9T |9T〉
= ET ≥ E0 (11)

to find the optimal set of variational parameters defining the trial
wave function 9T . As far as the nuclear many-body problem is
concerned, it is customary to assume that the trial state factorizes
into long- and short-range components

|9T〉 =
(

1−
∑

i<j<k

Fijk

)(

S
∏

i<j

Fij

)

|8J〉 , (12)

where Fij and Fijk are two- and three-body correlations,
respectively. The symbol S indicates a symmetrized product
over nucleon pairs since, in general, the Fij do not commute.
VMC calculations explicitly account for the underlying strong
alpha-cluster structure of light nuclei. For instance, the totally
antisymmetric Jastrow wave function of p-shell nuclei is
constructed from a sum over independent-particle terms, 8A,
each having four nucleons in an α-like core and the remaining
(A− 4) nucleons in p-shell orbitals [99]:

|8J〉 =A





∏

i<j<k

f cijk

∏

i<j≤4

fss(rij)
∏

k≤4<l≤A

fsp(rkl)

×
∑

LS[n]

(

βLS[n]
∏

4<l<m≤A

f
[n]
pp (rlm) |8A(LS[n]JJzTz)1234 : 5...A〉

)



 .

(13)

The operatorA stands for an antisymmetric sum over all possible
(A
4

)

partitions of the A particles into four s-shell and (A − 4)
p-shell states. As suggested by standard shell-model studies, the
independent-particle wave function |8A(LS[n]JJzTz)1234 : 5...A〉
with the desired JM value of a given nuclear state is obtained
using LS coupling, which is most efficient for nuclei with up to
A = 12. The symbol [n] is the Young pattern that indicates
the spatial symmetry of the angular momentum coupling of

the p-shell nucleons [25]. Note that |8A(LS[n]JJzTz)1234 : 5...A〉 is
chosen to be independent of the center of mass as it is expressed
in terms of the intrinsic coordinates

ri → ri − RCM , RCM =
1

A

A
∑

i=1

ri . (14)

The pair correlation for particles within the s-shell, fss, arises
from the structure of the α particle. The fsp is similar to the
fss at short range, but with a long-range tail that goes to unity
at large distances, allowing the wave function to develop a
cluster structure. Finally, fpp is set to give the appropriate cluster
structure outside the α core. The three-body central correlations,
induced by the two-body potential has the following operator
independent form

f cijk = 1− qc1(rij · rik)(rij · rjk)(rik · rjk)e
−qc2(rij+rik+rjk) , (15)

where qc1 and q
c
2 are variational parameters. In addition the scalar

correlations of Equation (13), VMC trial wave functions include
spin-dependent nuclear correlations, whose operator structure
reflects the one of the NN potential of Equation (6)

Fij =
(

1+ Uij

)

=
(

1+
6

∑

p=2

up(rij)O
p
ij

)

. (16)

More sophisticated trial wave functions can be constructed
by explicitly accounting for spin-orbit correlations, as, for
instance, in the cluster variational Monte Carlo calculations
of reference [100]. However, the computational cost of these
additional terms is significant, while the gain in the variational
energy is relatively small [101]. The radial functions up(rij) are
generated by minimizing the two-body cluster energy of the
interaction v̄− λ, with

v̄− λ =

18
∑

p=1

(

αpv
p(rij)O

p
ij − λp(rij)

)

. (17)

The variational parameters αp simulate the quenching of spin-
isospin interactions between particles i and j due to interactions
of these particles with others in the system. The Lagrange
multipliers λp(rij) account for short-range screening effects, and
are fixed at large distances by the asymptotic behavior of the
correlation functions, which is encoded by an additional set of
variational parameters. The quality of the trial wave function
is improved by reducing the strength of the spin- and isospin-
dependent correlation functions up(rij) when a particle k comes
close to the pair ij [102]

up(rij) →





∏

k6=i6=j

f
p

ijk
(rij, rik)



 up(rij) , (18)

where the three-body operator-dependent correlation induced by
the NN interaction is usually expressed as

f
p

ijk
(rij, rik) = 1− q

p
1(1− r̂ik · r̂jk)e

−q
p
2(rij+rik+rjk) , (19)
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with q
p
1 and q

p
2 being variational parameters [25]. The three-body

correlation operator Fijk turns out to be particularly relevant for
when 3N interactions are present in the nuclear Hamiltonian. In
this case, its form is suggested by perturbation theory

Fijk =
∑

q

ǫqV
q

ijk
(yqrij, yqrik, yqrjk) , (20)

where yq is a scaling parameter, and ǫq a small, constant. The
superscript q indicates the various terms of the 3N force. It has
been shown that the vast majority of the 3N correlations can
be recovered by omitting the commutator term ǫCV

C
ijk
, provided

that the strength of the anticommutator term ǫA is opportunely
adjusted. This allows to save a significant amount of computing
time, since anticommutators involving pairs ij and jk can be
expressed as a generalized tensor operators involving the spins
of nucleons i and k only. Hence, the computing time scales as the
number of pairs rather than the number of triplets [25].

The expectation values of the form of Equation (11) contain
multi-dimensional integrals over all particle positions

〈O〉 =

∫

dR9†
T(R)O9T(R)

∫

dR9†
T(R)9T(R)

. (21)

A deterministic integration of the above integral is
computationally prohibitive, therefore Metropolis Monte
Carlo techniques are employed to stochastically evaluate it. The
order of operators in the symmetrized product of Equation
(12), denoted by p and q for the left and right hand side wave
functions, respectively, is also sampled. The 3A-dimensional
integration is facilitated by introducing a probability distribution,
Wpq(R), such that

〈O〉 =

∑

p,q

∫

dR
9

†
T,p(R)O9T,q(R)

Wpq(R)
Wpq(R)

∑

p,q

∫

dR
9

†
T,p(R)9T,q(R)

Wpq(R)
Wpq(R)

. (22)

In standard VMC calculations, one usually takes Wpq(R) =

|Re(9†
T,p(R)9T,q(R))|, even though simpler choices might

be used to reduce the computational cost. The Metropolis
algorithm is used to stochastically sample the probability
distribution Wpq(R) and obtain a collection of uncorrelated or
independent configurations.

Since the nuclear interaction is spin-isospin dependent, the
trial state is a sum of complex amplitudes for each spin-isospin
state of the system

|9T〉 =
∑

is≤ns ,it≤nt

a(is, it;R)|χis χit 〉 . (23)

The ns = 2A many-body spin states can be written as

|χ1〉 = | ↓1,↓2, . . . ,↓A〉

|χ2〉 = | ↑1,↓2, . . . ,↓A〉

|χ3〉 = | ↓1,↑2, . . . ,↓A〉

. . .

|χns〉 = | ↑1,↑2, . . . ,↑A〉 (24)

and the isospin ones can be recovered by replacing↓with n and↑
with p. Note that, because of charge conservation, the number of
isospin states reduces to nt =

(A
Z

)

. To construct the trial state, one
starts from themean-field component |8A(LS[n]JJzTz)1234 : 5...A〉.
For fixed spatial coordinates R, the spin-isospin independent
correlations needed to retrieve |8J〉 are simple multiplicative
factors, common to all spin amplitudes. The symmetrized
product of pair correlation operators is evaluated by successive
operations for each pair, sampling their ordering as alluded to
earlier. As an example, consider the application of the operator
σ 1 · σ 2 on a three-body spin state (for simplicity we neglect the
isospin components). Noting that σ i ·σ j = 2Pσij −1, where 2Pσij
exchanges the spin of particles i and j, we obtain:

σ 1 · σ 2

























a↑↑↑
a↑↑↓
a↑↓↑
a↑↓↓
a↓↑↑
a↓↑↓
a↓↓↑
a↓↓↓

























=

























a↑↑↑
a↑↑↓

2a↓↑↑ − a↑↓↑
2a↓↑↓ − a↑↓↓
2a↑↓↑ − a↓↑↑
2a↑↓↓ − a↓↑↓

a↓↓↑
a↓↓↓

























. (25)

Hence, the many-body spin-isospin basis is closed under the
action of the operators contained in the nuclear Hamiltonian.

Most of the computing time is spent on spin-isospin
operations like the one just described. They amount to an
iterative sequence of large sparse complex matrix multiplications
that are performed on-the-fly using explicitly coded subroutines,
which mainly rely on three useful matrices. The first matrix
m(i, is) gives the z-component of the spin of particle i associated
to the many-body spin-state is. A second useful matrix is
nexch(kij, is), that provides the number of the many-body spin
state obtained by exchanging the spins of particles i and j,
belonging to the pair labeled kij in the state is. The matrix
nflip(i, is) yields the number of the spin state obtained by flipping
the spin of particle i in the spin state. The action of the operator
σ 1 · σ 2 can then be expressed as

σ 1 · σ 2

∑

is ,it

a(is, it;R)|χis χit 〉

=
∑

is ,it

[

2a(is, it;R)− a(nexch(kij, is), it;R)
]

|χis χit 〉 . (26)

By utilizing this representation, we only need to evaluate 2A

operations for each pair, instead of the 2A × 2A operations that
are required using a simple matrix representation in spin space.
The tensor operator is slightly more complicated to evaluate and
requires both matrices m(i, is) and nflip(i, is) [103]. Analogous
matrices are employed to perform operations in the isospin space,
as the two representations are practically identical.

The expectation values of Equation (21) are evaluated by
having the operators act entirely on the right hand side of the
trial wave function. Thematrix machinery used to apply the spin-
dependent correlation operators is also used to evaluateO|9T,p〉.
A simple scalar product of this quantity with 〈9T,q|, provides the

numerator of the local estimate 9†
T,q(R)O9T,p(R)/Wpq(R) and
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Wpq(R) is computed in a similar fashion. The first and second
derivatives of the wave function are numerically computed by
means of the two- and three-point stencil, respectively. Hence,
to determine the kinetic energy, 6A + 1 evaluations of 9T(R)
are needed. Finally, using the trick described in reference [104],
we can evaluate the action of the angular momentum dependent
terms in the potential evaluating 9T(R) an additional 3A(A −

1)/2 times.
Not only does the size of the wave vector grows exponentially

with the number of nucleons, but so does the number of
evaluations necessary to calculate the energy, limiting the
applicability of the VMC method to A ≤ 12 nuclei. Sampling
the spin-isospin state and evaluating the trial wave function’s
amplitude for that sampled state still requires a number of
operations exponential in the particle number, bringing little
savings in terms of computing time. Extending VMC calculations
to larger nuclear systems requires devising trial wave functions
that can capture most of physics of the system while requiring
computational time that scales polynomially with A.

3.2. Green’s Function Monte Carlo
Green’s functionMonte Carlo overcomes the limitations intrinsic
to the variational ansatz by using an imaginary-time projection
technique to enhance the true ground-state component of a
starting trial wave function

|90〉 ∝ lim
τ→∞

e−(H−ET )τ |9T〉 . (27)

In the above equation, τ is the imaginary time, and ET is a
parameter used to control the normalization. In addition to
ground-states properties, excited states can be computed within
GFMC. The imaginary-time diffusion yields the lowest-energy
eigenstate with the same quantum numbers as |9T〉. Thus, to
obtain an excited state with distinct quantum numbers from the
ground state, one only needs to construct a trial wave function
with the appropriate quantum numbers. If the excited-state
quantum numbers coincide with those of the ground state, more
care is needed, but precise results for such states can still be
obtained [105].

Except for some specific cases, the direct computation of the
propagator e−Hτ for arbitrary values of τ is typically not possible.
For small imaginary times δτ = τ/N withN large, the calculation
is tractable, and the full propagation to large imaginary times τ
can be recovered through the following path integral

9(τ ,RN) =

∫ N−1
∏

i=0

dRi

〈

RN

∣

∣

∣
e−(H−ET )δτ

∣

∣

∣
RN−1

〉

· · ·

〈

R1

∣

∣

∣
e−(H−ET )δτ

∣

∣

∣
R0

〉

〈R0〉9T . (28)

The GFMCwave function at imaginary time τ+δτ can be written
in an integral form

9(τ + δτ ,Ri+1) =

∫

dRiGδτ (Ri+1,Ri)9(τ ,Ri) , (29)

where we defined the short-time propagator, or Green’s function,

Gδτ (Ri+1,Ri) =
〈

Ri+1
∣

∣e−Hδτ
∣

∣Ri

〉

. (30)

Monte Carlo techniques are used to sample the paths
by simultaneously evolving a set of configurations—dubbed
walkers—in imaginary time, until the distribution converges
to the ground-state wave function [106]. To avoid the large
statistical errors arising from configurations that diffuse into
regions where they make very little contribution to the
ground-state wave function, the diffusion process is guided by
introducing an importance-sampling function 9I(R), which has
the same quantum numbers as the ground-state. The importance
function is typically taken to coincide with the variational wave
function, but different choices are possible. Multiplying Equation

(29) on the left by9†
I (Ri+1) yields

9
†
I (Ri+1)9(τ + δτ ,Ri+1)

=

∫

dRi

[

9
†
I (Ri+1)Gδτ (Ri+1,Ri)

1

9
†
I (Ri)

]

9
†
I (Ri)9(τ ,Ri) .

(31)

The quantity within squared brackets is the importance-sampled
propagator GI

δτ (Ri+1,Ri). Note that a set of walkers can be

sampled from9
†
I (Ri)9(τ + δτ ,Ri) only if this density is positive

definite. In this case, the latter can be interpreted as a probability
density distribution and its integral determines the size of the
population, i.e., the number of walkers. In Fermion systems,

however, the positiveness of9†
I (Ri)9(τ + δτ ,Ri) is only granted

for exact importance-sampling functions. In general, the nodal
surface of the ground state can be different from that of 9I . We
will return to this point later on. The importance function can be
expanded in terms of eigenstates of the Hamiltonian as

9I(Ri) =
∑

n

cn9n(R) . (32)

The Green’s function can also be expressed in terms of the
same eigenstates:

Gδτ (Ri+1,Ri) =
∑

n

9n(Ri+1)e
−(En−ET )δτ9†

n(R) . (33)

Inserting the last two relations into Equation (29) and integrating
over Ri+1, we get

∑

n

c∗n

∫

dRi+19
†
n(Ri+1)9(τ + δτ ,Ri+1)

=
∑

n

c∗n

∫

dRi9
†
n(Ri) e

−(En−ET )δτ9(τ ,Ri) . (34)

If the importance-sampling function closely resembles the
ground-state wave function, then c∗n ≃ δn0 and ET ≃

E0, implying
∫

dRi+19
†
0 (Ri+1)9(τ + δτ ,Ri+1) ≃

∫

dRi9
†
0 (Ri)9(τ ,Ri) .

(35)
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Therefore, having accurate importance function reduces the
fluctuations in the population size from one time step to the next,
thereby reducing the statistical errors in the calculation.

A common approximation for the short-time propagator is
based upon the Trotter-Suzuki expansion

Gδτ (Ri+1,Ri) = e−V(Ri+1)δτ/2〈Ri+1|e
−Tδτ |Ri〉e

−V(Ri)δτ/2+ o(δτ 3).
(36)

Here, T is the kinetic energy giving rise to the free-particle
propagator that, for non-relativistic systems, can be expressed as
a simple Gaussian in configuration space

〈Ri+1|e
−Tδτ |Ri〉 = G0

δτ (Ri+1,Ri) =

[

1

λ3π3/2

]A

e−(Ri+1−Ri)2/λ2 ,

(37)

with λ2 = 4 h̄2

2mδτ . The exponentials of the two-body potentials
can be approximated to first order by turning the sums over pairs
in the exponent into a symmetrized product of exponentials of
the individual pair potentials. The first six terms of the potential
can be easily exponentiated, while momentum dependent terms
cannot be treated this way. A simple way to include them consists
in expanding the exponential of the momentum dependent
terms to first order in δτ and use integration by parts to let
the derivatives act on the free-particle Green’s function. This
approach can only be successfully applied to the terms in the
potential that are linear in momentum, such as L ·S and (L ·S) τ i ·

τ j [107]. On the other hand, contributions to the potential that
are quadratic in the momentum cannot be evaluated to first order
in this manner. For this reason we use approximations to the full
NN potentials, such as the AV8′ interaction, that only contain the
first eight operators. The difference between AV18 and AV8′ is
treated in perturbation theory.

More sophisticated alternatives of reducing the time-step
error exist and are routinely used in GFMC calculations. The
most common one consists in building the Green’s function
operator as a product of exact two-body propagators

Gδτ (Ri+1,Ri) =



S
∏

j<k

gjk(rjk, i, rjk, i+1)

g0
jk
(rjk, i, rjk, i+1)



G0
δτ (Ri+1,Ri) , (38)

where gjk(rjk, i, rjk, i+1) is the exact two-body propagator and

g0
jk
(rjk, i, rjk, i+1) is the two-body free- particle propagator [108].

At variance with the propagator of Equation (36), terms quadratic
in the angular momentum can in principle be accounted for
into the exact pair propagator. However, the inclusion of these
terms requires the sampled distribution to have the same locality
structure to keep statistical errors under control. Thus, simplified
AV8′ potentials are also used in the pair propagator, even though
in this case no approximations in treating L · S and (L · S) τ i · τ j

terms are necessary.
Since the matrix V is the spin/isospin-dependent interaction,

the propagator is in turn a matrix in spin-isospin space. To deal
with it, first a scalar approximation to the importance sampled

Green’s function, denoted as G̃I
δτ (Ri+1,Ri), is introduced.

Recalling the form of the importance sampled Green’s function

GI
δτ (Ri+1,Ri) =

9
†
I (Ri+1)

9
†
I (Ri)

Gδτ (Ri+1,Ri) , (39)

constructing its scalar counterpart requires defining a scalar
approximation for the importance-sampling function, which can

be taken to be 9̃I(R) =

√

9
†
J (R)9J(R). As for the potential,

we can use the average of the central parts in the 1S0 and 3S1
channels, thus

G̃I
δτ (Ri+1,Ri) =

9̃I(Ri+1)

9̃I(Ri)
e−[V10(Ri+1)+V01(Ri+1)]δτ/4G0

δτ

(Ri+1,Ri)e
−[V10(Ri)+V01(Ri]δτ/4 . (40)

At each time-step, the walkers are propagated with G0
δτ (Ri+1,Ri)

by sampling a 3A-dimensional vector from a gaussian
distribution to shift the spatial coordinates. To remove the
linear terms coming from the exponential of Equation (37), we
use two mirror points Ri+1 = Ri ± δR and we consider the
corresponding two weights

w± =
9̃I(Ri ± δR)

9̃I(Ri)
e−[V10(Ri±δR)+V01(Ri±δR)+V10(Ri)+V01(Ri]δτ/4eETδτ .

(41)

One of the two walkers is kept in the propagation according
to a heat-bath sampling among the two normalized weights
w±/(

∑

± w±) and the average weight
∑

± w±/2 is associated to
the propagated configuration.

In terms of the scalar Green’s function, the propagation of
Equation (29) reads

9(τ + δτ ,Ri+1) =

∫

dRi

[

Gδτ (Ri+1,Ri)

G̃I
δτ (Ri+1,Ri)

]

G̃I
δτ (Ri+1,Ri)9(τ ,Ri) .

(42)

Since the new positions are sampled according to G̃I
δτ (Ri+1,Ri),

we can conveniently define

9(τ + δτ ,Ri+1) =
Gδτ (Ri+1,Ri)

G̃I
δτ (Ri+1,Ri)

9(τ ,Ri) . (43)

The imaginary-time evolution of the walker density is given by

9
†
I (Ri+1)9(τ + δτ ,Ri+1) =

∫

dRi

[

9
†
I (Ri+1)Gδτ (Ri+1,Ri)9(τ ,Ri)

9
†
I (Ri)G̃I

δτ (Ri+1,Ri)9(τ ,Ri)

]

G̃I
δτ

(Ri+1,Ri)9
†
I (Ri)9(τ ,Ri) . (44)
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Iterations of Equation (44) amount to multiple
matrix multiplications

9(τ ,RN) =

[

Gδτ (RN ,RN−1)

G̃I
δτ (RN ,RN−1)

][

Gδτ (RN−1,RN−2)

G̃I
δτ (RN−1,RN−2)

]

· · ·

[

Gδτ (R1,R0)

G̃I
δτ (R1,R0)

]

9T(R0) , (45)

that are performed using the same matrices used to construct
|9T〉. It has to be stressed that 9(τ ,RN) is not the ground-
state wave function. It rather represents a spin-isospin set of
amplitudes that, when taken in product with the Hermitian
conjugate of the importance function, gives an overlap for each
component of the wave function. Are the changes in these
overlaps that drive the distribution of walkers toward that of the
true ground state.

To avoid sign fluctuations in 9†
I (Ri)9(τ ,Ri), we sample the

walkers from the positive-definite density distribution

I(Ri) =

∣

∣

∣

∣

∣

∣

∑

is ,it

〈9I(Ri)|χis χit 〉〈χis χit |9(τ ,Ri)〉

∣

∣

∣

∣

∣

∣

+ ǫ
∑

is ,it

∣

∣

∣
〈9I(Ri)|χis χit 〉〈χis χit |9(τ ,Ri)〉

∣

∣

∣
. (46)

The first term simply measures the magnitude of the overlap of
the wave functions, while the second, with a small coefficient
ǫ ≃ 0.01, ensures a positive definite importance function
to allow diffusion across nodal surfaces. This choice for the
sampling distribution is monitored by checking how much this
estimate of the population size deviates from the actual number
of configurations. Since the configurations are distributed
according to I(Ri) defined in Equation (46), the expectation
values of observables that commute with the Hamiltonian are
estimated as

〈O(τ )〉 =
〈9T |O|9(τ )〉

〈9T |9(τ )〉
=

∑

Ri
〈9T(Ri)|O|9(τ ,Ri)〉/I(Ri)

∑

Ri
〈9T(Ri)|9(τ ,Ri)〉/I(Ri)

.

(47)

For all other observables, we compute the mixed estimates

〈O(τ )〉 ≃ 2
〈9T |O|9(τ )〉

〈9T |9(τ )〉
−

〈9T |O|9T〉

〈9T |9T〉
, (48)

where the first and the second term correspond to the DMC and
VMC expectation value, respectively.

As in standard Fermion diffusion Monte Carlo algorithms,
the GFMC method suffers from the Fermion sign problem
that arises from stochastically evaluating the matrix elements
in Equation (47). The imaginary-time propagator is a local
operator, while antisymmetry is a global property of the system.
As a consequence, |9(τ )〉 can contain bosonic components
that have much lower energy than the Fermionic ones and
are exponentially amplified during the propagation. When the
dot product with the antisymmetric 9T is taken, the desired

Fermionic component is projected out in the expectation
values, but the variance—and hence the statistical error—grows
exponentially with τ . Because the number of pairs that can
be exchanged grows with A, the sign problem also grows
exponentially with the number of nucleons. Already for A =

8, the statistical errors grow so fast that convergence cannot
be achieved.

To control the sign problem, we adopt the so-called
“contrained-path” method [101], originally developed to study
condensed matter systems [109]. This method is based on
discarding those configurations that in future generations will
contribute only noise to expectations values. If we knew the exact
ground state, we could discard any walker for which

9
†
0 (Ri)9(τ ,Ri) = 0 , (49)

where a sum over spin-isospin states is implied. The sum of these
discarded configurations can be written as a state |9d〉, which has
zero overlap with the ground state. Disregarding |9d〉 is justified
because it only contains excited-states components and should
decay away as τ → ∞. However, in general, the exact ground
state is not known, and the constraint is approximately imposed
using9T in place of90:

〈9T |9d〉 = 0 . (50)

The GFMC wave function evolves smoothly in imaginary time
and changes can bemade arbitrarily small by reducing δτ . Hence,
if the wave function is purely scalar, any configuration which
yields a negative overlap must first pass through a point at
which 9T—and hence the overlap—is zero. Discarding these
configurations is then sufficient to stabilize the simulation and
produce “fixed-node” variational solutions, to the many-Fermion
problem. However, the GFMC trial wave function is a vector
in spin-isospin space, and there are no coordinates for which
all the spin-isospin amplitudes vanish. In addition, the overlap
9

†
T, p(Ri)9(τ ,Ri) is complex and depends on the particular

sampled order p. As a consequence, it does not evolve smoothly
and can pass through zero. The constraint of Equation (50)
cannot be satisfied for individual configurations, but rather
only on average for the sum of discarded configurations. To
circumvent these difficulties, we define the overlap

OT, p = ℜ[9†
T, p(Ri)9(τ ,Ri)] . (51)

We can then introduce a probability for discarding a
configuration in terms of the ratio OT, p/IT, p where IT, p
corresponds to choosing the ordering p in 9I as defined in
Equation (46)

P[9†
T, p(Ri),9(τ ,Ri)] =







0 O/I > αc
αC−O/I
αc−βc

αc > O/I > βc

1 O/I < βc

The constants αc and βc are adjusted such that the average of the
overlap OT, p/IT, P is zero within statistical errors.
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In a few cases the constrained propagation converges to
the wrong energy (either above or below the correct energy).
Therefore, a small number, nu = 10–80, of unconstrained
steps are made before evaluating expectation values. These few
unconstrained steps appear to be sufficient to remove the bias
introduced by the constraint but do not greatly increase the
statistical error.

3.3. Auxiliary Field Diffusion Monte Carlo
Over the last two decades, the auxiliary field diffusion Monte
Carlo method [110] has become a mainstay for studying atomic
nuclei [89, 111–113] and infinite neutron matter [13, 87, 114].
The AFDMC overcomes the exponential scaling with the number
of nucleons of the GFMC by using a spin-isospin basis given by
the outer product of single-nucleon spinors

|χis χit 〉 → |S〉 ≡ |s1〉 ⊗ |s2〉 ⊗ · · · ⊗ |sA〉 , (52)

where

|si〉 = ai,↑p| ↑ p〉 + ai,↓p| ↓ p〉 + ai,↑n| ↑ n〉 + ai,↓n| ↓ n〉 . (53)

The state vector is fully specified by a set of 4A complex
coefficients. As opposed to the many-body spin-isospin basis
defined in Equation (23), the single-particle one is not closed
under the action of two-body operators. To see this, lets apply
again the operator σ 1 · σ 2 on a three-body spin state

σ 1 · σ 2

[

(

a1,↑| ↑〉 + a1,↓| ↓〉
)

⊗
(

a2,↑| ↑〉 + a2,↓| ↓〉
)

⊗

(

a3,↑| ↑〉 + a3,↓| ↓〉
)

]

= 2
[

(

a2,↑| ↑〉 + a2,↓| ↓〉
)

⊗

(

a1,↑| ↑〉 + a1,↓| ↓〉
)

⊗
(

a3,↑| ↑〉 + a3,↓| ↓〉
)

]

−
[

(

a1,↑| ↑〉 + a1,↓| ↓〉
)

⊗
(

a2,↑| ↑〉 + a2,↓| ↓〉
)

⊗

(

a3,↑| ↑〉 + a3,↓| ↓〉
)

]

. (54)

In general, the action of all pairwise spin/isospin operators
needed to construct the trial state defined in Equation (12)
generates all the 2A

(A
Z

)

amplitudes of the many-body spin-isospin
basis. For this reason, the trial wave function typically used in
AFDMC calculations [89, 115] is simpler than the one of the
GFMC and takes the form

|9T〉 =
(

1−
∑

i<j

Fij −
∑

i<j<k

Fijk

)

|8J〉 , (55)

where Fij and Fijk are defined in Equations (16) and (20),
respectively. Since it contains a linearized version of spin/isospin-
dependent two-body correlations, this wave function is
significantly cheaper to evaluate than the one used in GFMC,
as it scales polynomially with the number of nucleons rather
than exponentially. However, because only pairs of nucleons are
correlated at a time, the cluster property is violated. Nevertheless,
the use of these linearized spin-dependent correlations has
enabled a number of remarkably accurate AFDMC calculations,
in which properties of atomic nuclei up to A = 16 [89, 111, 112]

have been investigated utilizing the local χEFT interactions
of references [12, 87]. Very recently, the AFDMC trial wave
function has been improved by including quadratic pair
correlations [89, 116].

The Jastrow component of |9T〉 is also simpler than the one
of Equation (13),

|8J〉 =
∏

i<j

f cij

∏

i<j<k

f cijk|8A(J
π , Jz ,Tz)〉 , (56)

where the two-body scalar correlation are obtained consistently
with the up(rij) minimizing the two-body cluster energy. The
three-body scalar correlation is the one defined in Equation
(15). The mean-field component is modeled by a sum of
Slater determinants,

〈X|8(Jπ , Jz ,Tz)〉 =
∑

n

cn





∑

JJz

CJJzA
[

φα1 (x1) . . . φαA (xA)
]





JJz

.

(57)

In the above equation we have introduced X = {x1, . . . , xA},
where the generalized coordinate xi ≡ {ri, si} represents both the
position R = r1, . . . , rA and the spin-isospin coordinates S =

s1, . . . , sA of the A nucleons. The determinants are coupled with
Clebsch-Gordan coefficients CJJz in order to reproduce the total
angular momentum, total isospin, and parity. The single-particle
orbitals are given by

φα(xi) = Rnl(ri)Yllz (r̂i)χssz (σ )χttz (τ ), (58)

where Rnl(r) is the radial function, Yllz is the spherical harmonic,
and χssz (σ ) and χttz (τ ) are the complex spinors describing the
spin and isospin of the single-particle state.

The AFDMC imaginary-time propagation can be broken up in
small time steps similarly to what is done in Equation (28) for the
GFMC method. This time however, the generalized coordinate
X is used instead of R and the spin-isospin degrees of freedom
are also sampled. The AFDMC wave function at imaginary time
τ + δτ can be written in an integral form analogous to the one of
Equation (29)

9(τ + δτ ,Xi+1) =
∑

Si

∫

dRiGδτ (Xi+1,Xi)9(τ ,Xi) . (59)

Using the Trotter decomposition of Equation (36), the short-time
Green’s function factorizes as

Gδτ (Xi+1,Xi) = G0
δτ (Ri+1,Ri)〈Si+1|e

−(V(Ri+1)/2+V(Ri)/2−ET )δτ |Si〉

+ o(δτ 3) . (60)

Quadratic spin-isospin operators contained in the nuclear
potential can connect a single spin-isospin state |Si〉 to all
possible |Si+1〉 states. In order to preserve the single-particle
representation, the short-time propagator is linearized utilizing
the Hubbard-Stratonovich transformation

e−λO
2δτ/2 =

1
√
2π

∫ ∞

−∞

dx e−x2/2 ex
√
−λδτ O , (61)
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where x are the auxiliary fields and the operators O are obtained
as follows. The first six terms defining the NN potential can
be conveniently separated in a spin/isospin-dependent VSD and
spin/isospin-independent VSI contributions. To see this in more
details, lets consider purely neutron systems, where τ i · τ j = 1,
since the extension to isospin-dependent terms is trivial [89]. In
this case, VSD can be cast in the form

VSD =
1

2

∑

iαjβ

Aiα,jβ σ
α
i σ

β
j =

1

2

3A
∑

n=1

O
2
n λn , (62)

where the operatorsOn are defined as

On =
∑

i,α

σ αi ψ
n
iα . (63)

In the above equations λn and ψn
iα are the eigenvalues and

eigenvectors of the matrix A. Hence, applying the exponential
of the spin-dependent terms of the NN interaction amounts to
rotating the spin-isospin states of nucleons

e−V(Ri)δτ/2|Si〉 =
∏

n

1
√
2π

∫

dxne
−x2n/2exn

√
−λδτ On |Si〉 , (64)

and the imaginary-time propagation is performed by sampling
the auxiliary fields x̄n from the Gaussian probability distribution

|Si+1〉 =
∏

n

ex̄n
√
−λδτ On |Si〉 . (65)

The spin-orbit term of theNN potential—p = 7 in Equation (6)—
is implemented in the propagator as described in reference [117],
and appropriate counter terms are included to remove the
spurious contributions of order δτ . Presently, the isospin-
dependent spin-orbit term of the NN potential, corresponding
to p = 8 in Equation (6), cannot be properly treated within
the AFDMC algorithm, as its counter term contains cubic spin-
isospin operators, preventing the straightforward use of the
Hubbard-Stratonovich transformation.

Importance sampling techniques are also routinely
implemented in the AFDMC method—in both the spatial
coordinates and spin-isospin configurations—to drastically
improve the efficiency of the algorithm. To this aim, the
propagator of Equation (60) is modified as

GI
δτ (Xi+1,Xi) = Gδτ (Xi+1,Xi)

9I(Xi+1)

9I(Xi)
, (66)

and we typically take 9I(X) = 9T(X). At each time step,
each walker is propagated sampling a 3A-dimensional vector to
shift the spatial coordinates and a set of auxiliary fields X from
Gaussian distributions. To remove the linear terms coming from
the exponential of both Equations (37) and (64), in analogy to
the GFMC method, we consider four weights, corresponding
to separately flipping the sign of the spatial moves and spin-
isospin rotations

wi =
9I(±Ri+1, Si+1(±X ))

9I(Ri, Si)
. (67)

In the same spirit as the GFMC algorithm, only one of the four
configurations is kept according to a heat-bath sampling among
the four normalized weights wi/W, with W =

∑4
i=1 wi/4 being

the cumulative weight. The latter is then rescaled by

W → We−[VSI (Ri)/2+VSI (Ri+1)/2−ET ]δτ , (68)

and associated to this new configuration for branching and
computing observables. This “plus and minus” procedure,
first implemented in the AFDMC method in reference [115]
significantly reduces the dependence of the results on δτ .

Expectation values are estimated during the imaginary-time
propagation in a similar fashion as for the GFMC

〈O(τ )〉 =
〈9T |O|9(τ )〉

〈9T |9(τ )〉
=

∑

Xi
〈9T(Xi)|O|9(τ ,Xi)〉/9I(Xi)

∑

Xi
〈9T(Xi)|9(τ ,Xi)〉/9I(Xi)

,

(69)

To alleviate the sign problem, as in reference [118], we
implement an algorithm similar to the constrained-path
approximation [119], but applicable to complex wave functions
and propagators. The weights wi of Equation (67) are
evaluated with

9I(Xi+1)

9I(Xi)
→ Re

{

9I(Xi+1)

9I(Xi)

}

, (70)

and they are set to zero if the ratio is negative. Unlike the fixed-
node approximation, which is applicable for scalar potentials
and for cases in which a real wave function can be used, the
solution obtained from the constrained propagation is not a
rigorous upper-bound to the true ground-state energy [101].
To remove the bias associated with this procedure, the
configurations obtained from a constrained propagation are
further evolved using the following positive-definite importance
sampling function [89, 120]

9I(X) =
∣

∣Re{9T(X)}
∣

∣ + α
∣

∣Im{9T(X)}
∣

∣ , (71)

where we typically take 0.1 < α < 0.5. Along this unconstrained
propagation, the expectation value of the energy is estimated
according to Equation (69). The asymptotic value is found
by fitting the imaginary-time behavior of the unconstrained
energy with a single-exponential function, as in reference [25].
Unconstrained propagations have been performed in the latest
AFDMC studies of atomic nuclei [89, 111] and infinite nucleonic
matter [116, 121]. An example of unconstrained propagation in
6Li for the GT+Eτ -1.0 local chiral Hamiltonian is reported in
Figure 1, where the blue dots with error bars are the AFDMC
unconstrained energies, the red curve is the exponential fit,
and the green band represents the final result including the
uncertainty coming from the fitting procedure.

In summary, the VMC method is used to find the best
possible guess for the wave function for a given nucleus, i.e.,
it is used to optimize the wave function variational parameters.
VMC energies are usually above the ones coming from GFMC
and AFDMC calculations, while other observables, such as
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FIGURE 1 | Unconstrained evolution in 6Li for the GT+Eτ -1.0 local chiral

Hamiltonian. Blue dots with error bars bands are AFDMC energies. The red

curve is a single-exponential function fit to the AFDMC results. The green band

represents the final energy result including the uncertainty coming from the

fitting procedure.

radii and density distributions are in closer agreement. The
variationally optimized wave function is then used as input for
the (statistically) exact GFMC and AFDMC algorithms. The
difference between these twomethods relies in their accuracy and
limitations. The GFMC method is very accurate in predicting
several observables with very small statistical error bars, but its
applicability is limited up to 12 nucleons. The AFDMC method
can tackle larger systems, but its precision is somewhat reduced
and it is currently limited to somewhat simplified interactions [4].

4. NUCLEAR STRUCTURE RESULTS

GFMC and AFDMC are complimentary methods that have been
extensively used in the past to accurately calculate ground-state
properties of light nuclei (A . 16). In the following we will
present results obtained using the GFMC method for 1-full
χEFT potentials, and using the AFDMC method for 1-less
χEFT interactions. In Figure 2 we show the binding energies
of nuclei up to 16O as calculated with GFMC for the NV2+3-Ia
potential (red, left) [11], and with AFDMC for the GT+Eτ -1.0
interaction (blue, right) [89, 111]. The central green bars are
the experimental data. GFMC results only carry Monte Carlo
statistical uncertainties, while for AFDMC results, theoretical
uncertainties coming from the truncation of the chiral expansion
are also included. For an observable X(i) at order i = 0, 2, 3, . . .,
the theoretical uncertainty δX(i) is estimated according to the
prescription of Epelbaum et al. [74]:

δX(0) = Q2
∣

∣X(0)
∣

∣,

δX(i) = max
2≤j≤i

(

Qi+1
∣

∣X(0)
∣

∣, Qi+1−j
∣

∣1X(j)
∣

∣

)

for i ≥ 2,

δX(i) ≥ max
(

∣

∣X(j≥i) − X(k≥i)
∣

∣

)

, (72)

where

1X(2) ≡ X(2) − X(0),

1X(i) ≡ X(i) − X(i−1) for i ≥ 3. (73)

For the local chiral interaction GT+Eτ -1.0, results are presented
at N2LO (i = 3) considering Q = mπ/3b, with mπ ≈ 140MeV
and3b = 600MeV [89, 111].

The NV2+3-Ia interaction provides an overall good
description of the ground-state energy of light nuclei, including
neutron-rich systems with isospin asymmetry as large as 0.6
(10He). This can be appreciated even more by looking at
Figure 3, where the ratio between QMC results and experimental
data is shown. Above A = 8, the NV2+3-Ia description
of binding energies looks slightly less accurate, with some
nuclei slightly underbound (10He, 11B) and some other sightly
overbound (9Be, 10B, 12C). However, the difference with the
experimental values is always< 0.2MeV/A, discrepancy that we
expect to be fully covered by the uncertainty coming from the
truncation of the chiral expansion (i.e., theoretical uncertainty
from the interaction model), currently not available for the
NV2+3-Ia potential.

The binding energy of very light nuclei is also well-reproduced
by the GT+Eτ -1.0 interaction, with 8He slightly underbound
(0.37MeV/A difference compared to the experimental value),
but compatible with observations within the estimated statistical
plus systematic uncertainties (see Figure 3). Differently from
GFMC calculations, AFDMC results for 8 ≤ A ≤ 11 open-shell
nuclei are currently not available. The ground-state energy of
heavier closed-shell systems, such as 12C and 16O, for the GT+Eτ -
1.0 potential is higher than the expected result. However, the
binding energy of 16O is still compatible with the experimental
value within the fully uncertainty estimate. As discussed in
reference [89], the discrepancy found for 12C is due to the
somewhat too simplistic A = 12 AFDMC wave function, that
only includes couplings in the p-shells, rather than a deficiency
of the interaction itself. It has to be noted that AFDMC results
for the GT+Eτ -1.0 interaction carry larger overall uncertainties
compared to GFMC results for the NV2+3-Ia potential. This is
because the full uncertainty evaluation includes both statistical
and theoretical errors. Both QMC methods imply statistical
uncertainties of the order of few percent. For the 1-less
potential, the theoretical errors coming from the truncation of
the chiral expansion dominate compared to the statistical errors.
Considering the next order in the chiral expansion should reduce
theoretical uncertainties, and work is currently being done in
developing such potentials.

Figure 4 shows the charge radii of A ≤ 16 nuclei for
the NV2+3-Ia and GT+Eτ -1.0 potentials, with respect to the
available experimental data. The expectation value of the charge
radius is derived from the point-proton radius rpt using
the relation

〈

r2ch
〉

=
〈

r2pt

〉

+
〈

R2p

〉

+
A− Z

Z

〈

R2n
〉

+
3h̄2

4M2
pc

2
+

〈

r2so
〉

, (74)
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FIGURE 2 | Ground-state energies in A ≤ 16 nuclei. For each nucleus, experimental results [122] are shown in green at the center. GFMC (AFDMC) results for the

NV2+3-Ia [11] (GT+Eτ -1.0 [89]) potential are shown in red (blue) to the left (right) of the experimental values. For the NV2+3-Ia (GT+Eτ -1.0) potential, the colored

bands include statistical (statistical plus systematic) uncertainties.

FIGURE 3 | Energy ratio between the calculated binding energies and the experimental data. The color scheme is the same as Figure 2.

where
〈

R2p

〉

= 0.770(9) fm2 is the proton radius [127],
〈

R2n
〉

=

−0.116(2) fm2 is the neutron radius [127], (3h̄2)/(4M2
pc

2) ≈

0.033 fm2 is the Darwin-Foldy correction [128], and
〈

r2so
〉

is a
spin-orbit correction due to the anomalous magnetic moment in

halo nuclei [129]. The point-nucleon radius rpt is calculated as

〈

r2N
〉

=
1

N

〈

9
∣

∣

∑

i

PNi |ri|
2
∣

∣9
〉

, (75)
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FIGURE 4 | Same as Figure 2 but for charge radii. Experimental data are from references [123–126].

FIGURE 5 | Proton density in 12C. Black triangles are GFMC results for the

AV18+IL7 potential [130]. Blue dots are AFDMC results for the GT+Eτ -1.0

interaction [89]. The green band corresponds to the experimental results,

unfolded from electron scattering data (see text for details).

where ri is the intrinsic coordinate of Equation (14), N is the
number of protons or neutrons, and

PNi =
1± τzi

2
(76)

is the projector operator onto protons (+) or neutrons (−). The
charge radius is a mixed expectation value, and it requires the
calculation of both VMC andDMCpoint-proton radii, according

FIGURE 6 | Same as Figure 5 but for 16O. Black triangles are cluster VMC

results for the AV18+UIX potential [100]. Blue dots are AFDMC results for the

GT+Eτ -1.0 interaction [89].

to Equation (48). Even though mixed expectation values typically
depend on the quality of the employed trial wave functions, for
the highly-accurate wave functions employed in the GFMC and
AFDMCmethods, the extrapolation of the mixed estimate

〈

r2ch
〉

is
always small.

Both chiral interactions nicely reproduce the charge radius
of helium isotopes. The NV2+3-Ia potential also reproduces
the radius of lithium, beryllium, and boron isotopes, with
new predictions for 8Be and 10Be. The charge radius of
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9Li is underpredicted, whereas that of 12C is overestimated.
The GT+Eτ -1.0 potential works remarkably well in predicting
the charge radius of 12C and 16O, even though theoretical
uncertainties, that dominate over the statistical one, are large. As
discussed in the previous paragraphs, going to the next order in
the chiral expansion will reduce such theoretical uncertainties.
For the GT+Eτ -1.0 interaction, the charge radius of 6Li turns
out to be smaller compared to the experimental value. Once
again, this is not a feature of the employed interaction, rather
a deficiency of the AFDMC wave function. In fact, differently
fromGFMC, the current AFDMCwave function does not include
dedicated α-deuteron-like correlations, necessary to capture the
structural properties of 6Li.

In QMCmethods, single-nucleon densities are calculated as

ρN(r) =
1

4πr2
〈

9
∣

∣

∑

i

PNiδ(r − |ri|)
∣

∣9
〉

, (77)

where PNi is the projector operator of Equation (76) and ρN
integrates to the number of nucleons. In Figures 5, 6 we show
the QMC proton density in 12C and 16O for the available
phenomenological (black) and chiral EFT (blue) potentials. Error
bars correspond to statistical uncertainties only. The green bands
are the experimental single-nucleon densities, obtained from
the “sum-of-Gaussians” parametrization of the charge densities
given in reference [132] by unfolding the nucleon form factors
and subtracting the small contribution of the neutrons. As can
be seen, both phenomenological and chiral EFT interactions
provide a good description of the proton density in 12C. The
small discrepancy with the experimental curve at short distance
is due to two-body meson exchange currents, not included in the
proton density presented here. As shown in reference [130], such

FIGURE 7 | Longitudinal elastic form factor in 6Li for different nuclear

potentials. For the NV2+3-Ia (solid red line) and AV18+UIX (black triangles)

potentials, errors correspond to statistical Monte Carlo uncertainties. The blue

band for the GT+Eτ -1.0 potential also includes the uncertainties coming from

the truncation of the chiral expansion. Green stars are the experimental

values [131]. Adapted from reference [89].

currents have little effect on the single-nucleon density for A ≥

12, slightly reducing its value at small r. The phenomenological
AV18+UIX potential underestimates the proton density a short
distance in 16O. As indicated by the cluster VMC analysis
of reference [100], the three-body potential UIX introduces
repulsion in the system, pushing nucleons far away from the
nucleus center of mass, and thus resulting in larger radius
and smaller central density. The 16O AFDMC density for the
GT+Eτ -1.0 potential is instead in better agreement with the
experimental curve.

As opposed to the charge radius, densities are not observables
themselves. However, the single-nucleon density can be related
to the longitudinal elastic (charge) form factor, physical quantity
experimentally accessible via electron-nucleon scattering

FIGURE 8 | Same as Figure 7 but for 12C. Experimental data are taken from

reference [132]. Adapted from reference [89].

FIGURE 9 | Same as Figure 7 but for 16O. Experimental data are from Sick,

based on references [136–138]. Adapted from reference [89].
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processes. In fact, the charge form factor can be expressed as
the ground-state expectation value of the one-body charge
operator [133], which, ignoring small spin-orbit contributions in
the one-body current, results in the following expression:

FL(q) =
1

Z

G
p
E(Q

2
el) ρ̃p(q)+ Gn

E(Q
2
el) ρ̃n(q)

√

1+ Q2
el/(4m

2
N)

, (78)

where ρ̃N(q) is the Fourier transform of the single-nucleon
density defined in Equation (77), and Q2

el = q2 − ω2
el is the

four-momentum squared, with ωel =

√

q2 +m2
A − mA the

energy transfer corresponding to the electron scattering elastic
peak, mA being the mass of the target nucleus. GN

E (Q
2) are

the nucleon electric form factors, for which we adopt Kelly’s
parametrization [134].

In Figures 7–9 we show the charge form factor in 6Li, 12C,
and 16O. Lines with bands correspond to chiral interactions, solid
red for NV2+3-Ia from GFMC calculations and dotted blue for
GT+Eτ -1.0 from AFDMC calculations. The black triangles are
the results for the phenomenological potentials: AV18+UIX in
6Li from VMC calculations [135], AV18+IL7 in 12C from GFMC
calculations [130], and AV18+UIX in 16O from cluster VMC
calculations [100]. Green stars are the available experimental
results [131, 132, 136–138]. Note that for all QMC calculations
of the charge form factor only one-body charge operators
are considered, i.e., no two-body electromagnetic currents are
included. However, as shown in references [130, 135, 139], such
operators give a non-negligible contribution only for q > 2 fm−1,
as they basically include relativistic corrections.

In 6Li all interactions provide a consistent description of the
charge form factor, with NV2+3-Ia and AV18+UIX compatible
with the experimental results up to q ≈ 2 fm−1, where two-
body currents start playing a role. In the same range, the
GT+Eτ -1.0 results are slightly higher, as already indicated by
the too small charge radius (see Figure 4). Interestingly, only
the phenomenological potential is capable of reproducing the
kink in the experimental data, while chiral interactions predict
a smooth charge form factor also above q ≈ 3 fm−1. The
inclusion of two-body currents could improve the description
of the charge form factor at high momentum. However, this is
a momentum range roughly corresponding to the characteristic
cut-off of chiral potentials, hence their description of observables
in such regime is not supposed to hold. Similar conclusions can
be drawn for the charge form factor in 12C and 16O, where chiral
forces produce results compatible with the experimental data,
in particular for the position of the first diffraction peak. This
is slightly underestimated for 12C with the NV2+3-Ia potential,
but we expect it to be consistent with the experimental results
once the uncertainties coming from the truncation of the chiral
expansion are taken into consideration.

Note that the “zero” in the form factor is due to the presence
of a term like sin2(qR), where R is related to the nucleus charge
radius. The zero is obtained when qR = π . Therefore, a smaller
(larger) q value for the zero compared to the experimental data
suggests a larger (smaller) R value, i.e., a larger (smaller) rch value.
This is indeed verified by QMC calculations. For instance, in

Figure 8, the NV2+3-Ia potential predicts a smaller q value for
the zero of the charge form factor in 12C, hence a larger value for
the charge radius, as confirmed by Figure 4.

5. CONCLUSIONS

In this work we have reviewed recent advancements in the
development of realistic nuclear interactions and of ab-initio
many-body methods for nuclear physics. In particular, we have
discussed the recent integration of nearly-local interactions
derived within chiral effective field theory, both with and without
the inclusion of 1 degrees of freedom, in quantum Monte Carlo
methods, namely variational Monte Carlo, Green’s function
Monte Carlo, and auxiliary field diffusion Monte Carlo. Such a
successful combination lead to accurate and realistic calculations
of ground- and excited-state properties of nuclei, that include but
is not limited to spectra, charge radii, and longitudinal elastic
form factors. Even though the chiral interactions discussed in this
work have been constructed using few-body observables only,
nucleon-nucleon scattering data and properties of nuclei up to
A = 5, they provide a remarkable description of the physics of
nuclei up to, at least, A = 16, with excellent agreement with
experimental data.

The same techniques and nuclear potentials reviewed here
have also been used to calculate the equation of state of infinite
nuclear and neutron matter [116, 121], and to infer properties
of neutron stars, with results compatible with astrophysical
observations including constraints extracted from gravitational
waves of the neutron-star merger GW170817 by the LIGO-Virgo
detection [140].

Future efforts will be dedicated to i) further improve the
employed local chiral interactions, by extending to higher order
in the chiral expansion, ii) calculate electroweak properties in
nuclear systems, by consistently deriving electroweak currents,
and iii) extend the calculations to heavier nuclei, by improving
the AFDMC variational wave functions and the scaling of
the algorithm.
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We review several recent results on lattice simulations by the Nuclear Lattice Effective

Field Theory Collaboration. In the first part we discuss the implementation of nuclear

forces on the lattice using chiral effective field theory. The new development we highlight

is the use of non-local lattice operators to achieve a simpler spin channel decomposition,

in contrast with previous studies that considered only local interactions. In the second

part, we present evidence that nuclear physics is close to a quantum phase transition.

This development is also linked to the study of the differences between local and

non-local interactions. In the final part we further explore the link between the nuclear

forces and nuclear structure. We consider the simplest possible nuclear interaction

which can accurately reproduce the ground state energies of neutron matter, light nuclei,

and medium-mass nuclei. We discuss what these recent developments say about the

emergence of nuclear structure from nuclear forces and the road ahead for nuclear

lattice simulations.

Keywords: nuclear structure, nuclear forces, lattice effective field theory, nuclear lattice simulations, quantum

phase transition

1. INTRODUCTION

In this article we review several recent advances by the Nuclear Lattice Effective Field Theory
Collaboration that combine of chiral effective field theory with lattice methods, an approach that
we call nuclear lattice effective field theory. See Epelbaum et al. [1] and Machleidt and Entem [2]
for reviews of chiral effective field theory (EFT) and Lee [3] and Lähde and Meißner [4] for reviews
of nuclear lattice EFT. We begin the article by presenting some technical developments regarding
the nuclear lattice interactions. The new technology that makes this possible is the use of non-local
smearing for the operator interactions. These are important for producing interactions that can
give accurate reproductions of the empirical nucleon-nucleon phase shifts.

In the second part of the article we consider the features of the nuclear interactions which are
responsible for the bulk binding properties of atomic nuclei. From ab initio lattice simulations we
present numerical data showing that nature sits near a quantum phase transition. It turns out that
the differences between local and non-local interactions will again be important. In the last part
of the review we continue with our first principles investigations of nuclear forces and nuclear
structure. This time we discuss a simple nuclear interaction which gives the correct ground state
energies of neutron matter, light nuclei, and medium-mass nuclei with no more than a few percent
error. We then conclude by discussing the connection between nuclear structure and nuclear forces
and some possible future directions for nuclear lattice simulations.
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2. IMPROVED LATTICE INTERACTIONS

Simulations using lattice chiral EFT have been applied to predict
the scattering and structure of nuclei [5–7]. The application
of nuclear forces at higher chiral orders are problematic
on the lattice due to the breaking of rotational invariance
produced by the lattice regularization [8, 9]. In this review we
focus only on the short-range interactions since this is where
the new developments have been made. We use the terms
leading order (LO), next-to-leading order (NLO), next-to-next-
to-leading order (N2LO), and next-to-next-to-next-to-leading
order (N3LO) for the successive orders in chiral EFT.

In Li et al. [10], we introduce a set of short-range interactions
in lattice chiral EFT that decompose more naturally into spin
channels. In the following we explain how to construct two-
nucleon operators on the lattice with intrinsic spin S, Sz , orbital
angular momentum L, Lz , and isospin I, Iz . Since orbital angular
momentum is not exactly conserved on the lattice, we enforce the
required orbital angular momentum projection by hand using
smeared distributions of annihilation and creation operators
whose angular dependence are given by spherical harmonics.
The use of these smeared annihilation and creation operators
has the effect of controlling the range of the interaction as well
as reducing lattice artifacts. Since the annihilation and creation
operators are no longer at the same point in space, the resulting
interaction depends on the particle velocities and is therefore a
non-local interaction. This is in contrast with local interactions,
where the annhiliation and creation operators are at the same
point in space. Previous lattice studies had only considered local
interactions [8].

We will work with lattice units where quantities are multiplied
by the corresponding power of the spatial lattice spacing a to
make the object dimensionless. Let 〈n′n〉 denote the nearest
neighbors n′ of lattice site n. Our starting point is ai,j(n), the
nucleon annihilation operator for lattice site n with spin i
and isospin j. We then add lattice operators on neighboring
lattice sites with coefficient, sNL. This defines the smeared
annihilation operator

aNL,i,j(n) = ai,j(n)+ sNL
∑

〈n′n〉

ai,j(n
′). (1)

The overall normalization of the smeared annihilation operators
is not important since any normalization factors can be absorbed
into the definition of the interaction coefficients that we build
with these smeared operators.

This process can easily be extended to lattice sites beyond the
nearest neighbors of n. After this we construct combinations with
spin S, Sz , and isospin I, Iz ,

[a(n)a(n′)]sNLS,Sz ,I,Iz

=
∑

i,j,i′ ,j′

aNL,i,j(n)Mii′ (S, Sz)Mjj′ (I, Iz)aNL,i′ ,j′ (n
′). (2)

Let us define the lattice derivative ∇l along the l spatial direction
as

∇lf (n) =
1

2
f (n+ l̂)−

1

2
f (n− l̂). (3)

We can also define the lattice derivative ∇1/2,l with half steps in
the forward and backward directions,

∇1/2,lf (n) = f (n+
1

2
l̂)− f (n−

1

2
l̂). (4)

This yields a well-defined function on the lattice sites when we
take double derivatives,

∇2
1/2,lf (n) = f (n+ l̂)− 2f (n)+ f (n− l̂). (5)

The lattice Laplacian operator is defined as

∇2
1/2f (n) =

∑

l

∇2
1/2,lf (n). (6)

We select orbital angular momenta with the help of solid
spherical harmonics,

RL,Lz (r) =

√

4π

2L+ 1
rLYL,Lz (θ ,φ). (7)

We work with polynomials of the lattice derivatives that act on
one of the annihilation operators, with coefficients prescribed by
the solid spherical harmonics,

P
2M,sNL
S,Sz ,L,Lz ,I,Iz

(n) = [a(n)∇2M
1/2R

∗
L,Lz (∇)a(n)]sNLS,Sz ,I,Iz

. (8)

This ensures the lattice operators have the correct rotational
properties in the continuum limit. We use Clebsch-Gordan
coefficients to put together the required spin and orbital angular
momentum combinations,

O
2M,sNL
S,L,J,Jz ,I,Iz

(n)

=
∑

Sz ,Lz

〈SSzLLz|JJz〉P
2M,sNL
S,Sz ,L,Lz ,I,Iz

(n). (9)

In Li et al. [10], we consider the neutron-proton system up
to N3LO. The chosen lattice spacings are 1.97, 1.64, 1.32, and
0.99 fm. In Figure S1 we show the phase shifts and mixing
angles for neutron-proton scattering vs. relative momenta for
lattice spacing a = 1.32 fm. In Figure S2 we show the phase
shifts and mixing angles for neutron-proton scattering for lattice
spacing a = 0.99 fm. The estimated uncertainties at NLO,
N2LO, and N3LO are labeled with the blue, green, and red bands,
respectively. The Nijmegen partial wave analysis results are
shown with black solid lines, and the lattice results at N3LO are
shown with diamonds. These results show marked improvement
over previous studies of the lattice chiral EFT interactions [8].We
see that in most cases the error bands at LO, NLO, N2LO, and
N3LO are overlapping with each other and decreasing in width
with each successive order. This indicates the consistency of the
effective field theory expansion as well as its convergence rate.
There are however some exceptions such as the high-momentum
region of the 3P2 and 3D2 phase shifts where the convergence is
not yet optimal. We have work in progress now that indicates
these problems are resolved with a better lattice treatment of
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the tensor force in the one-pion exchange potential and will be
discussed in a forthcoming publication. As one would expect, we
also see a general improvement of the lattice phase shifts as we
decrease the lattice spacing. We see both better agreement with
the empirical data as well as smaller error bands.

3. NUCLEAR PHYSICS NEAR A QUANTUM
PHASE TRANSITION

In Elhatisari et al. [11], we investigate two different LO
interactions in chiral EFT, which we call interactions A and B.
Both are defined with lattice spacing a = 1.97 fm and have nearly
the same nucleon-nucleon scattering phase shifts and binding
energies for the three- and four-nucleon systems. However, for
heavier nuclei the binding energies are very different. Interactions
A and B each have the same one-pion exchange interaction as
well as the same Coulomb potential between protons. The only
distinction between the interactions A and B is the form of the
short-range interactions, and we limit our discussion here to the
short-range interactions.

We write σS with S = 1, 2, 3 for the spin Pauli matrices, and
τI with I = 1, 2, 3 for the isospin Pauli matrices. We will write
a(n) for the column vector of annihilation operators ai,j(n), and

we will write a†(n) for the row vector of creation operators a†
i,j(n).

For our chosen non-local smearing parameter sNL, we construct
the smeared operators as in Equation (1),

aNL(n) = a(n)+ sNL
∑

〈n′n〉

a(n′), (10)

a†
NL(n) = a†(n)+ sNL

∑

〈n′n〉

a†(n′). (11)

The point-like density operators are defined as

ρ(n) = a†(n)a(n), (12)

ρS(n) = a†(n)[σS]a(n), (13)

ρI(n) = a†(n)[τI]a(n), (14)

ρS,I(n) = a†(n)[σS ⊗ τI]a(n). (15)

The smeared non-local densities are defined as

ρNL(n) = a†
NL(n)aNL(n), (16)

ρS,NL(n) = a†
NL(n)[σS]aNL(n), (17)

ρI,NL(n) = a†
NL(n)[τI]aNL(n), (18)

ρS,I,NL(n) = a†
NL(n)[σS ⊗ τI]aNL(n), (19)

while the smeared local densities for local smearing parameter sL
are

ρL(n) = a†(n)a(n)+ sL
∑

〈n′ n〉

a†(n′)a(n′), (20)

ρS,L(n) = a†(n)[σS]a(n)+ sL
∑

〈n′ n〉

a†(n′)[σS]a(n
′), (21)

ρI,L(n) = a†(n)[τI]a(n)+ sL
∑

〈n′ n〉

a†(n′)[τI]a(n
′), (22)

ρS,I,L(n) = a†(n)[σS ⊗ τI]a(n)+ sL
∑

〈n′ n〉

a†(n′)[σS ⊗ τI]a(n
′).

(23)

The non-local short-range interactions have the form

VNL =
cNL

2

∑

n

: ρNL(n)ρNL(n) :+
cI,NL

2

∑

n,I

: ρI,NL(n)ρI,NL(n) :,

(24)

while the local short-range interactions are given by

VL =
cL

2

∑

n

: ρL(n)ρL(n) :+
cS,L

2

∑

n,S

: ρS,L(n)ρS,L(n) :

+
cI,L

2

∑

n,I

: ρI,L(n)ρI,L(n) :+
cS,I,L

2

∑

n,S,I

: ρS,I,L(n)ρS,I,L(n) : .

(25)

The : : symbol indicates normal ordering where the annihilation
operators are pushed to the right and the creation operators are
pulled to the left.

For interaction A we take the short-range interaction to
have the purely non-local form described in Equation (24).
For interaction B we take the short-range interaction to have
a combination of the non-local and local forms described in
Equations (24), (25), respectively. In Table 1, we show results for
the ground state energies of 8Be, 12C, 16O, and 20Ne. We present
results for interactions A and B at LO, including Coulomb
interactions, and the comparison with experimental data. While
the ground state energies for B are close to the experimental data,
the binding energies for A are not.

To identify the reason for the disagreement, we compute the
ground state energies of 8Be, 12C, 16O, and 20Ne for interaction
A with the Coulomb interactions turned off. When we turn off
Coulomb and divide the ground state energy for each nucleus
with that of 4He, we find the ratios

E8Be

E4He
= 1.997(6),

E12C

E4He
= 3.00(1), (26)

E16O

E4He
= 4.00(2),

E20Ne

E4He
= 5.03(3). (27)

TABLE 1 | Results for the ground energies of 8Be, 12C, 16O, and 20Ne using

interactions A and B at LO with Coulomb interactions and the comparison with

experimental data.

Nucleus A (LO + Coulomb) B (LO + Coulomb) Experiment

8Be −56.51(14) −57.29(7) −56.591

12C −84.0(3) −89.9(5) −92.162

16O −110.5(6) −126.0(7) −127.619

20Ne −137(1) −164(1) −160.645
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These consecutive integer numbers are an indication of a Bose
condensate of alpha particles filling the periodic box. In Elhatisari
et al. [11] this interpretation is confirmed by showing that the
alpha-alpha interactions are indeed very weak for interaction A.

These results shows that nature sits near a quantum phase
transition. Along the N = Z line where the number of neutrons
equals the number of protons, there is a first-order quantum
transition separating a Bose gas of alpha particles from a nuclear
liquid. The strength of the alpha-alpha interactions determines
whether one has a Bose gas of alpha particles or a nuclear liquid.
In turn, the alpha-alpha interactions are impacted by the strength
and range of the local part of the nucleon-nucleon interactions.
The local part of interaction B is stronger than the local part of
interaction A, and hence the different behaviors that we see.

The phase diagram of nuclear matter at zero temperature is
in Figure S3. The parameter λ indicates the strength of the local
part of the nucleon-nucleon interactions. This can be constructed
explicitly by taking a linear combination of the interactions
used for interactions A and B. Nuclear matter is in a Bose gas
phase of alpha particles when λ is below the critical value, and
nuclear matter is in a nuclear liquid phase if λ crosses above
the critical value. When λ increases even further, finite A-body
nuclei become stable as their energy fall below the threshold value
EαA/4 associated with multi-alpha continuum states.

4. ESSENTIAL ELEMENTS FOR NUCLEAR
BINDING

In Lu et al. [12], we investigate a basic question connecting
nuclear forces and nuclear structure. What are the essential
elements for nuclear binding? For this analysis we work with a
simple leading order effective field theory without pions. This
simple pionless EFT theory is SU(4)-invariant, where the SU(4) is
Wigner’s approximate symmetry where the four nucleon degrees
of freedom can be rotated into each other [13]. The lattice
Hamiltonian has the form

HSU(4) = Hfree +
1

2!
C2

∑

n

ρ̃2(n)+
1

3!
C3

∑

n

ρ̃3(n), (28)

where Hfree is the free nucleon Hamiltonian and

ρ̃(n) = ρNL(n)+ sL
∑

〈n′n〉

ρNL(n), (29)

and ρNL(n) was defined in Equation (16). The local part of the
interaction is adjusted using the parameter sL, while the non-local
part of the interaction is controlled by the parameter sNL, which
appears implicitly in the definition of ρNL(n). The parameter
C2 controls the strength of the two-nucleon interaction, and C3

controls the three-nucleon interaction. For these calculations the
lattice spacing is a = 1.32 fm.

The two-nucleon interaction coefficient C2 and interaction
range, controlled jointly by sNL and sL, are set by fitting the
scattering length a0 and effective range r0 averaged over the
two S-wave channels, 1S0 and 3S1. The three-nucleon coupling
strength C3 is set according to the binding energy of 3H. At the

empirical binding energy B(3H) = 8.48 MeV, the 4He binding
energy is 28.9 MeV, and this is near the empirical value B(4He) =
28.3 MeV. This fitting process is carried out for several pairs
of values for sNL and sL. We calculate several nuclear ground
states for each pair using auxiliary-field lattice Monte Carlo
simulations. We find that sNL = 0.5 and sL = 0.061 gives the
best agreement overall. We note that the rather large value of sL
as compared with sNL is an indication that the local interaction
plays an important role in nuclear binding. The corresponding
couplings are C2 = −3.41 × 10−7 MeV−2 and C3 = −1.4 ×

10−14 MeV−5. Overall about 20% of the binding is coming from
the three-body interaction. This is consistent with the expected
hierarchy of forces in effective field theory, with three-body forces
being less important than two-body forces.

We present binding energies and charge radii in Table 2

for selected nuclei together with the experimental values and
the computed Coulomb energy. Although the 3H energy is a
constraint in the fitting process, the other values are predictions.
We have included the charge radius of the proton for calculations
of the nuclear charge radii, but have not included smaller effects
arising from the charge distribution of the neutron, relativistic
corrections, and spin-orbit terms. In Figure S4 we show the
binding energies for 86 bound nuclei with up to A = 48
nucleons in comparison with empirical data. The Monte Carlo
error bars are not visible as they are smaller than the symbol
size. The errors associated with Euclidean time extrapolation
and volume extrapolation are less than 1% relative error, and
these errors are not shown. In Figure S4 one can see that the
agreement with empirical results is fairly good. The remaining
discrepancies are a sign of missing effects such as interactions
which are spin dependent.

In Figure S5 we show the charge densities of 16O and 40Ca.
These densities are calculated using the pinhole algorithm [16]
where a barrier is placed in the middle of the Euclidean time
evolution, and the amplitude vanishes unless each nucleon passes
through a pinhole. As the number of pinholes are set to equal the
number of nucleons, the sampling over pinholes yields a classical
distribution of the nucleon positions. We show the comparison

TABLE 2 | Left side: Computed binding energies of several nuclei compared with

experimental values.

B Exp. Coulomb B/Exp. Rch Exp. Rch/Exp.

3H 8.48 (2)(0) 8.48 0.0 1.00 1.90 (1)(1) 1.76 1.08

3He 7.75 (2)(0) 7.72 0.73 (1)(0) 1.00 1.99 (1)(1) 1.97 1.01

4He 28.89 (1)(1) 28.3 0.80 (1)(1) 1.02 1.72 (1)(3) 1.68 1.02

16O 121.9 (1)(3) 127.6 13.9 (1)(2) 0.96 2.74 (1)(1) 2.70 1.01

20Ne 161.6 (1)(1) 160.6 20.2 (1)(1) 1.01 2.95 (1)(1) 3.01 0.98

24Mg 193.5 (02)(17) 198.3 28.0 (1)(2) 0.98 3.13 (1)(2) 3.06 1.02

28Si 235.8 (04)(17) 236.5 37.1 (2)(3) 1.00 3.26 (1)(1) 3.12 1.04

40Ca 346.8 (6)(5) 342.1 71.7 (4)(4) 1.01 3.42 (1)(3) 3.48 0.98

Right side: Computed charge radii of several nuclei compared with empirical values. The

first parenthesis denotes the Monte Carlo error, and the second parenthesis is the time

extrapolation error. All energies are in MeV, and all lengths are in fm. Experimental data is

from Wang et al. [14]. Table from Lu et al. [12].
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with electron scattering data, as well as the lattice results with
the Coulomb interaction included via first order perturbation
theory. The Coulomb force suppresses the densities near the
nucleus center, bringing the results in better agreement with the
experimental data. The results are surprisingly accurate in view
of the simple nuclear interaction.

The ground state energy of pure neutron matter is shown
in Figure S6 as a function of the neutron density. We show
the results of several other calculations for comparison. For the
lattice results the number of neutrons ranges from 14 to 66. The
calculations are done with three box sizes L = 5, 6, 7. Our lattice
results, shown as the filled red polygons, are generally in good
agreement with the other calculations for densities higher than
0.05 fm−3. For lower densities the disagreement is larger due
to the neutron-neutron scattering length being incorrect. The
open red polygons correspond to an improved calculation where
a contact interaction is included to give the correct neutron-
neutron scattering length. There is also a correction included to
restore invariance with respect to Galilean boosts [17]. In spite of
the simplicity of the interaction, the results are quite good.

5. DISCUSSION

We have reviewed several recent results by the Nuclear Lattice
EFT Collaboration. We presented the improved description of
scattering phase shifts in chiral effective field theory up to N3LO.
We then showed evidence that nuclear physics is close to a
quantum phase transition. After this we described the minimal
nuclear interaction that can accurately reproduce the ground
state energies of neutron matter, light nuclei, and medium-mass
nuclei. A common theme flowing through all aspects of our
review was the notable difference between local and non-local
interactions. We now put some of these findings into context.

Numerous calculations show the reliability of chiral EFT for
the properties of light nuclei [18–22]. However, the binding
energies as well as the charge radii of medium mass nuclei are
sometimes not well reproduced [20, 23–29]. One notable case is
that the charge radius of 16O, which is often too small [23, 25–28].
Without further input, chiral EFT calculations do not yet provide
accurate predictions at higher nuclear densities.

One practical approach is to put constraints on the nuclear
force by fitting the properties of mediummass nuclei and nuclear
matter saturation [29]. This strategy has been used in several
calculations [30–33]. The approach we have pursued in nuclear
lattice studies is to focus on the microscopic origins of the
problem. In Elhatisari et al. [11], we find that nuclear matter
resides near a quantum phase transition that lies at the boundary
between a Bose condensate of alpha particles and a nuclear liquid.
There we show that local interactions are especially important
for nuclear binding. In Lu et al. [12], we construct a simple
nuclear interaction that can produce, with no more than a few
percent error, the ground state energies of neutron matter, light
nuclei, and medium-mass nuclei. From that analysis we see the
importance of the range and locality of the SU(4)-invariant forces
in determining the bulk properties of nuclei.

The dominance of SU(4)-invariant interactions can be
explained in terms of coherent enhancement. Upon summation
over nucleonic spin configurations, much of the effect of spin-
dependent forces cancel. In a similar manner, isospin-dependent
forces will cancel in symmetric nuclear matter due to the protons
and neutrons being equal in number. One important exception
though is the Coulomb interaction. SU(4) symmetry and large
scattering length universality have a long history in nuclear
physics. It is well-known that the Tjon line connecting 3H and
4He binding energies is a manifestation of universality in nuclear
systems [9, 34–36].

SU(4)-symmetric short-range interactions are now being used
with local and non-local smearing and one-pion exchange. These
improved calculations of light and medium-mass nuclei will use
chiral forces up to N3LO. One of the central questions that we
seek to address is why the straightforward application of chiral
EFT does not give reliable and accurate predictions at higher
nuclear densities. While more investigations are needed, it seems
that part of the answer to this question is related to the emergence
of a physical length scale relevant to many-body nuclear systems,
the size of the alpha particle. The amount of fine tuning needed
to reproduce the alpha-alpha and alpha-nucleon scattering
phase shifts can be understood as the competition between
Pauli repulsion and attractive nucleon-nucleon interactions. This
important and delicate balance is amplified by the fact that
the range of the nucleon-nucleon interaction is comparable to
the size of the alpha particle. Hence small differences in the
range or locality of the interaction can have a large impact
on the interactions of the alpha particle. This is turn has
consequences for nuclear systems with increasing numbers
of nucleons.
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Figure S1 | Results for the neutron-proton scattering phase shifts and mixing

angles vs. the relative momenta for lattice spacing a = 1.32 fm. The blue, green

and red bands show the estimated uncertainties at NLO, N2LO and N3LO

respectively. The black solid line and diamonds denote phase shift or mixing angle

from the Nijmegen partial wave analysis and lattice calculation at N3LO,

respectively. Figure from Li et al. [10].

Figure S2 | Results for the neutron-proton scattering phase shifts and mixing

angles vs. the relative momenta for lattice spacing a = 0.99 fm. The blue, green

and red bands show the estimated uncertainties at NLO, N2LO and N3LO

respectively. The black solid line and diamonds denote phase shift or mixing angle

from the Nijmegen partial wave analysis and lattice calculation at N3LO,

respectively. Figure from Li et al. [10].

Figure S3 | Phase diagram of nuclear matter at zero temperature. λ controls the

strength of the local part of the interactions. Figure from Elhatisari et al. [11].

Figure S4 | Calculated binding energies from 3H to 48Ca. The solid symbols are

lattice results and the open symbols are experimental values. The experimental

values are from Wang et al. [14]. Figure adapted from Lu et al. [12].

Figure S5 | Computed 16O and 40Ca charge densities compared with

experimental results. The circles denote the results without Coulomb interaction.

The squares are the results with the Coulomb interaction included perturbatively.

Experimental results are from De Vries et al. [15]. Figure adapted from Lu et al. [12].

Figure S6 | Ground state energy of pure neutron matter as a function of neutron

density for box sizes L = 5 (upright triangles), L = 6 (squares), L = 7 (right-pointing

triangles). The filled red polygons are results for the leading-order interaction. The

open red polygons show an improved calculation with a short-range interaction

tuned to the physical neutron-neutron scattering length as well as a correction to

restore Galilean invariance. Also shown are results calculated with N3LO chiral

interactions (EM 500 MeV, EGM 450/500 MeV and EGM 450/700 MeV) [37], as

well as results from variational (APR) [38] and auxiliary-field diffusion MC

calculations (GCR) [39]. Figure adapted from Lu et al. [12].
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Nuclear structure theory has recently gone through amajor renewal with the development

of ab initio techniques that can be applied to a large number of atomic nuclei, well-beyond

the light sector that had been traditionally targeted in the past. Self-consistent Green’s

function theory is one among these techniques. The present work aims to give an

overview of the self-consistent Green’s function approach for atomic nuclei, including

examples of recent applications and a discussion on the perspectives for extending the

method to nuclear reactions, doubly open-shell systems, and heavy nuclei.

Keywords: nuclear theory, many-body theory, ab initio nuclear structure, Green’s function theory, open-shell nuclei

1. INTRODUCTION

The theoretical description of atomic nuclei is particularly challenging, for several reasons. First,
different energy scales are at play, which is manifest in the rich set of observables and phenomena
one is confronted with1. As a consequence, the choice of relevant degrees of freedom might not
be universal but depend on the particular properties one is interested in. The standard description
in terms of nucleons, i.e., protons and neutrons, leads to a many-body Schrödinger equation for
up to a few hundred particles, which are too many to be easily treated exactly but too few to
be amenable to a statistical treatment2. Furthermore, interactions between nucleons should be
derived from quantum chromodynamics (QCD) in its nonperturbative regime, which prevents
direct calculations and requires an additional modelization effort3. In the past, all these features
have hindered full solutions of the many-body Schrödinger equation and favored the development
of a plentitude of models, following different strategies and characterized by different ranges
of application. Although successful in reproducing experimental observations, these models are
not always comparable to each other and do not provide a coherent and unified description of
nuclear systems.

Only relatively recently so-called ab initio calculations of atomic nuclei, i.e., systematically
improvable solutions of the many-body Schrödinger equation that start solely from the knowledge
of inter-nucleon interactions, have become available for a large number of isotopes. These advances
were made possible by the concomitance of different factors. First, new formal developments
of many-body techniques were carried out. Second, chiral effective field theory (χ-EFT) was
introduced in nuclear physics [3–5], providing a systematic and consistent framework in which the
nuclear Hamiltonian can be modeled. Third, similarity renormalization group (SRG) techniques
were applied to χ-EFT Hamiltonians [6], which largely improves the convergence of actual

1One could further recall the large variety of experimental probes used to study nuclear properties, as well as the diversity of
processes that can concern atomic nuclei, for which three of the four fundamental interactions (strong, electromagnetic and
weak) are involved.
2This characteristic is usually associated to the definition of nuclei asmesoscopic systems.
3Recently, pioneering lattice QCD calculations have produced the first usable nucleon-nucleon potentials [1, 2]. However,
complications still exist in the derivation of three-nucleon forces such that the systematic implementation of lattice QCD
interactions is not envisaged in the very near future.
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calculations with respect to basis truncations, thus enabling
the handling of heavier nuclei. Finally, the availability of
computational tools and in particular high-performance
computing resources largely increased. As a result, at present,
ab initio calculations (with two- and three-nucleon interactions)
can be performed for a considerable fraction of the nuclei with
mass number A . 100.

Among the techniques applicable to the nuclear many-body
problem, one can distinguish “virtually exact” and “approximate”
approaches. Approaches in the first category do not impose
any formal approximation on the solution of the many-body
Schrödinger equation, which is thus affected only by basis
truncation and numerical errors. Typical examples of such
methods are Quantum Monte Carlo [7, 8], no-core shell model
(or configuration interaction) [9] or nuclear lattice EFT [10].
The second category includes techniques that do approximate the
solution of the Schrödinger equation in a systematic way. This
solution can be improved, in principle, up to the recovery of the
exact one. This is typically achieved by first selecting a reference
state and then defining an expansion on top of it, usually in
terms of particle-hole correlations (whence the denomination
correlation-expansionmethods). In doing so, the main advantage
resides in the scaling with the basis size: while exact methods
scale factorially or exponentially with the system size, correlation-
expansion methods only scale polynomially and can be thus
applied to a much wider set of nuclei.

The simplest (and most inexpensive) among correlation-
expansion approaches is many-body perturbation theory
(MBPT) [11]. Following the belief that the nuclear many-body
problem is intrinsically non-perturbative, MBPT was put aside
for several decades after its development in the 1950s. Only
relatively recently, with the advent of EFTs and, specially,
SRG techniques applied to nuclear Hamiltonians, MBPT was
revived [12, 13] and it is now considered as a convenient
approach for large-scale systematic calculations. Moreover,
it can be easily complemented with resummation techniques
like Padé or eigenvector continuation [14, 15] (see [16] for
a recent review). Other methods rely on the MBPT concept
but are built such that infinite subsets of MBPT contributions
are resummed by construction. The three typical examples
employed in the nuclear context are in-medium similarity
renormalization group (IMSRG), coupled-cluster (CC) and
self-consistent Green’s function (SCGF) methods. While IMSRG
has been originally designed for the nuclear many-body problem
not long ago [17, 18], CC and SCGF, although initially proposed
for nuclear systems, have been largely developed in quantum
chemistry and solid-state physics before being reimported into
nuclear physics starting from the 1990s [19, 20] (see [21] for
a recent CC review). IMSRG [22], CC [23], as well as no-core
shell model [24] have also been adapted to derive a valence-space
interaction that can be used in standard shell-model codes, thus
further enlarging the reach of ab initio calculations.

The present manuscript deals with one of such correlation-
expansion approaches, the self-consistent Green’s function
method. Although GFs have been and are implemented in
different ways in the context of atomic nuclei (see e.g., [25]),
here the focus is on ab initio SCGFs. Early SCGF calculations

with realistic nucleon-nucleon potentials dealt mainly with
infinite nuclear matter [19]. Formal developments setting the
bases for modern implementations in finite nuclei date back to
the early 2000s [26–28]. By the end of the decade advanced
SCGF implementations were routinely applied [29, 30]. In
2011, standard (i.e., Dyson) SCGF theory was generalized to a
particle-number-breaking (i.e., Gorkov) framework [31, 32]. In
2013 the inclusion of three-body interactions was formalized
in Dyson theory [33]. In 2018, working equations for the
state-of-the-art many-body truncation used in nuclear structure
calculations (algebraic diagrammatic construction at third order,
see section 3.1) were derived [34].

Building on these formal advances, several applications (based
on either Dyson or Gorkov frameworks) have been carried
out in the past decade. Typical examples are ground-state
properties of medium-mass nuclei, going from the oxygen
region [35, 36] to silicon and sulfur [37], calcium [38, 39], and
nickel [40] regions, up to the very recent computation of tin
and xenon isotopes [41]. As discussed in sections 2 and 4.2,
excited spectra of odd-even nuclei are also easily accessible in
SCGF theory and were studied in particular in [36, 37, 40].
Excited states of even-even systems were addressed in the form
of the electromagnetic dipole response in [42]. In [43], ab
initio optical potentials were computed and applied in elastic
scattering off 16O and 40Ca. Barbieri et al. [44] instead discussed
lepton-nucleus scattering, with particular attention to neutrino
scattering off 40Ar. Dedicated applications studied effective
charges (typically employed in shell-model calculations) [45]
and the scale dependence of effective single-particle energies
and other non-observable quantities [46]. The possibility of
using nucleon-nucleon interactions derived from lattice QCD
calculations was also explored in [2]. Last but not least, several
collaborations with experimental groups have led to testing
the method on e.g., state-of-the-art measurements of nuclear
masses [47, 48], energies and spins of excited states [49–52],
charge and matter radii [53].

The present article discusses a few of these examples, without
any pretension of exhaustivity but with the aim of giving the
reader a perception of the reach and versatility of SCGF method,
as well we the great deal of possible applications to atomic nuclei.
A short introduction to the formalism and implementation in
finite nuclei is presented beforehand; however, again, it is far
from being complete. The reader interested in a comprehensive
treatment of GF theory in a modern form is referred e.g., to
the book of Dickhoff and Van Neck [54]. Older, yet valuable
sources are the books of Nozières [55] and Abrikosov et al. [56].
An interesting work, although tailored to solid-state physics,
is the one of Economou [57]. An extensive review covering
SCGF applications to nuclear physics appeared in 2004 [28].
A more recent pedagogical introduction to the basics of SCGF
formalism and implementation in both finite nuclei and infinite
nuclear matter (including computational details and examples
of numerical codes) can be found in [58]. A numerical code
including a second-order evaluation of the self-energy in the
Dyson framework is publicly available [59].

This manuscript is organized as follows. In section 2, the
most important concepts and equations of GF theory are
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introduced. Section 3 describes the actual implementation of
the methods in calculations of finite nuclei, briefly reviewing
the most commonly used self-energy truncations, the working
equations, the choice of basis and interaction. In section 4,
some representative applications to ground-state properties,
excitation spectra, and lepton-nucleus collisions are discussed.
Finally, section 5 addresses perspectives and present as well
as future challenges, focusing on three directions of research:
the consistent treatment of nuclear structure and reactions, the
generalization to doubly open-shell systems and the extension to
heavy nuclei.

2. BASIC CONCEPTS AND EQUATIONS

Many-body Green’s function4 theory comprises a set of
techniques that originated in quantum field theory (QFT)
and have been subsequently imported in the (non-relativistic)
quantum many-body problem. The late 1950’s and the 1960’s
marked the beginning of the field, with flow of QFT ideas
and development of formalism. Since the 1970’s technical
developments were realized and the approach was applied
throughout several disciplines and types of many-body problems,
ranging from many-electron systems such as crystals, molecules,
and atoms to many-nucleon systems such as nuclei and
nuclear matter. Starting from the 1990’s such techniques were
implemented as an ab initiomethod in nuclear physics.

As for other many-body methods, the purpose of such
techniques is to achieve an approximate (yet systematically
improvable) solution of the A-body Schrödinger equation. In
standard (or Dyson) many-body Green’s function theory, this is
realized by rewriting the Schrödinger equation in terms of one-
, two-, ..., A-body objects gI(= g), gII , ..., gA named propagators
or, indeed, Green’s functions (GFs). Each of these objects is then
expanded in a perturbation series, which in practical applications
is truncated to include a subset of all possible contributions.
In self-consistent schemes such series are themselves expressed
in terms of the exact GFs, which requires an iterative solution
and makes the method intrinsically non-perturbative, effectively
resumming an infinite subsets of perturbative terms. The x-
body GF gx allows one to compute all x-body observables in the
A-body ground state5. Therefore, for most applications one is
mainly interested in the one-body GF.

Formally g is defined as the expectation value of a time-
ordered product of annihilation and creation operators in the
A-body ground state |9A

0 〉

gαβ (tα , tβ ) ≡ −i 〈9A
0 |T [aα(tα)a

†
β (tβ )]|9

A
0 〉 , (1)

with Greek indices labeling basis states of the one-body Hilbert
space H1. One usually works with the Fourier transform

4Let us remark thatmany-body Green’s functions and Green’s function Monte Carlo

are not the same thing. The latter refers to a (virtually exact) technique that aims at
projecting out the ground-state wave function typically from a variational solution
of the Schrödinger equation [7, 8].
5One notable exception is the ground-state energy EA0 : for a Hamiltonian
containing up to y-body operators the knowledge of one- up to (y−1)-bodyGreen’s
functions is sufficient (see Equations 5, 6).

of Equation (1) in the energy domain and recasts its perturbation
series into the Dyson equation

gαβ (ω) = g
(0)
αβ (ω)+

∑

γ δ

g(0)αγ (ω)6
⋆
γ δ(ω) gδβ (ω) , (2)

where g(0) represents some initial ansatz for g, e.g., stemming
from the solution of Hartree-Fock (HF) equations. The
(irreducible) self-energy 6⋆ encodes all terms of the expansion,
which is truncated in actual calculations.

Once the one-body GF is obtained as the solution of
Equation (2), the expectation value of any one-body operator
Ô1B ≡

∑

αβ O1B
αβa

†
αaβ can be computed as

〈Ô1B〉 =
∑

αβ

∫

C↑

dω

2π i
O1B

αβ gβα(ω) =
∑

αβ

O1B
αβ ρβα , (3)

where C↑ denotes an integral closed on the upper imaginary
plane and the one-body density matrix

ραβ ≡ 〈9A
0 |a

†
βaα|9

A
0 〉 =

∫

C↑

dω

2π i
gαβ (ω) (4)

has been introduced.
Additionally, for a Hamiltonian with one- and two-body

operators, the one-body propagator gives access to the total
energy by means of the Galitski-Migdal-Koltun (GMK) sum-
rule [60, 61]

EA0 =
∑

αβ

1

2

∫

C↑

dω

2π i
[Tαβ + ω δαβ ] gβα(ω) , (5)

where Tαβ denote the matrix elements of the one-body operator.
Nowadays, realistic nuclear structure calculations require the
inclusion of at least a three-body interaction in the starting
Hamiltonian. In this case, the GMK sum rule needs to be
generalized to [33]

EA0 =
∑

αβ

1

2

∫

C↑

dω

2π i
[Tαβ + ω δαβ ] gβα(ω)−

1

2
〈W〉 , (6)

where the ground-state expectation value of the three-nucleon
operator Ŵ has to be evaluated. Such a term requires in principle
the knowledge of the three-body propagator gIII . This is however
currently out of reach and in most of practical applications the
last term in Equation (6) is computed as

〈W〉 ≃
1

6

∑

αβµγ δν

Wαβµ,γ δν ργα ρδβ ρνµ , (7)

i.e., by approximating the full three-body density matrix with the
antisymmetrized product of the one-body one. In [35], this was
shown to introduce errors smaller than 250 keV for the binding
energy of oxygen isotopes.

In addition to giving access to the ground-state properties of
the A-body system, the one-body GF contains information on
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neighboring (A ± 1) nuclei. It becomes evident when rewriting
the propagator (Equation 1) in the Lehmann representation

gαβ (ω) =
∑

n

〈9A
0 |aα|9

A+1
n 〉〈9A+1

n |a†
β |9

A
0 〉

ω − E+n + iη

+
∑

k

〈9A
0 |a

†
β |9

A−1
k

〉〈9A−1
k

|aα|9
A
0 〉

ω − E−
k
− iη

, (8)

where |9A±1
i 〉 represent eigenstates of (A±1)-body systems while

E+n ≡ (EA+1
n − EA0 ) and E−

k
≡ (EA0 − EA−1

k
) are one-nucleon

addition and removal energies, respectively.
In Dyson GF theory the expansion starts from a particle-

number conserving (e.g., a Hartree-Fock) reference state
providing g(0). On top of this, spherical symmetry is typically
imposed. While such an expansion can suitably address closed-
shell systems, it becomes inefficient or even breaks down as soon
as pairing and/or quadrupole correlations become important. If
one wishes to stick with a single-reference method, a possible
solution consists in working, from the outset, with a symmetry-
breaking reference state. In particular, breaking U(1) symmetry
associated with particle number conservation6 while maintaining
spherical symmetry allows one to efficiently capture pairing
correlations, thus gaining access to singly open-shell nuclei.

Dyson GFs were thus generalized to a U(1) symmetry-
breaking (typically Hartree-Fock-Bogolyubov) reference state
originally by [62]. The formalism was then adapted and
implemented for applications to finite nuclei in [31]. Technically,
the extension is achieved by working with an A-body ground
state that is a linear combination of states with different
particle numbers

9A
0 −→ 90 =

∑

A′

cA′9A′

0 . (9)

This leads to the definition of four one-body propagators

g11αβ (t, t
′) ≡ −i 〈90|T [aα(t)a

†
β (t

′)]|90〉 , (10a)

g12αβ (t, t
′) ≡ −i 〈90|T [aα(t)āβ (t

′)]|90〉 , (10b)

g21αβ (t, t
′) ≡ −i 〈90|T [ā†

α(t)a
†
β (t

′)]|90〉 , (10c)

g22αβ (t, t
′) ≡ −i 〈90|T [ā†

α(t)āβ (t
′)]|90〉 , (10d)

two of which (g11 and g22) involve normal combinations of a and
a† and are associated to the standard density matrix (Equation
3). The remaining two propagators (g12 and g21) invoke so-
called anomalous contributions of a and a† (interpreted as the

6In the case of atomic nuclei proton and neutron numbers are conserved
individually, therefore it is always intended U(1)N⊗U(1)Z where one of the two
or both are broken.

annihilation or the creation of a nucleon pair) and lead to the
definition of an anomalous (or pairing) density matrix

ρ̃αβ ≡ 〈90|āβaα|90〉 =

∫

C↑

dω

2π i
g12αβ (ω) . (11)

In Equation (10), creation operators {ā†
α} define a one-body basis

dual to {a†
α} and are obtained via

ā†
a(t) ≡ ηaa

†
ã(t) , āa(t) ≡ ηaaã(t) , (12)

which correspond to exchanging the state a with its time-
reversal partner ã up to the phase ηa [31]. The four Gorkov
propagators (Equation 10) can be conveniently recast in a 2 × 2
matrix notation via Nambu’s formalism [63]

gαβ (t, t
′) ≡







g11αβ (t, t
′) g12αβ (t, t

′)

g21αβ (t, t
′) g22αβ (t, t

′)






. (13)

All quantities (operators, self-energy, ...) can be generalized
in an analogous fashion such that one ends up with the
Gorkov equation

gαβ (ω) = g
(0)
αβ (ω)+

∑

γ δ

g(0)αγ (ω)6
⋆
γ δ(ω) gδβ (ω) . (14)

Similarly, all standard GF equations including Equations (3)–(8)
are rewritten in a matrix form. Last but not least, a chemical
potential λ needs to be introduced to guarantee that the number
of particles is the correct one on average. This amounts to
replacing the Hamiltonian Ĥ with the grand potential

�̂ ≡ Ĥ − λÂ . (15)

As a consequence of the symmetry breaking, observables might
be contaminated by components associated to different particle
numbers. Even if in practice the variance is expected to remain
small7, the broken symmetry has to be eventually restored. While
symmetry-restored formalism has been developed for other
(post-Hartree-Fock-Bogolyubov) many-body methods [64, 65],
it remains to be formulated for Gorkov GFs.

3. IMPLEMENTATION FOR ATOMIC
NUCLEI

3.1. Choice of Approximation Scheme
Self-consistent GF approximation schemes are defined by the
content of the irreducible self-energy, which is expressed as
a function of the exact GFs and encodes its perturbative
expansion. There exist several ways of approximating the self-
energy. The most basic one simply amounts to truncating

7Away from closed-shell systems, contributions from components with A′ 6= A

are assumed to cancel out to some extent. The largest contamination is expected in
differential observables across closed shells, where one of the two systems does not
spontaneously break particle-number symmetry.
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the perturbative expansion at a certain order. More refined
techniques resort to including infinite subsets of perturbation-
theory terms via the definition of implicit equations. This
is the case, e.g., of the so called ladder or in-medium T-
matrix approximation that resums all multiple particle-particle
scattering contributions8. This approximation scheme gained
considerable attention in early ab initio applications because
of its ability of tackling nucleon-nucleon interactions with
strong short-range components [67–72]. These truncations and
resummations are typically conveniently expressed in terms of
Feynman diagrams, which facilitate the manipulation of the
various terms and give an insight in their physical content.

An alternative, although not orthogonal, route was proposed
in the context of quantum chemistry [73, 74] and instead exploits
the analytical structure of the self-energy. Similarly to the one-
body GF, the exact (dynamical, i.e., energy-dependent, part of
the) self-energy displays a Lehmann representation

6⋆
αβ (ω) =

∑

nn′

M†
αn

[

1

ω − (E> + C)+ iη

]

nn′
Mn′β

+
∑

kk′

N†
αk

[

1

ω − (E< + D)− iη

]

kk′
N†
k′β

, (16)

where the matrices M,N couple the single-particle motion
of the nucleons (i.e., the one-body propagator in which the
self-energy is inserted) to intermediate multiparticle-multihole
configurations, whose energies (“bare” and resulting from the
interference between them) are encoded in the matrices E>,E<,
and C,D, respectively. The algebraic diagrammatic construction
at order n [ADC(n)] is built by demanding that, in addition
to including all perturbation-theory contributions up to a given
order n, the approximated self-energy has the same analytical
structure as the exact one, i.e., in particular, is the same
function of the energy. The latter condition requires the self-
energy to contain additional sets of contributions, e.g., infinite
resummations that would necessitate ad-hoc procedures are in
this way automatically included in the ADC formalism. The first
order, ADC(1), is simply the standard Hartree-Fock (or Hartree-
Fock-Bogolyubov, in the case of Gorkov GFs) approximation.
ADC(2) introduces lowest-order dynamical correlations in terms
of two particle-one hole and two hole-one particle contributions.
ADC(3) builds couplings between such configurations and, as
a result, includes infinite-order resummations of both particle-
particle/hole-hole and particle-hole ladders. Higher orders build
on higher-rank particle-hole excitations in a similar but not
identical fashion as in other popular many-body methods like
coupled-cluster (CC) or in-medium SRG (see e.g., [75] for
a connection between GF and CC formalisms). Importantly,
by preserving at each order the analytical properties of the
exact self-energy, the ADC expansion ensure that causality
is not violated. Moreover, this form allows the derivation
of an energy-independent auxiliary eigenvalue problem that

8Other types of resummation are employed in other domains. For instance, in
solid-state physics the resummation of particle-hole (i.e., ring) diagrams (typically
in the so-calledGW approximation) allows resolving the long-range features of the
Coulomb force [66].

significantly simplifies the numerical solution of Dyson and
Gorkov equations, as discussed in section 3.2.

The ADC scheme has been developed in the context of
finite nuclei in the past few years. At present, ADC(1), ADC(2),
and ADC(3) self-energies are implemented in the Dyson
framework [35, 37], while ADC(1) and ADC(2) are available in
the Gorkov case [31, 32]. Gorkov-ADC(3) is under construction
within a project whose goal is to automatize the generation
of the associated self-energy diagrams. In Dyson theory, the
ADC formalism has been recently generalized to the presence of
three-body interactions [34].

Generally speaking, ADC(n) defines a truncation scheme
that is systematically improvable in the sense that going to
higher orders should provide results closer and closer to the
exact solution, recovered in the limit of ADC(∞). Nevertheless,
in the case of perturbation theory (and, by consequence,
resummation methods building on MBPT), there does not exist
a well-defined expansion parameter informing on the accuracy
associated to a certain truncation level. Hence, there are two
ways of assessing the accuracy of a given approximation: (i)
by comparing successive orders in the expansion and (ii) via
benchmarks with exact methods. Concerning the first possibility,
a typical convergence behavior for ADC(1-3) is shown in
Figure 1 for ground-state energies and root-mean-square (rms)
charge radii of two representative medium-mass nuclei. Two
different interactions are used, the “soft” NN+3N(lnl) and the
“harder” NNLOsat(see section 3.4 for details). One observes a
clear pattern going from ADC(1) to ADC(3) for all quantities.
For total energies, while ADC(2) already yields a qualitatively

FIGURE 1 | Ground-state energies (top) and rms charge radii (bottom) of
36Ca and 68Ni computed within different ADC(n) truncation schemes. Results

for the NNLOsat and NN+3N(lnl) interactions are displayed. Reprinted figure

with permission from [40], copyright (2020) by the American Physical Society.
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good account, additional correlations introduced at the ADC(3)
level are deemed necessary for an accurate description. In
contrast, charge radii are already largely converged at the ADC(2)
level. After analysing the ADC convergence behavior, one expects
ADC(4) corrections to be small for total energies and negligible
for charge radii. The accuracy of the ADC(3) scheme is also
confirmed by a direct benchmark against no-core shell model in
16O, with total energies computed in the two approaches differing
by less than 1% for any tested interaction [40].

3.2. Working Equations
In practice, solving Dyson or Gorkov equations in their forms
Equations (2) and (14) is problematic, specially for finite systems
where a solution has to be achieved for numerous (discrete)
values of the energy ω. A method to overcome the problem
was proposed once again in quantum chemistry [76], and
consists of two steps. In the first one, after exploiting the
analytical energy dependence of the propagator, Equation (2)
is transformed into an eigenvalue equation where the (energy-
dependent) self-energy acts as an effective one-body potential.
The second steps makes use of the analytical energy dependence
of the self-energy in the form of Equation (16) and rewrites
the problem as an energy-independent eigenvalue equation. The
latter constitutes the working equation to be solved iteratively,
and whose solutions directly provide amplitudes and energies
entering Equation (8) for the one-body propagator (see [58]
for a more detailed discussion). The derivation of this energy-
independent eigenvalue problem has been generalized to Gorkov
theory in [31].

One disadvantage of the energy-independent formulation is
that the number of energy poles, i.e., the eigenvalues and the
dimensionality of the energy-independent Dyson or Gorkov
matrix, increases at each self-consistent iteration. In practice,
this growth is reduced via the application of Krylov projection
techniques [76, 77], typically implemented by means of a
Lanczos algorithm (see [32] for a detailed discussion and a
numerical study).

3.3. Choice of Basis
Equations presented in section 2 are general, i.e., are valid in any
basis of choice9. In an actual calculation, one needs to specify a
basis in which operators, together with all relevant quantities, are
expanded on. In the case of atomic nuclei one typically employs
a one-body spherical harmonic oscillator (HO) basis, whose
eigenfunctions are well suited to the description of a confined

9Since the present formalism is written in single-nucleon coordinates, the
appearance of center-of-mass (c.o.m.) contributions might pollute the
computation of different quantities/observables and must be taken care of.
As for energies, the c.o.m. kinetic energy T̂c.o.m. is subtracted from the total
Hamiltonian from the outset, such that one eventually works with the intrinsic
Hamiltonian Ĥint ≡ Ĥ − T̂c.o.m.. Although in the present truncation scheme this
does not lead to an exact factorization of c.o.m. and intrinsic wave functions, it has
been demonstrated in similar correlation-expansion methods [18, 78] that such an
approximate c.o.m. correction is sufficient for all practical purposes. Furthermore,
specific a posteriori corrections are applied for radii and densities [see discussion
in section 4.1 and, e.g., [36] for more details].

FIGURE 2 | Ground-state energies (top) and rms charge radii (bottom) of
36Ca and 68Ni computed with the NN+3N(lnl) and NNLOsat Hamiltonians as a

function of the harmonic oscillator parameter h̄� and for increasing size emax

of the one-body basis. In all cases e3max = 16 was used. Reprinted figure with

permission from [40], copyright (2020) by the American Physical Society.

system10. A HO basis is characterized by two parameters: the
oscillator inverse length h̄� and the number of considered HO
wave functions. The latter is usually determined by the parameter
emax ≡ max(2n + l), which sets the energy threshold of a
basis eigenfunction. Many-body bases are subsequently built as
direct products of one-body bases. While naturally for a k-body
operator one would set ekmax = k ·emax, the storage of three-body
matrix elements for realistic values of emax presently constitutes
an issue and obliges one to work with e3max〈〈3 · emax. In current
state-of-the-art implementations, typical values of emax = 12 −

15, e2max = 2 · emax, and e3max = 14− 18 are used.
The first step of a calculation consists in studying the

convergence properties (of the observables of interest) with
respect to the basis size and oscillator parameter. An example is
shown in Figure 2, where the basis dependence of ground-state
energy and charge radius is investigated for two different nuclei
and two different Hamiltonians with ADC(2) calculations. One
sees that in 36Ca an emax = 13model space guarantees sufficiently
converged results. In 68Ni and for the higher-cutoff Hamiltonian
NNLOsat (see next section for details) the convergence is not
yet optimal.

Combining uncertainties from basis truncation, discussed
here, and from many-body expansion, discussed in section 3.1,

10On the other hand, the asymptotic behavior of HO wave functions do not
correctly account for the fall-off of the nuclear wave function. As a consequence, a
HO basis is not well-suited to describe states near the particle continuum, where
the long-range part of the wave function is particularly important. In this case, a
possibility consists in complementing the HO with a basis specifically designed to
account for resonances and non-resonant continuum, e.g., the Berggren basis [79,
80].
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one can evaluate the total theoretical error of the method
for a given input interaction. To give an example [40], for
soft potentials, like the NN+3N(400) and the NN+3N(lnl)
Hamiltonians presented in the next section, one estimates an
error of about 2% (< 0.5%) associated to ground-state energies
(radii) of medium-mass nuclei. For harder potentials, like the
NNLOsat Hamiltonian, the errors rise to 4 and 1% for energies
and radii, respectively. To a good extent, these uncertainties
cancel out when differential observables are considered, as in the
case of one- or two-nucleon separation energies. In the results
presented in the following such systematic uncertainties are not
explicitly reported in the figures (except for Figures 8, 10) and
should be kept in mind by the reader.

3.4. Choice of Input Interaction
Like most of ab initio techniques, self-consistent GFs can take
in principle any nucleon-nucleon plus three-nucleon (NN+3N)
Hamiltonian as input. In the early 2000s, nearly all applications
were performed using semi-phenomenological11 potentials like
CD-Bonn [84] or Nijmegen [85], possibly complemented with
three-nucleon forces [72, 86]. Although these interactions had
proven successful in the description of light nuclei, their “hard”
character, i.e., the associated large momentum cutoff, required
the use of sophisticated resummation schemes, thus hindering
applications in medium-mass nuclei. Starting from 2010, the
use of Hamiltonians derived in the context of chiral effective
field theory (χ-EFT) [5] began to spread. Compared to the
previous phenomenological models, χ-EFT interactions present
several advantages:

1. By explicitly taking into account only low-energy degrees of
freedom, they have a much smaller associated cutoff;

2. All many-body (i.e., 2N, 3N, 4N, ...) operators and currents are
derived consistently without any ad-hoc assumption, which
augments the predictive power;

3. A theoretical error can be associated to a given χ-EFT
Hamiltonian (which relates to the employed truncation in the
EFT expansion).

Nowadays, χ-EFT interactions constitute the standard for ab
initio nuclear structure calculations. The first feature, i.e.,
their “softness,” is often further amplified by the use of
similarity renormalization group (SRG) techniques [6], i.e.,
unitary transformations of the Hamiltonian that further decouple
low- and high-momentum modes, leading to much improved
convergence properties. The third point implies that the EFT
error can (and should) be subsequently propagated tomany-body
observables. This has been done in practice only very recently (see
e.g., [16, 87–92]) and more formal and technical developments
along these lines will be required in the future.

Mainly three different χ-EFT Hamiltonians have been
employed in recent GF calculations, all of which are discussed
here. The first one, labeled NN+3N(400), is based on the next-to-
next-to-next-to-leading order (N3LO) nucleon-nucleon potential
from Entem and Machleidt [4, 93] combined with the N2LO

11For example, based on a one-boson exchange model plus
phenomenological corrections.

3N interaction with a local regulator [94]. The 2N interaction
of [93] was built with a cutoff of 500 MeV/c, however, a
400 MeV/c regulator was used for the 3N sector [95]. This
Hamiltonian has been systematically applied to p- and sd-shell
nuclei and yields a good reproduction of oxygen, nitrogen and
fluorine binding energies [35, 36, 96]. Nevertheless, it leads to
overbinding inmedium-mass nuclei starting in the calcium chain
and underpredicts nuclear radii even for O isotopes [39, 53, 97].

With the main objective of improving on the description of
radii, a chiral Hamiltonian with terms up to N2LOwas developed
in [98]. It is characterized by a simultaneous fit of 2N and 3N
LECs that does not rely solely on two-nucleon and A = 3, 4
data, but also on binding energies of 14C and 16,22,24,25O as well
as charge radii of 14C and 16O. The resulting interaction, named
NNLOsat, successfully describes the saturation of infinite nuclear
matter [98] as well as various observables in mid-mass nuclei,
including charge radii [42–44, 53]. Unlike the NN+3N(400)
interaction, NNLOsat employs a non-local regulator.

Motivated by the success of NNLOsat, a novel interaction
named NN+3N(lnl) was presented recently [40]. The goal was to
amend the original NN+3N(400) interaction, and in particular its
3N part.While the latter has been shown to be problematic, its 2N
part is instead believed to perform relatively well and thus is kept
unchanged. Being based on the N3LO potential, which provides
a better description of nucleon-nucleon data compared to the
lower-order NNLOsat, it yields superior features in light systems,
e.g., a better reproduction of spectroscopy of natural parity states
in p- and light sd-shell nuclei.NN+3N(lnl) has been also shown to
provide a very good description of energy observables (ground-
state energies and energy spectra) in medium-mass nuclei up to
mass A ∼ 60 [40].

3.5. Computational Requirements
As any other state-of-the-art ab initio nuclear structure approach,
the SCGF method requires the development of an advanced
numerical code. The computational cost of a simulation strongly
depends on (i) the size of the model space, (ii) the chosen level of
approximation12, and (iii) the two- or three-body character of the
input Hamiltonian. ADC(1) calculations with only NN forces can
be easily performed on a laptop also in large bases (in few CPU
minutes). Going to ADC(2) limits a laptop calculation to a small,
yet (semi-)realistic model space, typically emax = 8 − 9 (doable
in a few CPU hours). If larger bases are needed (to ensure model-
space convergence, e.g., typically emax = 12 − 13), then one has
to resort to a dedicated computer cluster (with a corresponding
cost of few hundred CPU hours). ADC(3) is doable on a laptop
only for very small model spaces and any realistic calculation
requires the implementation of MPI parallelization and the use
of a high-performance computing center (with running times of
several thousand CPU hours).

The inclusion of 3N forces results into an increase of both
CPU time (due to the higher rank of the tensors at play) and

12For a given approximation, a Gorkov calculation is more costly than a
Dyson one because of the increased dimensionality of the quasiparticle space.
Estimates presented in this section refer to Dyson calculations of typical medium-
mass nuclei.
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FIGURE 3 | (Left) ADC(3) calculations of closed-shell oxygen isotopes performed with the NN+3N(400) Hamiltonian (blue points and lines). For reference, results with

only original 2N operators are displayed (red points and lines). (Top) One-neutron addition and removal energies associated to dominant quasiparticle peaks. (Bottom)

Ground-state energies compared with experimental values (gray bars). Adapted figure with permission from [35], copyright (2013) by the American Physical Society.

(Right) ADC(2) calculations of even-even calcium isotopes performed with the NN+3N(400), NNLOsat, and NN+3N(lnl) Hamiltonians (colored points and lines),

compared with measured and extrapolated data (black points). ADC(3) results are depicted as horizontal lines when available. (Top) Total ground-state energies.

(Bottom) Two-neutron separation energies. Adapted figure with permission from [40], copyright (2020) by the American Physical Society.

memory usage (due to the larger amount of matrix elements to be
stored). As a consequence, on a laptop and for realistic bases, even
an ADC(1) calculation becomes heavy in terms of CPU and one
quickly reaches the limits in terms of available RAM13. ADC(2)
andADC(3) calculations require optimized implementations and
the use of a high-performance computing center, with typical
running times of a few thousand and tens of thousands CPU
hours, respectively.

4. RECENT APPLICATIONS

4.1. Ground-State Properties
The total ground-state energy, or binding energy, of a nucleus
constitutes the most basic nuclear structure observable. In
Green’s function theory, total energies are preferably computed
via the generalized GMK sum-rule (Equation 6). While earlier
applications made use of a 2N-only Hamiltonian, possibly
complemented by a phenomenological correction to compensate
for missing 3N [29, 30, 38], starting from 2013 calculations
with realistic 2N + 3N interactions could be routinely
performed. A representative example concerns the oxygen
chain [35] and is shown in Figure 3 (left). In the bottom panel,

13See also discussion in section 5.3 on storage of 3N matrix elements.

ADC(3) ground-state energies are displayed for closed-shell
oxygen isotopes, computed with the NN+3N(400) interaction,
respectively excluding and including original 3N operators14.
One notices that the addition of 3N forces is crucial for a
quantitative reproduction of experimental data. In particular,
when only a 2N interaction is considered, the neutron dripline
is wrongly located at N = 20, while it is correctly reproduced at
24O in the presence of 3N forces.

In such a context it can be instructive to inspect one-
neutron addition and removal energies associated to dominant
quasiparticle peaks, see top-left panel of Figure 3. One sees
that the 3/2+ fragment becomes bound in neutron-rich
isotopes when the 2N-only Hamiltonian is employed. When 3N
interactions are switched on, it is instead pushed up and remains
unbound all the way to 28O, thus explaining the position of
the dripline. This observation confirmed the repulsive character
of the Fujita-Miyazawa 3N interaction, as previously discussed
in [99].

This result was one of the first successful applications
of ab initio techniques beyond light nuclei. The oxygen

14The SRG evolution described in section 3.4 and standardly applied to nuclear
Hamiltonians induces additional many-body operators that need to be taken into
account [6]. Hence, one has to distinguish between original and induced e.g., 3N
forces.
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FIGURE 4 | (Left) Point-proton and charge densities of 34Si and 36S computed at the ADC(3) level with the NNLOsat interaction. The experimental charge density of
36S is taken from [114]. (Right) Angular dependence of the charge form factor computed for 300 MeV electron scattering. Modified figure with permission from [37],

copyright (2017) by the American Physical Society.

chain also constituted, for a few years, a testbed where
calculations from various approaches could be benchmarked,
demonstrating the reliability of the different many-body
truncations [23, 96, 100, 101]. More recently, the availability of
new Hamiltonians prompted calculations of heavier systems,
from calcium up to the nickel chain. An example is constituted
by Gorkov GF calculations exploring the performance of
three interactions along few semi-magic chains, as reported
in [40]. A typical outcome is the one displayed in Figure 3

(right), where ground-state energies of calcium isotopes as
well as their differences, two-neutron separation energies, are
shown as a function of neutron number. The overbinding
generated by the older NN+3N(400) clearly stands out. In
contrast, the newer Hamiltonians NNLOsat and NN+3N(lnl)
yield an excellent reproduction of total as well as differential
ground-state energies, specially once ADC(3) corrections
are taken into account. A good performance is found
also in the nickel chain, up to the point where current
computational limitations hinder a complete model-space
convergence of the calculations [40]. In addition to semi-
magic chains, the theory was tested in relation to novel
experimental measurements in potassium [47], titanium [48],
and argon [102] chains.

The performance of these three Hamiltonians was further
investigated on nuclear radii in [40]. It was found that
NNLOsat provides a good account of rms charge radii all
the way up to nickel. Specifically, the bulk contributions
are well-described already at the ADC(2) level, while finer
details (e.g., the parabolic behavior observed between 40Ca
and 48Ca) need further improvement of the many-body
truncation and/or the interaction. Density distributions
provide even further insight into the way nucleons arrange
themselves in the correlated nuclear medium. The nuclear
charge density distribution is typically obtained as a sum of three

contributions [103],

ρch(r) = ρ
p
ch(r)+ ρn

ch(r)+ ρ ls
ch(r), (17)

where ρ
p
ch (ρn

ch) is determined by folding the point-proton
(point-neutron) density with the finite charge distribution
of the proton (neutron) and ρ ls

ch is a relativistic correction
that depends on spin-orbit terms. In addition, center-
of-mass and relativistic Darwin-Foldy corrections are
taken into account by employing an effective position
variable [104]. Finite nucleon charge distributions can
be expressed as a sum of Gaussians, with the parameters
adjusted to reproduce form factors from electron scattering
data [105]. The relativistic spin-orbit correction is usually
computed within the factorization approximation introduced
in [106]. Even though ρ

p
ch largely dominates, the other two

contributions can visibly alter the total charge distribution in
some cases.

As for radii, densities are computed directly from the one-
body GF and can therefore be routinely evaluated for medium-
mass systems. An interesting example relates to the possible
presence of a depletion in the central part of the charge density
profile, usually referred to as bubble. One of the most likely
candidates has been identified in the nucleus 34Si [107–113].
In [37] this system, together with its Z + 2 partner 36S, has been
thoroughly investigated by means of both Dyson and Gorkov
GF calculations. The resulting point-proton and charge density
distributions are shown in Figure 4 (left). The effect of folding
with the finite size of the proton is specially visible in the
center, with an attenuation of oscillations in the charge profiles.
The agreement between the computed and the measured charge
distribution for the stable nucleus 36S is excellent, which gives
confidence in the prediction for the unstable 34Si, yet unknown
experimentally. For the latter, a depletion in the region below 2
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fm is indeed found. Its magnitude is comparable or even larger
than what previously obtained in EDF [111, 112] or shell model
calculations [110].

A measurement of the charge distribution of 34Si would
require electron scattering on radioactive ions. These
experiments are becoming feasible only now [115], with
first results on the heavier 132Xe obtained by the SCRIT
collaboration [83]. In the coming years, the case of 34Si will thus
constitute an interesting objective for electron-nucleus scattering
facilities. Such a measurement would extract the electromagnetic
charge form factor, related to the charge profile via

F(q) =

∫

dErρch(r)e
−iEq·Er , (18)

where Eq is the transferred momentum, itself related to the
incident momentum Ep and the scattering angle θ via q =

2p sin θ/2. The calculated charge form factors for 300 MeV
electron scattering on 34Si and 36Si are displayed in Figure 4

(right). Clear differences appear in the angular dependence for

the two systems, with a higher magnitude and a displaced
position of the second minimum for 34Si. This analysis
gives indications on what range of transferred momenta, and
consequently which luminosities, are necessary for identifying
possible depleted density profiles in this mass region.

4.2. Excited-State Properties
An asset of GF theory resides in the rich content of the one-
body propagator, which does not solely provide information
on the targeted (even-even) system with mass number A but
also on the four neighboring (odd-even) A ± 1 nuclei. This
information is explicit in the Lehmann representation of the GF
(Equation 8). The poles E±i of the function correspond to one-
nucleon addition and removal energies, as schematically depicted
in Figure 5 (top left). In addition, the associated amplitudes
in the numerator represent the probabilities to reach a specific
eigenstate |9A+1

n 〉 (|9A-1
k

〉) of the A+ 1 (A− 1) system by adding
(removing) a nucleon in a single-particle state to (from) the
ground state |9A

0 〉 of the even-even system. Those amplitudes

FIGURE 5 | (Top left) Schematic view of the A± 1 states (and associated energies) reached via one-nucleon addition and removal. (Top right) Neutron spectral

strength distribution in 34Si computed at the ADC(1) level with the NNLOsat interaction. The four panels display different angular momentum and parity channels. The

dashed vertical line represents the Fermi energy, separating the spectra of 33Si and 35Si. (Bottom) Same as above but for ADC(2) and ADC(3) calculations. Data

originates from the results of [37].
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can be expanded in a single-particle basis {a†
α} according to

Uα
n ≡ 〈9A

0 |aα|9
A+1
n 〉 , (19a)

Vα
k ≡ 〈9A

0 |a
†
α|9

A-1
k 〉 . (19b)

Next, spectroscopic probability matrices for the nucleon

addition and removal can be built15, S+n ≡ UnU
†
n

and S−
k

≡ V∗
k
VT
k
, respectively. Their elements read as

S+αβ
n ≡ 〈9A

0 |aα|9
A+1
n 〉〈9A+1

n |a†
β |9

A
0 〉 , (20a)

S
−αβ

k
≡ 〈9A

0 |a
†
β |9

A-1
k 〉〈9A-1

k |aα|9
A
0 〉 . (20b)

Taking the trace over the one-body Hilbert
space H1 leads to spectroscopic factors

SF+n ≡ TrH1

[

S+n
]

=
∑

α∈H1

∣

∣Uα
n

∣

∣

2
, (21a)

SF−
k

≡ TrH1

[

S−
k

]

=
∑

α∈H1

∣

∣Vα
k

∣

∣

2
, (21b)

which are the norms of the spectroscopic amplitudes.
A spectroscopic factor thus sums the probabilities that
an eigenstate of the A + 1 (A − 1) system can be
described as a nucleon added to (removed from) a
single-particle state on top of the ground state of the
A-nucleon system.

The complete spectroscopic information associated with one-
nucleon addition and removal processes can be collected into the
spectral function S(ω), defined as the energy-dependent matrix
onH1

S(ω) ≡
∑

n∈HA+1

S+n δ(ω − E+n )+
∑

k∈HA−1

S−
k

δ(ω − E−
k
), (22)

where the first (second) sum runs over eigenstates of H in the
Hilbert space HA+1 (HA−1) associated with the A + 1 (A − 1)
system. Taking the trace of S(ω) gives the spectral strength
distribution (SDD)

S(ω) ≡ TrH1

[

S(ω)
]

=
∑

n∈HA+1

SF+n δ(ω − E+n )+
∑

k∈HA−1

SF−
k

δ(ω − E−
k
) , (23)

which is a basis-independent function of the energy. Equations
(19)–(23) can be generalized to the Gorkov formalism [31].

An example of SDD computed at three different levels
of approximation, ADC(1-3), is shown in Figure 5 for the
nucleus 34Si. ADC(1), i.e., Hartree-Fock, is a mean-field (or
independent-particle) approximation, which translates into a
series of quasiparticle peaks with unity spectroscopic factors, i.e.,
there is a one-to-one correspondence between the single-particle

15Here bold symbols denote matrices in the one-body Hilbert spaceH1.

basis {a†
α} and the many-body states |9A±1

i 〉 accessible via the
process of adding or removing a nucleon. One can nevertheless
identify the main qualitative features of the SDD, e.g., associate
the ground state of 33Si (35Si) with the first peak on the left (right)
of the Fermi energy characterized by spin and parity 3/2+ (7/2−).
ADC(2) introduces the lowest-order dynamical correlations that
lead to a first fragmentation of the spectral distribution. A
number of fragments with small spectroscopic factors appear in
the vicinity of the ADC(1) peak, which is now shifted in energy
and reduced in strength, i.e., it has SF±i < 1. ADC(3) correlations
further fragment the quasiparticle strength, giving rise to a large
number of small peaks and a further reduction of the main-
peak spectroscopic factor. One notices that, around the Fermi
energy, fragments with a good quasiparticle character, i.e., large
spectroscopic factors, survive, in accordance to Landau’s Fermi
liquid theory. In contrast, away from the Fermi level the strength
is spread over a wide energy interval and one can hardly identify
single-particle-like excitations.

From the SDD depicted in Figure 5 one can extract an
excitation spectrum of the A − 1 (A + 1) system, by looking at
increasingly negative (increasingly positive) energies on the left
(right) of the Fermi surface (see top-left panel for a schematic
representation). By comparing ADC(2) and ADC(3) truncations,
one concludes that the latter is necessary for an accurate
description of the main energy peaks [37, 40], in accordance
with analogous calculations in quantum chemistry [116–119].
Conservatively, one can associate uncertainty bands with
ADC(2)-ADC(3) differences, as done in Figure 6 where spectra
resulting from one-nucleon addition and removal from and
to 54Ca are displayed. These four systems sit at the limits of
what can be presently studied in radioactive ion beam facilities.
Yet, not many experimental data are available, such that these
calculations mostly represent predictions that can be presumably
tested in the near future. In 53Ca, where the ground state and
two excited states are identified, NN+3N(lnl) GF calculations
succeed in reproducing the measured spectrum in with good
accuracy. NNLOsat instead mildly overestimates the splitting
between the two excited states. In 53K, the difference between
the two interactions is even more striking. While NN+3N(lnl)
reproduces the measured first excited state with good precision,
NNLOsat predicts a wrong ordering of the 3/2+ and 1/2+ states,
resulting in a ground state with incorrect spin. The potassium
chain indeed constitutes an interesting case because of an unusual
inversion (atN = 28) and re-inversion (atN = 32) of the spins of
the ground- and first excited states [50, 120]. As discussed in [40,
52], Gorkov GF calculations with the NN+3N(lnl) Hamiltonian
yield ax excellent reproduction of the whole trend, from 37K to
53K. Such studies, complementary to those focusing on ground-
state observables, are not only relevant in relation to current
experimental programs, but also provide a unique testing ground
for the development of nuclear interactions.

The spectral representation of the one-body GF thus gives
access to spectroscopic studies of odd-even nuclei. If one is
interested in the excitations of an even-even system, the two-body
GF (in one of its possible time orderings) has to be considered
instead. A typical example is the polarization propagator, which
provides the response of the nuclear system to an external
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FIGURE 6 | One-nucleon addition (panels B and D) and removal (panels A and C) spectra starting from 54Ca. Available experimental data appear in the left column of

each panel. GF calculations performed with the NNLOsat and NN+3N(lnl) interactions are displayed in the central and right column of each panel, respectively. Red

lines constitute results obtained at the ADC(3) level. Shaded areas connect ADC(2) and ADC(3) where available. In all panels, states with Ex < 5 MeV and SF < 10%

are shown. Modified figure with permission from [40], copyright (2020) by the American Physical Society. Additional new experimental data are from [51, 52].

operator. In analogy to Equation (8), its Lehmann representation
reads as

5γ δ,αβ (ω) =
∑

nπ 6=0

〈9A
0 |a

†
δaγ |9

A
nπ
〉〈9A

nπ
|a†

αaβ |9
A
0 〉

ω − (EAnπ
− EA0 )+ iη

−
∑

nπ 6=0

〈9A
0 |a

†
αaβ |9

A
nπ
〉〈9A

nπ
|a†

δaγ |9
A
0 〉

ω + (EAnπ
− EA0 )− iη

, (24)

where nπ label the excited states of the A-body system. In the
numerators, the residues

Z
nπ

αβ ≡ 〈9A
nπ
|a†

αaβ |9
A
0 〉 . (25)

represent particle-hole matrix elements between excited states of
the A-nucleon system. The poles appearing in the denominator

ǫπ
nπ

≡ EAnπ
− EA0 (26)

instead constitute energy differences between excited states of
the A-nucleon system and its ground-state. The polarization
propagator (Equation 24) is obtained as a solution of the Bethe-
Salpeter equation,

5γ δ,αβ (ω) = 5
(0)
γ δ,αβ (ω)

+
∑

µρνσ

5
(0)
γ δ,µρ(ω)K

(ph)
µρ,νσ (ω)5νσ ,αβ (ω) , (27)

where 5(0)(ω) is the free polarization propagator, and the
particle-hole irreducible interaction K(ph) plays a similar role
as that of the self-energy in Equation (2) for the single-
particle propagator.While the corresponding formalism has been
developed and implemented for Dyson GFs, the generalization to
the Gorkov framework remains to be carried out.

In [42, 121], the polarization propagator was calculated with
the aim of accessing the nuclear isovector electric dipole (E1)
response. A dressed random phase approximation (DRPA) was
adopted for the computation of 5(ω). The scheme makes
use of a correlated, e.g., ADC(3), one-body propagator as the
starting point for the RPA equations, thus going beyond a
simple HF-based particle-hole resummation. Figure 7 shows
results for the integrated isovector E1 photoabsorption cross
section, which is directly obtained from the polarization
propagator [42]. Two representative examples are shown here,
16O and 48Ca. Calculations make use of the NNLOsat interaction,
ensuring that nuclei have the correct size, which is a crucial
property for this application. In 16O the peak associated
to the giant dipole resonance (GDR) is well-reproduced. At
higher excitation energies, the calculation underestimates the
experimental spectrum, presumably due to missing correlations
beyond the simple RPA. A similar picture emerges for 48Ca,
with the GDR peak in good agreement with recent experimental
measurements [124] and the high-energy tail missing some
strength. Several other closed-shell nuclei, for some of which
experimental data are not yet available, are discussed in [42]. A
generalization of this formalism to the Gorkov framework would
allow us to extend these promising results to a large number of
open-shell nuclei.

4.3. Lepton-Nucleus Scattering
The spectral function introduced in Equations (22)–(23) carries
information about the energy-momentum distribution of the
correlated nucleons. Certain scattering processes, where an
external probe scatters off the nucleus, under certain kinematical
conditions (e.g., characterized by a sufficiently large momentum
transfer), can be described as an incoherent sum of scattering
amplitudes on bound nucleons. Then, the cross section can be
computed in the so-called impulse approximation and expressed
as a sum of one-body terms containing a convolution with the
nucleon spectral function.
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FIGURE 7 | Isovector E1 photoabsorbption cross section of 16O (A) and 48Ca (B) computed with the NNLOsat interaction. Theoretical curves are obtained by folding

the discrete spectra with Lorentzian widths Ŵ = 3 MeV. Experimental data are from [122–124]. Adapted figure with permission from [42], copyright (2019) by the

American Physical Society.

This is the case, e.g., of electron and neutrino scattering in the
region of the quasielastic peak. Here the double differential cross
section for inclusive lepton-nucleus scattering can be written
as [125]

( dσ

dE′d�′

)

ℓ
= Cℓ

E′
k

Ek
LµνW

µν , (28)

where Lµν is the leptonic tensor and k = (Ek, k) and k′ =

(E′
k
, k′) are the laboratory four-momenta of the incoming and

outgoing leptons, respectively. The factor Cℓ = α/(k − k′)4 for
electrons and Cℓ = G/8π2 for neutrinos, where G = GF for
neutral current (NC) andG = GF cos θc for charged current (CC)
processes. The electroweak coupling constants are α ≃ 1/137,
GF = 1.1803 × 10−5 GeV−2 [126] and cos θc = 0.97425 [127].
The hadron tensor Wµν incorporates the transition matrix
elements from the target ground state |9A

0 〉 to the final states
|9A

f
〉 due to the hadronic currents, including additional axial

terms for neutrino scattering. The impulse approximation
consists in factorizing |9A

f
〉 → |p′〉 ⊗ |9A−1

n 〉, i.e. it allows

to work with the outgoing nucleon of momentum p′ and the
residual nucleus, left in a state |9A−1

n 〉. This leads to [128, 129]

W
µν

1b (q,ω) =

∫

d3p′ dE

(2π)3
m2

N

e(p′)e(p′−q)
δ(ω + E− e(p′))

×
∑

s

Shs (p
′−q,E)〈p′|jµs

†|p′−q〉〈p′−q|jνs |p
′〉 , (29)

where ω represents the energy transfer, MN is the nucleon mass,
e(p) the energy of a nucleon with momentum p. The one-
body current operators j

µ
s depend on the spin-isospin degrees

of freedom s and Shs (p,E) is the one-body spectral function
normalized to the total number of nucleons. For two-body
currents and hadron production, Equation (29) extends non
trivially in terms of one- and two-body spectral functions [129–
132].

Following the above formalism, electron and neutrino
scattering off argon and titanium isotopes was investigated
in [44]. The interest in studying lepton scattering off these
nuclei resides in the fact that future-generation neutrino
experiments (e.g., DUNE [133]) will use liquid-argon time-
projection chambers, which rely on scattering of neutrinos off
40Ar. The nuclear component of the cross section has to be
well determined for a meaningful interpretation of the measured
events, in particular to reconstruct the neutrino energy with
sufficient accuracy. In this respect, a tailored electron scattering
experiment16 was designed and recently performed at JLab [81,
82, 134]. In [44], nuclear spectral functions of stable argon,
calcium and titanium isotopes were computed at the ADC(2)
level with the NNLOsat interactions. A good reproduction of
available charge radii and density distributions was found.
Starting from these spectral functions, inclusive electron-48Ti and
electron-40Ar cross sections were computed. They are shown in
Figure 8 (left) as a function of the energy transfer and compared
to the recent experimental data from the JLab E12-14-012
collaboration [81, 82]. Calculations closely follow the quasi elastic
peak, thus validating the theoretical approach and the impulse
approximation in particular. Next, the quasielastic neutral and
charged current cross sections were studied for 1 GeV neutrino
scattering. Results are displayed in the right panel of Figure 8,
also compared to scattering off 12C. The quasielastic peak is
found at a similar energy, with an increase in themagnitude of the
cross section consistent with super scaling properties of inclusive
reactions. The use of a Ti proton spectral function instead of an
Ar neutron spectral function was also tested and found to be
an excellent approximation. Further studies will be needed to
thoroughly assess theoretical uncertainties.

16Since the neutron spectral function is not easily accessed by electrons, a
complementary study with titanium, which has as many protons (22) as the
neutrons in 40Ar, was carried out.
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FIGURE 8 | (Left) Inclusive Ti(e, e′) (top) and Ar(e, e′) (bottom) cross sections at 2.2 GeV and 15.5◦ scattering angle. The solid (dashed) line shows the quasielastic

cross section with (without) the inclusion of finals-state interactions (FSI, see [44] for details). For the FSI results, the theoretical uncertainties coming from

model-space convergence are also shown as a shaded band. Experimental data are taken from [81, 82] and show both the quasielastic peak and the contribution

from meson production at larger missing energies. (Right) Quasielastic neutral (top) and charged current (bottom) cross sections for 1 GeV neutrino scattering.

Dot-dashed lines refer to a 12C target and solid lines refer to 40Ar. The colored band represents theoretical uncertainties due to model-space convergence. The dotted

lines result from using the 48Ti proton spectral function as an approximation for neutrons in 40Ar. The insets show the difference between the latter and calculations

where the full spectral distribution of 40Ar is used. Adapted figure with permission from [44], copyright (2019) by the American Physical Society.

5. PERSPECTIVES AND CHALLENGES

5.1. Toward the Description of Nuclear
Reactions
While the good knowledge of electro(weak) interactions facilitate
the modeling of lepton-nucleus scattering, nuclear reactions,
because of the complexity of strong interactions, require a
more involved theoretical description. As a consequence, very
few ab initio methods are presently capable of going beyond
structure properties and directly computing reaction observables.
Nevertheless, nucleon-nucleus and nucleus-nucleus reactions
constitute nowadays the tools of choice to study the properties
of atomic nuclei, such that progress on their ab initio description
would be highly valuable.

A relatively clean process that can be used as a training field
for ab initio reaction theory is quasifree nucleon knockout [135].
Quasifree scattering represents a process in which an incident
nucleon (typically a proton17) with an energy of few hundred
MeV knocks out a bound nucleon from the isotope of interest
(see Figure 9, left panel, for a schematic illustration). Kinematical
conditions are chosen such that the process can be preferentially
described by a single, localized interaction between the incident
and the struck nucleons, thus minimizing multiple collisions for

17Since many current experiments concern unstable nuclei, they are performed in
inverse kinematics, whence the use of a proton target. In the following, the case of
an incident proton will be thus considered.

the incoming nucleon. This sudden removal mechanism suggests
that the remaining A − 1 nucleons can be treated as spectators,
which translates into an impulse approximation analogous to the
one discussed in section 4.3. As a result, the total cross section
can be separated into a structure and a reaction part. The latter
involves nucleons that are usually described in terms of distorted
waves to account for their propagation under the influence of the
nuclear medium. Under these assumptions the differential cross
section, labeled distorted-wave impulse approximation (DWIA),
can be schematically written as

(

dσ

d3Q

)

DWIA
= SFN×

〈

dσpN

d�

〉

×
〈

SpASp(A−1)SN(A−1)9N

〉

. (30)

The first factor on the right-hand side is the spectroscopic factor
of the struck nucleon, encoding the structure properties of the
nucleus. The second term represents an in-medium proton-
nucleon cross section, determining the probability of the collision
between the projectile and one of the bound nucleons. The third
term contains the scattering matrices for the (effective) degrees
of freedom at play, i.e., respectively (i) proton and initial A-body
system, (ii) proton and final (A − 1)-body system, (iii) struck
nucleon and final (A − 1)-body system, plus the scattering wave
function of the outgoing nucleon.

An ab initio calculations for some of the above quantities was
recently performed within the GF formalism, in connection with
a quasifree neutron knockout study on 54Ca [51]. Specifically,
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FIGURE 9 | (Left) Schematic representation of quasifree nucleon knockout: an incoming proton p scatters off an A-body nucleus, knocking out a nucleon N. (Right)

One-proton overlap functions (squared) computed at the ADC(3) level using NNLOsat and NN+3N(lnl) interactions [136]. OFs corresponding to the main quasiparticle

fragments for three angular momentum and parity channels J5 = 1/2+, 3/2+, 5/2+ are shown. For comparison, EDF calculations [137, 138] performed with the SLy4

parameterization are displayed. These OFs were employed in the calculation of one-proton knockout cross sections in [52].

spectroscopic factors and one-body overlap functions for the
struck neutron were computed. The latter enter the evaluation
of the scattering matrices, where they are convoluted with
nucleon-nucleus optical potentials. Overlaps functions (OFs) for
three different neutron states, corresponding to the first three
(ground and excited) states in 53Ca, are shown in Figure 9

(right). GF calculations were performed at the ADC(3) level
with two different interactions, NNLOsat and NN+3N(lnl). For
comparison, OFs from an EDF calculation with the SLy4 Skyrme
parameterization are displayed. An overall good agreement is
found between the three sets of calculations. Looking more in
detail, one notices that NNLOsat better reproduces the maximum
of the overlap at around 2–5 fm, i.e., the region of the nuclear
surface. This clearly relates to the ability of this interaction to well
describe nuclear sizes (cf. discussion in section 4.1). In contrast,
NN+3N(lnl) is in better agreement in the tail of the OF. This is in
line with themore accurate description of the low-lying spectrum
of 53Ca (cf. Figure 6).

In order to compute the cross section (Equation 30)
for the 54Ca(p, pn)53Ca reaction, in [51] the GF input was
complemented by phenomenological optical potentials and in-
medium nucleon-nucleon cross sections, yielding results in
good agreement with shell model calculations. An analogous
study had been performed previously for the 14O(d, t)13O and
14O(d,3He)13N reactions, leading to similar conclusions [49].
These applications might be seen as a first step toward a
consistent approach to structure and reaction, and show that
ab initio ingredients can be as efficient as phenomenological
ones. In fact, the in-medium nucleon-nucleon cross section
could be already extracted from nuclear matter calculations (see

e.g., [139]). Moreover, a nucleon-nucleus potential can be directly
computed from the one-body self-energy (see [43]), for the
first applications to oxygen and calcium isotopes. Thus, in the
future the full ab initio calculation of the cross section (30) can
be envisaged.

5.2. Toward Doubly Open-Shell Nuclei
The development of Gorkov GF theory [31], and its subsequent
implementation to finite nuclei [32, 38] proved that symmetry
breaking can be a powerful tool in the context of ab
initio calculations. The generalization of other many-body
techniques to a symmetry-breaking scheme [13, 96, 140]
further confirmed the validity of this strategy. Such advances
have allowed to extend the reach of ab initio calculations
in mid-mass systems from a few closed-shell nuclei to
a large number of open-shell isotopes, e.g., to complete
semi-magic isotopic or isotonic chains. In their current
implementation, however, these methods do not break
rotational symmetry. This results in an inefficient account
of quadrupole correlations, such that the description of (doubly)
open-shell systems displaying significant deformation can
be problematic.

As opposed to pairing, where the strong static correlations
at the Fermi surface cause the breakdown of the particle-hole
expansion, in the presence of deformation one can usually
produce converged calculations, i.e., compute few orders in the
many-body expansion. Nevertheless, one expects the accuracy
to deteriorate with the strength of the deformation. This has
been indeed observed in Gorkov GF calculations around the
calcium chain, in particular for titanium and chromium isotopes
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FIGURE 10 | (Left) Charge density distributions of selected Sn and Xe isotopes computed with the NNLOsat interaction in Gorkov GF theory at the ADC(2) level. Each

curve is shifted upwards with respect to the one below by 0.025 fm−3 for clarity purposes. Colored band account for uncertainties stemming from model-space

convergence. (Right) Charge density distributions of 132Xe computed with the NNLOsat interaction in Gorkov GF theory at the ADC(2) level. The dotted line with gray

band corresponds to the two-point Fermi distribution with parameter and error bars extracted from [83]. Adapted figure with permission from [41].

characterized by mid-shell protons. For instance, by studying
neutron gaps18 at the neutron traditional magic number N = 28
one finds an excellent agreement with experiment up to Z = 22,
after which symmetry-restricted GF calculations clearly depart
from data [102]. Furthermore, one can identify a correlation
between the deviation to experimental data and the amount
of deformation (e.g., estimated by EDF calculations [141]).
This situation suggests that the additional breaking of the
SU(2) symmetry associated to rotational invariance will be
needed in the extension of correlation-expansion methods to
doubly open-shell nuclei. Some of the existing approaches are
indeed being generalized along these lines [142]. In the case
of Gorkov GF such an extension will presumably require the
use of importance truncation [143] and/or tensor factorization
techniques [144].

5.3. Toward Heavy Nuclei
Over the past years, GF ab initio calculations have extended their
reach across the Segrè chart, going from the first application to
the oxygen chain (A ∼ 20) [35] to recent computations of nickel
isotopes (A ∼ 70) [40]. Such calculations rely on sophisticated
numerical codes that make extensive use of available high-
performance computing resources. Although the management
of the computing time19 could be problematic, the bottleneck
that currently prevents (converged) calculations beyond A ∼

100 is related to the storage of the matrix elements of 3N
operators. Indeed, presently employed truncations on the three-
body basis of e3max = 14 − 18 allow keeping the size of
3N matrix elements below 100 GB, which is roughly the order
of magnitude of the available memory on a single node of a

18Neutron gaps, defined as differences of two-neutron separation energies, are
one of possible observables that meaningfully estimate the “magic” character of
a neutron number.
19In this respect, while the numerical cost of Dyson GF calculations grows with the
mass number, the one of Gorkov GFs solely depend on the basis dimension [32].

state-of-the-art supercomputer. Going considerably beyond this
size thus constitutes an issue. At the same time, such values
of e3max are enough to achieve reasonably converged results in
the (A ∼ 60 − 70), while they become insufficient for larger
isotopes [40, 145].

Different strategies are being explored to overcome this
issue. One possibility would be to discard beforehand, for
a given e3max, a subset of the initial 3N matrix elements.
While performing a selection20 directly on the original set
might be problematic, a promising technique based on tensor
factorization algorithms has been put forward recently [143].
Since in the majority of applications 3N forces are included in
the normal-ordered two-body approximation21, another option
could consist in performing the normal ordering procedure
in a different (smaller) basis than the HO one, e.g., in
momentum space.

Even with current limitations, however, some meaningful
results can be produced for nuclei above mass A = 100. Indeed,
as discussed in section 3.3, not all observables show the same
convergence pattern. In particular, while ground-state energy
curves get lower and lower as the basis size is increased, radii
tilt around a fixed point that can be assumed to correspond to
the infinite-basis result. This allow to provide an estimate of
the radius (and, correspondingly, of the density distribution) in
bases for which the energy is far from being converged. Based
on this observation, charge densities of closed- and open-shell
tin and xenon isotopes have been recently calculated within
GF theory [41]. Examples are reported in Figure 10, where
the NNLOsat interaction has been employed. In the left panel,
the charge distribution of several nuclei is shown, exemplifying

20That is, using a different truncation than the e3max truncation.
21It consists of two steps: (i) a normal ordering of the (3N) Hamiltonian with
respect to a reference state and (ii) the disregard of operators of rank higher than
two (see [146] for a pedagogical description and the generalization to the case of
symmetry-breaking reference states).
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the typical range of system that can be presently accessed.
In the right panel, the charge density of 132Xe is displayed
and compared to a two-point Fermi distribution fitted on the
recent experimental data from the SCRIT collaboration [83].
The two are in very good agreement at the surface and in the
tail of the distribution. In the interior, the two-point Fermi
distribution and the lack of high-momentum transfer data lead
to flat behavior for the experimental distribution, whereas the
computed density shows a well defined oscillation pattern. This
example shows that even in present implementations of GF
calculations it is possible to provide relevant predictions in the
region A = 100− 150.
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This article presents an overview of the derivation of effective shell-model Hamiltonian and

decay operators within the framework of many-body perturbation theory, and discusses

the results of selected shell-model studies based on these operators. More precisely,

we give technical details that non-experts will need in order to derive shell-model

Hamiltonians and operators starting from realistic nuclear potentials, and provide some

guidance for shell-model calculations where the single-particle energies, two-bodymatrix

elements of the residual interaction, effective charges, and decay matrix elements are

all obtained without resorting to empirical adjustments. We report results of studies of

double-β decay of heavy-mass nuclei where the shell-model ingredients are derived from

theory, so as to assess the reliability of such an approach to shell-model investigations.

Attention will be also focused on aspects relating to the behavior of the perturbative

expansion, knowledge of which is needed for establishing limits and applying this

approach to nuclear structure calculations.

Keywords: nuclear shell model, effective interactions, many-body perturbation theory, nuclear forces, double-

beta decay

1. INTRODUCTION

This article presents formal details of the derivation of effective shell-model Hamiltonians (Heff)
and decay operators by a perturbative approach, and reviews a large sample of recent applications
to the study of spectroscopic properties of atomic nuclei. The goal of this work is to provide a useful
tool for practitioners who are interested in using shell-model single-particle energies, two-body
matrix elements, effective charges, and magnetic-dipole and β-decay operators, which are derived
from many-body theory, to reproduce a selection of observables without resorting to parameters
that are empirically adjusted.

The well-known nuclear shell model (SM) is widely considered a basic theoretical tool for the
microscopic description of nuclear structure properties. The nuclear SM is based on the ansatz
that each nucleon inside the nucleus moves independently of other nucleons, in a spherically
symmetric mean field plus a strong spin-orbit term. This first-approximation depiction of a nucleus
is supported by the observation of “magic numbers” of protons and/or neutrons, corresponding to
nuclei which are more tightly bound than their neighbors.

These considerations have led to depictions of nucleons arranging themselves into groups of
energy levels, called “shells,” that are well-separated from each other. The main result of the SM
scheme is the reduction of the complex nuclear many-body problem to a very simplified setting
where only a few valence nucleons interact in a reduced model space spanned by a single major
shell situated above an inert core.
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The cost of such a simplification is that shell-model wave
functions, which describe the independent motions of individual
nucleons, do not include the correlations induced by the
strong short-range bare interaction, and therefore could be very
different from the real wave functions of the nuclei. The SM
Hamiltonian, which will be introduced in the next section,
contains one- and two-body components whose characterizing
parameters, namely the single-particle (SP) energies and two-
body matrix elements (TBMEs) of the residual interaction,
account for the degrees of freedom that are not explicitly included
in the truncated Hilbert space of the configurations. As a matter
of fact, SP energies and TBMEs should be determined to include,
in an effective way, the excitations of both the core nucleons and
the valence nucleons in the shells above the model space.

Derivation of the effective SM Hamiltonian may follow two
distinct paths. One approach is phenomenological: that is,
the one- and two-body components of the Hamiltonian are
adjusted to reproduce a selected set of experimental data. This
can be done either by using an analytical expression for the
residual interaction with adjustable parameters, or by treating
the Hamiltonian matrix elements directly as free parameters
(see [1, 2]).

Over more than 70 years of SM calculations, this approach
has been very successful at reproducing a huge amount of
data and describing some of the most fundamental physical
properties of the structure of atomic nuclei. In this regard, it
is worth mentioning the review by Caurier et al. [3], which
contains an interesting discussion about the properties of the
effective SM Hamiltonian; additional references will be given in
the following section.

Another way of constructing Heff is to start from realistic
nuclear forces—two- and three-body potentials if possible—and
derive the effective Hamiltonian in the framework of many-body
theory, i.e., obtain an Heff whose eigenvalues belong to the set of
eigenvalues of the full nuclear Hamiltonian defined in the whole
Hilbert space.

To do this, one needs a similarity transformation which,
within the full Hilbert space of the configurations, leads to a
decoupling of the model space P, where the valence nucleons are
constrained, from its complement Q = 1−P. Nowadays this can
be achieved within the framework of ab initio methods, which
aim to solve the full Hamiltonian of A nucleons by employing
controlled truncations of the accessible degrees of freedom.
However, this approach is strictly limited by the computational
power available and, even if successful, is currently confined
to just a few nuclear mass regions. A comprehensive survey of
possible ways to tackle the problem of derivingHeff starting from
ab initio methods can be found in reference [4], where some SM
applications and results are also reviewed.

The present work focuses on perturbative expansion of
the effective SM Hamiltonian, grounded in the energy-
independent linked-diagram perturbation theory [5], which has
been extensively used in SM calculations over the past 50 years
(see also the review papers [6, 7]).

An earlier attempt along this line was made by Bertsch [8],
who employed as interaction vertices the matrix elements of
the reaction matrix G derived from the Kallio-Kolltveit potential

[9] to study the role played by the core-polarization diagram
at second order in perturbation theory, accounting for one-
particle-one-hole (1p-1h) excitations above the Fermi level of
the core nucleons. The results of this work showed that the
contribution of such a diagram to Heff was about 30% of the
first-order two-bodymatrix element, when considering the open-
shell nuclei 18O and 42Sc outside doubly closed cores 16O and
40Ca, respectively.

Then came the seminal paper by Tom Kuo and Gerry Brown
[10], which represents a true turning point in nuclear structure
theory. It includes the first successful attempt at performing a
shell-model calculation starting from the free nucleon-nucleon
(NN) Hamada-Johnston (HJ) potential [11], and resulted in a
quantitative description of the spectroscopic properties of sd-
shell nuclei.

The TBMEs of the sd-shell effective interaction in reference
[10] were derived starting from the HJ potential, with the hard-
core component renormalized via calculation of the reaction
matrix G. The matrix elements of Gwere then used as interaction
vertices in the perturbative expansion of Heff, including terms up
to second order in G.

The TBMEs obtained by this approach were used to calculate
the energy spectra of 18O and 18F and yielded results in good
agreement with experiments. Moreover, these matrix elements,
as well as those derived 2 years later for SM calculations in the
fp-shell [12], have become the backbone of the fine-tuning of
successful empirical SM Hamiltonians, such as the USD [13] and
the KB3G potentials [3, 14].

Between the late 1960s and early 1970s the theoretical
framework evolved thanks to the introduction of the folded-
diagrams expansion, which formally defined the correct
procedure for the perturbative expansion of effective SM
Hamiltonians [15, 16].

In the forthcoming sections we will present in detail the
derivation of Heff and consistent effective SM decay operators,
within the theoretical framework of many-body perturbation
theory. At the core of our approach is the perturbative expansion
of two vertex functions, the so-called Q̂-box and 2̂-box, in terms
of irreducible valence-linked Goldstone diagrams. The Q̂-box is
then employed to solve non-linear matrix equations in order to
obtain Heff by way of iterative techniques [17], and the latter
together with the 2̂-box are the main ingredients for deriving the
effective decay operators [18].

This paper is organized as follows. In the next section we
present a general overview of the SM eigenvalue problem and
the derivation of the effective SM Hamiltonian. In section
3 we tackle the problem on the basis of the Lee-Suzuki
similarity transformation [17, 19] and introduce the iterative
procedures for solving the decoupling equation that provides
this similarity transformation into Heff, for both degenerate and
non-degenerate model spaces. Two subsections are devoted to
the perturbative expansion of the Q̂-box vertex function and
the derivation of effective SM decay operators. In section 4
we summarize results of investigations into the double-β decay
of 130Te and 136Xe, and discuss the perturbative properties of
Heff and effective SM decay operators. The final section gives a
summary of the present work.
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2. GENERAL OVERVIEW

As mentioned in the Introduction, the SM, introduced 70
years ago [20, 21], is based on the assumption that, as a
first approximation, each nucleon (proton or neutron) inside
the nucleus moves independently in a spherically symmetric
potential representing the average interaction with the other
nucleons. This potential is usually described by a Woods-Saxon
or harmonic oscillator potential plus a strong spin-orbit term.
Inclusion of the latter term is crucial to producing single-particle
states clustered in groups of orbits that are close in energy
(shells). Each shell is well-separated in energy from the other
shells, and this enables the nucleus to be schematized as an inert
core, made up of shells filled with neutrons and protons paired
to give a total angular momentum of J = 0+, plus a certain
number of external nucleons, the so-called “valence” nucleons.
This extreme single-particle SM is able to successfully describe
various nuclear properties [22], such as the angular momentum
and parity of the ground states in odd-mass nuclei. However, it is
clear that in order to describe the low-energy structure of nuclei
with two or more valence nucleons, the “residual” interaction
between the valence nucleons has to be considered explicitly,
where the term “residual” refers to that part of the interaction
which is not taken into account by the central potential. The
inclusion of the residual interaction removes the degeneracy of
states belonging to the same configuration and produces amixing
of different configurations.

Let us now use the simple nucleus 18O to introduce some
common terminology used in effective interaction theories.

Suppose we want to calculate the properties of the low-lying
states in 18O. Then we must solve the Schrödinger equation

H|9ν〉 = Eν |9ν〉, (1)

where

H = H0 +H1 (2)

with

H0 =

A
∑

i=1

(

p2i
2m

+ Ui

)

(3)

and

H1 =

A
∑

i<j=1

VNN
ij −

A
∑

i=1

Ui. (4)

An auxiliary one-body potential Ui has been introduced to
decompose the nuclear Hamiltonian as the sum of a one-
body term H0, which describes the independent motion of the
nucleons, and the residual interaction H1. It is worth pointing
out that in the following, for the sake of simplicity and without
any loss of generality, we will assume that the interaction between
the nucleons is described by a two-body force only, neglecting

FIGURE 1 | Energy shells that characterize the core, valence space, and

empty orbitals for 18O.

three-body contributions. The generalization of the formalism to
include three-nucleon forces may be found in references [23, 24].

It is customary to choose an auxiliary one-body potential
U of convenient mathematical form, such as the harmonic
oscillator potential

U =

A
∑

i=1

1

2
mωr2i . (5)

In Figure 1 we show the relevant portion of the H0 spectrum
for 18O.

We expect the wave functions of the low-lying states in 18O to
be dominated by components with a closed 16O core (i.e., the 0s
and 0p orbits are filled) and two neutrons in the valence orbits 1s
and 0d. Hence, we choose a model space spanned by the vectors

|8i〉 =
∑

α,β∈valence space

Ci
αβ [a

†
αa

†

β ]i|c〉, i = 1, . . . , d, (6)

where |c〉 represents the unperturbed 16O core obtained by
completely filling the 0s and 0p orbits,

|c〉 =
∏

α∈filled shells

a†
α|0〉, (7)

and the index i stands for all the other quantum numbers needed
to specify the state (e.g., the total angular momentum).

To illustrate the situation, we show in Figure 2 some SM
configurations labeled in terms of particles and holes with respect
to the 16O core.

Solving Equation (1) using basis vectors like those shown
in Figure 2 amounts to diagonalizing the infinite matrix H in
Figure 3. This is infeasible, so we seek to reduce this huge matrix
to a smaller one, Heff, with the requirement that the eigenvalues
of the latter should belong to the set of eigenvalues of the former.
The notation |2p′ 0h〉 represents a configuration with a closed
16O core plus two particles constrained to interact in the sd-shell.
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FIGURE 2 | Some 18O shell-model configurations.

FIGURE 3 | Representation of the matrices H and Heff for
18O.

More formally, it is convenient to define the projection
operators P and Q = 1 − P, which project from the complete
Hilbert space onto the model space and its complementary space
(excluded space), respectively. The operator P can be expressed
in terms of the vectors in Equation (6) as

P =

d
∑

i=1

|8i〉〈8i|. (8)

The projection operators P and Q satisfy the properties

P2 = P, Q2 = Q, PQ = QP = 0. (9)

The key idea of the effective SM interaction theory is to transform
the eigenvalue problem of Equation (1) into a reduced model-
space eigenvalue problem

PHeffP|9α〉 = (Eα − EC)P|9α〉, (10)

where EC is the true energy of the core, i.e., the true ground-state
energy of 16O in the present case.

As mentioned in the Introduction, there are two main
approaches to deriving Heff:

• a phenomenological approach;
• an approach that starts from the bare nuclear interactions and

makes use of an appropriate many-body theory.

In the phenomenological approach, empirical effective
interactions containing adjustable parameters are introduced

and modified to fit a certain set of experimental data, or the two-
body matrix elements themselves are treated as free parameters.
This approach has been very successful, and we refer to several
excellent reviews [2, 3, 25–27] for a comprehensive discussion of
the topic.

Currently there are several ways to derive an effective
SM Hamiltonian starting from the bare interactions between
nucleons. In fact, besides the well-established approaches based
on many-body perturbation theory [5] or the Lee-Suzuki
transformation [17, 19], novel non-perturbative methods, such
as valence-space in-medium similarity renormalization group
(VS-IMSRG) [28], shell-model coupled cluster (SMCC) [29],
or the no-core shell model (NCSM) with a core based on the
Lee-Suzuki similarity transformation [30–33], are now available.
These non-perturbative approaches are firmly rooted in many-
body theory and provide somewhat different paths to Heff. They
can be derived in the same general theoretical framework by
expressing Heff as the result of a similarity transformation acting
on the original Hamiltonian,

Heff = eGHe−G , (11)

where the transformation is parameterized as the exponential of
a generator G, such that the decoupling condition

QHeffP = 0 (12)

is satisfied. Reference [4] contains a very detailed discussion of
how the different methods (perturbative and non-perturbative)
can be derived within such a general framework, as well
as descriptions of the corresponding approximation schemes
employed in each approach.

As stated in the Introduction, the present review aims to
describe in detail the perturbative approach to the derivation
of Heff; this is the focus of the next section. We refer to the
already cited review paper by Stroberg et al. [4] for an exhaustive
description of alternative methods.

3. PERTURBATIVE EXPANSION OF
EFFECTIVE SHELL-MODEL OPERATORS

3.1. The Lee-Suzuki Similarity
Transformation
In this subsection we present the formalism of the derivation
of the effective SM Hamiltonian based on the similarity
transformation introduced by Lee and Suzuki [19]. It is worth
noting that this approach has been very successful since it makes a
straightforward perturbative expansion ofHeff possible for open-
shell systems outside a closed core, whereas in other approaches,
such as the oscillator-based effective theory (HOBET) proposed
by Haxton and Song [34] or the coupled-cluster similarity
transformation [35], factorization of the core configurations
with respect to the valence nucleons is far more complicated
to perform.

We start from the Schrödinger equation for the A-nucleon
system, defined in the whole Hilbert space:

H|9ν〉 = Eν |9ν〉. (13)
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As already mentioned, within the SM framework an auxiliary
one-body potential U is introduced to express the nuclear
Hamiltonian as the sum of an unperturbed one-body mean-field
term H0 and the residual interaction Hamiltonian H1. The full
Hamiltonian H is then rewritten in terms of H0 and H1, as in
Equations (2)–(4).

According to the nuclear SM described in the previous section,
the nucleus may be thought of as a frozen core, composed of a
number of nucleons which fill a certain number of energy shells
generated by the spectrum of the one-body HamiltonianH0, plus
a remainder of n interacting valence nucleons moving in the
mean field H0.

The large energy gap between the shells allows us to regard
the A − n core nucleons, which completely fill the shells that
are lowest in energy, as inert. The SP states accessible to the
valence nucleons are those belonging to the major shell situated
(in energy) just above the closed core. The configurations allowed
by the valence nucleons within this major shell define a reduced
Hilbert space, the model space, in terms of a finite subset of d
eigenvectors of H0, as expressed in Equation (6).

We then consider the projection operators P (see Equation 8)
and Q = 1 − P, which project from the complete Hilbert space
onto the model space and its complementary space, respectively,
and satisfy the properties in Equation (9).

The goal of an SM calculation is to reduce the eigenvalue
problem of Equation (13) to the model-space eigenvalue problem

HeffP|9α〉 = EαP|9α〉, α = 1, . . . , d, (14)

where Heff is defined only in the model space.
This means that we are looking for a new Hamiltonian H

whose eigenvalues are the same as those of the HamiltonianH for
theA-nucleon system but which satisfies the decoupling equation
between the model space P and its complement Q:

QHP = 0, (15)

which guarantees that the desired effective Hamiltonian is
Heff = PHP.

The HamiltonianH should be obtained by way of a similarity
transformation defined in the whole Hilbert space:

H = X−1HX. (16)

Of course, the class of transformation operators X that satisfy the
decoupling Equation (15) is infinite, and Lee and Suzuki [17, 19]
proposed an operator X defined as X = eω. Without loss of
generality, ω can be chosen to satisfy the following properties:

ω = QωP, (17)

PωP = QωQ = PωQ = 0. (18)

Equation (17) implies that

ω2 = ω3 = · · · = 0. (19)

According to the above equation, Xmay be written as X = 1+ω,
and consequently we have the following expression for Heff:

Heff = PHP = PHP + PHQω. (20)

The operator ω may be calculated by solving the decoupling
Equation (15), and the latter can be rewritten as

QHP + QHQω − ωPHP − ωPHQω = 0. (21)

This matrix equation is non-linear, and once the Hamiltonian
H is expressed explicitly in the whole Hilbert space, it can be
easily solved. Actually, this is not an easy task for nuclei with
mass A > 2, and, as mentioned in the previous section, this
approach has been employed only for light nuclei within the ab
initio framework.

A successful way to solve Equation (21) for SM calculations
is to use a vertex function, the Q̂-box, which is suitable for a
perturbative expansion. We now explain the Q̂-box approach to
deriving Heff. It is important to note that in the following we
assume our model space to be degenerate:

PH0P = ǫ0P. (22)

Then, thanks to the decoupling Equation (15), the effective
Hamiltonian Heff

1 = Heff − PH0P can be expressed as a function
of ω:

Heff
1 = PHP − PH0P = PH1P + PH1Qω. (23)

The above identity, the decoupling Equation (21), and the
properties ofH0 andH1 allow us to define recursively the effective
Hamiltonian Heff

1 . First, since H0 is diagonal, we can write the
following identity:

QHP = QH1P + QH0P = QH1P. (24)

Then, the decoupling Equation (21) can be rewritten in the form

QH1P + QHQω − ω(PH0P + PH1P + PH1Qω)

= QH1P + QHQω − ω(ǫ0P +Heff
1 ) = 0. (25)

Using this expression for the decoupling equation, we can write a
new identity for the operator ω:

ω = Q
1

ǫ0 − QHQ
QH1P − Q

1

ǫ0 − QHQ
ωHeff

1 . (26)

Finally, we obtain a recursive equation by substituting
Equation (26) into the identity (23):

Heff
1 (ω) = PH1P + PH1Q

1

ǫ0 − QHQ
QH1P

−PH1Q
1

ǫ0 − QHQ
ωHeff

1 (ω). (27)

We now define the Q̂-box vertex function as

Q̂(ǫ) = PH1P + PH1Q
1

ǫ − QHQ
QH1P, (28)
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and this allows us to express the recursive Equation (27) as

Heff
1 (ω) = Q̂(ǫ0)− PH1Q

1

ǫ0 − QHQ
ωHeff

1 (ω). (29)

As can be seen from both of the Equations (28) and (29),
configurations belonging to the Q space that have energy
close to the unperturbed energy of model-space configurations
(intruder states) may give unstable solutions of Equation (29).
This is the so-called “intruder-state problem” as pointed out
in references [36, 37] by Schucan and Weidenmüller. In the
following we first present two possible iterative techniques for
solving Equation (29), as suggested by Lee and Suzuki [17]. These
methods, which are based on calculation of the Q̂-box and its
derivatives, are known as the Krenciglowa-Kuo and Lee-Suzuki
techniques. In particular, we point out that in reference [17] it is
shown that the Lee-Suzuki iterative procedure is convergent even
when there are some intruder states. We will then present some
other approaches that generalize the derivation of Heff, based on
calculation of the Q̂-box, to unperturbed HamiltoniansH0 which
provide non-degenerate model spaces.

3.1.1. The Krenciglowa-Kuo Iterative Technique
The Krenciglowa-Kuo (KK) iterative technique for solving the
recursive Equation (29) is based on the coupling of Equations
(29) and (26), which gives the iterative equation

Heff
1 (ωn) =

∞
∑

m=0

[

−PH1Q

(

−1

ǫ0 − QHQ

)m+1

QH1P

]

[

Heff
1 (ωn−1)

]m
. (30)

The quantity inside the first set of square brackets in
Equation (30), which will be denoted by Q̂m(ǫ0) from now on,
is proportional to the mth derivative of the Q̂-box calculated at
ǫ = ǫ0:

Q̂m(ǫ0) = −PH1Q

(

−1

ǫ0 − QHQ

)m+1

QH1P =
1

m!

[

dmQ̂(ǫ)

dǫm

]

ǫ=ǫ0

. (31)

We may then rewrite Equation (30) according to the above
identity as

Heff
1 (ωn) =

∞
∑

m=0

1

m!

[

dmQ̂(ǫ)

dǫm

]

ǫ=ǫ0

[

Heff
1 (ωn−1)

]m
=

∞
∑

m=0

Q̂m(ǫ0)
[

Heff
1 (ωn−1)

]m
. (32)

The starting point of the KK iterative method is the assumption
that Heff

1 (ω0) = Q̂(ǫ0), which enables us to rewrite Equation (32)
in the form

Heff =

∞
∑

i=0

Fi, (33)

where

F0 = Q̂(ǫ0),

F1 = Q̂1(ǫ0)Q̂(ǫ0),

F2 = Q̂2(ǫ0)Q̂(ǫ0)Q̂(ǫ0)+ Q̂1(ǫ0)Q̂1(ǫ0)Q̂(ǫ0),

...

(34)

Expression (33) is the well-known folded-diagram expansion
of the effective Hamiltonian introduced by Kuo and
Krenciglowa. In reference [38] they demonstrated the following
operatorial identity:

Q̂1Q̂ = −Q̂

∫

Q̂, (35)

where the integral sign corresponds to the so-called folding
operation introduced by Brandow in reference [15].

3.1.2. The Lee-Suzuki Iterative Technique
The Lee-Suzuki (LS) technique is another iterative procedure,
which is carried out by rearranging Equation (29) to obtain an
explicit expression for the effective Hamiltonian Heff

1 in terms of
the operators ω and Q̂ [17]:

Heff
1 (ω) =

(

1+ PH1Q
1

ǫ0 − QHQ
ω

)−1

Q̂(ǫ0). (36)

The iterative form of the above equation is

Heff
1 (ωn) =

(

1+ PH1Q
1

ǫ0 − QHQ
ωn−1

)−1

Q̂(ǫ0), (37)

and we may also write an iterative expression for Equation (26):

ωn = Q
1

ǫ0 − QHQ
QH1P − Q

1

ǫ0 − QHQ
ωn−1H

eff
1 (ωn). (38)

The standard procedure is to start the iteration by choosing ω0 =

0, so that we may write

Heff
1 (ω1) = Q̂(ǫ0),

ω1 = Q
1

ǫ0 − QHQ
QH1P.

After some algebra, the following identity can be established:

Q̂1(ǫ0) = −PH1Q
1

ǫ0 − QHQ
Q

1

ǫ0 − QHQ

QH1P = −PH1Q
1

ǫ0 − QHQ
ω1. (39)

Then for the n = 2 iteration we have

Heff
1 (ω2) =

(

1+ PH1
1

ǫ0 − QHQ
ω1

)−1

Q̂(ǫ0)

=
1

1− Q̂1(ǫ0)
Q̂(ǫ0),

Frontiers in Physics | www.frontiersin.org 6 October 2020 | Volume 8 | Article 34591

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Coraggio and Itaco Perturbative Approach to Effective Shell-Model Hamiltonians

ω2 = Q
1

ǫ0 − QHQ
QH1P − Q

1

ǫ0 − QHQ
ω1H

eff
1 (ω2).

(40)

Finally, the LS iterative expression for Heff is

Heff
1 (ωn) =



1− Q̂1(ǫ0)
n−1
∑

m=2

Q̂m(ǫ0)
n−1
∏

k=n−m+1

Heff
1 (ωk)





−1

Q̂(ǫ0).

(41)
It is important to realize that the KK and LS iterative techniques,
which allow the solution of the decoupling Equation (25), do not
in principle provide the same Heff. Suzuki and Lee have shown
that the KK iterative approach provides an effective Hamiltonian
whose eigenstates have the largest overlap with the eigenstates of
the model space, and that Heff obtained from the LS technique
has eigenvalues that are lowest in energy among those belonging
to the set of the full Hamiltonian H [17].

Both the KK and the LS procedures are limited to employing
an unperturbed Hamiltonian H0 whose model-space eigenstates
are degenerate in energy. However, reference [39] introduced
an alternative approach to the KK and LS techniques, which
extends these methods to the case of non-degenerate H0 by
using multi-energy Q̂-boxes. This approach is quite involved in
practice, and the only existing application in the literature is that
in reference [40].

We next outline two methods [41, 42] for deriving effective
SM Hamiltonians which may be implemented straightforwardly
with H0’s that are non-degenerate in the model space.

3.1.3. The Kuo-Krenciglowa Technique Extended to

Non-degenerate Model Spaces
The extended Kuo-Krenciglowa (EKK) method is an extension
of the KK iterative technique that can be used to derive an Heff

within non-degenerate model spaces [41, 43]. We summarize the
EKK method as follows.

First, a shifted Hamiltonian H̃ is defined in terms of an energy
parameter E:

H̃ = H − E. (42)

Then we rewrite Equation (25) in terms of H̃:

(E− QHQ)ω = QH1P − ωPH̃P − ωPH1Qω = QH1P − ωH̃eff.
(43)

Equation (43) may be solved by an iterative procedure analogous
to the KK technique, in terms of the Q̂-box and its derivatives as
defined in Equations (28) and (31), respectively.

The effective Hamiltonian H̃eff at the nth step of the iterative
procedure may then be expressed as [41]

H̃
(n)
eff = H̃BH(0)+

∞
∑

k=1

Q̂k(0)
[

H̃
(n−1)
eff

]k
, (44)

where H̃BH is the solution of the Bloch-Horowitz equation [44]:

H̃BH(E) = PH̃P + PH1Q
1

E− QHQ
QH1P. (45)

We note that the EKK method does not require H0 to be
degenerate within the model space; it has therefore been applied
to derive Heff in a multi-shell valence space [45, 46] and in
Gamow SM calculations with realistic NN potentials [47, 48].

It is worth pointing out that, since H̃eff = lim
n→∞

H̃
(n)
eff , we

can write

H̃eff = H̃BH(0)+
∞
∑

k=1

Q̂k(0)
[

H̃eff
]k
. (46)

Equation (46) may be interpreted as a Taylor series expansion of
H̃eff about H̃BH, and the parameter E corresponds to a shift of the
origin of the expansion and a resummation of the series [45]. In
fact, by virtue of Equation (42) we may express Heff as

Heff = H̃eff + E = HBH(0)+
∞
∑

k=1

Q̂k(0)
[

H̃eff
]k
. (47)

Now, both sides of the above equation are independent of E
provided that the summation is carried out at infinity, and
the parameter E may be tuned to accelerate the convergence
of the series when in practical applications a numerical partial
summation needs to be employed and a perturbative expansion
of the Q̂-box is carried out [45].

3.1.4. The Ẑ(ǫ) Vertex Function
Suzuki and coworkers proposed in reference [42] an approach
to the derivation of Heff that aims to avoid the divergences of
the Q̂-box vertex function when a non-degenerate model space is
considered. In fact, the definition of the Q̂-box in Equation (28)
shows that if ǫ approaches one of the eigenvalues of QHQ, then
instabilities may arise if one employs a numerical derivation,
since these eigenvalues are poles of Q̂(ǫ).

We now sketch the procedure described in reference [42]
and, for the sake of simplicity, consider the case of a degenerate
unperturbed model space (i.e., PH0P = ǫ0P).

A new vertex function Ẑ(ǫ) is introduced and defined in terms
of Q̂(ǫ) and its first derivative as

Ẑ(ǫ) ≡
1

1− Q̂1(ǫ)

[

Q̂(ǫ)− Q̂1(ǫ)(ǫ − ǫ0)P
]

. (48)

It can be demonstrated that Ẑ(ǫ) satisfies the equation [42]

[

ǫ0 + Ẑ(Eα)
]

P|9α〉 = EαP|9α〉, α = 1, . . . , d. (49)

Consequently, Heff
1 may be obtained by calculating the Ẑ-box

for those values of the energy, determined self-consistently, that
correspond to the “true” eigenvalues Eα .

To calculate Eα , we solve the eigenvalue problem

[

ǫ0 + Ẑ(ǫ)
]

|φk〉 = Fk(ǫ)|φk〉, k = 1, 2, . . . , d, (50)

where Fk(ǫ) are d eigenvalues that depend on ǫ. Then, the true
eigenvalues Eα can be obtained by solving the d equations

ǫ = Fk(ǫ), k = 1, 2, . . . , d. (51)
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First, it is worth pointing out some fundamental properties of
Ẑ(ǫ) and the associated functions Fk(ǫ). We then proceed to
discuss the solution of the Equations (50) and (51).

The behavior of Ẑ(ǫ) near the poles of Q̂(ǫ) is dominated by
Q̂1(ǫ), and we may write Ẑ(ǫ) ≈ (ǫ − ǫ0)P. This means that Ẑ(ǫ)
has no poles and so the Fk(ǫ)’s are continuous and differentiable
functions for any value of ǫ.

The Equations (51) may have solutions that do not correspond
to the true eigenvalues Eα , i.e., spurious solutions. In reference
[42] it is shown that since the energy derivative of Fk(ǫ)
approaches zero at ǫ = Eα , study of this derivative provides
a criterion for locating and rejecting spurious solutions. The
solution of Equations (50) and (51), which is necessary for
deriving the effective interaction, may be achieved through both
iterative and non-iterative methods.

We describe here a graphical non-iterative method for solving
Equation (51). As mentioned before, the Fk(ǫ)’s are continuous
functions of the energy, and hence the solutions of Equation (51)
may be determined as intersections of the graphs y = ǫ and
y = Fk(ǫ), using one of the well-known algorithms for solving
non-linear equations.

More precisely, if we define the functions fk(ǫ) as fk(ǫ) =

Fk(ǫ)− ǫ, the solutions of Equation (51) can obtained by finding
the roots of the equations fk(ǫ) = 0. From inspection of the
graphs y = ǫ and y = Fk(ǫ), we can locate for each intersection
a small surrounding interval [ǫa, ǫb] where fk(ǫa)fk(ǫb) < 0.
The assumption that fk(ǫ) is a monotone function within this
interval implies the existence of a unique root, which can be
accurately determined by means of the secant algorithm (see e.g.,
reference [49]).

After we have determined the true eigenvalues Eα , the effective
Hamiltonian Heff

1 is constructed as

Heff
1 =

d
∑

α=1

Ẑ(Eα)|φα〉〈φ̃α|, (52)

where |φα〉 is the eigenvector obtained from Equation (50)
and 〈φ̃α| is the corresponding biorthogonal state (such that
〈φ̃α|φα′〉 = δαα′ ).

As mentioned at the beginning of this subsection, we focus on
the case of a degenerate unperturbed model space (i.e., PH0P =

ǫ0P), but the above formalism can easily be generalized to the
non-degenerate case by replacing ǫ0P with PH0P in Equations
(48)–(50).

3.2. Diagrammatic Expansion of the Q̂-box
Vertex Function
The methods of derivingHeff presented in the preceding sections
require the calculation of the Q̂-box vertex function

Q̂(ǫ) = PH1P + PH1Q
1

ǫ − QHQ
QH1P.

For our purposes, the term 1/(ǫ − QHQ) is expanded as a
power series

1

ǫ − QHQ
=

∞
∑

n=0

1

ǫ − QH0Q

(

QH1Q

ǫ − QH0Q

)n

, (53)

leading to a perturbative expansion of the Q̂-box. It is useful
to employ a diagrammatic representation of this perturbative
expansion, which is a collection of Goldstone diagrams that
have at least one H1-vertex, are irreducible (i.e., at least one
line between two successive vertices does not belong to the
model space), and are linked to at least one external valence line
(valence-linked) [16].

The standard procedure for most perturbative derivations
of Heff is to deal with systems that have one and two valence
nucleons, but later we will show how include contributions from
three-body diagrams, which come into play when more than
two valence nucleons are considered. The H1b

eff of single-valence-
nucleon nuclei provides the theoretical effective SP energies,
while TBMEs of the residual interaction Veff are obtained from
the H2b

eff for systems with two valence nucleons. This can be
achieved by a subtraction procedure [50], namely removing from
H2b
eff the diagonal component of the effective SP energies derived

from the H1b
eff of the one-valence-nucleon systems.

A useful resource for practitioners who want to acquire
sufficient knowledge about the calculation of Q̂-box diagrams in
an angular-momentum coupled representation is the paper by
Kuo and coworkers [51].

It is worth pointing out that in the current literature effective
SM Hamiltonians are derived accounting for Q̂-box diagrams
up to at most third order in perturbation theory, as it is
computationally highly demanding to perform calculations
including higher-order sets of diagrams. A complete list of
diagrams can be found in reference [52], Appendix B, and
consists of 43 one-body and 135 two-body diagrams. We
remark that lists of diagrams can easily be obtained using
algorithms which generate order-by-order Hugenholtz diagrams
for perturbation theory applications (see e.g., reference [53]).

Because the aim of this article is to provide practitioners
with useful tips for deriving effective SM Hamiltonians within
the perturbative approach, we give some examples of Q̂-box
diagrams and their analytical expressions. Our first example is the
third-order ladder diagram Vladder shown in Figure 4. To obtain
an explicit expression for it, we will use the proton-neutron
angular-momentum coupled representation for the TBMEs of
the input potential VNN :

〈1, 2; J|VNN |3, 4; J〉 ≡ 〈n1l1j1tz1 , n2l2j2tz2 ; J|VNN |n3l3j3tz3 , n4l4j4tz4 ; J〉.
(54)

The TBMEs of VNN are antisymmetrized but not normalized
to ease the calculation of the Q̂-box diagrams; nm, lm, jm, and
tzm indicate the orbital and isospin quantum numbers of the SP
statem.

The analytical expression for Vladder is

〈a, b; J|Vladder|c, d; J〉

= +
1

4

∑

p1 ,p2 ,p3 ,p4

〈a, b; J|VNN |p1, p2; J〉〈p1, p2; J|VNN |p3, p4; J〉〈p3, p4; J|VNN |c, d; J〉

[ǫ0 − (ǫp1 + ǫp2 )][ǫ0 − (ǫp3 + ǫp4 )]
,

(55)

where ǫm denotes the unperturbed SP energy of the orbital jm and
ǫ0 is the so-called starting energy, i.e., the unperturbed energy of
the incoming particles, ǫ0 = ǫc + ǫd.
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We point out that the factor +1/4 is related to rules that
characterize the calculation of overall factors in Q̂-box Goldstone
diagrams; for any diagram we have a phase factor

(−1)(nh+nl+nc+nexh)

whose value is determined by the total number of hole lines
(nh), the total number of closed loops (nl), the total number
of crossings of different external lines as they trace through the
diagrams (nc), and the total number of external hole lines that
continuously trace through the diagrams (nexh) [51]. There is also
a factor of (1/2)nep , which accounts for the pairs of lines that start
together from one interaction vertex and end together at another
one (nep).

The diagram in Figure 4 has nh = nl = nc = nexh = 0,
and consequently the phase is positive. The number of pairs
of particles starting and ending together at the same vertices is
nep = 2, and so the overall factor is+1/4.

The factorization of Goldstone diagrams, such as the
ladder diagram in Figure 4 in terms of their interaction
vertices is quite simple. There is a large class of diagrams,
like the three-particle-one-hole diagram (3p-1h) in Figure 5,
which require some additional considerations to obtain a
straightforward factorization.

FIGURE 4 | Two-body ladder diagram at third order in perturbation theory:

lines with arrows represent incoming/outgoing and intermediate particle

states; wavy lines represent interaction vertices.

The factorization can easily be performed by taking into
account the fact that the interaction operator VNN transforms
as a scalar under rotation, and so we introduce the following
cross-coupling transformation of the TBMEs:

〈a, b; J|VNN |c, d; J〉CC =
1

Ĵ

∑

J′

Ĵ′X





jc ja J
jd jb J
J′ J′ 0





〈a, b; J′|VNN |c, d; J
′〉, (56)

where x̂ = (2x+1)1/2 and X is the so-called standard normalized
9-j symbol, expressed in terms of the Wigner 9-j symbol [54] as

X





r s t
u v w
x y z



 = t̂ ŵ x̂ ŷ







r s t
u v w
x y z







.

The orthonormalization properties ofX allow us to then write the
direct-coupled TBMEs in terms of the cross-coupled TBMEs:

〈a, b; J|VNN |c, d; J〉 =
1

Ĵ

∑

J′

Ĵ′X





jc jd J
ja jb J
J′ J′ 0





〈a, b; J′|VNN |c, d; J
′〉CC. (57)

Equations (56) and (57) help us to perform the factorization
of the diagram in Figure 5. First, a rotation according to
Equation (57) transforms the direct coupling to the total angular
momentum J into the cross-coupled one J′ (diagram A going to
diagram A1 in Figure 5). This allows us to cut the inner loop and
factorize the diagram into two terms, a ladder component (α) and
a cross-coupled matrix element (β) (diagram A2 in Figure 5):

(α) = 〈a, p3; J
′|A|c, h; J′〉CC,

(β) = 〈h, b; J′|VNN |p3, d; J
′〉CC.

Next, we transform the ladder diagram (A) back to a direct
coupling to J′′ by way of Equation (56), and factorize it into the
TBMEs (I) and (II) (diagram A3 in Figure 5):

(I) = 〈a, p3; J
′′|VNN |p1, p2; J

′′〉,

FIGURE 5 | Two-body 3p-1h diagram at third order in perturbation theory: lines with arrows represent incoming/outgoing and intermediate particle/hole states; wavy

lines indicate interaction vertices.
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FIGURE 6 | (V-U)-insertion diagram: graph A is the self-energy diagram, and

graph B represents the matrix element of the harmonic oscillator potential

U = 1
2mω

2r2.

(II) = 〈p1, p2; J
′′|VNN |c, h; J

′′〉.

The analytical expression for the diagram in Figure 5 is then

〈a, b; J|V3p1h|c, d; J〉 = −
1

2

1

Ĵ

∑

h,p1 ,p2 ,p3

∑

J′ ,J′′

Ĵ′′X





jc jd J

ja jb J

J′ J′ 0



X





jc ja J′

jh jp J′

J′′ J′′ 0





×
〈h, b; J′|VNN |p3 , d; J′〉CC〈a, p3; J′′|VNN |p1, p2; J′′〉〈p1, p2; J′′|VNN |c, h; J′′〉

[ǫ0 − (ǫp1 + ǫp2 )][ǫ0 − (ǫp3 + ǫp4 )]
,

(58)

The factor of −1/2 accounts for the facts that nep = 1, nh =

nl = 1, and an extra phase factor (−1)nph is needed for the total
number of cuts of particle-hole pairs (nph) [51], since in order to
factorize the diagram we have to cut the inner loop.

We remark that there are another three diagrams with the
same topology as the one in Figure 5, which corresponds to the
exchange of external incoming and outgoing particles.

Let us now turn our attention to one-body diagrams. First,
we consider the contribution of diagrams, such as the one in
Figure 6.

The diagram in Figure 6 is the so-called (V-U)-insertion
diagram and is composed of the self-energy diagram (V-insertion
diagram) minus the auxiliary potential U-insertion. The U-
insertion diagrams are due to the presence of the U term in H1.
The analytical expression for this diagram is

〈a||(V-U)||b〉 =
δja jb

2ja + 1

∑

J,h

(2J + 1)〈ja, h; J|V|jb , h; J〉 − 〈a||U||b〉

=
δja jb

2ja + 1

∑

J,h

(2J + 1)〈ja, h; J|V|jb , h; J〉 − 〈a||
1

2
mω2r2||b〉.

(59)

The calculation of the self-energy diagram A is performed by
coupling the external lines to a scalar, which leads to the SP total
angular momentum and the parity of ja, jb being identical. Then
we cut the inner hole line and, since the SP states a and b are
coupled to J = 0+, apply the transformation in Equation (56)
with J = 0+.

Since the standard choice for the auxiliary potential is the
harmonic oscillator potential, we also have the reduced matrix
element of U = 1

2mω
2r2 between the SP states a and b (graph B

in Figure 6).

It is worth pointing out that the diagonal contributions of
(V-U)-insertion diagrams, for SP states belonging to the model
space, correspond to first-order contributions of the perturbative
expansion of the effective SMHamiltonianH1b

eff of single-valence-
nucleon systems.

Moreover, (V-U)-insertion diagrams turn out to be identically
zero if a self-consistent Hartree-Fock (HF) auxiliary potential is
used [40], and reference [52] discusses the important role played
by these terms, comparing different effective Hamiltonians
derived by starting from Q̂-boxes with and without contributions
from (V-U)-insertion diagrams.

Now we will give an example of a one-body diagram and
comment briefly on its analytical calculation. We consider the
diagram in Figure 7; the complete list of third-order one-body
diagrams can be found in reference [52], Figure B.19.

We call this diagram V2p1h, since between the upper
interaction vertices two particles and one hole appear as
intermediate states. This diagram belongs to the group of non-
symmetric diagrams, which always occur in pairs that give equal
contributions. Its analytical expression is

〈j||V2p1h||j〉 = −
1

2

1

2j+ 1
(60)

∑

J,p1 ,p2 ,
h1 ,h2

(2J + 1)
〈j, h2; J|VNN |p1 , p2; J〉〈p1 , p2; J|VNN |h1 , h2; J〉〈h1||V-U||j〉

[ǫ0 − (ǫp1 + ǫp2 − ǫh2 )][ǫ0 − (ǫj + ǫp1 + ǫp2 − ǫh1 − ǫh2 )]

where ǫ0 = ǫj is the unperturbed SP energy of the incoming
particle j.

To factorize the diagram, we first cross-couple the incoming
and outgoing model-space states j to J′ = 0+ (diagram A1

in Figure 7). Then we cut the hole line h2 and, by way of
Equation (56), obtain a sum of two-body diagrams which are
direct-coupled to the total angular momentum J [51] (diagram
A2 in Figure 7). These operations are responsible for the factors
1/(2j + 1) and (2J + 1); the overall factor 1/2 is due to the pair
of particle lines (p1, p2) starting and ending at the same vertices,
while the minus sign comes from the two hole lines and one
loop appearing in the diagram. The factorization also takes into
account the (V-U)-insertion 〈h1||V-U|j〉.

As mentioned before, this diagrammatic approach is valid
for deriving Heff for one- and two-valence-nucleon systems; the
situation is different andmore complicated if one wishes to derive
Heff for systems with three or more valence nucleons.

Actually, none of the available SM codes can perform
diagonalization of SM Hamiltonians with three-body
components; the exception is the BIGSTICK SM code [55],
but it works only for light nuclei.

In order to incorporate the contribution to Heff of Q̂-
box diagrams with at least three incoming and outgoing
valence particles, we resort to the so-called normal-ordering
decomposition of the three-body component of a many-body
Hamiltonian [56]. To this end, we also include in the calculation
of the Q̂-box second-order three-body diagrams, which, for those
nuclei with more than two valence nucleons, account for the
interaction via the two-body force of the valence nucleons with
core excitations as well as virtual intermediate nucleons scattered
above the model space (see Figure 8).
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FIGURE 7 | An example of a one-body diagram (see text for details).

FIGURE 8 | Second-order three-body diagrams. The sum over the

intermediate lines runs over particle and hole states outside the model space,

shown in A and B, respectively. For the sake of simplicity, for each topology we

show only one of the diagrams which correspond to permutations of the

external lines.

For each topology shown in Figure 8 there are nine
diagrams, corresponding to the possible permutations of the
external lines. The analytical expressions for the second-
order three-body contributions are reported in reference [57],
and we derive from those expressions a density-dependent
two-body term.

To this end, for each (A,B) topology we calculate nine one-
loop diagrams, i.e., graphs of the form α in Figure 9. Their
explicit form, in terms of the three-body graphs (A,B), is

〈(jajb)J |V
α |(jcjd)J〉 =

∑

m,J′

ρm
Ĵ′
2

Ĵ2
〈
[

(jajb)J , jm
]

J′
|VA,B|

[

(jcjd)J , jm
]

J′
〉, (61)

where the summation over the index m runs over the model
space and ρm is the unperturbed occupation density of the orbital
m according to the number of valence nucleons.

Finally, the perturbative expansion of the Q̂-box contains
one- and two-body diagrams up to third order in VNN , along
with a density-dependent two-body contribution that accounts
for three-body second-order diagrams [57, 58]. We point
out that the latter term depends on the number of valence
protons and neutrons, thus leading to the derivation of specific

FIGURE 9 | Density-dependent two-body contribution obtained from a

three-body one; α is obtained by summing over one incoming and one

outgoing particle of the three-body graphs A in Figure 8.

effective SM Hamiltonians that differ only in the two-body
matrix elements.

3.3. Effective Shell-Model Decay Operators
In the SM approach, we are interested not only in calculating
energies but also in finding the matrix elements of operators
2 that represent physical observables (such as electromagnetic
transition rates, multipole moments, etc.).

Since the wave functions |ψα〉 obtained from diagonalizing
Heff are not the true ones |9α〉 but their projections onto the
chosen model space (|ψα〉 = P|9α〉), it is obvious that one has
to renormalize 2 to take into account the neglected degrees of
freedom corresponding to theQ-space. In other words, one needs
to consider the short-range correlation “wounds” inflicted by the
bare interaction on the SM wave functions. Formally, one seeks
to derive an effective operator2eff such that

〈9̃α|2|9β〉 = 〈ψ̃α|2eff|ψβ〉. (62)

The perturbative expansion of effective operators has been
studied since the earliest attempts to employ realistic potentials
for SM calculations; among the many studies we mention the
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fundamental and pioneering work carried out by L. Zamick on
the problem of electromagnetic transitions [59–61] and by I.
S. Towner on the quenching of spin-operator matrix elements
[62, 63].

In this subsection we discuss the formal structure of non-
Hermitian effective operators, as introduced by Suzuki and
Okamoto in reference [18]. More precisely, we give an expansion
formula for the effective operators in terms of the 2̂-box,
which, analogous to the Q̂-box in the effective interaction
theory (see section 3), is the building block for constructing
effective operators.

According to Equation (20) (and keeping in mind that ω ≡

QωP), we may write Heff as

Heff = PH(P + ω), (63)

so that we can express the true eigenstates |9α〉 and their
orthonormal counterparts 〈9̃α| as

|9α〉 = (P + ω)|ψα〉, 〈9̃α| = 〈ψ̃α|(P + ω†ω)(P + ω†). (64)

On the other hand, a general effective operator expression in the
bra-ket representation is

2eff =
∑

α,β

|ψα〉〈9̃α|2|9β〉〈ψ̃β |, (65)

where 2 is a general time-independent Hermitian operator.
Therefore, we can write2eff in operator form as

2eff = (P + ω†ω)−1(P + ω†)2(P + ω). (66)

It is worth noting that Equation (62) holds independently of
the normalization of |9α〉 and |ψα〉, but if the true eigenvectors
are normalized, then 〈9̃α| = 〈9α| and the |ψα〉 should be
normalized in the following way:

〈ψ̃α|(P + ω†ω)|ψα〉 = 1. (67)

To explicitly calculate2eff, we introduce the 2̂-box, defined as

2̂ = (P + ω†)2(P + ω), (68)

so that2eff can be factorized as

2eff = (P + ω†ω)−12̂. (69)

The derivation of2eff is divided into two steps: the calculation of
2̂ and the calculation of ω†ω.

According to Equation (68) and taking into account the
expression for ω in terms of Heff, i.e.,

ω =

∞
∑

n=0

(−1)n
(

1

ǫ0 − QHQ

)n+1

QH1P(H
eff
1 )n, (70)

we can write

2̂ = 2̂PP + (2̂PQ + h.c.)+ 2̂QQ, (71)

where

2̂PP = P2P, (72)

2̂PQ = P2ωP =

∞
∑

n=0

2̂n(H
eff
1 )n, (73)

2̂QQ = Pω†2ωP =

∞
∑

n,m=0

(Heff
1 )n2̂nm(H

eff
1 )m, (74)

and 2̂m and 2̂mn are given by

2̂m =
1

m!

dm2̂(ǫ)

dǫm

∣

∣

∣

∣

ǫ=ǫ0

, (75)

2̂mn =
1

m!n!

dm

dǫm1

dn

dǫn2
2̂(ǫ1; ǫ2)

∣

∣

∣

∣

ǫ1=ǫ0 ,ǫ2=ǫ0

(76)

with

2̂(ǫ) = P2P + P2Q
1

ǫ − QHQ
QH1P, (77)

2̂(ǫ1; ǫ2) = PH1Q
1

ǫ1 − QHQ
Q2Q

1

ǫ2 − QHQ
QH1P. (78)

As regards the product ω†ω, using the definition (31) we
can write

ω†ω = −

∞
∑

n=1

∞
∑

m=1

((Heff
1 )†)n−1Q̂(ǫ0)n+m−1(H

eff
1 )m−1. (79)

Upon expressing Heff
1 in terms of the Q̂-box and its derivatives

(see Equations 33 and 34), the above quantity may be rewritten as

ω†ω = −Q̂1 + (Q̂2Q̂+ h.c.)+ (Q̂3Q̂Q̂+ h.c.)

+(Q̂2Q̂1Q̂+ h.c.)+ · · · . (80)

Putting together Equations (77) and (80), we can write the final
perturbative expansion of the effective operator2eff:

2eff = (P+Q̂1+Q̂1Q̂1+Q̂2Q̂+Q̂Q̂2+· · · )×(χ0+χ1+χ2+· · · ),
(81)

where

χ0 = (2̂0 + h.c.)+ 2̂00 , (82)

χ1 = (2̂1Q̂+ h.c.)+ (2̂01Q̂+ h.c.), (83)

χ2 = (2̂1Q̂1Q̂+ h.c.)+ (2̂2Q̂Q̂+ h.c.)

+ (2̂02Q̂Q̂+ h.c.)+ Q̂2̂11Q̂ . (84)

...

It is worth elucidating the strong link that exists betweenHeff and
any effective operator. This is achieved by inserting the identity
Q̂Q̂−1 = 1 into Equation (81) to obtain the following expression:

2eff = (P + Q̂1 + Q̂1Q̂1 + Q̂2Q̂+ Q̂Q̂2 + · · · )Q̂Q̂−1
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FIGURE 10 | One-body second-order diagrams included in the perturbative

expansion of 2̂0; an asterisk indicates the bare operator 2.

× (χ0 + χ1 + χ2 + · · · )

= HeffQ̂
−1(χ0 + χ1 + χ2 + · · · ). (85)

In actual calculations the χn series is truncated to a finite order
and the starting point is the derivation of perturbative expansions
for 2̂0 ≡ 2̂(ǫ0) and 2̂00 ≡ 2̂(ǫ0; ǫ0), including diagrams up
to a finite order in the perturbation theory, consistently with the
expansion of the Q̂-box. The issue of convergence of the χn series
and of the perturbative expansions of 2̂0 and 2̂00 will be treated
extensively in section 4.1.

In Figure 10 we display all the diagrams up to second order
appearing in the 2̂0 expansion for a one-body operator2.

The evaluation of the diagrams involved in the derivation of
2eff follows the same procedure as described in the previous
section. Therefore, in the following we will just outline the
procedure for calculating such diagrams with one2 vertex.

Let us suppose that the operator2 transforms like a spherical
tensor of rank λ and with component µ:

2 ≡ Tλµ, (86)

with

(Tλµ)
† = (−1)λ−µTλ−µ. (87)

By using the Wigner-Eckart theorem, it is possible to
express any transition matrix element in terms of a reduced
transition element:

〈ja||T
λ||jb〉 = (−1)λ−µ〈ja|T

λ
µ|jb〉, (88)

where in the right-hand side jb and ja are coupled to a
total angular momentum and projection equal to λ and −µ,
respectively, and we have assumed without lack of generality that
we are dealing with single-particle states.

Therefore, we evaluate each diagram as a contribution to
the reduced matrix element of the effective operator. To be
more explicit, we consider as an example the calculation of
the following second-order diagram that takes into account the
renormalization of the operator due to 1p-1h core excitations.

The first step is to couple jb and ja to a total angular
momentum equal to λ. This enables us to factorize the diagram as
the product of a cross-coupled matrix element of the interaction
and the reduced matrix element of the operator (see the right-
hand part of Figure 11).

FIGURE 11 | One-body second-order 2p-1h diagram included in the

perturbative expansion of 2̂0; an asterisk indicates the bare operator 2.

Explicitly, we can evaluate the diagram as

〈ja||22p1h||jb〉

= −
∑

p,h

(−1)jp+jh−λ
〈ja, p; λ|VNN |jb, h; λ〉CC〈h||T

λ||p〉

ǫ0 − (ǫa + ǫb − ǫh)
. (89)

The minus sign in front is due to the fact that nh = nl = 1 and
that an extra phase factor (−1)nph is needed for the total number
of cuts of particle-hole pairs (nph) [51], since we have to cut the
inner loop to factorize the diagram.

4. APPLICATIONS

In this section we present a specific example of SM calculations
performed by employing effective SM Hamiltonian and decay
operators derived from realistic nuclear potentials within the
many-body perturbation theory.

These kinds of calculations have actually been carried out
since the mid-1960s, but they mostly involved retaining only
the TBMEs, since the single-body components of Heff were not
considered accurate enough to provide SM results that would
agree well with experiments. A large sample of calculations
performed in that successful framework can be found in previous
reviews of the topic [6, 7].

Here we present results of a calculation where both the SP
energies and the TBMEs that are needed to diagonalize the SM
Hamiltonian have been obtained by deriving Heff according to
the procedures described in the previous section. Besides Heff,
the many-body perturbation theory has been used to derive
consistently effective operators to calculate electromagnetic
transition rates and Gamow-Teller (GT) strengths without
resorting to the use of empirical effective charges or quenching
factors for the axial coupling constant gA.

The following are some motivations for performing SM
calculations by deriving and employing all SM parameters—SP
energies, TBMEs, and effective transition and decay operators—
starting from realistic nuclear forces:

• the need to study the soundness of many-body perturbation
theory so as to provide reliable SM parameters;

• the need to determine the ability of classes of nuclear potentials
to describe nuclear structure observables;
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• the opportunity to compare and benchmark SM calculations
against other nuclear structure methods that employ
realistic potentials.

The goal of these studies is to assess the reliability of
such an approach to investigating the nuclear SM, especially
its predictiveness, which is crucial for describing physical
phenomena that are not yet accessible experimentally.

4.1. The Double-β Decay Around Doubly
Closed 132Sn
Neutrinoless double-β (0νββ) decay is an exotic second-order
electroweak process predicted by extensions of the Standard
Model of particle physics. Observation of such a process
would demonstrate the non-conservation of the lepton number
and provide evidence that neutrinos have a Majorana mass
component (see references [64, 65] and references therein).

In the framework of light-neutrino exchange, the half-life of
the 0νββ decay is inversely proportional to the square of the
effective Majorana neutrino mass 〈mν〉:

[

T0ν
1/2

]−1
= G0ν

∣

∣M0ν
∣

∣

2
g4A

∣

∣

∣

∣

〈mν〉

me

∣

∣

∣

∣

2

, (90)

where gA is the axial coupling constant, me is the electron mass,
G0ν is the so-called phase-space factor (or kinematic factor), and
M0ν is the nuclear matrix element (NME), which is related to the
wave functions of the nuclei involved in the decay.

At present, the phase-space factors for nuclei that are possible
candidates for 0νββ decay can be calculated with great accuracy
[66, 67]. It is therefore crucial to have precise values for the NME,
both to improve the reliability of the 0νββ lifetime predictions—
a fundamental ingredient in the design of new experiments—
and to extract neutrino properties from the experimental results,
when they become available.

Several nuclear structure models have been exploited to
provide NME values that are as precise as possible, the most
commonly used being the interacting boson model [68–70],
the quasiparticle random-phase approximation [71–74], energy
density functional methods [75], the covariant density functional
theory [76–78], the generator-coordinate method [79–82], and
the shell model [83–87].

All of the above models use a truncated Hilbert space to
reduce the computational complexity, and each can be more
efficient than the others for a specific class of nuclei. However,
when comparing the calculated NMEs obtained via different
approaches, it is seen that, at present, the results can differ by a
factor of two or three (see for instance the review in reference
[88]).

Reference [89] reports on the calculation of the 0νββ-decay
NME for 48Ca, 76Ge, 82Se, 130Te, and 136Xe in the framework
of the realistic SM, where the Heff’s and 0νββ-decay effective
operators are consistently derived starting from a realistic NN
potential, the high-precision CD-Bonn potential [90].

We remark that the above work is not the first example of such
an approach, which was pioneered by Kuo and coworkers [91, 92]
and more recently pursued by Holt and Engel [93].

Here we restrict ourselves to the results obtained in reference
[89] for the heavy-mass nuclei around 132Sn, 130Te, and 136Xe.
At present, these nuclei are under investigation as 0νββ-decay
candidates by some large experimental collaborations. The
possible 0νββ decay of 130Te is being studied by the CUORE
collaboration at the INFN Laboratori Nazionali del Gran Sasso
in Italy [94], while 136Xe is being investigated by both the EXO-
200 collaboration at the Waste Isolation Pilot Plant in Carlsbad,
New Mexico [95], and the KamLAND-Zen collaboration at the
Kamioka mine in Japan [96].

The starting point of the SM calculation is the high-precision
CD-Bonn NN potential [90], whose non-perturbative behavior
induced by its repulsive high-momentum components is treated
with the so-called Vlow-k approach [97]. This yields a smooth
potential which exactly preserves the onshell properties of the
original NN potential up to a chosen cutoff momentum 3. As
in other SM studies [98–101], the value of the cutoff has been
chosen as 3 = 2.6 fm−1, since the role of the missing three-
nucleon force (3NF) decreases as the Vlow-k cutoff is increased
[99]. In fact, in reference [99] it is shown that Heff’s derived from
Vlow-k’s with small cutoffs (3 = 2.1 fm−1) have SP energies that
are in worse agreement with experiments, as well as unrealistic
shell-evolution behavior. This may be attributed to a greater
impact of the induced 3NF, which becomes less important with
a larger cutoff.

In our experience, 3 = 2.6 fm−1, within a perturbative
expansion of the Q̂-box, is an upper limit, since a larger
cutoff worsens the order-by-order behavior of the perturbative
expansion; at the end of this section we report a study of the
perturbative properties ofHeff and of the effective decay operators
derived using this Vlow-k potential.

The Coulomb potential is explicitly taken into account in the
proton-proton channel.

The SM effective Hamiltonian Heff is derived within the
framework of the many-body perturbation theory as described
in section 3, including diagrams up to third order in H1 in the
Q̂-box-expansion, while all the effective operators, both one-
and two-body, are obtained consistently using the approach
described in section 3.3, including diagrams up to third order
in perturbation theory in the evaluation of the 2̂-box and
truncating the χn series in Equation (81) to χ2.

The effective Hamiltonian and operators are defined in a
model space spanned by the five proton and neutron orbitals,
0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2, outside the doubly closed
100Sn core. The SP energies and TBMEs of Heff can be found in
reference [101].

Before showing the results for the 0νββ NME obtained
in reference [89], it is worth checking the reliability of
the approach we have adopted. To this end, we present
some results obtained from the calculation of quantities for
which there exist experimental counterparts to compare
with. In particular, we show selected results for the
electromagnetic properties, GT strength distributions, and
2νββ decays in 130Te and 136Xe, which have been reported in
references [101, 102].

Figures 12, 13 show experimental [103, 104] and calculated
low-energy spectra and B(E2) strengths of parent and
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FIGURE 12 | Experimental and calculated spectra of 130Te and 130Xe; the arrows are proportional to the B(E2) strengths, whose values are reported in e2fm4.

Reproduced from reference [102].

FIGURE 13 | Same as Figure 12 but for 136Xe and 136Ba. Reproduced from reference [102].

granddaughter nuclei involved in double-β decay of 130Te
and 136Xe, respectively.

By inspection of Figures 12, 13 it can be seen that, as regards
the low-lying excited states and the B(E2) transition rates, theory
and experiment agree quite well for 130Te, 136Xe, and 136Ba,
but less so for 130Xe, whose theoretical spectrum is expanded
compared with the observed one. As regards the electromagnetic
properties, in reference [102] they are calculated along with
some B(M1) strengths and magnetic dipole moments using an
effective spin-dependent M1 operator, and comparison with the
available data (see Tables VII and IX in reference [102]) shows
good agreement.

Two kinds of experimental data related to GT decay are
available for 130Te and 136Xe: GT strength distributions and the
NMEs involved in 2νββ decays. The GT strength B(GT) can
be extracted from the GT component of the cross-section at
zero degrees of intermediate energy charge-exchange reactions,
following the standard approach in the distorted-wave Born
approximation [105, 106]:

dσGT(0◦)

d�
=

(

µ

π h̄2

)2 kf

ki
NστD |Jστ |

2B(GT), (91)

where NστD is the distortion factor, |Jστ | is the volume integral
of the effective NN interaction, ki and kf are the initial and final
momenta, respectively, and µ is the reduced mass.

On the other hand, the experimental 2νββ NME M2ν
GT can be

extracted from the observed half-life T2ν
1/2 of the parent nucleus

as follows:
[

T2ν
1/2

]−1
= G2ν

∣

∣M2ν
GT

∣

∣

2
. (92)

Both of the above quantities can be calculated in terms of the
matrix elements of the GT− operator Eστ−:

B(GT) =

∣

∣〈8f ||
∑

j Eσjτ
−
j ||8i〉

∣

∣

2

2Ji + 1
, (93)

M2ν
GT =

∑

n

〈0+
f
||Eστ−||1+n 〉〈1

+
n ||Eστ

−||0+i 〉

En + E0
, (94)

where En is the excitation energy of the Jπ = 1+n intermediate
state and E0 = 1

2Qββ (0
+) + 1M, with Qββ (0+) and 1M

being the Q-value of the ββ decay and the mass difference
between the daughter and parent nuclei, respectively. The nuclear
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FIGURE 14 | Running sums of the B(GT) strengths as a function of the excitation energy Ex up to 3 and 4.5 MeV, respectively, for 130Te and 136Xe. Reproduced from

reference [102].

TABLE 1 | Experimental [109] and calculated NMEs (in MeV−1 ) of the 2νββ decay

for 130Te and 136Xe.

Decay NMEExpt Bare Effective

130Te → 130Xe 0.031± 0.004 0.131 0.061

136Xe → 136Ba 0.0181± 0.0007 0.0910 0.0341

matrix elements in Equations (93) and (94) are calculated within
the long-wavelength approximation, including only the leading
order of the GT operator in a non-relativistic reduction of the
hadronic current.

In reference [102] the GT strength distributions and 2νββ
NMEswere calculated for 130Te and 136Xe using an effective spin-
isospin-dependent GT operator, derived in a manner consistent
with Heff by following the procedure described in section 3.3.

Figure 14 shows the theoretical running sums of the GT
strengths 6B(GT), calculated with both bare and effective GT
operators, plotted against the excitation energy and compared
with the available data extracted from (3He, t) charge-exchange
experiments [107, 108] for 130Te and 136Xe. It can be seen
that in both nuclei, the GT strength distributions calculated
using the bare GT operator overestimate the experimental
ones by more than a factor of two. Including the many-body
renormalization of the GT operator brings the predicted GT
strength distribution into much better agreement with that
extracted from experimental data.

In reference [102] the NMEs M2ν
GT involved in the decay

of 130Te and 136Xe are calculated using the definition in
Equation (94), bymeans of the Lanczos strength functionmethod
as in reference [3]. The results obtained with the bare GT
operator and with the effective one are reported in Table 1 and
compared with experimental values [109].

The effective operator induces a relevant quenching of the
calculated NME, 47% for 130Te and 37% for 136Xe decay, leading
to fairly good agreement with the experimental value for both
nuclei, of the same quality as for other SM calculations where all
parameters (SP energies and TBMEs) were fitted to experimental
values and a quenching factor q was introduced to reproduce GT

data (see, for example, reference [110]). The overall agreement
between theory and experiment shows that the many-body
perturbation theory can be used to derive consistently effective
Hamiltonians and transition operators that are able to reproduce
quantitatively the observed spectroscopic and decay properties,
without having to resort to any empirical adjustments, such as
quenching of the axial coupling constant gA. This supports the
reliability of this approach to calculating the NMEs involved in
0νββ , the results of which were reported in reference [89] and
are briefly summarized in the following.

The 0νββ two-body operator for the light-neutrino scenario
can be expressed in the closure approximation (see e.g.,
references [111, 112]) in terms of the neutrino potentials Hα and
form functions hα(q) (α = F, GT, or T) as

2GT = Eσ1 · Eσ2HGT(r)τ
−
1 τ

−
2 , (95)

2F = HF(r)τ
−
1 τ

−
2 , (96)

2T =
[

3
(

Eσ1 · r̂
) (

Eσ1 · r̂
)

− Eσ1 · Eσ2
]

HT(r)τ
−
1 τ

−
2 , (97)

where

Hα(r) =
2R

π

∫ ∞

0

jnα (qr)hα(q
2)q dq

q+ 〈E〉
. (98)

The value of the parameter R is 1.2A1/3 fm, and the jnα (qr) are
the spherical Bessel functions, with nα = 0 for the Fermi and
GT components and nα = 2 for the tensor one. The explicit
expressions for the neutrino form functions hα(q) can be found
in reference [89], and the average energies 〈E〉 are evaluated as in
references [111, 112].

Apart from effects related to sub-nucleonic degrees of
freedom, which were not accounted for in reference [89], the
0νββ-decay operator has to be renormalized to take into account
both the degrees of freedom that are neglected in the adopted
model space and the contribution of short-range correlations
(SRCs). The latter arise because the action of a two-body decay
operator on an unperturbed (uncorrelated) wave function, such
as the one used in the perturbative expansion of2eff, differs from
the action of the same operator on the real (correlated) nuclear
wave function.
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TABLE 2 | Calculated values of M0ν for 130Te and 136Xe decay.

Decay Bare operator 2eff

130Te → 130Xe 3.27 3.16

136Xe → 136Ba 2.47 2.39

The first column of values correspond to results obtained using the bare 0νββ-decay

operator, and the second column to results calculated with 2eff .

It is worth pointing out that the calculations for 2νββ decay
are not affected by this renormalization, since, as mentioned
before, we retain only the leading order of the long-wavelength
approximation, which corresponds to a zero-momentum-
exchange (q = 0) process. On the other hand, the
inclusion of higher-order contributions or corrections due to
the sub-nucleonic structure of the nucleons [113–116] would
connect high- and low-momentum configurations, and this
renormalization should be carried out for the two-neutrino
emission decay too.

In reference [117] the inclusion of SRCs was realized bymeans
of an original approach [117] that is consistent with the Vlow-k
procedure. The 0νββ operator 2, expressed in the momentum
space, is renormalized by the same similarity transformation
operator �low-k that defines the Vlow-k potential. This enables
us to effectively take into account the high-momentum (short-
range) components of the NN potential, in a framework where
their direct contribution is not explicitly considered above a
cutoff 3. The resulting 2low-k vertices are then employed
in the perturbative expansion of the 2̂-box to calculate 2eff

using Equation (85). More precisely, the perturbative expansion
considers diagrams up to third order in perturbation theory,
including those related to the so-called Pauli blocking effect (see
Figure 2 in reference [89]), and the χn series is truncated to χ2.

In reference [89] the contribution of the tensor component of
the neutrino potential (Equation 97) is neglected, and therefore
the total NMEM0ν is expressed as

M0ν = M0ν
GT −

(

gV

gA

)2

M0ν
F , (99)

where gA = 1.2723, gV = 1 [118], and the matrix elements
between the initial and final states M0ν

α are calculated within the
closure approximation

M0ν
α =

∑

jn ,jn′ ,jp ,jp′

〈f |a†
pana

†

p′an′ |i〉 × 〈jpjp′ | 2α | jnjn′〉. (100)

The NMEs calculated using the 0νββ-decay effective operator are
reported in Table 2 and compared with the values obtained using
the bare operator without any renormalization.

The most striking feature that can be inferred from inspection
of Table 2 is that the effects of the renormalization of the 0νββ-
decay operator are far less relevant than those observed in the
2νββ-decay case.

A long-standing issue related to the calculation of M0ν

is possible interplay between the derivation of the effective

one-body GT operator and the renormalization of the two-
body GT component of the 0νββ operator, with some authors
assuming that the same empirical quenching used to reproduce
the observed GT-decay properties (single-β decay strengths,
M2ν

GT’s, etc.) should also be employed to calculate M0ν (see
for instance references [119, 120]). In fact, comparison of the
results in Tables 1, 2 shows that the mechanisms underlying
the microscopic derivation of the one-body single-β and the
two-body 0νββ-decay effective operators lead to a considerably
different renormalization, at variance with the above hypothesis.

The SM calculations of this section have been performed by
employing, as interaction vertices of the perturbative expansion
of the Q̂-box, a realistic potential derived from the high-precision
CD-Bonn NN potential [90]. This potential is characterized
by strong repulsive behavior in the high-momentum regime,
so, as mentioned before, it is renormalized by deriving a low-
momentum NN potential using the Vlow-k approach [97].

As in other SM studies [98–101], the value of the cutoff
is chosen as 3 = 2.6 fm−1, since the role of the missing
3NF decreases as the Vlow-k cutoff is increased [99]. This value,
within a perturbative expansion of the Q̂-box, is an upper limit,
since a larger cutoff worsens the order-by-order behavior of the
perturbative expansion. Here, we discuss some implications for
the properties of the perturbative expansion of Heff and the SM
effective transition operator when this “hard” Vlow-k is employed
to derive the SM Hamiltonian and operators.

Studies of the perturbative properties of the SP energy
spacings and TBMEs are reported in references [99, 121], where
Heff is derived within the model space outside 132Sn starting
from the “hard” Vlow-k. reference [122] contains a systematic
investigation of the convergence properties of theoretical SP
energy spectra, TBMEs, and 2νββ NMEs as functions of both
the dimension of the intermediate state space and the order of
the perturbative expansion. Moreover, reference [89] discusses
convergence properties of the perturbative expansion of the
effective 0νββ-decay operator with respect to the number of
intermediate states and the truncation of both the order of the
χn operators and the perturbative order of the diagrams. Here,
we briefly sketch these results in order to assess the reliability of
realistic SM calculations performed starting from a “hard”Vlow-k.

The model space employed for the SM calculations
in reference [122] is spanned by the five proton and
neutron orbitals outside the doubly closed 100Sn, namely
0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2, to study the 2νββ decay of
130Te and 136Xe.

The left panel of Figure 15 shows the behavior of the
calculated SP spectrum of 101Sn with respect to the 0g7/2 SP
energy as a function of the maximum allowed excitation energy
of the intermediate states expressed in terms of the oscillator
quanta Nmax. It is clear that convergence is achieved at Nmax =

14, which, for the perturbative expansion of the effective SM
Hamiltonian and decay operators, justifies the decision to include
intermediate states with an unperturbed excitation energy of up
to Emax = Nmaxh̄ω where Nmax = 16 [89, 101, 102, 122].

As regards the order-by-order convergence of the SP energies,
the right panel of Figure 15 plots the calculated neutron SP
energies, using a number of intermediate states corresponding
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FIGURE 15 | Neutron SP energies as a function of Nmax (left) and of the perturbative order (right). Reproduced from reference [122] under the Creative Commons CC

BY license.

FIGURE 16 | Neutron-neutron diagonal Jπ = 0+ TBMEs as a function of Nmax (left) and of the perturbative order (right). Reproduced from reference [122] under the

Creative Commons CC BY license.

to Nmax = 16, against the order of the perturbative expansion
up to third order. The calculated neutron SP energies are also
compared with the Padé approximant [2|1] of the Q̂-box, which
estimates the value to which the perturbative seriesmay converge.
The results at third order are very close to those obtained with the
Padé approximant, indicating that the truncation to third order
should provide a reasonable estimate for the sum of the series.

As regards the TBMEs, we plot in Figure 16 the neutron-
neutron diagonal Jπ = 0+ TBMEs as a function both of Nmax

and of the perturbative order. These TBMEs, which contain the
pairing properties of the effective Hamiltonian, are the largest in
size of the calculated matrix elements and the most sensitive to
the behavior of the perturbative expansion.

From Figure 16, the convergence with respect to Nmax seems
to be very fast for the diagonal matrix elements (1d5/2)2,
(1d3/2)2, and (2s1/2)2, whereas elements corresponding to
orbitals that lack their own spin-orbit partner, i.e., (0g7/2)2

and (0h11/2)2, show slower convergence. The order-by-order
convergence seen in Figure 16 is quite satisfactory, and again
the results at third order are very close to those obtained
with the Padé approximant. Therefore, we can conclude
that Heff calculated from a Vlow-k with cutoff equal to
2.6 fm−1 by way of a perturbative expansion truncated
at third order is a good estimate of the sum of its
perturbative expansion, for both the one-body and the two-
body components.
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We now turn our attention to the perturbative expansion
of the GT effective operator GTeff. The selection rules of the
GT operator that characterize a spin-isospin-dependent decay
drive fast convergence of the matrix elements of its SM effective
operator with respect to Nmax. In fact, if the perturbative
expansion is truncated at second order, their values do not change
from Nmax = 2 onward [62]; and at third order in perturbation
theory, their third decimal digit values do not change from
Nmax = 12 onward.

TABLE 3 | Order-by-order M2ν
GT’s (in MeV−1 ) for 130Te and 136Xe [122].

Decay 1st

order

M2ν

GT

2nd

order

M2ν

GT

3rd

order

M2ν

GT

Experiment

130Te → 130Xe 0.142 0.040 0.044 0.031± 0.004

136Xe → 136Ba 0.0975 0.0272 0.0285 0.0181± 0.0007

FIGURE 17 | Calculated M0ν values for the 76Ge →76Se decay as a function

of Nmax: shown are truncations of the χn expansion up to χ0 (red diamonds),

up to χ1 (blue squares), and up to χ2 (black dots). Reproduced from

reference [89].

Table 3 reports the calculated NMEs of the 2νββ decays
130Teg.s. →130Xeg.s. and 136Xeg.s. →136Bag.s. obtained with
effective operators at first, second, and third order in perturbation
theory [with the χn series in Equation (85) truncated to χ0] and
compares them with experimental results [109].

As can be seen, the order-by-order convergence of theM2ν
GT’s is

also very satisfactory; for both transitions the results change by
about 260% from the first- to the second-order calculations, while
the changes are 9 and 5% from the second- to third-order results
for the 130Te and 136Xe decays, respectively. This suppression of
the third-order contributions relative to the second-order ones is
favored by the mutual cancelation of third-order diagrams.

In reference [89] a study was also conducted on the
convergence properties of the effective decay operator2eff for the
0νββ decay with respect to the truncation of the χn operators, the
number of intermediate states accounted for in the perturbative
expansion, and the order-by-order behavior up to third order in
perturbation theory.

Figure 17 displays the calculated values of M0ν for the
76Ge → 76Se decay as a function of the maximum allowed
excitation energy of the intermediate states expressed in terms
of the oscillator quanta Nmax, including χn contributions up to
n = 2. We can see that the M0ν values are convergent from
Nmax = 12 onward and that contributions from χ1 are quite
relevant, whereas those from χ2 can be considered negligible.

We point out that, according to expression (84), χ3 is defined
in terms of the first, second, and third derivatives of 2̂0 and 2̂00,
as well as the first and second derivatives of the Q̂-box. This
means that one could estimate χ3 as being about one order of
magnitude smaller than the χ2 contribution.

On the above grounds, in reference [89] the effective
SM 0νββ-decay operator was obtained by including in the
perturbative expansion diagrams of up to third order, with the
number of intermediate states corresponding to oscillator quanta
of up to Nmax = 14, and up to χ2 contributions.

Now, to examine the order-by-order convergence behavior, in
Figure 18 we plot the calculated values of M0ν , M0ν

GT, and M0ν
F

for 130Te and 136Xe0νββ decay at first, second, and third order in
perturbation theory. We also compare the order-by-order results

FIGURE 18 | Calculated M0ν values for the 136Xe →136Ba decay (left) and the 130Te →130Xe decay (right) as a function of the perturbative order. The green triangles

correspond to M0ν
F , the blue squares to M0ν

GT, and the black dots to the full M0ν . Reproduced from reference [89].
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with their Padé approximant [2|1], to get an idea of the quality of
the perturbative behavior [123].

It is worth noting that the perturbative behavior is dominated
by the GT component, with the Fermi matrix element M0ν

F
being only slightly affected by the renormalization procedure.
Moreover, if the order-by-order perturbative behavior of the
effective SM 0νββ-decay operator is compared with that of the
single β-decay operator, we observe less satisfactory perturbative
behavior for the calculation of M0ν , the difference between the
second- and third-order results being about 30% for the 130Te
and 136Xe 0νββ decays.

5. SUMMARY

This paper has presented a general overview of the perturbative
approach to deriving effective SM operators, in particular the SM
Hamiltonian and decay operators.

First, we described the theoretical framework, which is
essentially based on the perturbative expansion of a vertex
function—the Q̂-box for the effective Hamiltonian and the 2̂-box
for effective decay operators—whose calculation is pivotal in the
Lee-Suzuki similarity transformation. The iterative procedures
used to solve the recursive equations that yield effective SM
Hamiltonians have been presented in detail, along with tips

that could be helpful for calculating the Goldstone diagrams
that arise in the perturbative expansion of the above-mentioned
vertex functions.

We then reported results from an SM study carried out using
only single-particle energies, two-body matrix elements of the
residual interaction, and effective decay operators derived from
a realistic nuclear potential, without any empirical adjustments.
This forms part of a large body of investigations that aim to
assess the relevance of such an approach to the study of nuclear
structure. The versatility of SM calculations comes from their
ability to reproduce experimental results formass regions ranging
from light nuclei (4He core [23, 52]) to heavy mass systems
(nuclei around 132Sn [121]), as well as to describe exotic and rare
phenomena, such as the Borromean structure [124], quadrupole
collectivity [98, 100], and the double-β decay process [89, 101,
102] without resorting to empirical adjustments of data.

The results presented in this article testify to the flexibility and
usefulness of this theoretical tool, and could provide inspiration
for further investigations in the future.
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In recent years many-body perturbation theory encountered a renaissance in the

field of ab initio nuclear structure theory. In various applications it was shown that

perturbation theory, including novel flavors of it, constitutes a useful tool to describe

atomic nuclei, either as a full-fledged many-body approach or as an auxiliary method

to support more sophisticated non-perturbative many-body schemes. In this work the

current status of many-body perturbation theory in the field of nuclear structure is

discussed and novel results are provided that highlight its power as a efficient and yet

accurate (pre-processing) approach to systematically investigate medium-mass nuclei.

Eventually a new generation of chiral nuclear Hamiltonians is benchmarked using several

state-of-the-art flavors of many-body perturbation theory.

Keywords: many-body theory, ab initio, perturbation theory, correlation expansion, open-shell nuclei

1. INTRODUCTION

A major goal of quantum many-body theory is to provide accurate solutions of the stationary
Schrödinger equation

H|9A
k 〉 = EAk |9

A
k 〉 (1)

for a given input HamiltonianH, where |9A
k
〉 denotes the k-th eigenstate of theA-body systemwith

eigenvalue EA
k
. As for the study of the atomic nucleus at low energy, the starting point is a realistic

Hamiltonian arising from the modeling of the strong interaction

H = T + V +W + ..., (2)

in terms of nucleonic degrees of freedom. In Equation (2), T denotes the intrinsic kinetic energy,
V the two-nucleon (2N) potential, W the three-nucleon (3N) potential, and so on. Nowadays,
high-precisionHamiltonians are systematically constructed within the framework of chiral effective
field theory (χEFT) [1–6]. Earlier on, more phenomenological models were employed that fitted
a somewhat ad hoc parametrization to reproduce few-body observables, e.g., 2N scattering data.
Examples of such potentials are the Argonne [7] or Bonn [8] potentials. It was recognized in various
many-body studies that the inclusion of three-nucleon interactions is mandatory to reproduce
nuclear phenomenology, e.g., nuclear saturation properties or the correct prediction of the oxygen
neutron dripline [9, 10]. The relevance of three-nucleon interactions constitutes a key difference
from other fields of many-body research like atomic physics, molecular structure, or solid-state
physics, and poses significant challenges.
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Over the past two decades, the range of applicability of ab
initio nuclear many-body theory has been extended significantly.
While 20 years ago first-principle solutions of the quantum
many-body problem were restricted to nuclei lighter than A ≈

12, formal and computational developments have made it
possible to investigate a much wider range of masses. Initially, the
ab initio treatment employed mostly large-scale diagonalization
methods like the no-core shell model (NCSM) [11–13], or
quantum Monte Carlo (QMC) [14–17] techniques. In addition,
the few-body (A = 3, 4) solution could be constructed using the
Fadeev approach or its Fadeev-Yakubowski extension [18, 19].
A major breakthrough occurred in the early 2000s when the re-
import of so-called expansion methods from quantum chemistry
provided systematically improvable many-body approximations
for medium-mass closed-shell systems up to 132Sn. In such
approaches an initial guess for the exact wave function is
taken as a reference state and corrections to this starting point
are constructed through a chosen expansion scheme. Initially,
this was done within the framework of self-consistent Green’s
function (SCGF) [20–25] and coupled cluster (CC) [26–31]
theories that had proven to be extremely efficient at grasping
dynamical correlations in electronic systems. Later on, the same
strategy was transferred to other many-body expansion methods
such as many-body perturbation theory (MBPT) [32–37], in-
medium similarity renormalization group (IMSRG) [10, 38–44]
or the unitary model operator approach (UMOA) [45, 46]. All
of these methods provide a consistent description of ground-
state energies of closed-shell mid-mass nuclei even though the
rationales behind their expansions are not trivially related to one
another. For sure, this consistency is a remarkable sign of success
for ab initio nuclear many-body theory.

While closed-shell systems, dominated by so-called dynamical
correlations, transparently allow for the use of single-reference
techniques, the extension to open-shell systems requires a
different strategy due to the degeneracy of single Slater-
determinant reference states with respect to elementary
excitations. Open-shell systems located in the vicinity of
shell closures can be targeted via equation-of-motion (EOM)
techniques where one or two nucleons are attached to the
correlated ground state of a closed-shell nucleus [47, 48]. In
nuclear systems, however, the strong coupling between spin
and orbital angular momenta is such that long sequences
of nuclei with open-shell character arise as the mass increases.
Consequently, EOM approaches do not provide a viable option to
tackle most of the open-shell systems that differ from closed-shell
ones by more than one or two mass units. Two different routes
have been followed in recent years to overcome this difficulty:
(i) the construction of ab initio-rooted valence-space (VS)
interactions used in a subsequent shell-model diagonalization
and (ii) the use of correlated reference states capturing so-called
static correlations and thus lifting from the outset the degeneracy
with respect to elementary excitations. The design of VS
interactions has been performed in various frameworks, going
from simple low-order MBPT approaches [49] to more advanced
non-perturbative schemes like IMSRG [39, 44] or CC [30]. While
the design of the effective interaction can be performed at low
polynomial cost, the final diagonalization, even though taking

place in a limited valence space, still exhibits factorial scaling in
the number of active nucleons pointing to the hybrid scaling of
the approach.

In this article, the construction of VS interactions is not
discussed and the focus is rather on the alternative strategy
to overcome the limitations of single Slater-determinant-based
expansions via the use of more general reference states. Reference
states handling the bulk of static correlations from the outset
re-introduce an energy gap in open-shell systems such that
expanding the exact ground-state via elementary excitations of
the reference state becomes well-defined again. In practice, this
is done by resorting to either a multi-determinantal reference
state or to a single symmetry-broken determinantal reference
state. In an ab initio spirit, this was first done within the
frame of SCGF theory, i.e., through the Gorkov extension of
SCGF (GSCGF) [50] formulated on the basis of a Hartree-Fock-
Bogoliubov (HFB) reference state breaking U(1) global-gauge
symmetry associated with particle number conservation. Soon
after, a multi-reference version of IMSRG (MR-IMSRG) was
designed based on a particle-number-projected HFB state [51].
Around 2013, these two methods provided the first ab initio
description of arbitrary mid-mass singly open-shell nuclei.
Later on, expansion methods were merged with configuration
interaction (CI) technology by using reference states from a
prior NCSM calculation performed in a model space of limited
size. In this way, one can systematically improve the many-body
solution, either by increasing the size of the reference space or by
relaxing the truncation of the many-body expansion. Within the
framework of perturbative approaches this strategy yields multi-
configurational perturbation theory (MCPT) [36] whereas for
IMSRG it leads to the introduction of the in-medium no-core
shell model (IM-NCSM) [52].

More recently, the use of particle-number-breaking reference
states has been exploited in MBPT and CC theory, thus
giving rise to Bogoliubov MBPT (BMBPT) and Bogoliubov
CC (BCC). While BCC has only undergone proof-of-principle
applications in limited model spaces so far [53], BMBPT has been
applied successfully in large-scale applications up to medium-
heavy isotopic chains [37]. Next, the additional or alternative
breaking of SU(2) rotational symmetry associated with angular-
momentum conservation will provide a systematic access to
doubly open-shell nuclei [54]. While intensive efforts are already
dedicated to this extension, no systematic result are available yet.

Whenever using a symmetry-broken reference state, an
additional step must be envisioned to account for the quantum
fluctuations eventually responsible for the lifting of the fictitious
degeneracy associated with the broken symmetry. Indeed, the
latter is only emergent in finite systems [55–57] such that it
is mandatory to restore good symmetry quantum numbers.
Doing so does not only change the energy (dramatically in
certain situations) but also allows for the proper handling of
transition operators characterized by symmetry selection rules.
The formalism to achieve this step was proposed recently [54, 58,
59], but only applied to a schematic solvable model so far in the
nuclear context [60] and will thus not be covered in the present
article. Another topic of importance not presently covered relates
to the benefit of applying so-called resummation methods to
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the Taylor expansion associated with perturbation theory. While
traditional methods such as Padé resummation [32, 33, 61]
can typically be employed with success, the newly formulated
eigenvector continuation method [62, 63] was recently applied
successfully to BMBPT [64] and show great promises for the
future. Last but not least, and since the present document focuses
on finite nuclei, the recent efforts made to describe nuclear
matter, at zero and finite temperature, on the basis of MBPT are
not discussed [65–68].

Eventually, the objective of the present article is to describe
the on-going revival of MBPT, both in its basic form and
in some of its novel extensions, to describe finite closed-shell
and open-shell nuclei. Furthermore, the goal is to demonstrate
how MBPT complement non-perturbative methods in two ways,
i.e., (i) it can act as an inexpensive pre-processing method
to accelerate non-perturbative techniques and (ii) as a post-
processing tool to further improve upon non-perturbative many-
body approaches.

While the present document discusses in detail many-
body perturbation theory for (ground-state) energies, the
discussion of other observables is intentionally left out.
Targeting other observables via MBPT has never been
investigated in depth in nuclear physics. Contrary to the
energy that is evaluated projectively, other observables must
be computed as the expectation value of the associated
operator in the perturbatively-determined many-body
state. Within CC theory, this is typically achieved via a
linear-response treatment, giving rise to its so-called 3-CC
extension [69]. Employing perturbative CC amplitudes, the
3-MBPT variant could be obtained to evaluate arbitrary
observables. Most recently, various groups identified a
resummation method called eigenvector continuation [70–
73] (EC) as a powerful tool to robustly extract energies
from the MBPT expansion, even in the case of a divergent
perturbative expansion. Formally, the EC framework can be
straightforwardly extended to deliver an expectation value
estimate of arbitrary observables.

The present document is structured as follows. Before actually
coming to perturbation theory, its possible sources of breakdown
are discussed in section 2. The nuclear Hamiltonian and
softening techniques are introduced in section 3. In section 4,
formal perturbation theory is laid out. Section 5 is then dedicated
to the standard Slater-determinant-based MBPT applicable to
closed-shell systems. Multi-configurational perturbation theory
and Bogoliubov many-body perturbation theory are discussed as
open-shell extensions in sections 6 and 7, respectively. In the
next two sections, MBPT is employed as a cheap and efficient
pre-processing tool for non-perturbative many-body methods. In
section 8 MBPT is used to pre-select important configurations,
i.e., as a data compression tool, in a non-perturbative calculation
whereas in section 9 it is used to pre-optimize single-particle
states, thus accelerating the convergence of the non-perturbative
calculation with respect to the one-body basis dimension. In
section 10, MBPT is eventually employed as an inexpensive
method to provide systematic tests of a newly designed family
of χEFT nuclear Hamiltonians over a large set of nuclei.
Conclusions and outlooks are provided in section 11.

2. PERTURBATIVE VS.
NON-PERTURBATIVE PROBLEM

Before actually discussing MBPT, it is useful to consider
the possible reasons for the failure of expansion methods.
With these considerations at hand, various MBPT flavors
can be better understood based on the interplay between
the symmetries characterizing the reference state around
which the exact eigenstate is expanded, its single- or multi-
determinantal character as well as the resolution scale of the
employed Hamiltonian.

2.1. Rationale
It has often been argued in the past that the nuclear many-
body problem is “intrinsically non-perturbative” such that MBPT
is bound to fail to describe correlations between nucleons.
The statement is, in such generality, not true and the strong
disfavor against MBPT techniques is, to a large extent, based on
historically grown bias.

It is crucial to understand the basic fact that the
“(non-)perturbative” character of a system characterized by
a Hamiltonian H has no meaning in absolute and can only
be stated with respect to a chosen starting point. This notion
relates, at least implicitly, to an “unperturbed problem,” defined
through an unperturbed Hamiltonian H0 and its associated
eigenstates, with respect to which the targeted solution is meant
to be expanded. If the expansion can be written as a converging
powers series in H1 ≡ H − H0, the problem is perturbative.
Consequently, the more optimized H0, the better the chances
for the problem of actual interest to be made perturbative.
For example, taking free particles as a reference point1, the
description of any bound state can only be non perturbative with
respect to it. However, more optimized choices of H0, making
the description, perturbative might be accessible.

The critical point really resides in the cost required to find
an appropriate H0 and its exact eigensolutions, i.e., if the cost to
do so is similar to the one needed to employ a non-perturbative
method, the perturbation theory built on top of it is not so
appealing. In the end, the question is rather: can one find H0

and solve for its eigenstates at a moderate cost such that the
eigenstates of H are obtained from them through a converging
power series in H1 ≡ H − H0? While success is certainly not
guaranteed in general, the search for an optimal, yet simple
enough, H0 must be performed in the most open-minded way.
Typically, the statement that the nuclear many-body problem is
“intrinsically non-perturbative” has been based on too restrictive
assumptions of what H0 is allowed to be.

2.2. Ultra-Violet and Infra-Red Divergences
Whether a perturbative approach is viable or not certainly
depends on the nature of the Hamiltonian, i.e., on the nature
of the elementary degrees of freedom at play and of their
interactions. As a matter of fact, two characteristics of the 2N
interaction make the many-body problem hard to solve, e.g.,
possibly non-perturbative. The first one relates to the strong

1The unperturbed Hamiltonian H0 sums individual kinetic energies in this case.
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FIGURE 1 | Schematic matrix representation of the residual nuclear two-body

interaction at play in perturbation theory. The size of the matrix elements is

proportional to the darkness of the pixel while the red (blue) color indicate

schematically a negative (positive) sign. In the present case, typically

associated to MBPT on top of a closed-shell Slater determinant, the IR (UV)

couplings translate into large negative (positive) matrix elements between pairs

of unoccupied and occupied states near the Fermi level (between any pairs of

occupied and highly excited virtual states).

short-range central and tensor-forces between the nucleons
inducing strong correlations in the ultra-violet (UV) regime.
The second one relates to the large scattering lengths associated
with the existence of a weakly bound proton-neutron state and
of a virtual di-neutron state, which induce strong many-body
correlations in the infra-red (IR) regime. These characteristics
induce typical patterns, i.e., large matrix elements, of the residual
interaction as schematically depicted in Figure 1: the upper-
left corner corresponds to nuclear matrix elements between
high-lying occupied and low-lying virtual states, i.e., to physics
around the Fermi surface. Those matrix elements involve strong
attractive IR couplings that fall off when moving further away
from the Fermi surface. Complementary, repulsive UV couplings
become more prominent if energetically higher virtual states
are considered, independently of the particular pair of occupied
states they interact with.

The potential occurrence of a UV-driven divergence is not
nucleus specific and concerns all expansion methods, not just
MBPT. Still, specific non-perturbative expansions may, at a given
truncation order, resum a specific infinite subset of perturbation
theory contributions that appropriately handles the divergence
driven by the large UV couplings displayed in Figure 1. In the
end, a pure power series in H1 is certainly the most sensitive
expansion to strong low-to-high momentum couplings in the
Hamiltonian that typically make the series to diverge after a few
reasonable low-order contributions. It happens, however, that
UV-driven divergences can be tamed to a large extent via a pre-
processing of the Hamiltonian through renormalization group
transformations. These transformations are briefly introduced in

section 3.2 and their consequences on the MBPT expansion is
illustrated in section 5.6.2.

The potential occurrence of a IR-driven divergence is
nucleus specific but concerns all expansion methods, not just
MBPT. Infra-red-driven divergences occur whenever the A-body
unperturbed reference state, i.e., the ground state of H0, is
(nearly) degenerate with respect to elementary, e.g., particle-hole,
excitations. Considering a standard Slater-determinant reference
state, and as illustrated in the top panel of Figure 2, this situation
occurs whenever the number of constituents is such that the
highest occupied shell is only partially filled (is too close to
the first empty shell), thus defining so-called open-shell (closed-
sub-shell) nuclei. Combined with large IR matrix elements (see
Figure 1), this cancelation (reduction) of the particle-hole gap
makes the perturbative expansion (nearly) singular from the
outset such that even the few first terms (e.g., Equation 45) are
not well behaved. A numerical illustration of the emergence of
such a IR divergence is provided in the bottom panel of Figure 2.
This major difficulty can be controlled to a large extent via the
use of more general classes of unperturbed Hamiltonians H0 and
reference states than typically considered in the past. This idea
and the corresponding results are discussed in sections 6 and 7.

Of course, even with the use of renormalization group
transformations of the Hamiltonian and rather general classes
of reference states, the two characteristics of the nucleon-
nucleon interaction in the UV and IR regimes may eventually
compromise the convergence of any practical perturbative
expansion and call for resummation techniques or the use of
explicitly non-perturbative methods.

3. THE NUCLEAR HAMILTONIAN

3.1. The Bare Operator
As briefly mentioned in the introduction, chiral effective field
theory (χEFT) provides a convenient framework to construct
systematically improvable nuclear Hamiltonians valid in the low-
energy regime relevant to nuclear structure [4, 6]. Starting from
nucleons and pions as explicit degrees of freedom, the long- and
mid-range parts of the interaction are mediated by multiple-pion
exchanges whereas the unresolved short-range part is modeled
via contact terms and derivatives of contact terms. In the early
1990’s Weinberg paved the way for a systematic treatment of
the strong interaction by introducing a power-counting scheme
stipulating the a priori importance of the infinite number of
allowed contributions in the operator expansion [1–3]. Operators
with higher particle rank naturally arise at higher orders in this
scheme. Eventually, the parameters, i.e., the low-energy constants
(LEC’s), entering the operator expansion are fitted to low-energy
experimental data [74, 75].

Eventually, the second-quantized form of the many-body

Hamiltonian takes, in an arbitrary basis {|p〉 ≡ c†p|0〉} of the
one-body Hilbert spaceH1, the form

H = T + V +W + . . . (3)

≡
1

(1!)2

∑

pq

tpq c
†
pcq

Frontiers in Physics | www.frontiersin.org 4 June 2020 | Volume 8 | Article 164112

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Tichai et al. MBPT for Finite Nuclei

FIGURE 2 | (Top) Schematic representation of neutron or proton energy shells and associated occupations corresponding to a two-particle/two-hole excitation on

top of the reference Slater determinant, i.e., the ground state of H0, appropriate to a 16O-like nucleus (N = Z = 8). The last occupied shell in the reference state is the

Fermi level and its energy separation to the first empty level is denoted as 1EF. Left: closed-shell nucleus for which the number of nucleons is such that (i) the Fermi

level is fully occupied and (ii) 1EF ≫ 0. Center: sub-closed shell nucleus for which the number of nucleons is such that (i) the Fermi level is fully occupied and (ii) 1EF is

small. Right: open-shell nucleus for which the number of nucleons is such that the Fermi level is only partly occupied such that 1EF = 0. (Bottom) Emergence of an

infra-red divergence in the MBPT expansion of the ground-state energy of 16O induced by a step-wise reduction (going from blue, to yellow, to green, to purple, and

to red) of the size of the particle-hole gap in the spectrum of H0.

+
1

(2!)2

∑

pqrs

v̄pqrs c
†
pc

†
qcscr

+
1

(3!)2

∑

pqrstu

w̄pqrstu c
†
pc

†
qc

†
r cuctcs

+ ... .

The Hamiltonian is, thus, represented via a set of one-, two-, and
three-body matrix elements tpq, v̄pqrs and w̄pqrstu, respectively.
In a modern language the above matrix elements define tensors
of mode n = 2, 4, 6, respectively, where the mode specifies the
number of indices.

3.2. Similarity Renormalization Group
While the tensors defining the Hamiltonian built within χEFT
may display large low-to-high momentum couplings, pre-
processing tools can be used to tame them. During the past
decade the (free-space) similarity renormalization group (SRG)
approach has become the standard technique to generate a
“softened” basis representation of an operator more amenable to
many-body calculations [76].

The SRG approach is based on a unitary transformation of
the initial operator O parameterized by a continuous parameter

α ∈ R, i.e.,

O(α) = U†(α)OU(α). (4)

Equation (4) can be re-cast into a first-order differential equation

d

dα
O(α) = [η(α),O(α)] (5)

involving an anti-Hermitian generator η(α) that can be chosen
freely to achieve a desired decoupling pattern in the transformed
operator. A convenient choice employed in many calculations is
given by

η(α) ≡ [T,O(α)], (6)

such that the SRG evolution can be interpreted as a pre-
diagonalization of the operator in momentum space, thus
suppressing the coupling between high- and low-momentum
modes. This procedure thus drives the Hamiltonian toward a
band-diagonal form. Writing H(α) ≡ T + V(α) + W(α) + . . .

in the same single-particle basis as the starting Hamiltonian,
the SRG transformation corresponds to generating α-dependent
tensors v̄pqrs(α), w̄pqrstu(α) . . . whose UV elements linking single-
particle states corresponding to low and high momenta are
strongly suppressed.
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In many-body applications SRG-evolved operators display
highly improved model-space convergence, thus facilitating
studies of mid-mass nuclei. The impact on the convergence
properties of the MBPT series will be illustrated in section 5.6.2.
However, the numerical improvements come at the price of
induced many-body operators, i.e., the unitary transformation
shifts information to operators with higher particle ranks. For
instance, employing an initial two-body operator O2B leads to

O2B SRG
−−−−−−→ O2B(α)+ O3B(α)+ O4B(α)+ .... (7)

In practice, Equation (7) must be truncated at a given operator
rank, thus discarding higher-body operators. This approximation
formally violates the unitarity of the transformation in Fock space
and eventually induces a dependence of many-body observables
on the SRG parameter α. A reasonable trade-off must be found
for the value of α employed, i.e., it must improve the model-
space convergence while keeping the effect of induced many-
body operators at a minimum. The optimal parameter range may
vary depending on the operator one starts from.

For the evaluation of nuclear properties, it is crucial to
consistently transform all other operator representations to the
same resolution scale as the Hamiltonian in order to provide a
meaningful comparison in terms of a consistent operator basis
smoothly connected in terms of the RG flow.

3.3. The “Standard” Hamiltonian
All many-body applications discussed below, except for the
novel ones presented in section 10, employ a chiral Hamiltonian
containing a 2N interaction at next-to-next-to-next-to-leading-
order (N3LO) with a cutoff value of 32N = 500MeV/c [77, 78].
Three-body forces are included up to next-to-next-to-leading
order (N2LO) with a local regulator [78] based on a cutoff
value of 33N = 400MeV [79]. This constitutes a “standard”
Hamiltonian used in many recent ab initio studies of light and
medium-mass nuclei.

Additionally, the intrinsic Hamiltonian is consistently SRG-
evolved in the two- and three-body sectors [80, 81]. The
particular value of the SRG parameter is specified in each
individual application. To avoid the complication of dealing
with genuine three-body operators various forms of so-
called normal-ordered two-body approximations (NO2B) are
employed, depending on the particular nature of the A-body
reference state [79, 82, 83].

4. FORMAL PERTURBATION THEORY

The presentation of perturbation theory can be separated
into formal perturbation theory and many-body perturbation
theory [69]. Formal perturbation theory allows one to understand
the general rationale and most relevant properties of the
formalism. This is done by employing abstract Dirac notations
and by specifying the initial assumptions via the action of Hilbert
or Fock space operators on basis vectors. In particular, many
key results can be obtained without specifying the content of
the Hamiltonian (e.g., the rank of the operators it contains), the

nature of the partitioning (e.g., the symmetries characterizing
each contribution) and the associated reference state.

4.1. Partitioning
The starting point of perturbation theory relates to a partitioning
of the Hamiltonian

H ≡ H0 +H1, (8)

into an unperturbed part H0 and a perturbation H1 ≡ H −

H0. The main assumption relies on the fact that the eigenvalue
equation for H0 is numerically accessible, i.e.,

H0|8k〉 = E
(0)
k
|8k〉, (9)

delivering the set of unperturbed eigenstates and eigenergies

{|8k〉,E
(0)
k
; k ∈ N}making up an orthonormal, i.e.,

〈8k|8l〉 = δkl, (10)

basis of the many-body Hilbert space.
Remark: A large part of this document is dedicated to the
description of nuclear ground states, i.e., k = 0. Consequently,
the corresponding index is dropped in the following whenever
targeting the ground state, e.g., |9A

0 〉 = |9A〉, |80〉 = |8〉 or

E
(0)
0 = E(0).
One typically employs intermediate normalization, i.e., the

ground state |9A〉 ofH is connected2 to the unperturbed ground-
state |8〉 of H0 such that

1 = 〈8|9A〉. (11)

Associated with the above partitioning are the
projection operators

P ≡ |8〉〈8|, (12a)

Q ≡ 1− P, (12b)

where P|8〉 = |8〉 and Q|8〉 = 0 by orthonormality. It can
be shown that P and Q do meet the requirements of projection
operators, i.e., Hermiticity and idempotency [69]. The operator
Q can be explicitly written as

Q ≡
∑′

k

|8k〉〈8k| ≡
∑

|8k〉6=|8〉

|8k〉〈8k|, (13)

where the primed sum indicates the exclusion of the reference
state from the summation. With these operators at hand, the
exact ground-state can be written as

|9A〉 = P|9A〉 + Q|9A〉

= |8〉 + |χ〉, (14)

where the correlated part |χ〉 ≡ Q|9A〉, which is the unknown to
be solved for, denotes the orthogonal complement of |8〉.

2Both states are supposed to be adiabatically connected when the perturbation H1

is switched on.
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Eventually, the exact ground-state energy is typically accessed
in a projective way3 by left-multiplying Equation (1) with the
reference state 〈8| such that

EA = 〈8|H|9A〉

= 〈8|H0|8〉 + 〈8|H1|8〉 + 〈8|H1|χ〉

= Eref + 1E, (15)

where Eref ≡ 〈8|H|8〉 = E(0) + 〈8|H1|8〉 and 1E ≡ EA −

Eref = 〈8|H1|χ〉 denote reference and correlation energies,
respectively. When using a reference state of product type, e.g.,
a Slater determinant, 1E accounts for correlations between the
nucleons beyond the mean-field approximation.

4.2. Resolvent Operator
The complete derivation of formal perturbation theory is best
performed in terms of the (Rayleigh-Schrödinger) many-body
resolvent operator

RRS ≡
∑′

k

|8k〉〈8k|

E(0) − E
(0)
k

, (16)

which, due to orthonormality of the employed many-body basis,
annihilates the reference state

RRS|8〉 = 0. (17)

It is possible to employ alternative choices, such as the Brillouin-
Wigner resolvent

RBW ≡
∑′

k

|8k〉〈8k|

EA − E
(0)
k

, (18)

which differs from RRS by the presence of the exact energy
in the denominator instead of the unperturbed energy E(0).
In practice, Brillouin-Wigner perturbation theory requires an
(computationally intensive) iterative solution and, additionally,
suffers from a lack of size-extensivity4. Therefore, this choice
is only scarcely used in many-body applications. All of the
subsequent results are obtained using a Rayleigh-Schrödinger
resolvent. Consequently, the upper-case label “RS” is dropped to
avoid notational clutter.

4.3. Power-Series Expansion
After a long but straightforward derivation [69], one obtains the
correlated part of many-body ground-state and associated energy
under the form [84–86]

|χ〉 =

∞
∑

k=1

(RH1)
k|8〉c, (19a)

3The projective character of standard MBPT or CC is to be distinguished from an
expectation value approach, where the correlated state appears both as the bra and
the ket in the evaluation of the energy.
4A quantum-mechanical method is coined as size-extensive if the energy of a
systems computed with this method scales linearly in the number of particles.

1E = 〈8|H1

∞
∑

k=1

(RH1)
k|8〉c. (19b)

The lower index “c” stipulates the connected character of
the expansion ensuring its size-extensivity, i.e., proper scaling
of observables with system size5. Combining Equations (15)
and (19b), one obtains the total ground-state wave-function and
energy as power series in H1

|9A〉 ≡

∞
∑

p=0

|9(p)〉, (20)

EA ≡

∞
∑

p=0

E(p), (21)

such that |9(0)〉 = |8〉 and Eref = E(0) + E(1), i.e., the first non-
trivial correction contributing to the ground-state correlation
energy corresponds to the second-order term of the power series.
It reads as

E(2) = 〈8|H1RH1|8〉c, (22)

and can be re-written more explicitly by expanding the
resolvent as

E(2) =
∑′

k

〈8|H1|8k〉〈8k|H1|8〉

E(0) − E
(0)
k

. (23)

Equation (23) provides a prototypical example of a PT expression
associated with ground-state energy corrections involving a
resolvent operator connecting the unperturbed reference state
(i.e., the P space) to excited states of H0 (i.e., the Q-space), and
then going back to the reference state through the perturbation
H1. As will be seen with explicit MBPT, the nature of the
elementary excitations of the reference state effectively involved
at a given order depend on the rank, i.e., the k-body character, of
the perturbation H1.

4.4. Recursive Formulation
Equations (19a) and (19b) conveniently provide explicit
expressions for the energy and state corrections whenever
working at rather low orders. To go to high orders and study the
convergence properties of perturbation theory as a power series,
a different scheme becomes more useful. It relates to (i) making
more explicit that the perturbative expansion relates to the power
series expansion of a mathematical function taken at a particular
value of its variable and to (ii) computing the coefficient of the
series in a recursive way.

On the basis of the partitioning introduced in Equation (8),
one defines a one-parameter family of Hamiltonians

H(λ) ≡ H0 + λH1, (24)

5The first disconnected contribution originally appears at fourth order. It can be
shown that the renormalization terms cancel such disconnected contributions at
every order [69, 85, 86], thus providing the final connected form.

Frontiers in Physics | www.frontiersin.org 7 June 2020 | Volume 8 | Article 164115

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Tichai et al. MBPT for Finite Nuclei

such that H(0) = H0 and H(1) = H. Perturbation theory
assumes that the exact eigenstates and eigenenergies of H(λ) can
be parameterized through the power series ansatz

E(λ) ≡ E(0) + λE(1) + λ2E(2) + ..., (25a)

|9(λ)〉 ≡ |9(0)〉 + λ|9(1)〉 + λ2|9(2)〉 + .... (25b)

Setting λ = 0, the problem becomes equivalent to
Equation (9) while setting λ = 1, one recovers the
expansions of Equations (20) and (21) associated with the
fully interacting problem.

Inserting the power series ansatz into the stationary
Schrödinger equation for H(λ) and grouping together the terms
proportional to λp leads to

E(0)|8〉 +

∞
∑

p=1

λp
(

H1|9
(p−1)〉 +H0|9

(p)〉
)

= E(0)|8〉

+

∞
∑

p=1

λp
(

p
∑

j=0

E(j)|9(p−j)〉
)

. (26)

Left multiplying Equation (26) with 〈8| and using intermediate
normalization yields

∞
∑

p=1

λp〈8|H1|9
(p−1)〉 =

∞
∑

p=1

λpE(p), (27)

which allows one to write the p-order ground-state energy
correction as

E(p) = 〈8|H1|9
(p−1)〉. (28)

Left multiplying Equation (26) with 〈8m|, m 6= 0, and matching
the terms proportional to λp provides the relation

(

E(0) − E(0)m

)

〈8m|9
(p)〉 = 〈8m|H1|9

(p−1)〉 −

p
∑

j=1

E(j)〈8m|9
(p−j)〉.

(29)

Introducing the coefficients

C
(p)
m0 ≡ 〈8m|9

(p)〉

=
1

E(0) − E
(0)
m



〈8m|H1|9
(p−1)〉 −

p
∑

j=1

E(j)〈8m|9
(p−j)〉



 ,

(30)

allows one to expand the p-order ground-state correction |9(p)〉

on the unperturbed basis {|8m〉} according to

|9(p)〉 =
∑

m

C
(p)
m0|8m〉, (31)

such that Equation (28) becomes

E(p) =
∑

m

〈8|H1|8m〉C
(p−1)
m0 . (32)

Inserting Equation (31) into Equation (30) further provides a

recursive scheme to compute C
(p)
m0

C
(p)
m0 =

1

E(0) − E
(0)
m





∑

q

〈8m|H1|8q〉C
(p−1)
q0 −

p
∑

j=1

E(j)C
(p−j)
m0



 ,

(33)
with the initial condition C

(0)
m0 = δm0.

Eventually, Equations (32) and (33) form a set of recursive
relations from which the ground-state energy and state
corrections can be obtained to all orders. In practice, the
eigenbasis of H0 and the associated matrix elements of H1 are
built such that the latter is stored in memory. The recursive steps
are then identified as large-scale matrix-vector multiplications,
thus, using the same technology as configuration-interaction
approaches like the NCSM. While being formally convenient
and obviating the explicit algebraic computation of order-
p corrections, this approach is limited by the storage of
the Hamiltonian due to the extensive size of the many-
body basis. Therefore, only proof-of-principle studies in model
spaces of limited dimensionality can be performed and realistic
calculations of mid-mass nuclei are out of reach in this way.

5. CLOSED-SHELL MANY-BODY
PERTURBATION THEORY

With the results of formal perturbation theory at hand, one can
envision to apply them to specific many-body systems. To do so,
one must further specify the nature of the partitioning and of
the associated reference state. In particular, the maximum rank
and symmetries of H0 must be characterized. Additionally, the
goal of MBPT is to express all quantities, e.g., many-body matrix
elements and unperturbed eigenenergies, entering the formulae
at play in terms of the actual inputs to the many-body problem,
i.e., the mode-2k tensors defining the k-body contributions to the
Hamiltonian (Equation 3).

A series of tools exists to compute the expectation value
of products of (many) operators in a vacuum state in an
incrementally faster, more flexible and less error-prone way.
The first step in this series corresponds to using the second-
quantized representation of many-body operators in a chosen
single-particle basis and to performing canonical commutations
of fermionic operators. Next comes Wick’s theorem [87], which
is nothing but a procedure to capture the result in a condensed
and systematic fashion. Still, the combinatorics associated
with the application of Wick’s theorem quickly becomes
cumbersome whenever a long string of creation and annihilation
operators is involved. Furthermore, many terms thus generated
give identical contributions to the end result. Many-body
diagrams address this issue [69] by providing a pictorial
representation of the contributions and, even more importantly,
by capturing at once all identical contributions, thus reducing the
combinatorics tremendously. While being incredibly useful, the
number of diagrams itself grows tremendously when applying
MBPT beyond the lowest orders, thus leading to yet another
combinatorial challenge. This translates into the difficulty to
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both generate all allowed diagrams at a given order without
missing any and to evaluate their expression in a quick and error-
safe way. Consequently, the last tool introduced to tackle this
difficulty consists of an automatized generation and evaluation
of diagrams [88–95]. All these technical, yet crucial, aspects of
MBPT are not addressed in the present article and the interested
reader is referred to the references.

5.1. Reference State
The present chapter is dedicated to the simplest form of MBPT
appropriate to closed-shell systems. This first version relies on the
use of a symmetry-conserving Slater determinant reference state

|8〉 ≡

A
∏

i=1

c†i |0〉, (34)

where the set of single-particle creation operators {c†p} acts on
the physical vacuum |0〉. This constitutes an appropriate starting
point of the perturbative expansion as long as |8〉 denotes a
closed-shell Slater determinant in agreement with the left-hand
case in Figure 2. While, in principle, the single-particle basis
is completely arbitrary, applications will reveal its significant
impact on the qualitative behavior of the perturbative expansion.

5.2. Normal Ordering
Applying Wick’s theorem with respect to |8〉, the Hamiltonian
can be rewritten in terms of normal-ordered contributions

H = H[0]+
∑

pq

H
[2]
pq : c†pcq :+

1

4

∑

pqrs

H
[4]
pqrs : c†pc

†
qcscr :+ . . . , (35)

where : : denotes the normal order of the involved creation and
annihilation operators. Thus, H[0] is the expectation value of

H in |8〉 whereas H
[2]
pq and H

[4]
pqrs define matrix elements of

effective, i.e., normal-ordered, one-body and two-body operators,
respectively. The dots denote normal-ordered operators of higher
ranks, up to the maximum rank kmax characterizing the initial
Hamiltonian (Equation 3). Through the application of Wick’s
theorem, an effective operator of rank keff receives contributions
from all initial operators with rank k, where keff ≤ k ≤

kmax. Using an initial Hamiltonian with up to three-nucleon
interactions and working in the normal-ordered two-body
approximation (NO2B) [79, 82], the residual three-body part
H[6] is presently discarded. For explicit expressions of the matrix
elements defining the normal-ordered operator (see [79, 82, 83]).

5.3. Partitioning
To explicitly set up the partitioning of the Hamiltonian
(Equation 8), one adds and subtracts a diagonal normal-ordered
one-body operator

H̄[2] ≡
∑

p

ep : c†pcp : (36)

such that

H0 = H[0] +
∑

p

ep : c†pcp :, (37a)

H1 ≡ H̆[2] +H[4], (37b)

with

H̆[2] ≡ H[2] − H̄[2] =
∑

p6=q

H
[2]
pq : c†pcq : . (38)

Introducing the set of Slater determinants obtained from |8〉 via
n-particle/n-hole excitations

|8ab···
ij··· 〉 ≡ c†ac

†
b
. . . cjci|8〉, (39)

one obtains an orthonormal basis of the A-body Hilbert space

H
A = {|8〉, |8a

i 〉, |8
ab
ij 〉, |8

abc
ijk 〉, ...}, (40)

which is nothing but the eigenbasis of H0

H0|8〉 = H[0]|8〉, (41a)

H0|8
ab···
ij··· 〉 = (H[0] + ǫab···ij··· )|8

ab···
ij··· 〉, (41b)

where

ǫab···ij··· ≡ (ea + eb + · · · )− (ei + ej + · · · ) (42)

sums (subtracts) the n one-body energies of the particle (hole)
states the nucleons are excited into (from). Equation (41)
corresponds to the explicit form of Equation (9) in the case of
a Slater determinant reference state.
Convention: One-body states occupied (unoccupied) in the
reference determinant are labeled by i, j, k, ... (a, b, c, ...) and are
referred to as hole (particle) states. Generic one-body states are
denoted by p, q, r, ....

The single-particle energies {ǫp} are parameters of the theory
that are fixed by the partitioning, which itself defines the
reference state. They can be chosen arbitrarily as long as the
A occupied hole states have lower energies than the remaining
particle states, such that ǫab···ij··· > 0. A simple choice employed in
nuclear physics consists of building |8〉 by filling up the A lowest
single-particle eigenstates of the spherical harmonic oscillator
Hamiltonian [32, 33], i.e., setting

H0 ≡
Ep 2

2m
+

1

2
mω2Er 2, (43)

where the oscillator frequency ω specifies the width of the
potential. A more standard choice throughout various fields of
many-body physics and chemistry relates to the so-called Møller-
Plesset partitioning that corresponds to taking H̆[2] = 0, i.e.,
H1 = H[4]. This is obtained by using the reference Slater
determinant |8〉 solution of the Hartree-Fock (HF) variational
problem and by defining H̄[2] from the eigenvalues of the one-
body HF Hamiltonian.
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5.4. Perturbative Expansion
Given the eigenbasis of H0 characterized by Equations (34), (39),
and (41), the many-body resolvent (Equation 16) takes the form

R = −
∑

ai

|8a
i 〉〈8

a
i |

ǫai
−

(

1

2!

)2
∑

abij

|8ab
ij 〉〈8

ab
ij |

ǫabij

(44)

−

(

1

3!

)2
∑

abcijk

|8abc
ijk

〉〈8abc
ijk

|

ǫabc
ijk

+ ...,

and is to be fed into Equation (19b) that, once truncated at
a given power in H1, provides the correlation energy at the
corresponding perturbative order.

5.5. Low-Order Formulas
As alluded to above, the evaluation of low-order corrections
is facilitated by representing the MBPT expansion
diagrammatically. This is typically done using either Hugenholtz
or (anti-)symmetrized Goldstone diagrams, i.e., the time-ordered
counterpart of Feynman diagrams that are used to compute
matrix elements in quantum field theory. The interested reader
is referred to the literature, e.g., Shavitt and Bartlett [69], for an
elaborate discussion of the diagrammatic rules and their relation
to Wick’s theorem.

Focusing on the first non-trivial correction to the reference
energy (Equation 23), the second-order correction takes the
algebraic form

E(2) = −
∑

ai

H
[2]
ai H

[2]
ia

ǫai
−

1

4

∑

abij

H
[4]
abij

H
[4]
ijab

ǫabij

, (45)

and is, thus, expressed in terms of the tensors defining the
residual interaction H1 (Equation 37b) in normal-ordered form.
The first contribution in Equation (45) relates to a so-called non-
canonical diagram that vanishes if the reference state is taken to
be the HF Slater determinant. The second term constitutes the
genuine and dominant second-order correction that contributes
for any Slater determinant reference state. Using the HF Slater
determinant reference state has the practical benefit of lowering
the number of many-body diagrams to be considered. While
this feature is not relevant at second-order, the proliferation of
non-canonical diagrams at higher order [95] makes the writing
of numerical codes more cumbersome. Still, at a given order
non-canonical diagrams are always of sub-leading complexity
from a computational point of view, i.e., they involve fewer
single-particle summations, such that they do not drive the
computational cost.

Since E(2) provides the leading contribution to the
perturbative expansion, one observes that dynamical correlations
are dominated by low-lying 2p2h-contributions. Most
importantly, it is clear from Equation (45) that the second-
order correction is manifestly negative, i.e., it increases the
binding energy. This stems from the fact that the numerators
are squared norms of matrix elements contributing to H1

and that the denominators are positive as long as the Slater

determinant reference state displays a non-zero shell gap
between occupied and unoccupied states, i.e., as long as one deals
with a closed-shell nucleus.

5.6. Results
The first goal of the present analysis is to study the convergence
characteristics of the perturbative expansion. In absence of
analytical knowledge, this study must be based on empirical
observations of high-order corrections, which is achieved
through the recursive formulation of section 4.4 in small model
spaces. Following this analysis, results of low-order MBPT
calculations in realistic model spaces are presented to illustrate
state-of-the-art ab initio applications to doubly closed-shell
nuclei [34].

5.6.1. Impact of Partitioning
While perturbation theory defines a general framework to access
nuclear observables, the performance strongly depends on the
choice of the partitioning H = H0 + H1 or, equivalently, on the
underlying vacuum fixing the starting point for the expansion.
Subsequently, two choices for H0 are presently compared in the
calculation of the ground-state energy of 16O, i.e., the one-body
(i) spherical harmonic oscillator (HO) and (ii) self-consistent
HF6 Hamiltonians (cf. section 5.3). The model space is truncated
employing the Nmax-truncation similar to the NCSM. Figure 3A
shows the sequence of partials sums using a HO partitioning
for a set of model spaces. The partial sums are divergent in all
cases, which can equally be seen from the exponential divergence
of high-order energy corrections in Figure 3C. On the other
hand, using a HF reference state yields a rapidly converging
perturbation series (Figure 3B) and the energy corrections are
exponentially suppressed as a function of the perturbative order
(Figure 3D), indicating robust convergence. In all cases the
converged results agree up to numerical accuracy with the exact
CI diagonalization.

Obviously, the reference state heavily affects the performance
of MBPT. In the above case, this can be understood by the poor
quality of the HO reference, e.g., the wrong asymptotic radial
dependence of single-particle HO eigenstates (Gaussian instead
of exponential suppression). Consequently, in the following a HF
determinant is used as a reference state when results are reported
for closed-shell nuclei.

5.6.2. SRG Dependence
Using a HF partitioning, the impact of the SRG transformation
of the Hamiltonian on the perturbative series is now illustrated.
In Figure 4, the ground-state energy of 4He, 16O, and 24O
is displayed while varying the value of the flow parameter α

defining the SRG transformation. The left-hand panels show that
the perturbative series converge in all cases thus demonstrating
the reliability of HF-MBPT. For the light 4He, the results are
independent of the flow parameter and the MBPT expansion
converges rapidly in all cases. For 16O and 24O, the rate of
convergence is slower for harder interactions, i.e., for lower
values of α. Furthermore, the partial sums admit a damped

6The HF problem is solved in a symmetry-restricted way, enforcing rotational
invariance of the resulting single-particle basis.
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FIGURE 3 | Partial sums (A,B) and order-by-order corrections (C,D) for the ground-state energy of 16O using the Hamiltonian described in section 3. Top (bottom)

panels correspond to the HO (HF) partitioning. All calculations are performed using Nmax = 2, 4, 6 (●,

H

,⋆) and an oscillator frequency of h̄ω = 24MeV. The SRG

parameter is set to α = 0.08 fm4. Reproduced from Tichai et al. [34] under the Creative Commons CC-BY license.

oscillatory behavior in the oxygen isotopes for α = 0.02 fm4.
These features can be better seen from the right-hand panels,
where lower values of α induce a slower suppression of higher-
order corrections (Figures 4E,F).

5.6.3. Realistic Calculations
The previous results reveal that using an optimized HF reference
state combined with a sufficiently soft interaction defines a well-
controlled regime where perturbation theory can be robustly
applied to closed-shell nuclei. For heavier nuclei and largermodel
spaces the high-order perturbative series cannot be computed
recursively and, rather, low-order expressions are evaluated via
explicit single-particle summations7.

In Figure 5, the ground-state energy per particle (top panel)
and the correlation energy per particle (bottom panel) of a
selection of doubly closed-shell nuclei ranging from 4He to
132Sn is displayed at second- and third-order in MBPT [34].
A model space built out of 13 major harmonic oscillator shells
is employed. Since the target nuclei are out of reach of exact
diagonalization, MBPT results are compared to state-of-the CC
calculations employing the same input Hamiltonian and the same
HF determinant reference state.

The top panel demonstrates that third-order calculations fully
capture the bulk part of the ground-state energy and are in
remarkable agreement with more sophisticated non-perturbative

7Using the notion of tensors, the summation over a common index of several
tensors defines a tensor contraction.

CC results, i.e., the deviation with CR-CC(2,3) is less than 1%
in all cases. A more refined analysis can be deduced from the
bottom panel where the mean-field binding energy has been
subtracted. The correlation energy accounts in most mid-mass
systems for about 1−2MeV/A such that the reference HF results
capture roughly 60 − 70% of the overall binding energy. The
CCSD correlation energy lies between second- and third-order
results even though the CCSD wave function resums correlation
effects beyond third order, thus indicating a repulsive effect
on the binding from 2-particle/2-hole-excitations at 4th order
and beyond. When (approximately) including triple excitations
through CR-CC(2,3), slightly stronger binding than in third-
order MBPT is generated.

Of course, the enormous benefit of low-order MBPT is that
it excellently reproduces highly sophisticated CC results at a
computational cost that is two orders of magnitude lower due to
its non-iterative character.

6. MULTI-CONFIGURATIONAL
PERTURBATION THEORY

Driven by the capacity of HF-MBPT to grasp dynamical
correlations induced in closed-shell systems by soft chiral
Hamiltonians, extensions to genuine open-shell systems were
envisioned. As alluded to in section 2, the presence of
degeneracies with respect to particle-hole excitations does not
allow the use of a single symmetry-conserving Slater-determinant
reference state. A first possibility is to use a multi-determinantal
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FIGURE 4 | Partial sums (A–C) and order-by-order corrections (D–F) corresponding to the ground-state energy obtained from the Hamiltonian described in section 3.

Top, middle, and bottom panels correspond to 4He (Nmax = 6), 16O (Nmax = 6), and 24O (Nmax = 4), respectively. All calculations are performed setting the oscillator

frequency to h̄ω = 20MeV. The different plot markers correspond to SRG flow parameter α = 0.02(●), 0.0625(

H

), and 0.08 fm4(⋆). Reproduced from Tichai et al. [34]

under the Creative Commons CC-BY license.

reference state, which was shown to be very useful in electronic
structure applications [96, 97] and as a pre-processing tool in
NCSM calculations [98].

6.1. Rationale
The starting point of multi-configurational perturbation theory
(MCPT) is the definition of an initial reference space

Mref ≡ span
{

|8ν〉
}

(46)

built from a set of orthonormal many-body Slater determinants
|8ν〉. The extended reference space redefines the nature of the
P-space (and thus of the Q-space) introduced in Equation (12).
The multi-configurational reference state |9ref〉 is chosen to be a
normalized vector obtained from a diagonalization inMref, i.e.,

|9ref〉 ≡
∑

ν∈Mref

cν |8ν〉, (47)

where cν denotes the expansion coefficients, typically obtained
from a NCSM calculation. The initial diagonalization provides
a set of non-degenerate but multi-determinantal reference states
carrying good symmetry quantum numbers. At the price of
giving up the product-type character of the reference state, the
degeneracy is lifted and a well-defined perturbative expansion
can be designed [36].
Convention: The symbol |9〉 is used to emphasize the multi-
determinantal character of the reference state and distinguish
it from a single product state. Furthermore, two different
notations are employed to designate the Slater determinants
spanning the complete Hilbert space: (i) Slater determinants
belonging to Mref are denoted by |8ν〉, i.e., as a capital
Greek letter carrying a lower-case Greek index, whereas
(ii) Slater determinants outside Mref are denoted by |φi〉,
i.e., as a lower-case Greek letter carrying a lower-case
Roman index.
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FIGURE 5 | Ground-state binding energies per particle (A) and correlation energy per particle (B) of closed-shell nuclei from second-order MBPT (◦), third-order

MBPT (●), CCSD (△), and CR-CC(2,3) (

H

) using the Hamiltonian described in section 3. All calculations are performed using 13 oscillator shells and an oscillator

frequency of h̄ω = 20MeV. The SRG parameter is set to α = 0.08 fm4. Reproduced from Tichai et al. [34] under the Creative Commons CC-BY license.

It is worth noting that MCPT naturally accesses excited states
by building the perturbation theory on top of the various vectors
produced through the prior diagonalization inMref. Of course, it
is not guaranteed that the energetically lowest state in the initial
NCSM calculation eventually corresponds to the ground state in
the fully correlated limit, i.e., perturbative correctionsmay induce
level crossings among the various states.

6.2. Partitioning
Formally, the unperturbed Hamiltonian is written in the spectral
representation as

H0 ≡
∑

k∈Mref

E
(0)
k
|9k〉〈9k| +

∑

i/∈Mref

E
(0)
i |φi〉〈φi|, (48)

where |9k〉 denote the NCSM eigenvectors within Mref,
including the particular one, e.g., the lowest state, playing the role
of the reference state. Consequently, one obtains the following
eigenvalue relation for the unperturbed Hamiltonian

H0 |9k〉 = E
(0)
k

|9k〉, (49)

since the set of determinants {|8i〉 /∈ Mref} is orthogonal
to |9k〉. In principle, the construction of H0 requires a full
diagonalization in the reference space, i.e., the solution of all
eigenvectors and eigenvalues making the construction of the
unperturbed solution rapidly unfeasible if the dimension of the
reference state grows significantly. As will become clear below,
the computation of the lowest-order correction only require to
access the reference state, which is thus the only the eigenvector
that needs to be solved for explicitly in this case. In that case
one may resort to Lanczos algorithms, thus targeting a limited
number of extremal eigenstates.

Zeroth-order energies E
(0)
i of the unperturbed Slater

determinants making up the Q space, i.e., {|8i〉 /∈ Mref}, are

given by the sum of occupied single-particle energies defined as
diagonal matrix elements of the one-body Hamiltonian

hpq ≡ tpq +
∑

rs

H
[4]
prqsρ

(0)
rs , (50)

where the one-body density matrix of the reference state8

is introduced

ρ
(0)
pq = 〈9ref|c

†
pcq|9ref〉. (51)

In principle, an explicit three-body term can be included as well at
the price of invoking the two-body density matrix. However, for
the sake of computational simplicity a normal-ordered two-body
(NO2B) approximation is employed to approximately account
for the inclusion of 3N interactions [82].

The zeroth-order energy of the reference state is also defined
via the single-particle energies defined in Equation (50) while
taking into account the multi-determinantal character of the
reference state through the mean occupation of single-particle
states, i.e., the diagonal elements of the one-body density matrix

ρ
(0)
pp , so that

E
(0)
ref =

∑

p

ǫpρ
(0)
pp . (52)

6.3. Low Orders
With the partitioning of the Hamiltonian defined above, zeroth-
and first-order MCPT contributions to the energy read as

E(0) = 〈9ref|H0|9ref〉 = E
(0)
ref , (53)

8If the density matrix involved in Equation (50) were the one of the fully correlated
eigenstate of H, the one-body operator h would be nothing but the Baranger

Hamiltonian [99, 100]. Whenever the reference state reduces to the HF Slater
determinant, h identifies with the HF one-body Hamiltonian.
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E(1) = 〈9ref|H1|9ref〉 = 〈9ref|H|9ref〉 − E
(0)
ref , (54)

such that their sum reproduces the full reference energy ENCSMref
obtained via the diagonalization of the full Hamiltonian H
inMref.

The second-order energy correction reads similarly to the one
at play in standard MBPT, i.e.,

E(2) = −
∑

i/∈Mref

|〈9ref|H|φi〉|
2

E
(0)
i − E

(0)
ref

, (55)

where the sum runs over states outside of the reference space
and where the contribution from H0 vanishes by orthogonality
〈9ref|8i〉 = 0. To explicitly evaluate E(2) the reference state is
expanded according to Equation (47)

E(2) = −
∑

µµ′∈Mref

c⋆µcµ′

∑

i/∈Mref

〈8µ|H|φi〉〈φi|H|8µ′〉

E
(0)
i − E

(0)
ref

. (56)

All many-body matrix elements appearing in the algebraic
expressions of the perturbative corrections involve Slater
determinants only and can be readily evaluated using standard
NCSM technology. As an efficient alternative, normal-ordering
techniques and standard Wick’s theorem are employed such that
an associated diagrammatic can be designed. It is worth noting
that intermediate states from withinMref only start contributing
at fourth order [36] such that they do not appear in the evaluation
of E(2). In Equation (56), the Hamiltonian is normal ordered with
respect to the rightmost determinant |8µ′〉 for each term in the
sum over µ′ and the two matrix elements are evaluated using the
associated Wick’s theorem. Similar techniques have been applied
in quantum chemistry [101, 102]. The computational scaling of
the second-order correction for large reference spaces is given
by dim(Mref)

2 · n2p · nh, where np and nh denote the number of
particle and hole states, respectively.

6.4. Results
In the following the performance of MCPT, specifically denoted
as NCSM-PT in the present case, is gauged in a similar spirit as
for HF-MBPT in section 5.

6.4.1. High-Order Corrections in Light Systems
The recursive treatment of HF-MBPT laid out in section 4.4 has
proven invaluable to understand the convergence characteristic
of the perturbative expansion. While NCSM-PT does not employ
a Slater-determinant reference, the recursive formulation can
be extended in a straightforward way [36]. Figure 6 displays
the convergence behavior of the perturbative series for6,7Li
built on top of the four lowest states of the Nmax = 0
NCSM diagonalization. The left-hand panels show that the
perturbative series is convergent for both systems and all target
states with a slight overbinding of the second-order partial
sum for many states. In all cases the converged results agree
with exact diagonalization. Furthermore, right panels reveal
an (almost) exponential suppression of higher-order energy
corrections indicating rapid convergence of the expansion. The
rate of convergence is mostly independent of the target state or

the nucleus, except for the ground and first 2+ states in 6Li that
both converge slightly slower.

The high-order benchmarks strongly motivate the use of
low-order partial sums as good approximations to the binding
energies of heavier systems. Subsequently, systems with mass
number A ≈ 30 are investigated through realistic MCPT
calculations in large model spaces.

6.4.2. Low Orders in A ≈ 30 Nuclei
In Figure 7, ground-state energies of carbon, oxygen, and
fluorine isotopes are shown and compared to large-scale
importance truncated NCSM (IT-NCSM) diagonalization
whenever available. The reference states are obtained from a
diagonalization in a Nmax = 0 or 2 space. In all cases a HF
single-particle basis is employed in order to minimize the
dependence on the oscillator frequency9.

For all nuclei the reference energies and second-order NCSM-
PT results show a sizeable dependence on the size of the
reference space. Throughout all investigated isotopic chains
though, results from reference states built within a Nref

max = 2
space almost perfectly reproduce the exact (IT-)NCSM ones.
This significant improvement in ground-state energies hints
at important correlations incorporated through the reference
states obtained from a Nref

max = 2 diagonalization that are
absent for Nref

max = 0, thus providing an ideal compromise
between computational efficiency and accuracy. In particular,
neutron-rich fluorine isotopes are out of reach of conventional
NCSM calculations and NCSM-PT provides an efficient ab
initio approach to investigate the neutron drip line. A single
NCSM-PT calculation requires typically two to three orders of
magnitude less computational resources than the corresponding
IT-NCSM calculation.

In practice, the reference states employed in the above
calculations contain between several hundreds of thousands up to
a few million determinants, thus, providing an excellent account
of static correlations. Note that in most cases the reference state
accounts for up to 80% of the overall binding energy such that
residual dynamical correlations can indeed be grasped efficiently
from low-order perturbation theory.

6.4.3. Low-Lying Spectroscopy
As already exemplified in the high-order investigation, excited
states can be straightforwardly accessed through NCSM-PT by
targeting different reference states from the NCSM spectrum.
From absolute NCSM-PT binding energies, excitation energies
are obtained by subtracting the correlated ground-state energy.
In Figure 8, the associated NCSM-PT spectra are compared to
bare NCSM calculations for a selection of open-shell carbon
and oxygen isotopes. All calculations employ a HO single-
particle basis to separate center-of-mass degrees of freedom in
the many-body wave function. It is well-known that NCSM
excitation energies of states with identical parity display a

9The HF problem is solved employing a so-called equal-filling approximation to
ensure rotational invariance of the mean-field density. The underlying NCSM-
PT formulation is based on m-scheme quantities and does not employ angular-
momentum coupling techniques as most correlation expansions do. Consequently,
even- and odd-mass systems can be described on equal footing.
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FIGURE 6 | High-order binding energies from NCSM-PT employing Nref
max = 0 reference states using the Hamiltonian described in section 3. All calculations are

performed including configurations up to Nmax = 8 and employ an oscillator frequency of h̄ω = 20MeV. The SRG parameter is set to α = 0.08 fm4. Reproduced from

Tichai et al. [36] under the Creative Commons CC-BY license.

FIGURE 7 | Reference (◦/�) and second-order NCSM-PT (●/�) energies with Nref
max = 0 and 2, respectively, for the ground states of 11−20C, 16−26O, and 17−31F

using the Hamiltonian described in section 3. All calculations are performed using 13 oscillator shells and an oscillator frequency of h̄ω = 20MeV. The SRG parameter

is set to α = 0.08 fm4. Importance-truncated NCSM calculations (

H

) are shown for comparison. Experimental values are indicated by black bars. Reproduced from

Tichai et al. [36] under the Creative Commons CC-BY license.

much faster convergence than absolute binding energies, thus
yielding stable results in the right-hand columns of each panel.
When a level re-ordering appears with increasing Nmax in the
NCSM calculation, e.g. for the two lowest states in 12C or
the third and fourth states in 19O, NCSM-PT reproduces the
correct level ordering at small values of Nref

max. As for ground-
state energies, NCSM-PT results based on a reference state
with Nref

max = 2 reproduce well the NCSM spectra, while

going to Nref
max = 4 only refines the quality of a subset of

excitation energies.
The NCSM-PT framework is thus highly valuable to

perform light-weighted perturbative calculations in medium-
light systems up to mass numbers A . 40. Due to its
versatility and conceptual simplicity the low-lying spectrum
of genuine open-shell nuclei can be described at low
computational cost.
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FIGURE 8 | Spectra obtained via second-order NCSM-PT for selected carbon and oxygen isotopes using the Hamiltonian described in section 3. All calculations are

performed using 13 oscillator shells and an oscillator frequency of h̄ω = 20MeV. The SRG parameter is set to α = 0.08 fm4. A HO single-particle basis was used to

separate center-of-mass contaminations. Large-scale IT-NCSM calculations are shown for comparison. Reproduced from Tichai et al. [36] under the Creative

Commons CC-BY license.

7. BOGOLIUBOV MANY-BODY
PERTURBATION THEORY

While the use of multi-configurational reference states can
efficiently resolve situations of strong static correlations, it
displays several limitations, i.e., (i) the physical origin of the
underlying correlations in the reference state is unclear, (ii) it
does not easily ensure size-extensivity, and (iii) it is numerically
prohibitive in heavy nuclei. The objective is thus to present an
alternative based on single-reference product states that bypasses
these limitations.

7.1. Rationale
An alternative route to lift the particle-hole degeneracy of the
reference state in open-shell systems is to authorize the reference
state to break a symmetry of the underlying Hamiltonian.
In semi-magic nuclei, the relevant symmetry is U(1) global
gauge symmetry associated with particle-number conservation10.
Breaking U(1) symmetry permits to efficiently deal with Cooper
pair instability associated with the superfluid character of open-
shell nuclei. The degeneracy of a Slater determinant with respect
to particle-hole excitations is lifted via the use of a Bogoliubov
reference state and transferred into a degeneracy with respect
to transformations of the symmetry group. As a consequence,
the ill-defined (i.e., singular) expansion of exact quantities with
respect to a symmetry-conserving Slater determinant is replaced

10In fact the relevant symmetry group is the direct product UN (1) × UZ(1) since
both proton and neutron number are conserved separately.

by a well-behaved one. Extending the treatment to doubly open-
shell nuclei requires a similar treatment of SU(2) symmetry
associated with the conservation of angular momentum.

Eventually, the degeneracy with respect to U(1)
transformations must also be lifted by restoring the symmetry.
However, BMBPT only restores the symmetry in the limit
of an all-order resummation, and thus displays a symmetry
contamination at any finite order. While BMBPT can still be
used as a stand-alone approach as is done in the present work,
it eventually provides the first step toward the implementation
of the so-called particle-number projected BMBPT (PNP-
BMBPT) [58] that restores good particle number at any
truncation order.

7.2. Bogoliubov Algebra
The BMBPT formalism is based on the introduction of the
Bogoliubov reference state

|8〉 ≡ C

∏

k

βk|0〉, (57)

where C is a complex normalization constant and |0〉 denotes
the physical vacuum. The Bogoliubov product state presently
defining the P-space of perturbation theory is a vacuum for the

quasi-particle operators {β†
k
,βk}, i.e.,

βk|8〉 = 0 ∀k, (58)

obtained from the creation and annihilation operators associated
with a basis of the one-body Hilbert space via the unitary
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Bogoliubov transformation [103]

βk ≡
∑

p

U∗
pkcp + V∗

pkc
†
p, (59a)

β
†
k
≡

∑

p

Upkc
†
p + Vpkcp. (59b)

Generically speaking, the Bogoliubov transformation is only
constrained by unitarity such that a large manifold of Bogoliubov
states is at hand. To actually set up the perturbation theory, a
particular Bogoliubov reference statemust be specified. Typically,
the transformation matrices (U,V) are obtained by solving
the Hartree-Fock-Bogoliubov (HFB) variational problem that
naturally extends the simpler HF approximation to treat pairing
correlations while sticking to a single reference product state. The
columns of the transformation matrices (U,V) correspond to
the eigenvectors of the HFB eigenvalue equation [103] whereas
the associated eigenvalues {Ek > 0} deliver the so-called quasi-
particle energies11. Since Bogoliubov states are not eigenstates
of the particle-number operator A, the expectation value of A
is constrained to match a specific number of particles, e.g., the
particle number A0 of the target system. In the HFB method
for example, the constraint is enforced via the use of a Lagrange
multiplier λ in the minimization of the expectation value of the
grand potential

� ≡ H − λA. (60)

In actual applications, separate Lagrange multipliers λN and λZ
are used to constrain proton and neutron numbers N and Z,
respectively. In the subsequent formalism A stands for either one
of them.

7.3. Quasi-Particle Normal Ordering
In the next step, Wick’s theorem is employed to normal order the
grand potential � with respect to the Bogoliubov reference state

� = �00
︸︷︷︸

≡ �[0]

+�20 + �11 + �02
︸ ︷︷ ︸

≡ �[2]

+ �40 + �31 + �22 + �13 + �04
︸ ︷︷ ︸

≡ �[4]

+ . . . , (61)

where �ij denotes the normal-ordered component involving i (j)
quasi-particle creation (annihilation) operators, e.g.,

�31 ≡
1

3!

∑

k1k2k3k4

�31
k1k2k3k4

β
†
k1

β
†
k2

β
†
k3

βk4 . (62)

The tensors defining each normal-ordered term display
antisymmetry properties, i.e.,

�
ij

k1...kiki+1...ki+j
= (−1)σ (P)�

ij

P(k1...ki|ki+1...ki+j)
, (63)

11In the present work, the Bogoliubov transformation is limited to treat the like-
particle pairing although it could be further generalized to address neutron-proton
pairing as well.

where σ (P) refers to the signature of the permutation P. The
notation P(. . . | . . .) denotes a separation into the i quasiparticle
creation operators and the j quasiparticle annihilation operators
such that permutations are only considered among members
of the same group. Thus, �00 is the expectation value
of � in |8〉 whereas �[2] and �[4] define effective, i.e.,
normal-ordered, one-body and two-body operators, respectively.
Working in the particle-number-conserving normal-ordered
two-body approximation (PNO2B) [83], the effective three-body
part�[6] is presently discarded12. Details on the normal-ordering
procedure as well as expressions of the matrix elements of
each operator �ij in terms of the original matrix elements of
the Hamiltonian and of the (U,V) matrices can be found in
Signoracci et al. [53] and Ripoche et al. [83].

7.4. Partitioning
To set up the perturbation theory, the Hamiltonian (i.e., grand
potential) must be partitioned into an one-body unperturbed part
�0 and a residual part �1, i.e.,

� = �0 + �1. (64)

Focusing on the case where the Bogoliubov reference state
is the solution of the HFB variational problem, i.e., using a
Møller-Plesset scheme, � appearing in Equation (61) is naturally
partitioned given that

�20 = �02 = 0 (65)

and that �11 is in diagonal form, i.e.,

�0 ≡ �00 +
∑

k

Ek β
†
k
βk, (66a)

�1 ≡ �40 + �31 + �22 + �13 + �04, (66b)

with Ek > 0 for all k. Introducing all many-body states obtained
via an even number of quasi-particle excitations of the vacuum

|8k1k2...〉 ≡ β
†
k1

β
†
k2

. . . |8〉, (67)

the unperturbed system is fully characterized by its complete set
of orthonormal eigenstates in Fock space

�0 |8〉 = �00 |8〉, (68a)

�0 |8
k1k2...〉 =

[

�00 + Ek1k2...
]

|8k1k2...〉, (68b)

where the strict positivity of unperturbed excitations

Ek1k2... ≡ Ek1 + Ek2 + . . . (69)

characterizes the lifting of the particle-hole degeneracy
authorized by the spontaneous breaking of U(1) symmetry
in open-shell nuclei at the mean-field level.

12The particle-number-conserving nature of the PNO2B approximation further
requires to drop specific contributions to �[4] as well; see Ripoche et al. [83] for a
detailed discussion.
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With these ingredients at hand, the perturbation theory can
be entirely worked out algebraically or diagrammatically. This
can be done on the basis of a (imaginary) time-dependent
formalism or of a time-independent formalism.While the former
framework leads to working with Feynman (time-dependent)
diagrams, the latter makes use of Goldstone (time-ordered)
diagrams. Recently, the complete Rayleigh-Schrödinger BMBPT
formalism, including the automatic generation and algebraic
evaluation of all possible diagrams appearing at an arbitrary order
n on the basis of 2N and full 3N interactions has been published
in Arthuis et al. [95].

Eventually, the BMBPT expansion of the correlation energy
can be written in compact form as a superfluid extension of the
Goldstone formula (Equation 19b)

1� = 〈8|�

∞
∑

k=1

( 1

�00 − �1
�1

)k
|8〉c, (70)

where the Hamiltonian is replaced by the grand potential.

7.5. Low Orders
As a result of Wick’s theorem with respect to |8〉, the first few
orders contribute to Equation (70), with �(p) ≡ E(p) − λA(p) and
�ref = �(0) + �(1), according to13

�ref = +�00, (71a)

�(2) = −
1

24

∑

k1k2k3k4

�40
k1k2k3k4

�04
k3k4k1k2

Ek1k2k3k4
, (71b)

�(3) = +
1

8

∑

k1k2k3k4k5k6

�40
k1k2k3k4

�22
k3k4k5k6

�04
k5k6k1k2

Ek1k2k3k4Ek5k6k1k2
. (71c)

The lifting of the degeneracy with respect to particle-hole
excitations is embodied in the fact that the energy denominators
in Equation (71) are non-singular and well behaved. Indeed,
quasi-particle energies are bound from below by the superfluid
pairing gap at the Fermi energy, i.e.,

Mink{Ek} ≥ 1F > 0. (72)

This would not be true in standard MBPT based on a
Slater determinant reference state, where energy denominators
associated with particle-hole excitations within the open shell
would be zero in Equation (45). Of course, BMBPT does
strictly reduce to standard MBPT in a closed-shell system [95].
In particular, the single third-order diagram whose algebraic
expression is given in Equation (71c) generates the three, i.e.,
particle-particle, hole-hole and particle-hole, third-order HF-
MBPT diagrams [95]. This reduction of the number of diagrams
at any order p is a consequence of working in a quasi-
particle representation that does not distinguish particle and
hole states. Conversely, all summations over quasi-particle labels

13Non-canonical contributions are set to zero here given that we use the HFB
reference state. When using an arbitrary Bogoliubov reference state, additional
non-canonical contributions arise [95].

run over the entire dimension of the one-body Hilbert space,
which significantly increases the computational cost compared
to standard MBPT. In any case, low-order BMBPT corrections
only induce low polynomial scaling with respect to quasi-particle
summation and do not suffer from the storage of large tensors as
in more sophisticated all-order many-body approaches such as
(B)CC or IMSRG.

Extracting the p-order contribution to the binding energy
from Equation (70) requires the subtraction of the Lagrange
term λA(p). Computing A(p) can be done straightforwardly by
replacing the leftmost operator � by A in Equation (70) [95].
As the reference state is constrained to have the correct particle

number on average, it implies that A(1)
0 = A0. Working with the

HFB reference state, it can be shown that A(2)
0 = 0 due to the fact

that �20 = �02 = 0. Consequently, the first correction to the
average particle number appears at third order such that

A
(1)
0 + A

(3)
0 6= A0, (73)

i.e., the computed average particle number does not match the
targeted number A0 of the physical system. This feature requires
an iterative BMBPT scheme in order for the particle number to be
correct at the working order, e.g., p ≥ 3, of interest [104]. To do
so, one needs to rerun the HFB calculation with a p-dependent
chemical potential such that, through a series of iterations,

one eventually obtains, e.g., A(1)
0 + . . . + A

(p)
0 = A0. Such

a costly algorithm can fortunately be very well approximated
by an a posteriori correction scheme that entirely bypasses the
iterative scheme [104]. The third-order results presented in
section 7.6.1 have been computed without any adjustment of
the average particle number whereas the novel ones discussed in
section 10.2 have been obtained on the basis of the a posteriori
correction scheme.

While the BMBPT expansion efficiently grasps static
correlation effects associated to nuclear superfluidity, the
breaking of a continuous symmetry in a finite quantum system
is always fictitious. Consequently, a full-fledged many-body
formalism requires the additional restoration of the broken
symmetry, i.e., a mixing of gauge-rotated Bogoliubov vacua
which are connected to each other via (highly non-perturbative)
symmetry transformations. While the formalism has already
been laid out [58], realistic calculations remain yet to be
performed. Still, proof-of-principle applications to the model
pairing Hamiltonian employing particle-number-projected BCC
theory [60] revealed the significant impact of the symmetry
projection in the weakly broken regime corresponding to
open-shell nuclei in the vicinity of shell closures.

7.6. Results
7.6.1. Low-Order Calculations in Mid-Mass Nuclei
Figure 9 displays ground-state energies, two-neutron separation
energies, particle-number variance and perturbative particle-
number corrections along oxygen, calcium, and nickel isotopic
chains at the mean-field (i.e., HFB) level, as well as at second-
and third-order in the BMBPT expansion. Top panels reveal
that, while static correlations have partially been accounted
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for by employing a symmetry-broken reference state, the bulk
of dynamical correlations are efficiently grasped via low-order
BMBPT corrections. For (sub-)closed-shell nuclei the third-
order correction is consistently suppressed indicating rapid
convergence. In open-shell systems third-order partial sums are
strongly contaminated due to a significant excess of neutrons
brought by the third-order contribution to the average neutron
number. As discussed earlier, calculations at third-order and
beyond must eventually be done while constraining the average
particle number to match the physical value [104]. This is
reported on in section 10.2.

Figure 9B exhibits a qualitative reproduction of two-neutron
separation energies already at the mean-field level. Results
are quantitatively improved once second-order effects are
incorporated. Figure 9C shows the neutron-number dispersion
σ ≡

√

〈A2〉 − 〈A〉2 that grows with mass number. While the
second-order contribution does not decrease yet the neutron-
number dispersion, one expects higher orders to do so [104].
In closed-shell systems, the particle-number dispersion is zero
as a hallmark of the particle-number-conserving character of the
wave function throughout the expansion.

A detailed study of the convergence characteristics of the
BMBPT expansion via the calculation of high-order corrections
similar to the ones presented in section 5 (section 6.4.1) for
HF-MBPT (NCSM-PT) calculations of closed-shell (open-shell)
nuclei has just be completed [104] and is thus not reported
on here.

7.6.2. Comparison to Non-perturbative Calculations
Figure 10 compares second-order BMBPT ground-state and
two-neutron separation energies with results obtained from
state-of-the-art non-perturbative many-body frameworks along
oxygen, calcium, and nickel isotopic chains. In particular, IT-
NCSM provides essentially exact reference results along the
oxygen chain. In heavier closed-shell nuclei, advanced CR-
CC(2,3) calculations also provide reference results.

In all cases, second-order BMBPT is in excellent agreement
with other methods, displaying deviations of <2%. In particular,
IT-NCSM results are very well reproduced in oxygen isotopes.
While NCSM-PT (see section 6) and MR-IMSRG systematically
generate stronger binding, GSCGF at the ADC(2) level is very
close for all systems investigated. In the case of closed-shell nuclei
the stronger binding obtained in the CR-CC(2,3) calculation
highlights the importance of an (approximate) incorporation of
3-particle/3-hole excitations.

As seen from two-neutron separation energies, all ab initio
methods consistently predict the same shell structure and
location of the neutron trip line. This feature highlights both the
great success of recently developed many-body methods and the
excellent performance of perturbative techniques such as NCSM-
PT and BMBPT in particular. On the other hand, the strong
deviation of absolute binding energies14 from experimental data,
most pronounced in neutron-rich calcium and nickel isotopes,
is common to all employed frameworks and clearly points to
defects of the employed Hamiltonian. A detailed discussion

14The strong deviation also concerns charge radii that are not presently discussed.

of this crucial issue is postponed to section 10, where a new
family of chiral Hamiltonians is tested with the goal to cure
the poor agreement presently obtained for nuclear ground-state
observables of mid-mass nuclei.

8. IMPORTANCE TRUNCATION

In previous sections, MBPT was considered as a full-fledged
standalone framework to access the solution of the quantum
many-body problem. However, MBPT techniques can also be
used to support non-perturbative approaches by pre-processing
the many-body configuration space. Subsequently, the concept
of importance truncation (IT) is presented as a procedure to a
priori remove a set of tensor entries to be solved for on the
basis of an importance measure [98, 105–107]. Historically, this
idea was first applied in electronic structure theory to perform a
pre-selection of multi-reference CI amplitudes [108, 109].

8.1. Original Context: Configuration
Interaction Methods
The IT concept is ideally suited for basis expansionmethods, such
as general configuration interaction (CI) approaches or, more
specifically, the NCSM. Given the expansion of an eigenstate
|9n〉 of H in some many-body basis |φi〉, the importance of each
basis state can be quantified through the associated expansion

coefficient C
(n)
i ≡ 〈φi|9n〉. This importance measure can

be estimated within first-order MCPT, discussed in section 6,
starting from a multi-configurational reference state |9ref〉

κ
(1)
i =

〈φi|H|9ref〉

E
(0)
i − E

(0)
ref

. (74)

The reference state provides an initial approximation of |9n〉

within the reference space Mref and κi is used to assess a priori
the importance of each basis state |φi〉 /∈ Mref. Only states with
importance measures above an importance threshold κmin are
included into the model space for the subsequent CI calculation.

Since the eigenvalue problem is solved exactly in the
importance-truncated model space, IT provides a variational
approximation to the full solution. Moreover, the effect of
discarded configurations can be estimated via the second-order
MCPT energy correction (56). This together with extrapolations
to vanishing importance thresholds κmin → 0 can be used to
reconstruct the energies in the full model space. As testified by the
results already presented in Figures 7, 8, 10, the IT concept has
allowed one to push NCSM calculations beyond p-shell nuclei,
up to neutron-rich oxygen isotopes. More details on importance-
truncated CI approaches are discussed in Roth [98] and Stumpf
et al. [106].

8.2. New Context: Coupled-Cluster Method
In the context of non-perturbative expansion methods, the
general idea is to discard irrelevant entries of the largest mode-
n tensor that needs to be solved for and that drives the numerical
scaling as well as the storage cost of the method. This is done by
a priori estimating the importance of each of its entries on the
basis of a less costly many-body method, e.g., MBPT. While the
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FIGURE 9 | BMBPT systematics along O, Ca, and Ni isotopic chains: (A) absolute binding energies, (B) two-neutron separation energies, (C) neutron-number

dispersion, and (D) perturbative correction to the average neutron number. The employed Hamiltonian is defined in section 3. Plot markers correspond to HFB (●),

second-order BMBPT (�), and third-order BMBPT without particle-number adjustment ( �). All calculations are performed using 13 oscillator shells and an oscillator

frequency of h̄ω = 20MeV. The SRG parameter is set to α = 0.08 fm4. Reproduced from Tichai et al. [37] under the Creative Commons CC-BY license.

FIGURE 10 | Absolute ground-state binding energies (top) and two-neutron separation energies (bottom) along O, Ca, and Ni isotopic chains using the Hamiltonian

defined in section 3. Plot markers correspond to second-order BMBPT (�), second-order NCSM-PT (●), large-scale IT-NCSM (⋆), GSCGF-ADC(2) (

H

), MR-IMSRG(2)

( ), and CR-CC(2,3) ( �). All calculations are performed using 13 oscillator shells and an oscillator frequency of h̄ω = 20MeV. The SRG parameter is set to

α = 0.08 fm4. Reproduced from Tichai et al. [37] under the Creative Commons CC-BY license.
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underlying formalism is only sketched in this section, the reader
is referred to Tichai et al. [107] for a detailed discussion.

8.2.1. Wave-Function Ansatz
To illustrate the concept, BMBPT is employed as amethod to pre-
process the cluster amplitudes constituting the unknown tensors
to be solved for within the BCC method. This non-perturbative
approach is based on the wave-function ansatz [53]

|9〉 ≡ eT |8〉, (75)

where the connected quasiparticle cluster operator T ≡ T1+T2+

T3 + . . . is defined through

Tn ≡
1

n!

∑

k1···k2n

t2n0k1···k2n
β

†
k1
· · ·β

†
k2n

, (76)

etc. The BCC amplitudes t2n0
k1···k2n

constitute the unknownmode-n
tensors of present interest.

Instead of solving for all unknown cluster amplitudes,
IT selects a subset of tensor entries that are determined
non-perturbatively by solving BCC amplitude equations while
residual corrections from the discarded tensor entries are
treated in low-order BMBPT. Consequently, the ground-state
energy E0 consists of a contribution from BCC in the IT

subspace E
(IT)
0 and a residual BMBPT correction δ

(res)
0 from the

complementary subspace

E0 = E
(IT)
0 + δ

(res)
0 . (77)

Of course, the selection of the IT subspace must be performed
without the knowledge of the full solution, which is where low-
order BMBPT estimates enter into play.

8.2.2. Importance-Truncated Tensor
Considering the n-tuple BCC amplitude tensor Tn ≡ {t2n0

k1...k2n
},

the corresponding importance-truncated tensor based on the IT
measure κ (p)(t2n0

k1...k2n
) from BMBPT at order p is obtained as

T
(p)
n (κmin) ≡ {t2n0k1...k2n

such that κ (p)(t2n0k1...k2n
) ≥ κmin}, (78)

where κmin defines the IT threshold. The original tensor is
recovered in the limit of κmin → 0, i.e.,

lim
κmin→0

T
(p)
n (κmin) = Tn. (79)

With an importance-truncated tensor comes the associated data
compression ratio

Rc ≡
# elements of Tn

# elements of T
(p)
n (κmin)

, (80)

which relates the initial amount of data to the compressed one
resulting from the IT process. Whenever Rc > 1, the compressed
tensor requires less storage than the original one.

8.2.3. Results
Applying IT to T3, the goal is eventually (not done here) to solve
BCCSDT equations for the retained entries and correct for the
omitted ones in perturbation. The feasibility of the approach
directly depends on the reduction offered by the IT for a desired
accuracy given that a full BCCSDT calculation is currently
undoable in realistic model spaces, even when employing an
angular-momentum-coupled scheme.

Figure 11 displays the impact of the data compression
obtained by applying IT for 18O as a function of the HO single-
particle basis size. To provide a reference, the compression of
T2 is illustrated first in the left panel before coming to the real
challenge constituted by the treatment of T3. Three different
storage schemes are displayed corresponding to a full storage
of all tensor entries (diamonds), the tensor entries allowed by
fundamental symmetries of the interaction (squares) and the
IT-compressed entries from perturbative estimate (circle) for
different values of κmin. The percentage associated with the
IT-data indicates the corresponding error on the second-order
contribution to the ground-state energy

1�
(2)
0 =

1

4!

∑

k1k2k3k4

|t
40(1)
k1k2k3k4

|2Ek1k2k3k4 . (81)

Results demonstrate that even for T2, i.e., a mode-4 tensor, the
storage of all index combinations requires tremendous amounts
of memory (> 200GB per working copy) that is at the edge
of supercomputing facilities15. Employing a symmetry-adapted
storage scheme, several orders of magnitude can be saved. More
importantly, discarding irrelevant tensor entries through IT
additionally compresses the data by three orders of magnitude
at the price of inducing a systematic error of <1%, i.e., a
few hundreds of keV, on the second-order correlation energy.
Correspondingly, the storage of the T2 amplitudes is lowered to
less than 1MB per working copy. One can assign an “effective
one-body dimension” to this number of tensor entries yielding

e
(eff)
max ≤ 5, i.e., converged BCCSD results could be obtained using
an effective model space including less than six major shells.

While the storage of T2 amplitudes is actually within reach
of state-of-the-art capacities, the extension to T3 amplitudes
poses a severe computational problem. Performing the same
analysis as above, even the symmetry-adapted tensor requires
more than 100 TB of memory. Performing the IT-compression of
T3, the corresponding fourth-order contribution to the ground-
state energy

1�
[4T ]
0 =

∑

k1k2k3
k4k5k6

|t
60(2)
k1k2k3k4k5k6

|2Ek1k2k3k4k5k6 , (82)

can be evaluated with 1% accuracy while discarding 99.99% of all
T3 tensor entries. Because triples correction to the ground-state

energy first appear at fourth order, a 1% relative error on 1�
[4T ]
0

relates to an absolute error of a few keV, which is negligible in
mid-mass ab initio studies.

15Solving non-linear problems requires the storage of various copies of the
coupled-cluster amplitudes.
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FIGURE 11 | Number of tensor entries of T2 amplitudes (left) and T3 amplitudes (right) as a function of model space using the Hamiltonian described in section 3.

The oscillator frequency is given by h̄ω = 20MeV. Different plot markers indicate different storage scheme including all entries ( �), symmetry-allowed entries (�), and

IT-compressed entries (●). For emax ≥ 10 an additional E3max-truncation (�) for the T3 amplitudes is introduced. All calculations employ a canonical HFB reference

state. Reproduced from Tichai et al. [107] with permission from European Physical Journal (EPJ).

Eventually, the use of IT shifts the boundary of what is
computationally unfeasible such that, in the following years, the
implementation of IT-BCCSDT defines an ambitious and yet
reachable goal.

9. BASIS OPTIMIZATION

The present section discusses how MBPT can be used as an
auxiliary tool to construct an alternative single-particle basis
accelerating the convergence of non-perturbative many-body
methods as compared to commonly employed bases.

9.1. Rationale
In nuclear structure calculations, tensors defining H are typically
expressed in the eigenbasis of the spherical HO Hamiltonian.
Next, a self-consistent mean-field, e.g., HF, calculation is typically
performed to generate the reference state such that the beyond-
mean-field step and the associated tensors are transformed into
the corresponding mean-field, e.g., HF, one-body basis.

While the use of HO orbitals authorizes the rigorous center-
of-mass factorization in NCSM calculations, they are plagued
at long distances with a pathological Gaussian falloff and a
strong dependence of the many-body results on the width of
the confining HO potential. Contrarily, HF orbitals display a
proper exponential falloff but may induce a sizeable center-of-
mass contamination and a slower convergence in large-scale
NCSM diagonalizations compared to HO orbitals.

9.2. Natural Orbitals
Naturally, one wonders about the existence of a single-particle
basis that admit only little sensitivity to the oscillator frequency
while maintaining rapid model space convergence. Because the

exact one-body density matrix

ρpq =
〈9|c†pcq|9〉

〈9|9〉
, (83)

contains information about the fully correlated wave function,
its eigenbasis, defining so-called natural orbitals, is expected to
deliver an optimal choice.

This expectation was confirmed by employing the one-
body density matrix obtained from a large-scale NCSM
calculation [110]. For mid-mass nuclei, this strategy has
the downside to require a full CI solution to obtain the
optimized single-particle basis. However, as already observed
several decades ago in quantum chemistry calculations [111,
112], approximate natural orbitals perform surprisingly well in
applications. Instead of using the exact CI wave function, a
correlated density matrix is constructed within a polynomially
scaling expansionmethod, MBPT providing a particularly simple
example to do so [113]. Similar approaches can be followed by
using the 3-extension of CC theory or by diagonalizing the
dressed one-body propagator in SCGF theory. Note, however,
that the construction of an auxiliary basis already involves a
computationally non-trivial solution within a non-perturbative
many-body approach.

9.3. Density Matrix in Closed-Shell MBPT
Starting from Equation (25b) and following Strayer et al. [114],
the one-body density matrix up to second order in the residual
interaction can be written as [113]

ρ = ρ(00) + ρ(02) + ρ(20) + ρ(11) +O(λ3), (84)

where

ρ
(00)
pq ≡

〈8|c†pcq|8〉

〈8|8〉
(85)
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denotes the zeroth-order HF density matrix whereas

ρ
(02)
pq ≡ 〈8(0)| c†pcq |8

(2)〉 = ρ
(20)∗
qp , (86a)

ρ
(11)
pq ≡ 〈8(1)| c†pcq |8

(1)〉, (86b)

denote its MBPT corrections whose matrix elements are
expressed in the HF basis. Explicit expressions for the individual
corrections to the mean-field density in terms of two-body
matrix elements can be found in Strayer et al. [114] and
Tichai et al. [113].

9.4. Results
The impact of using natural orbitals is now gauged by performing
a systematic variation of the underlying single-particle basis in
NCSM calculations. Figure 12 displays 16O ground-state energy
as a function of the frequency characterizing the underling HO
basis for various values ofNmax. Results obtained from the NCSM
diagonalization performed in the HO and HF bases as well as in
the natural-orbital basis extracted from second-order HF-MBPT
are displayed.

The left panel shows the typical strong dependence of NCSM
results on the underlying frequency when using HO one-body
basis states, thus yielding a pronounced parabolic shape around
the variational minimum for all values of Nmax. While the use of
HF orbitals (middle panel) lowers the sensitivity to h̄ω the model
space convergence is not improved and the ground-state energy
has a linear falloff at higher frequencies. Finally, the NCSM
ground-state energy obtained using the natural-orbital basis
(right panel) is almost independent of the oscillator frequency
and displays a faster model-space convergence as a function
of Nmax. Similar conclusions hold for other observables, e.g.,
charge radii, low-lying excitation energies and electro-magnetic
transition strengths, as discussed in Tichai et al. [113].

Eventually, the use of one-body density matrices from low-
order MBPT to construct of an optimal computational basis is a
simple yet powerful tool to account for high-lying particle-hole
excitations that are otherwise hard to grasp in configuration-
driven methods like NCSM.

10. TESTING NOVEL χEFT NUCLEAR
HAMILTONIANS

The computational efficiency of perturbative approaches makes
them ideally suited for survey calculations over a large range
of nuclei. A specific scenario for such survey calculations is
the development of novel chiral EFT interactions, where large
numbers of many-body calculations are necessary to constrain
or validate the choice of low-energy constants as well as
to characterize the effect of different regulator formulations.
Recently, a new family of consistent chiral 2N plus 3N
interactions up to N3LO based on non-local regulators was
developed [115]. This new set of interactions is able to
simultaneously reproduce ground-state energies and charge radii
up into the medium-mass regime. Moreover, the full sequence of
chiral orders from LO to N3LO is available for different cutoff
values, which facilitates a rigorous uncertainty quantification.

In the applications discussed below, the new interactions are
consistently SRG-evolved in the 2N and 3N sectors down to
α = 0.04 fm4 and tested through non-expensive perturbative
methods over a larger set of nuclei than those addressed in
Hüther et al. [115].

10.1. NCSM-PT
First, NCSM-PT is employed to calculate ground-state energies
along the oxygen chain using interactions from Hüther
et al. [115]. In Figure 13, results obtained from N2LO and
N3LO interactions are compared to experiment including a
quantification of systematic theoretical uncertainties resulting
from both the many-body and interaction truncations. The
benchmarks discussed in section 6 showed that calculations with
the Nref

max = 2 typically provide a good agreement with non-
perturbative methods and that ground-state energies for larger
reference spaces typically fall between Nref

max = 0 and 2 results.
Therefore, the difference between these two calculations offers a
convenient way to estimate many-body uncertainties in NCSM-
PT calculations. Uncertainties resulting from truncating the
chiral expansion of nuclear interactions are estimated from the
order-by-order variation of the energies using the prescription
discussed in Epelbaum et al. [116], Binder et al.[117, 118]. The
interaction-induced uncertainty of an observable XN3LO at order
N3LO, e.g., is given by max(Q |XN3LO − XN2LO|,Q2 |XN2LO −

XNLO|,Q3 |XNLO−XLO|,Q5 |XLO|) with the expansion parameter
Q estimated as the ratio of a typical momentum scale
characterizing mid-mass systems over the breakdown scale,
which results in Q ≈ 1/3 [118]. The uncertainty band shown
in Figure 13 combines both uncertainties, where many-body
uncertainties are typically larger than interaction uncertainties.

The NCSM-PT ground-state energies can be compared
with results from the in-medium no-core shell model (IM-
NCSM) displayed on the right-hand side of Figure 13. The
non-perturbative IM-NCSMmethod combines a multi-reference
in-medium SRG transformation of the Hamiltonian that
decouples a small NCSM model space, with a subsequent
NCSM calculation using the transformed Hamiltonian [52]. The
associated uncertainty bands include once again both many-
body and interaction uncertainties. The comparison reveals an
excellent agreement between NCSM-PT and IM-NCSM, which
themselves agree with experiment within estimated uncertainties.

10.2. BMBPT
In addition to low-order NCSM-PT benchmarks in oxygen
isotopes, the novel set of interactions is tested on a large set of
mid-mass semi-magic nuclei up to third-order in BMBPT16.

In Figure 14, ground-state energies of oxygen and calcium
isotopes are displayed for two different values of E3max =

14, 16. The first striking result is that the overbinding
obtained in Ca isotopes with the ’standard’ Hamiltonian (see
Figure 10) is resolved, i.e., the systematic trend throughout

16As compared to Figure 9, third-order are presently corrected for the particle-
number contamination via the so-called a posteriori correction studied and
validated in Demol et al. [104].
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FIGURE 12 | NCSM ground-state energy of 16O as a function of the frequency h̄ω (denoted as h̄� on the figure) of the underling HO basis for Nmax = 2, 4, 6, 8, 10

spaces. The NCSM diagonalization itself is performed either in the initial HO basis (left), in the HF basis (center), or in the natural-orbital basis from second-order

HF-MBPT (right). The Hamiltonian described in section 3 is employed. Reproduced from Tichai et al. [113] with permission from the American Physical Society.

FIGURE 13 | Even oxygen isotopes ground-state energies from reference (empty symbols) and second-order (full symbols) NCSM-PT with Nref
max = 2 (left) and from

IM-NCSM (right). The consistent non-local 2N plus 3N chiral interactions at N2LO (●) and N3LO (�) presented in Hüther et al. [115] are employed with a cutoff

3 = 500 MeV. The uncertainty bands represent both many-body and interaction uncertainties (see text). Both many-body calculations make use a natural-orbital

basis obtained in 13 oscillator shells with h̄ω = 20MeV.

O and Ca isotopes is now consistent with experimental
data. In particular, low-order BMBPT results provide a much
better reproduction of experimental ground-state energies
of very neutron-rich Ca isotopes than with the “standard”
Hamiltonian for which the degrading increases systematically
with neutron number.

Going in more details, one observes that the reference HFB
energy, i.e., the lowest order in the BMBPT expansion, accounts
for much less binding (i.e., less than half of the total binding

energy) than with the “standard” Hamiltonian, thus indicating
a “harder” interaction17. Moreover, the third-order correction is
typically larger in the present case. While the first three BMBPT
orders are systematically and strongly suppressed, this indicates

17This feature reflects both the different characters of the chiral Hamiltonians
themselves and the fact that the “standard” Hamiltonian was SRG-evolved down
to α = 0.08 fm4 instead of α = 0.04 fm4 for the new ones.
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FIGURE 14 | BMBPT systematics along O (left) and Ca (right) isotopic chains using the non-local chiral two- plus three-nucleon interactions at N3LO presented in

Hüther et al. [115]. Top panel: absolute binding energies. Bottom panel: two-neutron separation energies. Plot markers correspond to HFB (●), second-order BMBPT

(�), and third-order BMBPT ( �). All calculations are performed using 15 oscillator shells and an oscillator frequency of h̄ω = 20MeV. The single-particle orbital

angular-momentum quantum number was limited to l ≤ 10. Open and closed symbols correspond to different truncations E3max = 14, 16, respectively.

FIGURE 15 | BMBPT ground-state energies for oxygen and calcium isotopes at third order of the perturbative expansion using consistent non-local chiral two- plus

three-nucleon interactions at N2LO (blue) and N3LO (red). Open symbols show the corresponding HFB ground-state energies. The uncertainty bands represent both,

many-body and interaction uncertainties (see text). All calculations are performed using 15 oscillator shells and an oscillator frequency of h̄ω = 20MeV. The

single-particle orbital angular-momentum quantum number was limited to l ≤ 10.

that the new interactions are indeed less perturbative. One can
thus expect higher orders to contribute non-negligibly.

Focusing now on two-neutron separation energies, the end
results are very satisfactory and of similar or even greater quality
than with the “standard” Hamiltonian. Interestingly, HFB results
are further away in the present case, indicating that not only
absolute values but also the trend with neutron number is
different. Still, second and third order contributions consistently
compensate for this apparent, but in fact fictitious, degrading at

the HFB level. One eventually observes that results are still less
accurate near major shell closures, which is consistent with the
expectation that restoring particle-number symmetry through
PBMBPT [58] will have the largest impact near shell closures.

While the results in oxygen isotopes are virtually identical for
both E3max values, the truncation in E3max plays an increasingly
important role in neutron-rich calcium isotopes, i.e., ground-
state energies beyond A = 50 obtained for E3max = 14 and
16 start deviating more strongly, pointing to the importance
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of truncated three-body matrix elements as already shown in
Hüther et al. [115]. This constitutes a technical challenge for the
future when ab initio calculations move to even heavier and more
neutron-rich nuclei.

Let us now further discuss these novel results by adding
both many-body and interaction uncertainties to BMBPT(3)
calculations. Interaction uncertainties are estimated as discussed
previously. To estimate the many-body uncertainty arising from
the finite truncation of the BMBPT expansion, a nucleus-
independent error of 3% is assumed. A recent study of high-
order BMBPT calculations revealed that the third-order partial
sum typically induces a many-body error of about 2% [104].
Because the employed Hamiltonian was softer and further
SRG-evolved to lower resolution scale, a more conservative
3%-error in the current setting seems plausible. The overall
uncertainty is then given by summing this many-body error
and the interaction uncertainty. Additional uncertainties due to
the finite single-particle basis are presently not incorporated.
Clearly, the construction of reasonable models of many-body
uncertainties is highly nontrivial and employing simplistic
parametric models, e.g., geometric sums for perturbation series,
can lead to wrong estimates if the perturbation series does not
obey the underlying assumptions.

In Figure 15, ground-state energies of oxygen and calcium
isotopes are displayed for both N2LO and N3LO Hamiltonians.
In each case, results are accompanied by a band combining the
two sources of uncertainty according to the method outlined
above. While the mean value of the results only slightly changes
when going from N2LO to N3LO, the uncertainty is consistently
reduced. Furthermore, N3LO results are essentially consistent
with experimental data within the error band, although the
narrowing of that uncertainty allows one to stipulate that this
agreement is deteriorating when going to neutron-rich isotopes.

Clearly, the above features points toward a systematically
improved quality of the novel set of interactions compared
to prior generations of chiral Hamiltonians that tend to fail
in mid-mass systems. In the future, this statement will be
further benchmarked by validating the consistency of low-lying
spectroscopy and charge radii with experimental data in the
mid-mass region.

11. CONCLUSIONS AND OUTLOOK

The present paper reviewed the status of MBPT techniques in
the field of ab initio many-body calculations of finite nuclei.
After discussing formal properties of the power-series ansatz,
the main goal was to provide an in-depth understanding of
the MBPT expansion and its range of applicability. Most
importantly, two ways of extending Slater-determinant-based
MBPT toward open-shell systems were discussed. Multi-
configurational perturbation theory and Bogoliubov MBPT were
shown to provide complementary ways to tackle the particle-
hole degeneracy and the associated strong correlations in open-
shell nuclei.

Each of the subparts dedicated to the various flavors of
many-body perturbation theory displayed results of large-scale

calculations touching upon the very frontier of current ab
initio studies dedicated to mid-mass (open-shell) nuclei. While
highly accurate non-perturbative alternatives are available, the
formal and computational simplicity is at the very heart
of perturbative approaches. Indeed, these features enable
large surveys along complete isotopic chains at a small
fraction of the computational cost necessary to utilize more
sophisticated approaches. In view of the increasing activity
related to the construction of improved generations of nuclear
Hamiltonians, simple and yet accurate many-body schemes
constitute a very valuable tool to quickly characterize their
overall performance.

Furthermore, MBPT provides not only a standalone
many-body framework, but can also be used as an inexpensive
pre-processing tool to accelerate non-perturbative methods.
Two facets discussed in this work are data compression from
MBPT-based importance truncation and basis optimization
from low-order MBPT density matrices. Both tools have been
used with great success to either tame the curse of dimensionality
or cure pathological defects in the computational basis at low
computational price.

This (by far not exhaustive) list of MBPT-related
applications in nuclear theory highlights the start of a
renaissance of perturbation theory fostered by renormalization
group techniques used to soften nuclear Hamiltonians.
In parallel, the deepened understanding of infrared-
divergences, their origin in open-shell systems and systematic
ways to overcome them will hopefully help cure the
(unfortunately still present) disfavor against MBPT for nuclear
structure research.

Future developments will expand many of the ideas
laid out in this work. Better control on uncertainties in
the nuclear Hamiltonian pave the way for targeting more
exotic systems in the upcoming years. In particular, a
proper account of static correlations associated with nuclear
deformation has been identified as a critical goal by various
groups worldwide. Consequently, the implementation of
frameworks employing a systematic breaking (and restoration)
of SU(2) symmetry will be of high relevance. However,
due to the increasing number of basis states these efforts
will require significant computational resources as well as
extensive formal developments. To control the increase of
computational requirements (memory and runtime), so-
called tensor factorization techniques have been proposed
recently where high-mode tensors are decomposed into
sums of product of lower-rank ones [107, 119]. While
initial proof-of-principle applications have demonstrated
the high potential, extensive additional research is required in
this direction.

On a short timescale the benchmarking of importance
truncation and natural orbitals in non-perturbative medium-
mass applications will deepen the understanding of the role of the
computational basis and distribution of correlations in Hilbert
space. Furthermore, by employing data compression tools will
greatly help relax the many-body truncation at play such that
first-principle calculations will witness a level of accuracy that has
been out of reach so far.
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In recent years, new astrophysical observations have provided a wealth of exciting input

for nuclear physics. For example, the observations of two-solar-mass neutron stars put

strong constraints on possible phase transitions to exotic phases in strongly interacting

matter at high densities. Furthermore, the recent observation of a neutron-star merger

in both the electromagnetic spectrum and gravitational waves has provided compelling

evidence that neutron-star mergers are an important site for the production of extremely

neutron-rich nuclei within the r-process. In the coming years, an abundance of new

observations is expected, which will continue to provide crucial constraints on the nuclear

physics of these events. To reliably analyze such astrophysical observations and extract

information on nuclear physics, it is very important that a consistent approach to nuclear

systems is used. Such an approach consists of a precise and accurate method to solve

the nuclear many-body problem in nuclei and nuclear matter, combined with modern

nuclear Hamiltonians that allow to estimate the theoretical uncertainties. QuantumMonte

Carlo methods are ideally suited for such an approach and have been successfully

used to describe atomic nuclei and nuclear matter. In this contribution, I will present

a detailed description of Quantum Monte Carlo methods focusing on the application

of these methods to astrophysical problems. In particular, I will discuss how to use

Quantum Monte Carlo methods to describe nuclear matter of relevance to the physics

of neutron stars.

Keywords: neutron stars, dense-matter equation of state, nuclear interactions, chiral effective field theory,

ab-initio calculations, Quantum Monte Carlo methods

1. INTRODUCTION

There are four fundamental forces in nature: gravity, the electromagnetic force, the weak nuclear
force, and the strong nuclear force.While gravity describes themotion of the largest systems that we
can observe, i.e., celestial bodies in the solar system and beyond, over very long distances, it is the
weakest of the four fundamental forces. On the other end of the spectrum, the strong nuclear force
is the strongest of the fundamental forces, but it acts only over very short distances and describes
the interactions of some of the smallest building blocks of nature. In particular, it determines how
neutrons and protons interact to form, e.g., atomic nuclei thatmake up all thematter that surrounds
us everyday.

The strong interaction is described by its fundamental theory, Quantum Chromodynamics
(QCD). QCD describes the strong interaction in terms of six quarks and eight gluons, which are
elementary particles in the standard model. At low energies, these elementary particles can not be
observed in isolation. Instead, they are confined to form so-called hadrons: mesons, e.g., the pion,
or baryons, e.g., neutrons and protons. Furthermore, at these energies QCD is non-perturbative.
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Hence, it is computationally very demanding and costly to
describe nuclear systems in terms of quarks and gluons by
solving QCD explicitly. While Lattice QCD, which is a numerical
approach to solve QCD on finite space-time lattices, attempts
to achieve exactly that, such calculations are limited to systems
with small nucleon numbers A < 5 and/or for large values of
the quark masses, where simulations become cheaper. Instead, at
low energies it is a very good approximation to describe nuclear
systems, e.g., atomic nuclei, in terms of protons and neutrons
which interact via some effective model of strong interactions,
i.e., nuclear forces. One of the major goals of theoretical nuclear
physics is to unravel the exact nature of nuclear forces and to
understand how these forces lead to the properties of the nuclear
systems that we can observe.

Nuclear systems that can be explored in terrestrial laboratories
are atomic nuclei, and nuclear theory tries to explain their
structure, i.e, energy levels, radii, separation energies, decays,
etc. (see, e.g., Hagen et al. [1], Elhatisari et al. [2], Lynn et al.
[3], Klos et al. [4], Calci et al. [5], Piarulli et al. [6], Lonardoni
et al. [7], and Gysbers et al. [8]). Of particular interest are exotic
nuclei far from stability, because they probe nuclear interactions
at larger proton-to-neutron asymmetries [9–12]. The Coulomb
interaction does not allow the ratio of protons to neutrons,
the proton fraction, to become too large because in such cases
the Coulomb repulsion among the protons would overcome the
short-range nuclear attraction and make nuclei fall apart. On the
other hand, neutron-rich nuclei, which explore smaller proton
fractions, can be bound in nature, but the most exotic among
them are extremely short-lived. The limits of existence of these
nuclei are described by the neutron dripline, where one- and
two-neutron separation energies become negative [13].

Neutron-rich nuclei are relevant for the so-called rapid
neutron-capture process (r-process), a nucleosynthesis process
that creates nearly half of all the elements heavier than iron
in the universe. Hence, neutron-rich nuclei are extensively
studied in nuclear-structure calculations and experiments. Our
experimental knowledge will be significantly expanded in
experiments at the upcoming Facility for Radioactive Ion
Beams (FRIB) in the US and the Facility for Antiproton
and Ion Research (FAIR) in Germany. But even with these
advanced facilities, exotic nuclei with the most extreme neutron-
to-proton ratios will not live long enough to be studied
experimentally. Hence, the determination of their properties,
which are very important as input in r-process studies, relies
on theoretical models and astrophysical observations [14]. To
improve theoretical models, the interactions in many-body
systems with small proton fractions need to be understood better
and tested against experimental data where available.

Luckily, atomic nuclei are not the only systems where one
can test nuclear interactions at neutron-rich extremes. Neutron
stars, which are one of the final stages of stellar evolution, are
supported against gravitational collapse by strong interactions
among its constituents, mainly neutrons with only around 5–
10% of protons. In addition, with typical masses of 1.4 times
the mass of our sun compressed into a star with a radius of 11–
12 km, the densities in the core of neutron stars are extremely
high. While atomic nuclei explore densities of the order of the

nuclear saturation density, nsat = 0.16fm−3 which corresponds
to a mass density of 2.7 · 1014 g/cm3, neutron stars explore
strong interactions at much larger densities of up to 10 times
nsat. Hence, neutron-star observations allow us to test nuclear
interactions at low proton fractions and high densities, which
provides important complimentary information to experiments
here on Earth. As a consequence, the study of these astrophysical
systems is very fascinating and important, and allows to probe
nuclear interactions under extreme conditions.

The crucial quantity relating both experiments and
astrophysical observations is the equation of state (EOS),
which provides a relation between the energy density, pressure,
temperature, and the proton fraction of the matter in nuclear
systems. For neutron stars, due to the very high densities in
these systems, the Fermi energy of the nucleons is typically
much larger than thermal energies. For example, while neutron
stars typically have temperatures of the order of T = 108 K,
the corresponding thermal energy of about 10 keV is much
smaller than typical particle energies of the order of a few tens of
MeV. Hence, one can neglect thermal effects, except in the most
catastrophic astrophysical scenarios. Then, the EOS is simply
relating the energy density ǫ and the pressure P, or alternatively
the energy per particle E/A and the baryon density n, for a given
proton fraction x.

Astrophysical observations of neutron stars allow us
to constrain the EOS, and hence, the strong interactions
that determine its properties. In recent years, exciting new
astrophysical observations of neutron-star properties have
provided a wealth of input for nuclear physics, and I will address
these observations in section 2.2. Additional observations in
the coming years, for example by the Neutron-Star Interior
Composition Explorer (NICER) mission that recently reported
its first measurement [15, 16], will add even more information.
However, if we want to reliably analyze such astrophysical
observations with the goal of constraining the nuclear EOS,
we need to relate observations and nuclear interactions in a
consistent and model-agnostic way, to avoid any model-related
biases and to minimize systematic uncertainties.

In a microscopic approach, one would start from a
Hamiltonian that describes the interactions among the relevant
degrees of freedom of the system at hand, and solve the many-
body Schrödinger equation for that system (e.g., nucleonicmatter
in neutron stars). Such an approach should consist of a precise
and accurate method to solve the nuclear many-body problem
in nuclei and nuclear matter, combined with modern nuclear
Hamiltonians that allow to estimate the theoretical uncertainties
of the nuclear interactions. Quantum Monte Carlo (QMC)
methods [17] are ideally suited for such an approach and have
been successfully used to describe atomic nuclei and nuclear
matter. On the other hand, chiral effective field theory (EFT) [18–
21] provides a systematic expansion of the nuclear forces, that
allows to estimate theoretical uncertainties.

In this contribution, I will present a detailed description of
Quantum Monte Carlo methods, focusing on the application
of these methods to astrophysical problems. In particular, I
will discuss how to use Quantum Monte Carlo methods to
describe nuclear matter of relevance to the physics of neutron
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stars. I will also discuss how the combination of these methods
with systematic interactions from chiral EFT allows us to
extract information on the nuclear EOS in a reliable fashion.
This contribution is organized as follows. In section 2, I will
review neutron stars and the most important recent neutron-star
observations. In section 3, I will address how to study the nuclear
matter in neutron stars using Quantum Monte Carlo methods
and modern nuclear interactions. In section 4, I will then show
results and explain how to use these results to study neutron stars.
Finally, I will summarize in section 5.

2. NEUTRON STARS AND THEIR
PROPERTIES

In this section, I will review neutron stars and their
relevant equations, as well as the most important recent
neutron-star observations.

2.1. Describing Neutron Stars
Neutron stars are one of the final stages of stellar evolution.
While low-mass stars like our sun end their life as white dwarfs,
neutron stars are remnants of core-collapse supernova explosions
of medium-mass stars in the range of 8–20 solar masses (heavier
stars will collapse to black holes; see, e.g., Fryer [22]). Hence,
neutron stars are the most compact stars in the Universe.

While stars in their burning stages are supported against
gravitational collapse by the thermal energy released in nuclear
fusion, these processes have stopped in white dwarfs and neutron
stars. White dwarfs are the remaining cores of lighter stars that
have shed their outer layers. They typically consist of Carbon
and/or Oxygen, and have masses of the order of the mass of
our sun compressed to the size of a typical planet, with radii
of the order of several 1, 000 km. Due to the resulting densities
and the fermionic nature of electrons, the electrons in white
dwarfs form a degenerate gas. It costs energy to compress this
electron gas, leading to a degeneracy pressure exerted outwards
that balances the gravitational force that otherwise would collapse
the star. Such a degenerate electron gas can typically support
a white dwarf with a maximum mass of ∼ 1.4M⊙, the so-
called Chandrasekhar mass [23]. If a white dwarf accretes mass
and surpasses this limit, the electron pressure does not suffice
anymore to stabilize the star against gravitational collapse. This is
what happens in core-collapse supernovae of heavier stars, where
the white-dwarf-like core collapses due to continued accretion
of fusion products. This collapse then triggers the supernova
explosion of the star.

As a consequence of the core collapse, the densities of
the electrons and nuclei increase dramatically, leading to an
increasing Fermi energy for the electrons. At some point, it
becomes energetically favorable for protons in the core to absorb
electrons and form neutrons, lowering the proton fraction. As the
collapse continues, at the largest densities in the core neutron-
rich nuclei begin to dissolve into free nucleons, mostly neutrons.
The collapse is halted when the core reaches radii of the order
O(10) km. The abrupt stop of the contraction causes a so-
called bounce that ultimately leads to a supernova explosion and

ejects the remaining outer layers of the star, leaving a dense
remnant. Due to their small proton fraction of the order of 5–
10%, these young stars are called proto-neutron stars. They will
cool over time and form cold neutron stars. Similar to white
dwarfs, neutron stars are stabilized against gravitational collapse
by the degeneracy pressure of their fermionic constituents, the
neutrons. The discovery of the neutron by Chadwick [24] led to
the postulation of neutron stars [25] long before their discovery
in the 1960s [26, 27].

To investigate how the degeneracy pressure exerted by the
neutron gas stabilizes neutron stars, one needs to start from
the equations that describe the neutron-star structure. A less
compact cold star (e.g., a white dwarf) would be described by the
following structure equations:

dP

dr
= −

Gm(r)ǫ(r)

r2
,

dm

dr
= 4πǫ(r)r2 , (1)

where P is the pressure, G is the gravitational constant, m is the
mass, ǫ is the energy density, and r is the radial coordinate. The
first equation describes hydrostatic equilibrium and states that
the pressure exerted outwards has tomatch the gravitational force
acting inwards. The second equation is the conservation of mass.
These equations are derived within Newtonian gravity, but since
neutron stars are very compact, the structure equations need to
be modified by general-relativistic extensions of Equation (1).
These are the so-called Tolman-Oppenheimer-Volkoff (TOV)
equations [31, 32]:

dP

dr
= −G

m(r)ǫ(r)

r2

(

1+
4πr3P

m(r)c2

) (

1+
P

ǫ(r)c2

)

×

(

1−
2Gm(r)

rc2

)−1

(2)

dm

dr
= 4πǫ(r)r2 ,

where c is the speed of light. In the following, we will write all
equations in natural units and set c = 1. The energy density for
non-relativistic nucleonic matter is given by

ǫ = n ·

(

mN +
E

A
(n, x)

)

. (3)

Here, n is the baryon number density and mN the nucleon mass.
The first term of the energy density reflects the rest-mass density,
while the second term is the specific internal energy.

To solve the TOV equations, the only required input is a
relation between the pressure P and the energy density ǫ. This
relation is the EOS, P = P(ǫ). With the EOS as input, the
TOV equations can be solved by integrating from the stars center
at r = 0 (where P = Pc and m = 0) to the stars edge at
radius R (where P = 0 and m(R) = M). Hereby, the central
pressure Pc is an input parameter, that determines the mass M
and the radius R for the given EOS. Solving the TOV equations
for many different values for Pc maps out the mass-radius (MR)
relation, that describes the radius of a NS for a given mass, see
Figure 1 for an example EOS. The EOS and the resulting MR
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FIGURE 1 | The equation of state (left) and the resulting mass-radius relation (right) upon solving the TOV equations for an example equation of state, i.e., the

Skyrme model “NRAPR” constructed in Steiner et al. [28] which was fit to the APR equation of state of Akmal et al. [29]. Republished with permission of IOP

Publishing, from Gandolfi et al. [30]; permission conveyed through Copyright Clearance Center, Inc.

relations are in a 1-to-1 correspondence: given an EOS, one can
predict the structure properties of neutron stars, but neutron-star
observations also allow to determine the EOS.

Analogously to white dwarfs, Tolman and Oppenheimer
inserted the EOS of a free and degenerate neutron gas to estimate
the properties of neutron stars. They found a maximum mass
of only 0.7M⊙ and, hence, concluded that neutron stars are not
very important in nature. But, as we now know, the neutron-
star EOS is much more complicated because strong interactions
among neutrons, protons, and maybe other constituents at larger
densities lead to many different effects. Including interaction
effects can drastically increase the maximum mass of neutron
stars to values as large as 3 − 4M⊙ [33], while observations have
established the existence of neutron stars with masses as high as
2M⊙ (see next section). Hence, strong interactions are extremely
important to stabilize neutron stars against gravitational collapse.

Generally, one can divide a neutron star into several layers.
The neutron-star crust, the star’s outer layer, can be separated
into two regions. The outer crust consists of a lattice of neutron-
rich nuclei of the iron region. With increasing density, these
nuclei become more and more neutron-rich. At a density of
approximately 4 · 1011 g/cm3, the inner crust begins. Here, the
neutron chemical potential is so large that neutrons begin to drip
out of the nuclei and form a neutron gas around the lattice of
nuclei. With increasing density, the density of the neutron gas
increases and the nuclei slowly dissolve. At the bottom of the
inner crust, the lattice of nuclei can form exotic structures, called
pasta phases, by merging into rods and slabs [34].

The crust connects to the neutron-star core at about half
nuclear saturation density. Here, all nuclei have dissolved and
the neutron star consists of a fluid of neutrons, protons, and
electrons. At even larger densities, in the so-called inner core of

neutron stars, exotic phases ofmattermight appear. The neutron-
star might experience phase transitions to hyperonic matter [35],
deconfined quark matter [36], or other exotic phases. However,
there is no reliable experimental information on matter at such
high densities and, hence, on the relevant degrees of freedom
that are present in the neutron-star core. Therefore, theoretical
models for the EOS have a large spread.

Due to the 1-to-1 correspondence between the EOS and
the MR relation, neutron-star observations are an ideal way
to constrain EOS models. While we can observe masses quite
accurately, neutron-star radii are very uncertain, and typically
range from 9−15 km for a typical 1.4M⊙ star [37]. This situation
improves with new observations, e.g., frommissions like NICER.
For example, in the last years several observations have put tight
constraints on the EOS and reduced the radius uncertainty quite
dramatically. I will discuss these observations in the following,
and show how they informed the EOS in section 4.

2.2. Recent Neutron-Star Observations
2.2.1. Two-Solar-Mass Neutron Stars
Neutron stars are typically observed as pulsars, i.e., rotating
neutron stars that emit beams of electromagnetic signals (mostly
radio signals) that can be detected on Earth. When these
pulsars are in a binary with another star, it is possible to
accurately measure the masses of the objects by making use
of general-relativity effects, e.g., Shapiro delay [38]. As a
consequence, neutron-star masses could historically be inferred
quite precisely [37]. Neutron-star masses can provide strong EOS
constraints because they require the EOS to be sufficiently stiff,
i.e., the pressure inside the neutron star has to be sufficiently high
to support a star of a certain mass against gravitational collapse.
The heavier an observed neutron star is, the stiffer the EOS has
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to be. This can be used to rule out too soft EOS models, or EOS
with very strong phase transitions that experience regions with a
sudden and too strong softening.

Since the discovery of pulsars in the late 1960s, most neutron-
star masses that were measured precisely are of the order of
1.4M⊙ [37]. This constraint is rather weak, andmost EOSmodels
can easily reproduce neutron stars of that mass. However, there
have been a few exciting additional observations in the past
decade. The first such observation was reported in 2008 [39, 40],
when the mass of the binary pulsar J1903+0327 was determined
to be of the order of 1.7M⊙. Only a few years later, in 2010, the
first neutron star with a mass of the order of two solar masses
was observed using Shapiro delay [41]: the pulsar PSR J1918-0642
with M = 1.97 ± 0.04M⊙. This value was later corrected to be
M = 1.93 ± 0.02M⊙ [42]. In 2013, the existence of two-solar-
mass neutron stars was firmly established with the observation of
PSR J0348+0432 with a mass ofM = 2.01±0.04M⊙ [43]. Finally,
only recently an even heavier neutron star was observed [44]:
MSP J0740+6620 with a mass of M = 2.14 ± 0.10M⊙. These
measurements put very strong constraints on the EOS of dense
matter, and on possible phase transitions to exotic phases in
strongly interacting matter at high densities.

2.2.2. Neutron-Star Mergers
In contrast to masses, it is quite difficult to infer neutron-star
radii. X-ray observations, which are typically used to determine
radii, have large uncertainties due to poorly understood
systematics [45]. Recently, with the first observation of
gravitational waves from a neutron-star merger and its
electromagnetic counterpart [46, 47], a new possibility to
constrain neutron-star radii was established.

As a consequence of general relativity, two neutron stars in a
binary system emit gravitational waves. Hence, the system slowly
looses energy and the distance of the two neutron stars slowly
decreases. This leads to an even stronger emission of gravitational
waves and so on. Finally, after a time scale of the order of
gigayears, the two neutron stars will merge and form either a
heavier neutron star or a black hole.

Neutron-star mergers are fascinating events because they
simultaneously emit gravitational waves and electromagnetic
signals in form of gamma-rays, X-rays, optical, infrared, to radio
signals, and neutrinos. On August 17, 2017, the first such event
was observed in gravitational waves and the electromagnetic
spectrum [46–49]. The gravitational-wave signal was called
GW170817 and I will focus on it in the following.

The crucial quantity that allows to extract radius information
from neutron-star mergers is the tidal polarizability, 3, which
describes how a neutron star deforms under an external
gravitational field, e.g., the field of the second neutron-star in
a binary systems. The quadrupole deformation Qij of a star,
given an external field Eij = −∂U(r)/∂xi∂xj with gravitational
potential U(r), is given by Qij ∼ 3Eij. The tidal polarizability
depends on neutron-star properties as [52]

3 =
2

3
k2

(

c2

G

R

M

)5

. (4)

Here, k2 is the tidal Love number which is computed together
with the Tolman-Oppenheimer-Volkoff equations; see, for
example, Flanagan and Hinderer [52], Damour and Nagar [53],
and Moustakidis et al.[54] for more details. For a neutron star of
a given mass, one can immediately see that the tidal polarizability
is strongly related to the radius of the neutron star. In particular,
a larger neutron star will have a large tidal polarizability, while a
small neutron star will have a small polarizability. In a neutron-
star binary, one typically defines the binary tidal polarizability
parameter 3̃ as a mass-weighted average of the individual
tidal polarizabilities,

3̃ =
16

13

[

(M1 + 12M2)M4
131

M5
tot

+
(M2 + 12M1)M4

232

M5
tot

]

, (5)

where M1 and M2 are the individual masses of the two neutron
stars, 31 and 32 are the two star’s tidal polarizabilities, and Mtot

is the total mass of the system. In the left panel of Figure 2, I show
the correlation of the average radius of the two neutron stars in a
binary with the binary tidal polarizability, in this case for a system
like GW170817. However, such a relation exists for any neutron-
star binary. By measuring 3̃ from the gravitational-wave signal,
one can constrain the radius.

The LIGO-Virgo collaboration (LVC) was able to observe
the signal GW170817 for about 100s (several 1000 revolutions,
starting from 25Hz). A detailed analysis of the signal [49] allowed
a precise determination of the chirp massMchirp, defined as

Mchirp =
(M1M2)3/5

(M1 +M2)1/5
. (6)

From the signal, the LVC could also extract the mass ratio q =

M2/M1, where M1 is the mass of the heavier and M2 the mass
of the lighter neutron star in the binary. Finally, several groups
have analyzed the gravitational-wave data and provided posterior
probability distributions for the binary tidal polarizability, p(3̃).
These probability distributions are normalized to 1 and are
marginalized over the systems properties, like the EOS, the
individual neutron-star masses and spins, etc. Hence, these
distributions define the probability p that the two neutron stars
in GW170817 had the binary tidal polarizability 3̃. I show the
result from several extractions in the right panel of Figure 2.

In particular, I show the probability distributions extracted by
the LVC [49] and from the analysis of De et al. [51] for the two
extreme cases [uniform mass prior (u) and mass prior informed
by double neutron stars (d)], as well as fits to the LVC distribution
of Tews et al. [50]. In these analyses, parametric models for the
EOS have been tested against the observed gravitational-wave
data for varying system parameters using Bayesian statistical
inference tools. The result of these analyses are multidimensional
posterior functions for the tidal polarizability. Marginalizing
over the various system parameters results in the function p(3̃).
For more details on the extractions I refer the reader to the
corresponding references. Because the neutron-star deformation
appreciably impacts the gravitational-wave signal only during
the last few of several thousand observed orbits [52, 53], the
uncertainty of the extracted tidal polarizability is rather large.
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FIGURE 2 | Left: Correlation between the average radius R̃ of the two neutron stars in GW170817 and the binary tidal polarizability 3̃GW170817. We show the

distribution for the EOS models of Tews et al. [50] (red shaded area), a fit to this distribution (blue dashed line), as well as the result from Equation (5) of De et al. [51]

with uncertainty (black dotted lines). Right: Marginalized and normalized posterior probability distribution p(3̃) for GW170817 from the LVC (black dashed-dotted line),

from the analysis of De et al. [51] for the two extreme cases [uniform mass prior (u) and mass prior informed by double neutron stars (d)] (green and red dotted lines),

and fits to the LVC distribution of Tews et al. [50] (red dashed-dotted and blue dashed lines). Reprinted by permission from Springer Nature, Tews et al. [50], copyright

2019.

In addition, there are ambiguities among several parameters,
e.g., the neutron-star spins and the tidal polarizability, which
additionally increase the uncertainties.

The results for p(3̃) were used by several groups to constrain
the MR relation of neutron stars [55–59]. It was found that
enforcing the constraint on 3̃ rules out equations of state that
are rather stiff and produce neutron stars with large radii. In
particular, it was found that the radius of a 1.4M⊙ neutron
star, R1.4, can be constrained to be R1.4 < 13.6 km. The
observation of the first neutron-star merger, GW170817, was
also very remarkable because the gravitational-wave signal was
not the only observed signal. In addition, the electromagnetic
counterpart, or kilonova, was observed in multiple wave lengths,
and allows to impose additional constraints on the EOS. The
kilonova seems to be inconsistent with a direct collapse of the
merger remnant to a black hole and, hence, rules out very
soft EOS that cannot support sufficiently large neutron-star
masses [60]. The kilonova is also inconsistent with the formation
of a long-lived neutron star [61] and, hence, rules out EOS with
maximum masses larger than about 2.2–2.3M⊙ [61, 62]. Hence,
the kilonova observations seem to prefer a delayed collapse of the
merger remnant to a black hole. I will discuss the impact of these
observations later.

3. MICROSCOPIC APPROACH FOR
ASTROPHYSICAL APPLICATIONS

To constrain the neutron-star EOS from microscopic
calculations, we need to understand the properties of the
nuclear matter in the core of neutron stars. This system is
described by a fluid of neutrons at nuclear densities with a small
fraction of protons and electrons in β-equilibrium. Calculating
the EOS of neutron-star matter is a challenging task because the
interactions among nucleons are usually non-perturbative and

have a complicated spin-isospin structure. Furthermore, given
any nuclear interaction, an accurate and precise way of solving
the many-body Schrödinger equation is needed to solve the
many-body problem.

For strongly-interacting matter, there are several
computational methods that have been used to solve the
many-body problem. These methods include, for example,
many-body perturbation theory (MBPT) [63–67], the coupled-
cluster method [68], the self-consistent Green’s function
method [69, 70], or the Brueckner-Hartree-Fock approach [71].
Here, I illustrate how to calculate properties of the EOS of
neutron stars using precise and accurate quantum Monte Carlo
methods [17] combined with modern nuclear Hamiltonians that
allow to estimate the theoretical uncertainties.

3.1. Quantum Monte Carlo Method
Quantum Monte Carlo methods are one among several many-
body methods to solve the Schrödinger equation for strongly
interacting nucleonic matter. In particular, QMC methods
solve the nuclear many-problem non-perturbatively and with
controlled approximations, which makes QMC methods quasi-
exact. They have been very successfully used in studies of nuclear
matter and light nuclei [17, 72]. Several implementations of
QMC methods have been developed over the years, e.g., Green’s
function Monte Carlo (GFMC) [73] or auxiliary-field diffusion
Monte Carlo (AFDMC) [74]. In this contribution, I will focus
on the AFDMC method that has been used extensively to study
nuclear matter for astrophysical applications [3, 33, 75–80].

The main idea of Quantum Monte Carlo methods is to
stochastically solve the many-body Schrödinger equation to
extract the ground state of a system, by evolving a given trial wave
function of the many-body system,9V , in imaginary time τ = it,

9(τ ) = e−Hτ 9V . (7)
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Here,H is the Hamiltonian of the system, given by a collection of
point-particles interacting via two-, three-, and other many-body
forces (indicated by ellipses),

H = −
h̄2

2mN

∑

i

∇2
i +

∑

i<j

vij +
∑

i<j<k

Vijk + · · · . (8)

The first term is the nucleon kinetic energy with nucleon mass
mN , vij is the nucleon-nucleon (NN) interaction, Vijk describes
three-nucleon (3N) interactions, and so on. I will discuss the
Hamiltonian in the next section.

When expanding the trial wave function9V in eigenfunctions
of the Hamiltonian 8i, 9V =

∑

i ci8i, one can rewrite
Equation (7) as

9(τ ) = e−Hτ
∑

i

ci8i =
∑

i

cie
−Eiτ8i

= e−E0τ



c080 +
∑

i≥1

cie
−(Ei−E0)τ8i



 , (9)

where the index i = 0 describes the lowest-energy eigenstate
in the trial wave function (typically the ground state of the
system). As a consequence, when evolving 9V in imaginary time
as shown above, excited states (with Ei > E0) are exponentially
suppressed and will be projected out from the trial wave function
for evolutions to sufficiently large imaginary times. Only the 80

contribution will remain after this process. Hence, given a good
trial wave function with overlap with the true ground state of the
system, the imaginary-time evolution projects out this ground
state and allows to access its properties.

Let us discuss this process in more detail. QMC methods
formulate the many-body problem in coordinate space. Then,
the many-body Schrödinger equation in imaginary time for N
nucleons reads

H
∣

∣9(R, τ )
〉

= −
∂

∂τ

∣

∣9(R, τ )
〉

, (10)

where the vector R = {r1, . . . , rN , s1, . . . sN} contains the
configurations of all N particles with respect to all degrees of
freedom, i.e., their positions ri and their spin-isospin spinors
si, that contain amplitudes for all possible spin-isospin states:
∣

∣p ↑
〉

,
∣

∣p ↓
〉

, |n ↑〉, and |n ↓〉. In bra and ket notation, n and
p denote neutrons and protons, respectively, and the arrow-up
and -down indicate spin-up and -down. One can rewrite the
Schrödinger equation, and obtain the wave function at imaginary
time τ ,

∣

∣9(R, τ )
〉

, from the wave function at τ0 (which I set to
τ0 = 0 in the following for simplicty) due to time evolution,

∣

∣9(R, τ )
〉

= e−H(τ−τ0)
∣

∣9(R, τ0)
〉

. (11)

Projecting this equation into coordinate space and inserting a
completeness relation, this leads to the general solution for the
Schrödinger equation:

9(R, τ ) =

∫

d3R′ G(R,R′, τ )9(R′, 0) , (12)

with the Green’s function or propagator

G(R,R′, τ ) = 〈R| e−Ĥτ
∣

∣R′
〉

= 〈R| e−(T̂+V̂)τ
∣

∣R′
〉

. (13)

Here, T̂ denotes the kinetic energy part of the Hamiltonian
and V̂ the potential part. By solving this integral equation for
large imaginary times, one projects out the ground state, as
discussed before. The crucial ingredient to accomplish that task
is to compute the Green’s function.

The simplest case for the Green’s function is given for the
free system with vanishing interactions, V = 0. In this case, the
propagator can be computed analytically:

G0(R,R
′, τ ) = 〈R| e−T̂τ

∣

∣R′
〉

= 〈R| e−
∑ p2i

2m τ
∣

∣R′
〉

=
( m

2πτ

)
3N
2
e−

m
2τ

∑N
i (ri−r′i)

2
. (14)

Adding an interaction is non-trivial. Ideally, one would like to
be able to compute the matrix elements for T̂ and V̂ separately,
because the element for T̂ can be calculated analytically.
However, T̂ and V̂ cannot simply be separated as they are both
arguments of the exponential function. A solution is offered by
the Trotter-Suzuki formula [81], which allows to simplify the
propagator for a small timestep1τ ≪ 1:

e−Ĥ1τ = e−(T̂+V̂)1τ = e
−

(

T̂+ V̂
2 +

V̂
2

)

1τ

= e−
V̂
2 1τ e−T̂1τ e−

V̂
2 1τ +O(1τ 3) . (15)

The smaller the imaginary time step, the smaller is the error of
this approximation. This approximation is now used to calculate
the propagator in Equation (13) for very large imaginary times τ ,
by splitting the total propagator into n small time steps, and using
Equation (15) at each time step:

G(R,R′, τ ) = 〈R| e−Hτ
∣

∣R′
〉

= 〈R| e−H n1τ
∣

∣R′
〉

= 〈R|
(

e−H1τ
)n ∣

∣R′
〉

(16)

=

∫

d3R1

∫

d3R2 . . .

∫

d3Rn G(R,R1,1τ )G(R1,R2,1τ ) · · ·

G(Rn,R
′,1τ ) ,

where the Ri describe paths in configuration space.
To add an interaction in Quantum Monte Carlo methods,

it is important that the interactions are local, i.e., 〈R| V̂
∣

∣R′
〉

=

V(R)δ(R − R′), and, thus, the potential is only a function of
particle separations. In this case, the propagator for small time
steps simplifies to

G(Ri,Rj,1τ ) = 〈Ri| e
− V̂

2 1τ e−T̂1τ e−
V̂
2 1τ

∣

∣Rj

〉

(17)

= G0(Ri,Rj,1τ )e
−

V(Ri)+V(Rj)

2 1τ .

To write the propagator in this form, it is necessary to being
able to separate all momentum dependencies as a quadratic
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∑N
i=1 p

2
i term like above, which can generally be done only

for local interactions. In this case, the interaction parts can
be easily evaluated by exponentiating a small spin-isospin
matrix. For non-local potentials, the evaluation of the propagator
would involve the numerical calculation of derivatives, which is
computationally too expensive.

Inserting this solution into Equation (12), one obtains

9(R, τ +1τ ) =

∫

d3R′ G0(R,R
′,1τ )e−

V(R)+V(R′)
2 1τ9(R′, τ ) .

(18)
This equation is then solved consecutively for many small time
steps until convergence is achieved. The remaining integrals are
solved stochastically using Monte Carlo techniques, by averaging
over a large number of configurations, or walkers, that are
simultaneously evolved in imaginary time. Hence, this method is
called QuantumMonte Carlo method. Each walker is propagated
along a path sampled according to the Gaussian factor in
the integral and observables are calculated once convergence
is reached. During the evolution, additional techniques like
importance sampling and branching are implemented to improve
convergence and reduce the computational cost.

For fermionic systems of interest in nuclear physics, the wave
function is antisymmetric and contains many changes in sign.
Hence, the integrands in the previous QMC integrals are highly
oscillatory and lead to very large statistical uncertainties, so that
no information can be obtained from the calculation. This is
known as the fermion sign problem. The QMC algorithms I
discuss here need the trial wave function to have a definite sign
to mediate the sign problem. In practice, the wave function space
is split into regions of positive and negative wave functions,
defining a nodal surface at which the wave function changes
sign. Generally, walkers that cross the nodal surface are removed
from the evolution. This approximation is called fixed-node
approximation [82, 83]. A generalization of this approximation to
complex wave functions is called constrained-path method [84–
86], constraining the path of walkers to regions of space where the
overlap of walker and the trial wave function has a positive real
part. In the following, I will present results that were obtained
using the constrained-path method.

To estimate the impact of this approximation, one can
perform a so-called unconstrained evolution after the
constrained-path evolution is completed. In this process,
the approximation is abandoned and the walkers are allowed to
cross the nodal surface. The simulation is performed until the
sign problem creates noise that is too large. If a good trial wave
function was chosen in the beginning of the QMC calculation,
the change from the constrained to unconstrained result is very
small, because the nodal surface of the trial wave function is
sufficiently close to the nodal surface of the true ground state. In
that case, the constrained-path approximation is good and leads
to results close to the true answer.

In Figure 3, I show an example for the ground-state energy
of 4He from Lynn et al. [89]. In the example, first a constrained-
path evolution was performed using the GFMC method until an
imaginary time of τ ≈ 0.5 MeV−1. It can be seen that the energy
drops fast and levels off after sufficiently large imaginary times.

At this point in the evolution, all excited state contributions
have been projected out and differences to the true ground-
state energy are due to the constrained-path approximation.
Afterwards, an unconstrained evolution was performed, which is
shown in more detail in the inset. The unconstrained evolution
presents only a small correction to the constrained result, which
highlights the quality of the trial wave function in this case. This
does not need to be the case, as I show in the right panel of
Figure 3, where the unconstrained evolution is presented for a
calculation of 16O using AFDMC. In this case, the trial wave
function leads to a constrained-path result far from the true
ground state of the system (at τ = 0), and the unconstrained
evolution is necessary to extract the final answer.

Typically, the unconstrained evolution is very important for
nuclei and considered less important when calculating nuclear
matter relevant for astrophysics. Hence, in the following I will
only show results obtained using the constrained-path evolution.
However, please see Piarulli et al. [79] for a recent analysis of the
quality of the constrained-path approximation when calculating
neutron matter with realistic Hamiltonians.

In the following, I will explain how a Quantum Monte
Carlo calculation is done in practice. The first step of a QMC
calculation of infinite matter is a Variational Monte Carlo (VMC)
calculation. The VMC method is used to calculate the properties
of the given many-body system starting from a trial wave
function,9V , which is usually chosen of the form

|9V (R)〉 =
[

FC + F2 + F3
]

|8(R)〉 , (19)

where the factor FC accounts for all the central spin/isospin-
independent correlations, and F2 and F3 are linear spin/isospin
two- and three-body correlations; see Carlson et al. [17] for
details. The part

∣

∣8(R)
〉

is usually given by a Slater determinant,

∣

∣8(R)
〉

= A

[

∏

i

∣

∣φα(ri, si)
〉

]

, (20)

where the index α labels the single-particle states which depend
on the studied system, and set the correct quantum numbers.
For nuclear matter of interest here, |8〉 is built from a Slater
determinant of plane-wave states with momenta ki. The ki are
given by quantized momenta in a finite box with periodic
boundary conditions, whose dimensions are determined by the
chosen density and number of particles. The choice of periodic
boundary conditions allows to study the infinite system [76]. The
energy at the VMC level can be calculated as

EV =
〈9V |H|9V〉

〈9V |9V〉
=

∑

στ

∫

dR9∗
V (R, σ , τ )H9V (R, σ , τ )

∑

στ

∫

dR9∗
V (R, σ , τ )9V (R, σ , τ )

,

(21)

and provides an upper bound to the true ground-state energy,
E0 ≤ EV . Here, σ = {σ1 . . . σN}, and τ = {τ1 . . . τN} include
all particles’ spins σi, and isospins τi. The above equation can be
written as

EV =

∑

στ

∫

dRP(R, σ , τ )H9V (R, σ , τ )/9V (R, σ , τ )
∑

στ

∫

dRP(R, σ , τ )
, (22)
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FIGURE 3 | Left: The imaginary time evolution for the ground state energy of 4He in the GFMC method using the local chiral two- and three-nucleon interactions of

Gezerlis et al. [87], Gezerlis et al. [88], and Lynn et al. [3] at cutoff R0 = 1.0 fm. The figure shows the constrained evolution, i.e., an evolution where the nodal surface is

fixed, while the inset shows the unconstrained evolution. Reprinted figure with permission from Lynn et al. [89]. Copyright 2017 by the American Physical Society.

Right: The unconstrained evolution for the ground-state energy of 16O in the AFDMC method (blue points) using the same local interactions. The red line represents

an exponential fit to the data to extrapolate to the final result (green band). Reprinted figure with permission from Lonardoni et al. [90]. Copyright 2018 by the American

Physical Society.

where P(R, σ , τ ) is a probability distribution. Typically, one
chooses, P(R, σ , τ ) = 9∗

V (R, σ , τ )9V (R, σ , τ ). The probability
distribution P is then used to sample the configurations that
are used to stochastically solve the multidimensional integral
by employing Monte Carlo integration methods, e.g., the
Metropolis algorithm.

It is obvious that the results of a VMC calculation depend
strongly on the choice of the variational wave function, because
no diffusion as described in the beginning of this section is
performed. However, since the VMC method offers an upper
bound to the true ground state of the system, it allows to improve
the variational wave function for a given system, which feeds
into all subsequent parts of the calculation. This is done by
varying all the parameters that describe the trial wave function,
e.g., the correlations in Equation (19), and minimizing the
variational energy. For the optimal set of variational parameters,
the optimized trial wave function serves as input for the next step
of the calculation, where diffusionMonte Carlo methods are used
to perform the imaginary time evolution.

The most accurate diffusion Monte Carlo technique is GFMC,
where each walker contains not only the nucleon positions
but also a complex amplitude for each possible 2A

(A
Z

)

spin-
isospin configuration of the A nucleons including Z protons.
In particular, in addition to the Monte Carlo integration over
all spatial coordinates described above, summations in spin-
isospin space are performed explicitly in GFMC. Because nuclear
forces contain quadratic spin-isospin operators, components for
all possible nucleon pairs have to be retained and accounted for
explicitly. Hence, the scaling of the GFMC method with A is
exponential, which makes it suitable to study light nuclei but
unsuitable to study systems with large numbers of nucleons, like

nucleonic matter. GFMC calculations are presently limited to 12
nucleons or 16 neutrons [91].

Instead, for nuclear matter discussed in this contribution,
the AFDMC method [74] is more suitable. In AFDMC, all the
summations in spin-isospin space are performed stochastically
and quadratic spin-isospin dependences are linearized, which
improves the scaling behavior but at the cost of less accuracy.
This is made possible by using a Hubbard-Stratonovich
transformation for an operator O,

exp

(

−
1

2
λÔ2

)

=
1

√
2π

∫

dx exp

(

−
x2

2
+

√
−λxÔ

)

. (23)

As a consequence, dependences on spin-isospin operators can
be changed from quadratic to linear, at the cost of additional
integrations over the variables xi, called auxiliary fields. The
Hubbard-Stratonovich transformation is exact when the integrals
are exactly solved, but only statistically exact when Monte Carlo
sampling is used like in the AFDMC method. As a consequence
of applying the Hubbard-Stratonovich transformation, the wave
function can be written as a product of single-particle spin-
isospin states, which is a large simplification and improves the
scaling behavior from exponential like in GFMC to linear or
polynomial in the nucleon number A.

Following Schmidt and Fantoni [74] and considering only
quadratic spin, isospin, and tensor operators, the potential can
be written as

V = VSI +
1

2

∑

iα,jβ

σiαA
(σ )
iα,jβσjβ +

1

2

∑

iα,jβ

σiαA
(στ )
iα,jβσjβτi · τj

+
1

2

∑

i,j

A
(τ )
i,j τi · τj , (24)
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where the first term contains all spin-isospin-independent
parts of the interaction, the second term absorbs the isospin-
independent but spin-dependent parts, and so on. Here,
Latin indices label nucleons and Greek indices label Cartesian
components. For the m eigenvectors and eigenvalues of these
matrices, one finds

∑

jβ

A
(σ )
iα,jβψ

(σ )
m,jβ = λ(σ )m ψ

(σ )
m,iα , (25)

∑

jβ

A
(στ )
iα,jβψ

(στ )
m,jβ = λ(στ )m ψ

(στ )
m,iα , (26)

∑

j

A
(τ )
i,j ψ

(τ )
m,j = λ(τ )m ψ

(τ )
m,i . (27)

For the matrices A(σ )
iα,jβ and A

(στ )
iα,jβ the index m ranges from 1 to

3A, while there are A eigenvectors and eigenvalues for the matrix

A
(τ )
i,j . Using this set of eigenvectors and the eigendecomposition

of the A matrices, the potential can be rewritten as

V = VSI +
1

2

3A
∑

m=1

O(σ )2
m λ(σ )m +

1

2

3
∑

α=1

3A
∑

m=1

O(στ )2
mα λ(στ )m

+
1

2

3
∑

α=1

A
∑

m=1

O(τ )2
mα λ

(τ )
m , (28)

where

O(σ )
m =

∑

jβ

σjβψ
(σ )
m,jβ , (29)

O(στ )
mα =

∑

jβ

τjασjβψ
(στ )
m,jβ , (30)

O(τ )
mα =

∑

j

τjαψ
(τ )
m,j . (31)

The Hubbard-Stratonovich transformation is now applied to this
interaction to linearize all spin-isospin dependences. Hence, wave
functions only need to depend on single-particle spinors,

|si〉 = ai
∣

∣p ↑
〉

+ bi
∣

∣p ↓
〉

+ ci |n ↑〉 + di |n ↓〉 . (32)

This allows to treatO(10)-O(100) nucleons in AFDMC.
When calculating nuclear matter, one typically simulates N

particles in a cubic box with size L, where L is determined in
such a way that the number density n in the box reflects a
chosen value, L = (N/n)1/3. To avoid finite-size effects, the
particle number N has to be chosen sufficiently large to probe
the thermodynamic limit. As stated before, for nuclear matter
the trial wave function is constructed from plane waves in a
box with periodic boundary conditions (the implementation of
twist-averaged boundary conditions [92] is currently explored).
For periodic boundary conditions, the momenta are defined as
ki =

2π
L (nx, ny, nz). Here, the numbers nx, ny, and nz are integer

numbers. In this case, the system acquires a shell structure, and
the shell number is given by I = n2x + n2y + n2z . Typically, since

a homogenic and isotropic system is considered, calculations
are only performed with closed shells. For I = 0 there is
one combination of nx, ny, and nz , for I = 1 there are six
combinations, etc. Then, shell closures are given for 1, 7, 19,
27, 33, etc. particles for a given spin-isospin configuration. In
pure neutron matter, this leads to shell closures for N =

2, 14, 38, 54, 66, etc., as neutrons can be spin-up and spin-down.
Due to growing computational costs associated with larger and
larger particle numbers, for neutron matter one typically chooses
N = 66 (33 spin up and 33 spin down neutrons). When
comparing results for the free Fermi gas in a box as a function
of particle number, it was found that N = 66 gives results close
to the thermodynamic limit [75, 93].

3.2. Local Chiral Interactions
In addition to the many-body method, it is necessary to specify
a model for the nuclear interaction that defines the interaction
terms in Equation (8). In the past, Quantum Monte Carlo
methods have been used with phenomenological interactions of
the Argonne type [94, 95] and 3N interactions of the Urbana [96]
and Illinois [97] families with great success. However, the last
years have seen the development of new local interactions within
the framework of chiral effective field theory (EFT) [3, 87, 88,
98–100]. This enabled QMC calculations with a much greater
number of nuclear interactions. While the interactions are not
the focus of this review, in this section I briefly discuss local
chiral interactions. Formore details, I refer the reader to themore
detailed reviews in Lynn et al. [72] and Piarulli et al. [101].

Chiral EFT [18–20] is a low-energy effective theory for QCD
in terms of nucleon and pion degrees of freedom. It is naturally
formulated in momentum space in terms of the momentum
transfer q = p′ − p and the momentum transfer in the
exchange channel, k = (p + p′)/2, where p and p′ are the
average momenta of the incoming and outgoing particles. When
performing a Fourier transformation to coordinate space, all q
dependences transform to dependences on the relative distance
of particles i and j, r = ri − rj and, hence, are local, while k

dependences transform to gradients and, hence, non-localities.
As a consequence, to implement a chiral interaction in QMC
methods the interaction can only depend on q.

Chiral EFT is grounded in a separation of scales between
the typical momentum scale of nucleons in nuclear systems Q,
of the order of the pion mass, Q ∼ mπ , and high-energy
scales that denote the appearance of new degrees of freedom that
are not explicitly accounted for in chiral EFT. The appearance
of these high-energy degrees of freedom is marked by the
so-called breakdown scale 3b, and beyond this scale, chiral
EFT interactions can not be reliably employed in many-body
calculations anymore. The nuclear interaction is then expanded
in terms of (Q/3b)

ν according to a so-called power counting
scheme. This scheme leads to a systematic expansion for nuclear
interactions that makes chiral EFT very powerful. First, one can
work up to a desired accuracy by going to higher and higher
orders in the expansion. Second, one can estimate theoretical
uncertainties based on the order-by-order contributions to a
certain observable [102]. Another powerful advantage of chiral
EFT interactions is that many-body forces naturally appear in
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the expansion and are intimately connected to the two-nucleon
sector. This provides a systematic guiding principle to improve
all individual parts of the nuclear Hamiltonian, in contrast to
phenomenological interactions.

In chiral EFT, all the unresolved, short-range, high-energy
physics beyond the breakdown scale is parameterized by a
set of short-range contact operators among nucleons, which
obey all the relevant symmetries [101]. For example, at leading
order (LO), where ν = 0 and the interaction is momentum-
independent, the contact part is given by

VLO
cont(q, k) = VLO

cont = α11+α2 σ 1 ·σ 2+α3 τ 1 ·τ 2+α4 σ 1 ·σ 2 τ 1 ·τ 2 ,
(33)

where the αi are low-energy couplings (LECs) that absorb the
contributions of high-energy degrees of freedom. These LECs
are typically fit once to experimental data, e.g., NN scattering
phase shifts or cross sections. The resulting Hamiltonian can
then be used to make predictions for all nuclear systems, e.g.,
the nuclear matter of interest to this contribution. At next-to-
leading order (NLO), where ν = 2, the contact interactions are
momentum-dependent:

VNLO
cont (q, k) = γ1 q

2 + γ2 q
2
σ 1 · σ 2 + γ3 q

2
τ 1 · τ 2

+ γ4 q
2
σ 1 · σ 2τ 1 · τ 2 + γ5 k

2 + γ6 k
2
σ 1 · σ 2

+ γ7 k
2
τ 1 · τ 2 + γ8 k

2
σ 1 · σ 2τ 1 · τ 2

+ γ9 (σ 1 + σ 2)(q× k)+ γ10 (σ 1 + σ 2)(q× k)τ 1 · τ 2

+ γ11(σ 1 · q)(σ 2 · q)+ γ12(σ 1 · q)(σ 2 · q)τ 1 · τ 2

+ γ13(σ 1 · k)(σ 2 · k)

+ γ14(σ 1 · k)(σ 2 · k)τ 1 · τ 2 , (34)

where the γi are the LECs at NLO.
In addition to contact interactions, chiral EFT explicitly

includes long-range pion exchange contributions. At LO for
example, chiral interactions include the one-pion-exchange
interaction (OPE), given in momentum space by

V
(0)
OPE(q) = −

g2A
4f 2π

σ i · qσ j · q

q2 +m2
π

τ i · τ j , (35)

where gA is the axial-vector coupling constant of the nucleon, fπ
is the pion decay constant, and mπ is the pion mass. Similarly
to the short-range part, at higher orders more involved pion
exchange contributions need to be accounted for.

These interactions are then Fourier transformed from
momentum to coordinate space. To implement chiral
interactions in QMC methods, local interactions need to be
constructed. There are two sources of possible non-localities: (i)
non-local operators that depend on k, see, e.g., Equation (34), or
(ii) non-localities originating in the choice of so-called regulator
functions, that are necessary in many-body calculations to cut off
diverging momentum dependences.

The first source of non-localities can be avoided by choosing
a local set of contact interactions. Let me explain the basic
idea. Since chiral forces describe fermionic interactions that
are typically used between antisymmetrized wave functions,

it is intuitive to define the antisymmetrized interaction
Vas = 1/2 (V −A[V]), with the antisymmetrizer

A[V(q, k)] =
1

4
(1+ σ i · σ j)(1+ τ i · τ j)

×V

(

q → −2k, k → −
1

2
q

)

. (36)

Constructing the antisymmetrized LO interaction, one obtains

V
(0)
cont,as =

1

2

(

1−
1

4
(1+ σ i · σ j)(1+ τ i · τ j)

)

V
(0)
cont

=

(

3

8
α1 −

3

8
α2 −

3

8
α3 −

9

8
α4

)

+

(

−
1

8
α1 +

5

8
α2 −

3

8
α3 +

3

8
α4

)

σ i · σ j

+

(

−
1

8
α1 −

3

8
α2 +

5

8
α3 +

3

8
α4

)

τ i · τ j

+

(

−
1

8
α1 +

1

8
α2 +

1

8
α3 +

3

8
α4

)

σ i · σ j τ i · τ j

= C̃S + C̃T σ i · σ j +

(

−
2

3
C̃S − C̃T

)

τ i · τ j

+

(

−
1

3
C̃S

)

σ i · σ j τ i · τ j . (37)

Hence, one finds that if the LO chiral interactions are used
between antisymmetrized wave functions, only two out of the
four couplings are linearly independent. This is also intuitive, as
the LO interactions describe the two possible S-wave scattering
channels. As a consequence, it is sufficient to choose two out of
the four operators and the common choice is

V
(0)
cont = CS + CTσ i · σ j . (38)

Similarly, at NLO, it is possible to choose only 7 out of
the 14 operators given in Equation (34). To construct local
interactions, one chooses the 6 local terms as well as the spin-
orbit interaction ∼ γ9 that can be treated within QMC methods.
All the additional operator structures are then generated through
antisymmetrization. Furthermore, pion-exchange interactions
are local up to next-to-next-to-leading order (N2LO).

To avoid the non-localities due to the choice of regulator
function, one typically defines these functions directly in
coordinate space, e.g., by

flong(r) =

(

1− e
−

(

r
R0

)n1)n2

, fshort(r) =
n

4π R30 Ŵ
( 3
n

) e
−

(

r
R0

)n

,

(39)
where flong(r) is a long-range regulator and fshort(r) is a short-
range regulator, and R0 is the cutoff scale. The long-range
regulator function is applied to pion-exchange contributions, and
cuts off short-range divergences ∼ 1/r3n, while the short-range
regulator smears out short-range delta-like contact interactions.
When applying these regulator functions, regulator artifacts
might appear that have to be carefully analyzed [103, 104].
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It can be shown that it is possible to construct local
chiral interactions up to N2LO [87, 88, 98, 100] using the
ideas described above. These interactions can then be used in
QMC methods. The N2LO interactions used in the following
describe nucleon-nucleon phase shifts up to laboratory energies
of 500MeV within uncertainties, except the triplet D-wave
phase shifts. To properly describe these phase shifts, it is
necessary to construct interactions at next-to-next-to-next-to-
leading order (N3LO), because only at that order D-wave
contact interactions appear. At N3LO, however, only 8 out of
30 operators are local and, hence, there are too many non-local
operators for this approach to work. Possible solutions are the
definition of maximally local potentials [6], or the perturbative
treatment of non-localities. The continued development of local
chiral interactions is work in progress. However, I would like
to stress that when describing neutron matter the triplet D
waves vanish.

A detailed discussion of local interactions is not within the
scope of this contribution and I refer the interested reader to
Piarulli and Tews [101], where the derivation of local chiral
interactions in both the delta-full and delta-less approaches (i.e,
including explicitly delta-isobar degrees of freedom or not) is
explained. In addition, Piarulli and Tews [101] explains the
regularization scheme and appearing regulator artifacts in great
detail. Local chiral interactions have been successfully used in
calculations of nuclei [6, 7, 90] and I refer to Lynn et al. [72]
for a review of recent results. In section 4, I will show how
to use QMC calculations with chiral interactions to understand
neutron stars.

3.3. Strengths and Weaknesses of the QMC
Approach
Before discussing results, I would like to discuss strengths and
weaknesses of the QMC approach with local chiral interactions
compared to other many-body approaches mentioned before.

A major weakness of QMC methods is that they can only
employ local interactions. This makes many contemporary
nuclear Hamiltonians, especially many chiral Hamiltonians, not
suitable at the moment. For example, as stated before, this
currently limits the order of the chiral interactions employed
in QMC methods to be below N3LO, while other many-body
methods can typically employ interactions at higher orders. The
need for local interactions presents a very strong limitation
of QMC methods, and leads to additional problems, e.g., the
appearance of regulator artifacts due to the violation of Fierz
rearrangement freedom [104]. These regulator artifacts increase
the uncertainties of the calculations [3].

However, even though QMC methods can only explore local
interactions up to N2LO, they are capable of solving the many-
body problem also for hard, high-cutoff interactions in an
accurate and precise manner. While other many-body methods,
can employ a wider range of interactions, they are typically
limited to perturbative, low-cutoff interactions, for which these
methods converge. Typically, bare chiral interactions have large
Weinberg eigenvalues [105] and need to be softened to be
implemented inmost many-bodymethods. This is done by either
employing low cutoffs of the order of 400 MeV from the start or
by using softening transformations, e.g., the similarity RG (SRG).

The ability to employ hard and/or bare interactions presents a
major strength of QMCmethods.

Work on constructingN3LO interactions for QMCmethods is
under way, see, e.g., Piarulli et al. [6]. Furthermore, work on high-
cutoff local interactions is in progress, which will allow to explore
cutoff regions where regulator choices become less important and
where uncertainties from regulator artifacts are reduced [106].

4. RESULTS FOR NEUTRON STARS

4.1. The Dense-Matter Equation of State
To describe neutron stars, one needs access to the EOS, i.e., the
relation of energy density and pressure; see section 2. In the
following I will discuss how to extract this information from
QMC simulations of nuclear matter.

Quantum Monte Carlo simulations are typically performed
for A nucleons in a box with volume V = L3. The result of
these simulations is the total energy per nucleon in the box, E/A,
as a function of the number density n = A/V and the chosen
proton fraction, x = np/(nn+np) = Z/A, where np is the proton
density, nn is the neutron density, and Z is the number of protons
in the box. The proton fraction determines the ratio of protons to
neutrons, and is typically less than 10% in the core of neutron
stars. Given the quantity E/A(n, x), it is easy to reconstruct the
energy density and pressure:

ǫ =
mN · A+ E

V
= n ·

(

mN +
E

A

)

, (40)

p = −
∂E

∂V
= n2

∂E/A

∂n
. (41)

The proton fraction is determined by the β-equilibrium between
protons, neutrons, and electrons and results from the condition

µn(n, x) = µp(n, x)+ µe(n, x) , (42)

where the µi are the chemical potentials of neutrons, protons,
and electrons, respectively. The chemical potential can also be
obtained from E/A(n, x). At a given density, Equation (42)
determines the proton fraction x. Hence, if one calculates
E/A(n, x), one can obtain p(n) and ǫ(n) in β-equilibrium, and
from this the EOS.

Ideally, a calculation of E/A(n, x) at arbitrary proton fraction
would be desirable to compute the EOS in β equilibrium.
However, this is computationally expensive because several
values of x would need to be computed for each density.
Furthermore, with the addition of protons, interactions become
more complicated to treat in QMCmethods for nucleonicmatter.
For neutron stars, due to the small proton fraction, one generally
starts from calculations of the pure neutron system with x = 0,
called pure neutron matter (PNM), because the calculation is
much easier as only certain parts of the interaction contribute.
The AFDMC method is ideally suited to study pure neutron
systems, and has been extensively used in the past for calculations
of neutron drops and PNM [3, 33, 75, 76, 79, 99, 107, 108]. From
PNM, one can typically extrapolate to small proton fractions
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FIGURE 4 | EOS of PNM obtained from QMC calculations with local chiral

interactions at N2LO from Tews et al. [33]. The band indicates the theoretical

uncertainty of the calculation, which mainly originates in the uncertainty of the

nuclear interaction [3]. The chiral EFT band is compared with several model

EOS for astrophysical calculations. Republished with permission of IOP

Publishing, from Gandolfi et al. [30]; permission conveyed through Copyright

Clearance Center, Inc.

by using empirical information from symmetric nuclear matter
(SNM) with x = 1/2:

E

A
(n, x) = ESNM(n)+ (1− 2x)2S(n) , (43)

where S(n) = EPNM(n) − ESNM(n) is the symmetry energy and
denotes the difference between SNM and PNM. The SNM EOS
can be expanded around saturation density as

ESNM(n) = E0 +
K0

2!

(

n− n0

3n0

)2

+O(n3) , (44)

where E0 ≈ −16 MeV, n0 ≈ 0.16 fm−3, and K0 ≈ 230 MeV
are empirical parameters that can be constrained experimentally.
Using this information, the EOS of PNMcan be easily extended to
the small proton fractions of the order of 5% in β-equilibrium; see
also Hebeler et al. [109]. I would like to note that, instead of using
empirical values for the SNM parameters, it is also possible to
calculate these parameters using QMC methods and local chiral
interactions. This has very recently been achieved in Lonardoni
et al. [80].

In Figure 4, I show AFDMC results for the energy per particle
for 66 neutrons in a box as a function of density [3, 33].
The results have been obtained with local chiral interactions
at N2LO with coordinate-space cutoff R0 = 1.0 fm (red
band), where the band denotes the theoretical uncertainty

from the nuclear interactions as estimated from the order-by-
order results [102]. In addition, the results are compared to
results for astrophysical model EOS that are commonly used
in astrophysical simulations: the Lattimer-Swesty EOS with
incompressibility K = 220 [110], the TM1, SFHo, and SFHx
EOSs (Hempel, private communication), the FSU and NL3
EOSs (Shen, private communication), and the DD2 EOS (Typel,
private communication). It is obvious that the QMC calculations
put strong constraints on the EOS of PNM, and disfavor several
EOS, in particular EOS that lead to large pressures (large slopes of
E/A with density). The L parameter, which is defined as the slope
of the symmetry energy at saturation density and is connected to
the pressure of PNM at saturation density, is found to lie in the
range L = 24− 68 MeV [80]. The calculation of PNM is now the
starting point to construct the neutron-star EOS.

To study neutron stars, we have to extend these calculations
threefold. First, as discussed before, we have to extend the
PNM EOS to finite proton fractions in β-equilibrium. Second,
at low densities, neutron stars have a crust that consists of a
lattice of nuclei and has to be taken into account. It is possible
to replace the EOS at low densities, below ≈ 1/2nsat, with
phenomenological crust EOS models. In Tews [111], I have
shown how to use neutron-matter calculations and information
on SNM to construct a crust EOS with theoretical uncertainties
in the Wigner-Seitz approximation. In this approximation, the
Wigner-Seitz cell is modeled as a nucleus with density nnuc and
proton fraction xnuc surrounded by a pure neutron phase in
equilibrium. The two phases can be modeled using the results of
many-body calculations and I refer the reader to Tews [111] for
more details. The results of this crust model are also in excellent
agreement with phenomenological crust models. This crust EOS
replaces the EOS at low densities. Third and final, as one can see
in Figure 4, the uncertainty from calculations with chiral EFT
interactions grows fast with density because momenta approach
the breakdown scale. Beyond approximately 2nsat, calculations
with local chiral interactions are not reliable anymore [33].

To reliably extract neutron-star properties, it is crucial to
find a way of extending QMC calculations to higher density
in a model-agnostic way, to avoid introducing any systematic
uncertainties. In Tews et al. [33, 50, 59], we have developed an
extension of QMC calculations to higher densities using the speed
of sound cS; see also Greif et al. [112]. This extension uses the
QMC calculations, extended to β-equilibrium and including a
crust, up to a certain density ntr, which is varied between 1−2nsat.
From these results, the speed of sound up to ntr is calculated.
We do not know the speed of sound at higher densities, but we
know that it has to be smaller then the speed of light, due to
causality, and larger than 0, as the neutron star would otherwise
be unstable: 0 ≤ cS ≤ c. Hence, by sampling many curves
in the speed of sound plane, that are constrained up to ntr by
QMC calculations and above by 0 ≤ cS ≤ c, we can gauge
the uncertainty in the neutron-star EOS. In practice, we sample
these curves as piecewise linear segments in the speed-of-sound
plane. From the resulting curves for cS, we then can reconstruct
the EOS and solve the TOV equations. The only observational
requirement we enforce is that each EOS has to reproduce the
heaviest observed neutron stars.
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FIGURE 5 | Equation-of-state envelopes for ntr = nsat (left) and ntr = 2nsat (right). Adapted by permission from Springer Nature, Tews et al. [50], copyright 2019.

I show the resulting EOS envelopes in Figure 5 for ntr =

nsat (left panel) and ntr = 2nsat (right panel). These envelopes
include all EOS that are consistent with QMC calculations at low
densities. The range where low-density constraints from QMC
calculations are enforced can easily be identified from the plots.
At larger densities, there is a great freedom for the EOS. However,
even though uncertainties of theQMC calculations grow fast with
density, the additional information from such calculations in the
density range between 1− 2nsat constrains the EOS significantly.

4.2. Neutron-Star Structure
Using these two sets of EOSs and solving the TOV equations (2),
we can obtain themasses and radii of neutron stars as constrained
by microscopic QMC calculations with uncertainty estimates
from chiral EFT. We show the resulting MR envelopes in
Figure 6 again for the cases ntr = nsat (left panel) and ntr = 2nsat
(right panel). In the first case (left panel), the radius of a typical
1.4M⊙ neutron star is constrained to be between 8.4 − 15.2 km.
The maximummass can reach values as high as 4 solar masses. It
is interesting to note that the observation of heavy neutron stars
directly impacts this uncertainty band, by ruling out too soft EOS.
We indicate the excluded region by the gray-shaded area. The
observation of heavier neutron stars, for example in Cromartie
et al. [44], would allow to place even stronger constraints on
soft EOS that produce low-radius neutron stars. Hence, neutron-
star mass observations are a powerful tool to constrain the EOS
of dense matter. However, even with such observations, the
uncertainty remains quite large.

As in the EOS case, a possible improvement for the radius
uncertainty is given by pushing the low-density constraints from
QMC calculations to higher densities. We show the resulting MR
envelope in the right panel of Figure 6 (for ntr = 2nsat), where
the gray-shaded area is shown for comparison. It is found that the
radius range for a typical neutron star reduces to 8.7 − 12.6 km,
much narrower than in the previous case. In this case, the upper
limit on the maximum mass reduces to 2.9M⊙.

4.3. Neutron-Star Mergers
Finally, I address the recently observed neutron-star merger
GW170817 [46–49] and its impact on inferring the MR
relation. Using the information obtained from GW170817 and
its electromagnetic counterpart, the EOS in our set can be
analyzed according to their consistency with the gravitational-
wave and EM signals. In particular, the EM signal constrains
the EOS twofold: it disfavors a prompt collapse of the merger
remnant to a black hole (which requires the maximum mass
to be sufficiently large) [60, 61] and it disfavors a longer-
lived neutron star as merger product (which requires the
maximum mass to be sufficiently small) [61, 62]. This allows
to constrain each EOS by computing its threshold mass for
prompt collapse to a black hole [113, 114], Mthresh, comparing
it with the total gravitational mass of GW170817, Mtot, and
keeping only EOS where Mthresh > Mtot. Also, each EOS
is required to have a maximum mass below 2.3M⊙ [61, 62].
Enforcing the gravitational-wave constraints as well as the
constraints due to the energetics of the kilonova using a Bayesian
analysis [115], this approach allows one to compute a posterior
probability for each EOS in our EOS sets. I show the results
in Figure 7.

It is found that the gravitational-wave data from GW170817
constrains the maximum radius of neutron stars but is not
informative for small radii [51, 116]. The observation of an
electromagnetic counterpart for GW170817 and the deduction
that there cannot have been a prompt collapse to a black hole, on
the other hand, eliminates EOS that are too soft and produce a too
small maximum mass, analogous to NS mass observations. This,
in turn, places a lower limit on neutron-star radii. The upper limit
on the maximummass, however, does not significantly constrain
the EOS posterior.

Assuming that local chiral EFT interactions remain valid up
to nuclear saturation density, one finds that very stiff EOS can
be ruled out by the tidal polarizability of GW170817. I show the
results in the left panel of Figure 7. If, instead, local chiral EFT
interactions remain valid up to twice nuclear saturation density,
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FIGURE 6 | Mass-radius envelopes for ntr = nsat (left) and ntr = 2nsat (right). We show the EOS envelope given all constraints (red area), as well as the MR space

that is ruled out by the two-solar mass constraint and/or when enforcing chiral EFT constraints up to larger densities (gray areas). The results are compared to the

same EOSs shown in Figure 4. Adapted by permission from Springer Nature, Tews et al. [50], copyright 2019.

FIGURE 7 | Mass-radius posteriors after constraints from the binary neutron-star merger GW170817 are enforced for the EOS set with ntr = nsat (left) and ntr = 2nsat
(right). The shading of the individual MR curves corresponds to their posterior probability. The red-dashed lines indicate the mass range spanned by the prior, and the

red-dotted line indicates the maximum neutron-star mass constraint as inferred from GW170817. The colored contours indicate the 50th and 90th percent credibility

regions for the two neutron stars in GW170817, with the corresponding 1D marginalized posteriors plots on the sides. Figure taken from Capano et al. [115].

theoretical predictions for the EOS and gravitational-wave
observations agree from the start, and enforcing gravitational-
wave constraints does not impact the MR relation significantly
(right panel of Figure 7). In both cases, the final results are
consistent with each other and provide the most stringent
constraints on the radius of a typical neutron star to date, R1.4 =
11.0+0.9

−0.6 km.

5. CONCLUSION AND OUTLOOK

In this review, I have discussed how to use QMC methods
in combination with local interactions from chiral effective
field theory up to N2LO to address the structure of neutron
stars. I have shown how to obtain constraints on the
EOS of dense matter, probed in the core of neutron stars,
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from microscopic calculations, and how these constraints
impact the mass-radius relation. I have addressed the impact
of the observation of heavy two-solar-mas neutron stars
and the first observed binary neutron-star merger and its
electromagnetic counterpart.

Quantum Monte Carlo methods have proven to be a
reliable tool to investigate the EOS of neutron and neutron-
star matter. Its recent combination with interactions from
chiral effective field theory allows to build a systematic
framework for the EOS with theoretical uncertainty estimates.
However, current uncertainties are still sizable due to limitations
in the employed interactions. Results for the mass-radius
relation highlight that theoretical predictions need to be
improved in the density range between 1 − 2nsat in order
to provide accurate theoretical predictions of neutron-star
structure observables. Work to improve the interactions is
under way.
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I review the application of self-consistent Green’s function methods to study the

properties of infinite nuclear systems. Improvements over the last decade, including

the consistent treatment of three-nucleon forces and the development of extrapolation

methods from finite to zero temperature, have allowed for realistic predictions of the

equation of state of infinite symmetric, asymmetric and neutron matter based on chiral

interactions. Microscopic properties, like momentum distributions or spectral functions,

are also accessible. Using an indicative set of results based on a subset of chiral

interactions, I summarize here the first-principles description of infinite nuclear systems

provided by Green’s function techniques, in the context of several issues of relevance for

nuclear theory including, but not limited to, the role of short-range correlations in nuclear

systems, nuclear phase transitions and the isospin dependence of nuclear observables.

Keywords: nuclear and particle physics, neutron stars - general, short-range action of nuclear forces, spectral

function, theoretical nuclear physics

1. INTRODUCTION

The recent discoveries of neutron-star binaries GW170817 [1] and GW190425 [2] are formidable
feats in gravitational-wave (GW) and multimessenger astronomy. These events provide unique
insight into a great variety of astrophysical questions, from stellar physics to cosmology. In dense
matter physics, the analysis of multimessenger data is providing a unique way forward in our
understanding of matter in its most neutron-rich form. Gravitational waves from the inspiral
carry imprints of the equation of state (EoS) of neutron-star matter [3]. The initial analysis of
the source GW170817 has already provided significant constraints on the masses, radii and EoSs
of neutron stars [4]. The expectation is that, as more of these GW sources are detected in the
next few years, they will provide more and more accurate observational constraints. Simultaneous
developments in X-ray burst observations are also providing equally important and independent
constraints on the EoS and the physical properties of neutron stars (NSs) [5]. Soft X-ray waveforms
of rotation-powered pulsars also provide promising NS constraints [6, 7].

Theoretical nuclear physics tools provide relevant input for densematter physics. Among others,
there have been several significant efforts trying to put constraints on the symmetry energy [8, 9]
or the EoS itself [10]. The data in the new generation of astrophysical observations will tighten
these constraints, and may even allow for further relevant conclusions on macroscopic observables,
like the EoS [11]. Connecting these bulk observable constraints to the strong interaction among
neutrons requires significant efforts on the nuclear theory side. There is a stringent need for the
development of realistic predictions with systematic errors based on our understanding of the
physics of dense systems. This necessarily requires the use of ab initio nuclear theory techniques
that can provide a solid, quantifiable link between macro- and micro-physics [12, 13]. For the case
of GW inspirals, this link also demands for an understanding of dense matter properties not only
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in the zero-temperature domain, but at temperature scales which
are significant enough to modify some nuclear properties (e.g.,
temperatures in the range of tens of MeV) [14–18]. There is a
similar need for microphysics inputs in the case of core-collapse
supernovae, where the formation process of proto-NSs [19] and
the subsequent development of a neutrino-heated shock wave
require an understanding of neutrino emission from compact
objects [20, 21].

The accuracy of theoretical nuclear physics predictions is
hampered by a variety of different factors. First, the strong
interaction among nucleons is difficult to pin down. Scattering
experiments provide extremely useful insight at the two-body
level, but three-neutron forces remain relatively unconstrained
[22]. For neutrons, four-body and higher level forces are expected
to play a small role for the EoS [23]. Chiral effective field theory
(χEFT) [24, 25] and Lattice QCD [26, 27] efforts in the next
decade will be crucial to provide clear limits on these terms. As
a first approximation, one can estimate the uncertainty in the
strong force by considering different input Hamiltonians that fit
scattering phase-shifts and few body data [28, 29].

In addition, even if the interaction is perfectly understood,
one still needs to solve a many-body multicomponent1 problem
to link the NN force to the macroscopic properties related to
the EoS. While several methods have been devised to attack
this problem, a clear-cut solution is difficult, if not impossible.
The treatment of many-body correlations differs depending
on the method that is used to describe dense neutron-rich
systems [30, 31]. In particular, the structure of the strong force
itself—particularly its short-range core—may preclude low-order
perturbative treatments. Self-consistent Green’s function (SCGF)
techniques can be used to obtain both perturbative and non-
perturbative results from these interactions of relevance for
nuclear physics [32–34]. This approach offers the promise to
simultaneously tackle issues that are relevant for neutron-star
astrophysics, while providing insight into problems that are
appropriate for nuclear structure (particularly in terms of short-
range correlations).

My aim with this review is to provide a summary of the recent
advances of the SCGF treatment of infinite nuclear systems. I
will only explore the uncertainty associated to the Hamiltonian
by looking at calculations performed with three different chiral
interactions. This represents a small subset of possible forces,
and is by no means representative of the overall uncertainty due
to the strong interaction in infinite systems. Even then, these
interactions predict relatively different micro- and macroscopic
properties below, around and above saturation density. A
benchmark analysis with different methods, while necessary to
fully understand the limitations of nuclear theory, lies beyond
the scope of this contribution. I will instead provide a qualitative,
and somewhat limited discussion of the many-body scheme
dependence of the results, by providing comparisons to many-
body perturbation theory results based on similar Hamiltonians.

I start this review with a brief summary of the formal tools
associated to the SCGF formalism in the following section. I

1Multicomponent in the sense that it requires both neutrons and protons.

note that there are monographs [32, 34] and books [33, 35,
36] that provide many more details, and I refer the interested
reader to those. Section 3 is devoted to a discussion of recent
numerical results that concern single-particle properties in
dense matter. These include spectral functions, self-energies and
momentum distributions. In section 4, the discussion turns into
the macrophysics of infinite nuclear systems, with a particular
emphasis on the EoS. I finally provide some conclusions and an
outlook in section 5.

2. SELF-CONSISTENT GREEN’S
FUNCTION APPROACH

2.1. Formalism
Many-body Green’s function are a natural starting point in the
discussion of quantum many-body systems [33, 37]. Green’s
function (or propagators) arise naturally in diagrammatic
treatments, and provide a description of several real or
virtual excitation processes within the many-body system.
Formally, these propagators take the form of time-ordered
correlation functions associated to the creation and annihilation
of excitations and can be expressed in terms of Feynman
diagrams [38, 39]. Broadly speaking, Green’s function
techniques attempt to sum series of the most physically
relevant diagrams to describe the system under consideration.
For instance, in the case of thermodynamics of correlated
infinite systems, one often resorts to an expansion that involves
renormalized interactions treating the short-range core non-
perturbatively via infinitely repeated scattering processes [40].
When it comes to the response of finite systems, one instead
considers diagrams that describe relevant excitations within
the system [32]. This allows SCGF practitioners to look at
many-body systems from different perspectives, providing a
characterization of the system that includes microscopic and
macroscopic properties.

In SCGFs methods, internal propagators of all diagrams are
consistently dressed. In other words, renormalization effects
are introduced from the onset in the formalism - and hence
the monicker “self-consistent.” At a diagrammatic level, this
means that only skeleton (or 1-particle-irreducible) diagrams
are required for single-particle self-energies. In practice, one
pays the price of having to run simulations iteratively for
a given system which, in infinite matter, translates into a
fixed density (or temperature) [33]. A key advantage of SCGF
methods is the direct access to the propagators themselves. These
contain relevant information for the system’s microphysics,
in terms of spectroscopy and strength distributions [32].
Moreover, propagators can also be used to compute bulk
properties, including total energies, thermodynamical properties
and pressures. Within a single SCGF simulation, one therefore
obtains a significantly broad scope in terms of physical
information. This goes beyond the reach of other many-body
approaches which are mostly tailored to address the energy of
the system, either by minimizing it using quantum Monte-Carlo
[31, 41] techniques, or addressing it by means of diagrams, like
the Brueckner-Hartree-Fock (BHF) approach [30].
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Another strategic advantage of the SCGF formalism is its
generality. Within the very same formalism, one can tackle
both finite and infinite systems—see [42] for a contribution
in this volume that specifically discusses recent applications
of SCGF techniques to finite nuclei. More importantly in the
context of astrophysics, SCGF methods can be formulated
consistently at finite temperature [33, 37]. In fact, fully-
fledged infinite nuclear matter studies are usually performed at
finite temperature [43–45]. For sufficiently large temperatures
(typically T ' 2 − 5 MeV), this treatment avoids the
complications associated to nuclear superfluidity [43, 46] that
plagued early attempts of SCGF calculations in the 1990s
[47]. Furthermore, a finite temperature formulation allows for
access to astrophysically-relevant temperature dependences of
observables [18], and provides insight into liquid-gas, thermally-
induced phase transitions in dense systems [48, 49]. It is
now possible to use these non-superfluid finite temperature
calculations to perform meaningful extrapolations to zero
temperatures for both microscopic [50] and bulk properties [51],
as we shall see in the following.

A key quantity in the SCGF formalism is the so-called
spectral function Ak(ω). This characterizes fully the one-body
propagator G, which is generally defined as a time-ordered
product of a creation and a destruction operator [33, 36]. Upon
a Hilbert transform with a complex energy variable z, the
spectral function and the one-body propagator are related via a
spectral decomposition,

Gk(z) =

∫

dω

2π

Ak(ω)

z − ω
. (1)

Different time orderings give rise to different components of the
propagator, including the retarded and advanced components
that can be addressed by taking z = ω ± iη, with η infinitessimal
[35]. All time-ordered components can be accessed through the
spectral function Ak(ω), which also has the advantage of having
a probabilistic interpretation. The spectral function provides
the probability distribution associated to either extracting or
attaching a particle with well-defined momentum k, and energy
ω, to the infinite system. In the finite-temperature Matsubara
formalism, the Lehmann representation of Ak(ω) takes into
account not only the thermal excitations on the ground state
of the system, but also the presence of excited states that are
populated according to a thermal distribution,

Ak(ω) = 2π
∑

n,m

e−β(En−µNn)

Z
|〈m|â†

k
|n〉|2 δ[ω − (Em − En)]

+ 2π
∑

n,m

e−β(En−µNn)

Z
|〈m|âk|n〉|

2 δ[ω − (En − Em)] .

(2)

In this equation âk (â†
k
) are destruction (creation) operators of

single-particle states with well-defined momentum k. A many-
body systemwithNn particles can have different eigenstates of the
many-body Hamiltonian with energy En, labeled with quantum
number n. Z =

∑

n e
−β(En−µNn) is the corresponding partition

function and, in the grand-canonical ensemble, the system is
described in terms of a given temperature T = 1/β , and a
chemical potential µ.

As a well-defined probability distribution, the spectral
function is normalized

∫

dωAk(ω)/2π = 1.When this integral is
weighted by the corresponding thermal population of hole states,
one obtains the momentum distribution of the system,

nk =

∫

dω

2π
Ak(ω)f (ω) . (3)

In turn, even though the formulation of the problem is
grand-canonical in nature, the momentum distribution
can be used to fix the density of the system by requiring
that the chemical potential µ in the Fermi-Dirac function

f (ω) =
[

1+ exp[(ω − µ)/T]
]−1

is such that the
normalization condition

ρ = ν

∫

d3k

(2π)3
nk (4)

is fulfilled. Here ν = 2 represents the degeneracy in spin for
neutron or asymmetric matter, and ν = 4 is the degeneracy in
spin and isospin for symmetric matter.

The Dyson equation [z − k2/2m − 6k(z)]Gk(z) = 1 provides
a connection between the one-body propagator G and the self-
energy 6. The latter is traditionally decomposed into a real and
an imaginary part, and the spectral function is then connected to
the retarded self-energy by the equation:

Ak(ω) =
−2Im6k(ω)

[

ω − k2

2m − Re6k(ω)
]2

+
[

Im6k(ω)
]2 . (5)

The real part of the self-energy Re6k(ω), is often interpreted as
an energy-dependent mean-field potential [52]. Systems with a
well-defined quasi-particle structure have spectral functions with
strong peaks around the energy for which the denominator of
Equation (5) is smallest. This happens at the so-called quasi-
particle energy, which can be accessed from Re6k(ω) by solving
the self-consistent equation

εk =
k2

2m
+ Re6k(εk) , (6)

at each momentum k. This on-shell condition provides a
one-to-one correspondence between energy and momentum—
a dispersion relation that is often used to characterize relevant
single-particle properties. Other many-body approaches, like
many-body perturbation theory or the BHF diagrammatic
method, make use of such on-shell dispersion relations
throughout [39]. The SCGF method, in contrast, considers all
energy-dependent, offshell components in the self-energy and
the spectral function. These effects are relevant to describe the
fragmentation of single-particle strength [33].

The imaginary part of the self-energy is usually discussed
in terms of quasi-particle lifetimes [33]. For the retarded self-
energy, the imaginary component is negative, and is directly
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related to the available phase space. Indeed, for an energy-
independent self-energy, the Fourier transform of Equation (5) to
the time domain provides a propagator that decays exponentially
in time with a characteristic timescale,

τ−1
k

= Ŵk = −2 Im6k(εk) . (7)

The energy andmomentum dependence of the self-energy can be
characterized in some domains by a model-independent analysis
[33, 52]. According to Luttinger’s theorem for normal fermionic
systems, at zero temperature the imaginary part of the self-energy
should be exactly zero at the Fermi energy and, close to this
energy, it should behave quadratically, so that Im6k(ω = µ) ≈
ak(ω−µ)2 [53].When temperature sets in, Im6k atω = µ grows
quadratically with T [37].

Expressions for the self-energy can be derived at different
orders in many-body perturbation theory [33, 36]. I will present
results here based on the ladder approximation [33]. A summary
in terms of diagrams of this approximation is provided in
Figure 1. The key ingredient in this approach is the T−matrix
shown in diagram (c), which is obtained from a Lippman-
Schwinger equation where the intermediate kernel involves a
particle-particle and hole-hole two-body propagator at finite
temperature. This energy-dependent in-medium interaction
describes re-scattering effects in the medium and can therefore
capture short-range effects. Three-nucleon forces are included in
the ladder approximation by constructing an effective two-body
force, diagram (a) of Figure 1. This is the result of adding up the
bare two-nucleon force (dashed line), V , and a three-body force
(dotted line) that has been appropriately averaged over a third
nucleon [54–56].

In the ladder approximation, the imaginary part of the self-
energy is given by the expression:

Im6k(ω) =

∫

d3k1
(2π)3

∫

dω1

2π
〈kk1|ImT(ω + ω1)|kk1〉A Ak1 (ω1)

[f (ω1)+ b(ω + ω1)] , (8)

where b(�) =
[

exp[(� − 2µ)/T]− 1
]−1

is a Bose-Einstein
distribution and ImT is the imaginary part of the T−matrix.
In SCGF methods, one generally computes the imaginary part
first, which tends to be simpler to evaluate thanks to energy and
momentum conservation. Whereas explicit expressions for the
real part are normally available too, one can avoid a series of
complex integrals over momentum and energy phase-space by
computing the real part from the dispersion relation,

Re6k(ω) = 6∞
k − P

∫

dω′

π

Im6k(ω
′)

ω − ω′
, (9)

where P denotes the principal value. The energy-independent
(but momentum-dependent) component 6∞

k
, is akin to a

Hartree-Fock self-energy. This effective one-body interaction
is built by averaging the two-nucleon and the three-nucleon
interaction over the Fermi sea of one or two particles, as depicted

FIGURE 1 | Diagrammatic representation of the ladder approximation to the

self-energy, 6, including three-nucleon interactions. Diagram (A) describes the

two-body effective interaction (wiggly line) obtained from the sum of the

two-body interaction V (dashed line) and an averaged three-nucleon force W

(dotted line). Diagram (B) shows the one-body effective interaction. Diagram

(C) provides the self-consistent equation for the T−matrix. Finally, diagram (D)

represents the two components of the self-energy: an energy-independent

one-body effective interaction, and a dispersive contribution arising from

the T−matrix.

in diagram (b) of Figure 1 [54]. This average includes propagator
renormalization effects via a correlated momentum distribution,

6∞
k = ν

∫

d3k1
(2π)3

〈kk1|V|kk1〉Ank1

+
ν

2

∫

d3k1
(2π)3

∫

d3k2
(2π)3

〈kk1k2|W|kk1k2〉Ank1nk2 . (10)

In this expression, the matrix elements correspond to
antisymmetrized two-nucleon (V) and three-nucleon (W)
interactions, respectively. The chiral interactions that are used in
this work are discussed in more detail in the following section.

The self-energy operator can be defined diagrammatically
and encodes different many-body processes depending on the
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level of approximation [33]. At the lowest order, the so-
called mean-field or Hartree-Fock approximation, the self-
energy is energy-independent and formally given by the
same expression as in Equation (10), but with internal
momentum distributions nk, computed from on-shell Fermi-
Dirac distributions nk = f (εk). Second-order self-energies
are instead energy-dependent, proportional to V2 and have
already a non-trivial imaginary part [33, 51]. These account
for 2p-1h and 1p-2h excitations within the system. In infinite
matter applications, non-perturbative approximations beyond
the second order are typically considered. A self-energy arising
from a ladder resummation of the in-medium interaction deals
effectively with the strong short-range and tensor components of
the NN force, and leads to stable numerical results even for hard
core interactions—for details see [57, 58].

When a SCGF calculation converges for a given set of external
parameters, one typically stores the complex self-energy 6k(ω).
All other microscopic properties, including spectral functions,
can be derived from it according to Equation (5). The energy
per particle of the system is then accessed by an energy-weighted
integral over the spectral function, the so-called Galitskii-Migdal-
Koltun sum-rule [33],

E

A
=

ν

ρ

∫

d3k1
(2π)3

∫

dω

2π

1

2

[

k2

2m
+ ω

]

Ak(ω)f (ω)−
1

2
〈W〉 .

(11)

Here, we also incorporate a correction term proportional to
the expectation value of the 3NF 〈W〉. This is computed by
using an additional integral over momentum of the second term
in Equation (10). In other words, we keep the lowest order
approximation to the expectation value of the 3NF, in agreement
with techniques typically employed in finite nuclei [59]. The
formal procedure to go beyond this approximation exists, as
discussed in [54], but has not been implemented in infinite
systems yet.

At finite temperature, the system is described in terms of
thermodynamical potentials like the Helmholtz free energy F =

E − TS. This requires an explicit calculation for the entropy
S, based on Green’s function methods. A proposal to compute
S from spectral functions in dense matter was put forward
in [58, 60] based on the formal techniques derived by Pethick
and Carneiro [61, 62]. With access to the entropy, one can then
derive all thermodynamical properties, including the pressure
p = ρ(F/A − µ). Formally, the SCGF method is known to
give rise to thermodynamically consistent results [33, 63]. For
instance, a zero-temperature calculation of the chemical potential
µ, from the Fermi energy of the system εk=kF , or from the density
derivative of the free energy density, provides the same result.
This formal agreement has also been demonstrated numerically
in the past [45, 60].

In terms of formalism, there is no inconvenience to extend
the SCGF method to asymmetric, multicomponent systems.
In fact, the SCGF method has already been used to describe
isospin asymmetric matter in the past [64, 65]. One can
therefore characterize correlations and fragmentation in isospin-
imbalanced systems [66, 67]. In asymmetric matter, all quantities

become functions of isospin—i.e., the spectral functions for
neutrons An

k
(ω) and protons A

p

k
(ω) are different, as are the

self-energies and all other one-body properties. In addition to
the isospin splitting, one must also consider changes in the
effective interactions, so that neutron-neutron (nn), neutron-
proton (np), proton-neutron (pn), and proton-proton (pp) in-
medium T-matrices are explicitly different. Extensions of the
normal ordering procedure to compute effective one and two-
body forces from 3NF matrix elements are also necessary [56],
but relatively straightforward [68]. The results for asymmetric
matter presented here within the SCGF formalism include
explicitly the effect of isospin asymmetry in the normal-ordering
of 3NFs and in the extrapolation procedure from finite to
zero temperature.

2.2. Interactions
For consistency in the presentation, all the results that follow have
been generated with the same set of interactions. I will consider
three sets of χEFT-inspired forces. At the NN level, these three
interactions have been introduced in [69]: they have been fitted
to the same NN scattering data and incorporate different cutoffs
in the relative momentum: 3 = 414 MeV, 450 MeV and 500
MeV. These forces also differ slightly in the shape (particularly
the sharpness) of the regulator in relative momentum. 3NFs
arise naturally in the χEFT formalism [24, 25]. Reference [70]
introduced a set of N2LO 3NF forces based on the previous
three NN interactions. The associated 3NF low-energy constants
cD and cE were fitted to the binding energies of A = 3 nuclei
and to the 3H-3He Gamow-Teller transition matrix element [70].
Calculations are performed for two-body matrix elements with
partial waves up to J = 9.

The 3NFs are included in the SCGF simulations by building
effective one- and two-body density-dependent forces using a
procedure that is akin to normal ordering [71, 72], but includes
a renormalization of occupation probability in nk. Diagrams (a)
and (b) in Figure 1 show the corresponding one- and two-body
effective interactions. Diagrams (c) and (d) indicate how these
are used in the T−matrix calculation and the corresponding
self-energy, respectively. This method is rooted on an extension
of the SCGF formalism to multi-body forces [54], and has
been implemented in symmetric nuclear matter and neutron
matter simulations in [55, 56]. We resort to some numerical
approximations in this averaging procedure. First, the normal-
ordering procedure ignores the center-of-mass dependence of the
3NF, which is set to P = 0. Second, matrix elements off the
diagonal in relative momentum q 6= q′, are extrapolated from
diagonal matrix elements using the prescription q → 1

2 (q
2+q′2).

This procedure also involves a 3NF regulator, which is chosen

to be non-local f (p, q) = exp
[

−
(

q2+p2/3
32

)n]

, and is based on

the two-body relative momentum q and the internal, integrated
single-particle momentum p. The exponent n is chosen in
accordance to the regulator in the 2NF [70]. Within the P = 0
approximation, the off-shell prescription provides results of very
similar quality to many-body perturbation theory calculations
that incorporate fully-fledged 3NFs from the outset [73].
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FIGURE 2 | Left: energy dependence of the zero-momentum spectral function Ak=0 (ω) at different temperatures. Central: the same for Im 6k=0 (ω). Right:

momentum distribution as a function of k/kF . All results have been obtained in symmetric nuclear matter, at a density of ρ = 0.16 fm−3 for the 3 = 500 MeV N3LO

NN plus N2LO 3NFs forces.

2.3. Extrapolation Procedure to Zero
Temperature
Finite-temperature calculations are useful on their own, but
benchmark comparisons with other methods are typically
performed in the zero-temperature limit [30, 31]. A zero-
temperature extrapolation procedure for SCGF simulations was
developed in the context of beyond-BCS pairing [50, 74]. This
procedure is now available generically and can be used to
provide zero-temperature data for symmetric and asymmetric
systems. For a given fixed density, the extrapolation requires as
input a few (typically 4 − 10) finite-temperature simulations.
One typically performs simulations from high temperatures of
order 20 MeV, and subsequently dials down the temperature
to values that are closer to zero. Too close to zero, though,
the simulations will not converge as one enters into the
superfluid regime - so an intermediate range must be found. It
is also important to note that the dependence on temperature
typically scales with the dimensionless degeneracy parameter
T/εF , where εF is the Fermi energy. Because εF typically
increases with density, the expansion is closer to the zero-
temperature result (and therefore more accurate) at higher than
at lower densities.

The extrapolation from finite temperature to zero temperature
works in three independent steps. In a first step, the self-
energies from different temperatures are remeshed to the same
values of momentum and energy. In the second step, the
temperature dependence of the real and imaginary parts of
the self-energy (for each value of k and ω) are fitted to a
polynomial function in temperature. The third step is to use
not one, but different polynomial fits to extrapolate to T =

0. A series of tests are run on these different extrapolations,
and a quality measure is built based on a series of consistency
checks. For instance, the renormalization factor Zk = [1 −

∂ω Re6k(ω)
∣

∣

ω=εk
]−1 is compared to the size of the discontinuity

in the momentum distribution at k = kF . In a consistent theory,
the two quantities should provide the same value [33]. The

quality measure penalizes fits where these values are significantly
different. Importantly, some of these fits have a built-in parabolic
energy dependence of Im6 around ω = µ. Additional details of
this extrapolation procedure are discussed in [50].

I provide an example of this extrapolation procedure in
Figure 2. This shows the temperature dependence of three
properties that are representative of the system’s behavior as a
function of temperature at a fixed density of ρ = 0.16 fm−3.
Calculations have been performed with the N3LO 3 = 500
MeV NN force, supplemented with 3NFs at the N2LO level.
The averaging procedure for these 3NFs consistently takes into
account the density and temperature dependence of the internal
propagators. Qualitatively similar results are obtained for the
3 = 450 and 414 MeV interactions.

The energy dependence of the spectral function Ak=0(ω) and
the imaginary part of the self-energy6k=0(ω) are displayed in the
left and central panels, respectively. I focus on the k = 0 value for
simplicity, but the calculation and extrapolation procedure are
performed for all available momenta. The effect of temperature
in the spectral function is concentrated in the region near ω =

µ. The quasi-particle peak and the positive and negative high-
energy tails are insensitive to thermal effects. For the self-energy,
there is also a relatively strong temperature dependence near
ω = µ, which is known to scale with T2 [37]. The phase-
space dominated peaks in the particle and hole domains at
energies about 200 MeV away from µ are also sensitive to the
temperature. The extrapolated T = 0 result is able to capture
the temperature dependence of these quantities, while providing
consistent results.

The right panel of Figure 2 shows the associated momentum
distribution nk, obtained under the same conditions. Thermal
effects provide additional depletion at low momenta and
populate moderately the vicinity of the Fermi surface. In fact,
temperature modulates substantially themomentum distribution
around k = kF even for relatively low values of T ≈ 4 − 5 MeV.
The extrapolation procedure, however, captures the energy- and
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FIGURE 3 | Spectral function Ak (ω) as a function of energy for three different momenta: k = 0 (left) k = kF (central) and k = 2kF (right). SCGF calculations are

performed at a density ρ = 0.16 fm−3 and have been extrapolated to zero temperature. Results for N3LO NN plus N2LO 3NFs have been performed with three

different cutoffs. The vertical line and solid dot indicate the position of the quasi-particle peak ω = εk , for each of these momenta. The height of this peak has been

chosen arbitrarily.

momentum-information sufficiently well to produce a sharp
transition at the Fermi surface, as expected from Luttinger’s
theorem [37]. The size of this discontinuity is also in agreement
with the renormalization parameter associated to the self-energy
itself. This extrapolation procedure has been implemented not
only in the symmetric nuclear matter and pure neutron matter
[74], but also in asymmetric infinite matter, as I shall discuss in
the following sections.

3. MICROSCOPIC PROPERTIES

In the following, I provide an overview of the microscopic
properties predicted by the SCGF approach for symmetric,
asymmetric and pure neutron matter. The aim of this section is
to show the broad scope of information that can be generated in
SCGF simulations. I focus for simplicity on a single value of the
density ρ = 0.16 fm−3, which is representative of both nuclear
systems and of neutron stars. Note however that the method is
customarily used at other densities. Themajority of the results are
presented in their zero-temperature extrapolated form, although
the temperature dependence of most quantities is available and
has been used for extrapolation purposes. I leave a full analysis of
the density, isospin asymmetry and temperature dependence of
these results for future studies.

3.1. Spectral Functions
Figure 3 provides an example of the structure of the zero-
temperature spectral function in nuclear systems. The three
panels illustrate the energy dependence of the spectral function at
three different momenta: k = 0, below the Fermi surface; k = kF ,
at the Fermi surface; and k = 2kF , above the Fermi surface.
Results are shown for three interactions: 3 = 414 MeV (red

dotted lines); 3 = 450 MeV (yellow dashed lines); and 3 = 500
MeV (blue solid lines).

The general features of the spectral strength in infinite systems
are well-understood [44, 47, 57, 75]. At all momenta other than
kF , the spectral strength has a prominent quasi-particle peak. In
infinite nuclear matter, the peak is very close to the quasi-particle
energy ω = εk obtained from Equation (6). The quasi-particle
energy for the 3 = 500 MeV interaction is displayed in the
three panels of Figure 3with vertical lines. The solid dot is shown
for illustrative purposes, and its height is chosen arbitrarily. The
quasi-particle peak is well-defined in infinite nuclear systems, in
the sense that the peak of Ak(ω) and ω = εk agree relatively
well. At this density, the quasi-particle peak is independent of the
interaction under consideration. In fact, the cutoff dependence of
the quasi-particle peak is not resolvable on the scale of this graph.
I note, however, that while the peaks are well-defined, they are
also relatively broad. Typical widths at k = 0 and k = 2kF are of
the order of Ŵk ≈ 40 MeV.

Spectral functions in infinite nuclear matter display slowly
decaying high (positive and negative) energy tails. These are
particularly prominent at the Fermi surface k = kF , where
the zero-temperature spectral function should be a combination
of a broad energy-dependent background and a zero-width δ

function centered at ω = εkF [33]. In practice, the T = 0
results at k = kF do show some minor structures around
ω = µ as the non-analytical behavior of the δ function is
not built in the extrapolation procedure. The results of Figure 3
clearly show a substantial cutoff dependence in these high-energy
components. This is relatively unsurprising, since these tails are a
direct consequence of the short-range core in the NN force [32].
As expected, the interaction with the largest momentum cutoff
(3 = 500 MeV), and hence the largest resolution in real space,
provides the largest high-energy components. These include a
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shoulder at positive energies in the region 100−500MeVwhich is
characteristic of a relatively strong short-range core. In contrast,
the lower cutoff interactions provide much faster (exponential)
decaying spectral functions beyond the quasi-particle peak. For
positive energies, they provide very little single-particle strength
beyond 500 MeV. The 3 = 414 MeV interaction has faster
decaying tails than the 450 MeV force, which agrees with
intuition. Note that this sharply decaying spectral strength is at
odds with calculations employing traditional phenomenological
NN forces, which typically populate these offshell regions with
higher probabilities [57, 76]. Off-shell high-energy components
are observed in electron-scattering experiments [77] and may
provide a way to quantify the short-range component of NN
forces [78].

The results presented so far concerned symmetric nuclear
matter, where by construction one assumes the same fraction
of neutrons and protons. Isospin asymmetric systems,
however, are interesting on their own. The deep interior
of heavy stable and unstable isotopes is expected to be
a neutron-rich environment, characterized by an isospin

asymmetry parameter,

η =
ρn − ρp

ρn + ρp
, (12)

of order η ≈ 0.2 [79]. In contrast to this relatively mild
isospin asymmetry, the core of neutron stars is expected to be
extremely asymmetric with η ≈ 0.8 [80]. Finite-temperature
SCGF simulations including explicitly isospin asymmetry have
been available for over a decade [64]. In these simulations η

is an external, tuneable parameter. SCGF calculations then give
isospin-dependent self-energies, spectral functions and quasi-
particle properties, as well as the corresponding bulk properties.
These calculations provided insight into the isospin-asymmetry
dependence of the fragmentation of the single-particle strength
[66, 67], but were somewhat limited by two factors. First,
finite temperature effects have a larger importance in the
minority component as asymmetry is turned on, because the
corresponding degeneracy parameter T/ετ

F decreases. Second,
the calculations were performed with two-body interactions only

FIGURE 4 | Neutron (top) and proton (bottom) spectral functions Aτ
k (ω) as a function of energy for three different momenta: k = 0 (left) k = kτ

F (central) and k = 2kτ
F

(right panels). Calculations with the N3LO 3 = 500 MeV and an N2LO 3NF at a density ρ = 0.16 fm−3 have been extrapolated to zero temperature for different

isospin asymmetries η. The vertical dashed line is a guide to separate hole (ω < µτ ) and particle (ω > µτ ) components.
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and thus missed the effects of 3NFs. None of these factors is
particularly critical. Temperature effects can be controlled, and
the effect of 3NFs on the spectroscopic strength is small below
saturation density for both symmetric nuclear and pure neutron
matter [55, 56].

Having said that, recent technical developments have allowed
us to overcome these two shortcomings recently. Figure 4 shows
the spectral functions of neutrons (top panels) and protons
(bottom panels) as a function of energy for different values of
the isospin asymmetry η, at a fixed density of ρ = 0.16 fm−3.
Results are presented for the 3 = 500 MeV N3LO potential
supplemented with 3NFs2. The results for the isospin dependence
of these spectral functions are qualitatively similar to previously
obtained results which lacked 3NFs. The evolution of the neutron
spectral function from symmetric (η = 0) to neutron (η = 1)
matter is relatively mild. The quasi-particle peaks with respect to
the corresponding chemical potential µn become slightly more
(attractive) repulsive for the (hole) particle components. The high
energy tails are relatively insensitive to the isospin asymmetry,
and are mostly affected for the negative energy components at
momenta above the Fermi surface. All in all, this agrees with
the generic picture of a neutron majority component evolving
from a symmetric situation, where tensor correlations provide
larger correlations, to neutronmatter, where only the short-range
component is responsible for fragmentation.

In contrast, the proton spectral function (bottom panels)
is much more affected by isospin asymmetry. In asymmetric
conditions, the relative importance of np pairs increases for the
minority proton component. Since np interactions are mediated
by the tensor component of the NN force, one naively expects

2I note here for completeness that the η = 0 and η = 1 calculations are performed
with independent codes that do not include isospin asymmetry explicitly, and
hence provide a good numerical test of the arbitrary isospin simulations.

enhanced correlation effects for protons in neutron-rich matter.
Simultaneously, for neutron-rich conditions the overall proton
density decreases, so the proton component should somehow
become “less interacting.” SCGF simulations allow us to provide
quantitative predictions to distinguish between these scenarios.

As the isospin asymmetry increases, the single-particle peak
for protons becomes more repulsive with respect to µp.
Importantly, the width of the quasi-particle peak for components
below the Fermi surface (see k = 0 panel) also decreases
substantially. As a consequence, positive high-energy tails
increase with isospin. Interestingly, the central panel (k = k

p
F),

shows a background component that behaves differently for the
addition and removal energy components. Whereas for ω < µp,
the background of the spectral function decreases with isospin
asymmetry, at ω > µp it increases. Above the Fermi surface
(k > k

p
F), the quasi-particle peak is more compressed with

increasing isospin asymmetry, both in terms of a lower peak and a
significantly decreased width. The limit case of a proton impurity
in an η = 1 system cannot be tackled with the present set of
SCGF technology.

While a full analysis is beyond the scope of this initial
presentation of results, the isospin dependence shown here
is relevant for both nuclear experiments and astrophysics.
Hadronic and electron two-nucleon knock-out reactions from
the early 2000s up to the present have shown that np pairs,
rather than pp or nn pairs, are more likely to be knocked off
isospin symmetric targets [81, 82]. Further electron-scattering
results in isospin asymmetric nuclei have provided additional
evidence for this neutron-proton dominance [83]. It is likely
that the tensor component preferentially acts in relatively high-
momentum pairs and provides the physical mechanism behind
these strong isophobic correlations [66, 84]. Extending the np
dominance picture to isospin imbalanced systems would naively
indicate that protons should be more correlated than neutrons in

FIGURE 5 | Density plot of the imaginary part of the self-energy Im6k (ω) as a function of momentum and energy. Dashed lines represent contours at constant values

spaced by 10 MeV. Extrapolated zero-temperature results for symmetric nuclear matter at a density ρ = 0.16 fm−3 are shown for the N3LO NN and N2LO 3NF

combinations at cutoffs 3 = 414 MeV (right) 450 MeV (central) and 3 = 500 MeV (right panel). The solid line represents the quasi-particle peak ω = εk .
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neutron-rich systems, although quantitative statements depends
sensitively on the definition of a correlation measure [85–87]. In
the astrophysical context, the strong modification of the proton
spectral function in isospin asymmetric nuclear matter predicted
by SCGF simulations has been explicitly explored at the level of
the symmetry energy in [88–90]. The fragmentation of strength
in neutron matter has also been used to provide a description of
the pairing properties in dense matter [50, 74].

3.2. Self-Energies
Within the SCGF formalism, the spectral strength is directly
related to the self-energy. The imaginary part of the retarded
self-energy encodes information on both the phase space and the
NN interaction, and can even be used to diagnose interactions
by means of sum rules [76]. I present a density plot of the
zero-temperature extrapolated imaginary part of the self-energy
at ρ = 0.16 fm−3 in Figure 5. Left, central, and right panels
correspond to chiral interactions with cutoffs 3 = 414, 450,
and 500 MeV, including in all cases 3NFs. As expected, Im6k is
zero at ω = µ throughout all momenta. For energies ω < µ,
this function has a hole component with support below k ≈

kF = 263 MeV. The size and shape of this pocket is relatively
interaction-independent. In contrast, the positive energy (ω >

µ) components of Im6k show a clearer cutoff dependence. The
deep pocket around k = 0 in this component is sensitive to
the underlying NN force. Typical phenomenological interactions
have deep pockets, and these extend to very high positive energies
(into the GeV domain). For this set of chiral interactions, the
depth of the pocket is relatively insensitive to the cutoff and of
order 50− 70 MeV. The tails of Im6k=0 fall off relatively quickly
with energy. In fact, the 3 = 414 and 450 MeV self-energies
are almost zero beyond an energy of about 500 MeV. The cutoff
also has a clear effect on the momentum dependence of Im 6k

in the positive energy region. Generally speaking, higher-cutoff

forces allow the imaginary part of the self-energy to extend to
higher momenta.

The solid lines in Figure 5 show the trajectory of the
quasi-particle peak in the energy-momentum plane. Quasi-
particle lifetimes τk in Equation (7), are computed along
these trajectories. The plot indicates that the lifetimes are
relatively insensitive to the differences in self-energies. In other
words, largely different offshell self-energies can give rise to
relatively similar on-shell properties. On-shell components will
be discussed in detail in section 3.4.

The isospin asymmetry dependence of Im6τ
k
(ω) is explored

in Figure 6. Results are shown for the 3 = 500 interaction only
at a fixed density of ρ = 0.16 fm−3, for a variety of isospin
asymmetries. The leftmost panel corresponds to the symmetric
system (η = 0), and is the same as the right panel of Figure 5. The
top panels indicate that the effect of asymmetry in the neutron
self-energy is relatively mild. The pocket at negative energies
ω < µn, associated to neutron holes, is relatively unchanged as η

increases. In contrast, the positive energy (particle) components
evolve with isospin in a substantially different way. The pocket
that in the symmetric situation decayed relatively quickly
with momentum, becomes an almost momentum-independent
structure in the most asymmetric case explored here.

In contrast, proton self-energies show a strong dependence
on isospin asymmetry. As the proton fraction decreases, the
negative-energy (hole) components of Im6

p

k
disappear steadily.

This reflects the decrease in density, and hence of available phase
space of protons. The corresponding low-momentum (k < k

p
F)

inverse quasi-particle lifetime is small, which in turn gives rise
to an increasingly narrow spectral function. This is clearly in
agreement with the results in the bottom left panel of Figure 4.
On the positive energy side of the self-energy ω > µp, the deep
pocket at low momenta becomes noticeably deeper as η increases
but, unlike the neutron component, the momentum dependence

FIGURE 6 | The same as Figure 5 but in isospin asymmetric nuclear matter for the 3 = 500 MeV interaction. Top panels focus on neutrons, and bottom panels on

protons. The panels from left to right correspond to different isospin asymmetries, from η = 0 (symmetric nuclear matter, leftmost panel) to the neutron-rich domain

with η = 0.8 (rightmost panel).
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FIGURE 7 | Extrapolated zero-temperature momentum distribution obtained with different NN interactions for symmetric nuclear matter at ρ = 0.16 fm−3. The left

panel shows the distribution on a linear scale as a function of k/kF . The right panel shows the same results on a logarithmic scale and as a function of momentum k, in

units of MeV. The black dashed-double-dotted line corresponds to the free Fermi gas (FFG). The green dashed-dotted line is obtained from a calculation with the

3 = 500 MeV interaction without 3NFs. Other lines follow the convention of Figure 3.

remains relatively unchanged. The increase in depth of Im6k

can be interpreted in terms of an increase in the interaction
strength, as expected in the asymmetric case with an increase in
the number of np pairs.

In other words, the imaginary component of the self-energy
for protons in asymmetric matter shows the competition of the
two effects discussed earlier in two different energy regimes. On
the one hand, proton holes, associated to the negative energy
components, are dominated by phase-space and their self-energy
decreases steadily as the proton density decreases. On the other
hand, proton particles at positive energies show an increase in
interaction strength as expected in a more imbalanced strongly
interacting system. The real part of the self-energy is not shown
here for brevity. I note, however, that this is connected to Im6τ

k
by the dispersion relation in Equation (9).

3.3. Momentum Distributions
A useful characterization of beyond mean-field correlations is
obtained with the momentum distribution in Equation (3). For
a non-interacting Fermi gas or within the lowest-order Hartree-
Fock approximation at zero temperature nk = 1 (0) for momenta
below (above) the Fermi surface. This behavior is illustrated
by the double-dotted-dashed line in the left panel of Figure 7.
In contrast, the momentum distribution of correlated infinite
nuclear matter shows a characteristic depletion below the Fermi
surface. This depletion is of the order of 7 − 12%, with small
quantitative differences between different interactions.

In turn, a depletion of momentum eigenstates below kF
means that nk above the Fermi surface must be populated. The
logarithmic scale in the right panel of Figure 7 illustrates the
effects of such high-momentum components. These components
are noticeably different depending on the cutoff. Smaller cutoff
interactions give rise to momentum distributions that decay
faster and start decaying at lower momenta, than larger cutoff

forces. To illustrate the relatively small effect that 3NF have
on correlations, I show in Figure 7 the momentum distribution
obtained in a SCGF calculation without 3NFs (dashed-dotted
line). Remarkably, the difference between the calculation with
and without 3NFs is substantially smaller than the cutoff
dependence of the interaction. This bodes well with previous
observations indicating that the effect of 3NFs on fragmentation
properties is quantitatively small, even though they have a
substantial influence on the energetics and thermodynamics of
the system [55].

The evolution of themomentum distribution with isospin also
provides an illustrative understanding of the interplay between
short-range and tensor correlations and isospin asymmetry.
Figure 8 shows the momentum distribution as a function of
momentum for different isospin asymmetries. These results
have been obtained with the 3 = 500 MeV interaction, but
qualitatively similar plots are found for the other two forces.
The left panel shows the results for neutrons. Isospin asymmetry
has two main effects on the majority component. On the one
hand, the discontinuity in nk moves to higher momenta, as the
Fermi momentum changes from kF = 263 MeV in symmetric
nuclear matter to kF = 331 MeV in pure neutron matter. This
effect would be identical in the free Fermi gas (FFG). In contrast,
the distinct increase of nk below the Fermi surface is specific to
correlated systems. The depletion of strength decreases (or gets
closer to 1) linearly with the increase of asymmetry. Whereas
in symmetric nuclear matter it is around 10%, in pure neutron
matter it goes down to a level of around 4 − 5%. In fact, this
isospin dependence is rather universal and independent of the
NN interaction under consideration [66, 67]. A similar effect is
expected for the size of the discontinuity across the Fermi surface,
which decreases as isospin asymmetry increases.

The right panel of Figure 8 provides insight on the asymmetry
evolution of the minority component (protons). Mirror effects
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FIGURE 8 | Left: neutron momentum distribution nnk as a function of momentum. Extrapolated zero-temperature calculations at different values of isospin asymmetry

η are shown at a fixed density of ρ = 0.16 fm−3. Results have been obtained for the 3 = 500 MeV interaction including 3NFs. Right: the same for the proton

momentum distribution n
p
k .

are obtained in this case. The discontinuity of nk occurs at smaller
and smaller momenta, as expected from FFG considerations. The
depletion below the Fermi surface departs further away from 1 as
the isospin asymmetry increases. In other words, by this measure,
protons (or minority components) become more correlated in a
neutron-rich environment. Close to the astrophysically relevant
condition at η ≈ 0.8, protons are depleted by about 15% for this
specific interaction. This depletion goes in hand with a change
of high-momentum components for the proton, which become
more important as asymmetry increases [67].

The picture obtained by these complete calculations including
zero temperature extrapolations and 3NFs is qualitatively and
quantitatively very similar to the one discussed in [66, 67].
Overall, the effect of isospin asymmetry on occupation numbers
is relatively small. For the characteristic isospin asymmetry in the
interior of nuclei (η = 0.2), the change in occupation below
the Fermi surface is of the order of only a few percent. Overall,
this shallow asymmetry dependence is at odds with some of
the past and recent experimental analysis in both electron- and
hadron-induced knock-out reactions [85, 87, 91]. Importantly,
however, these calculations at fixed density do not account for
the density and isospin-asymmetry dependence within nuclei,
which is likely to be relevant for the description of nuclear
momentum distributions.

3.4. On-Shell Properties
A unique advantage of SCGF simulations is the access to both off-
shell, energy-dependent quantities, as well as the corresponding
information on the energy shell—at the quasi-particle energy
ω = εk. On-shell properties are often used in interpreting the
properties of the system and are the input to most astrophysical
simulations. In particular, quasi-particle potentials in asymmetric
matter at relatively low densities (neutrino-sphere) are important
for charged-current neutrino opacities [20, 92]. The quasi-
particle spectrum of Equation (6) is a key quantity that allows

for a characterization of single-particle excitations in the system.
Since the kinetic term in the quasi-particle energy obscures the
many-body effects at large momentum, I instead focus on the
single-particle potential Uτ

k
= Re6τ

k
(ετ

k
). This is shown as a

function of momentum in Figure 9. Top panels correspond to
neutrons, whereas bottom panels correspond to protons. From
left to right, the isospin asymmetry of the system changes from
symmetric nuclear matter (η = 0) to pure neutron matter
(η = 1) at a constant density of ρ = 0.16 fm−3. I show results
for the 3 = 500 (solid), 450 (dashed) and 414 MeV (dotted
lines) interactions.

As discussed previously, these results are obtained from
a zero-temperature extrapolation of finite temperature SCGF
simulations. As an illustration of the importance of thermal
effects, I also show in the top left and top right panels the
3 = 500 MeV results for Uτ

k
at temperatures up to T = 20

MeV. The thermal effects are clearly small on the scale of this
figure, particularly in comparison to the cutoff and the isospin
dependence of the results. I note in passing that the temperature
dependence is not monotonous. At momenta below the Fermi
surface Uτ

k
becomes more attractive as temperature increases.

Above the Fermi surface and up to about 500 MeV, the potential
instead becomes more repulsive with temperature. This is in
agreement with previously reported SCGF results that did not
incorporate 3NFs [44].

In terms of isospin dependence, the results also agree with
previously reported outcomes in the SCGF approach [64],
and in other many-body calculations [93–95]. In symmetric
nuclear matter, the single-particle potential has a minimum
at low momenta close to Uk=0 ≈ −60 MeV, and increases
steeply with momenta. At k = 0, the lowest cutoff interaction
produces a potential that is about 5 MeV more attractive than
the highest cutoff force. This cutoff-dependence is relatively
constant as a function of momentum up to k ≈ 600 MeV,
where regulator artifacts start to dominate. Above this value of
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FIGURE 9 | Neutron (top) and proton (bottom) single-particle potentials as a function of the momentum for the three interactions considered in this work. The panels

from left to right correspond to different isospin asymmetries, from η = 0 (symmetric nuclear matter, leftmost panel) to neutron matter (rightmost panel). The bands for

the η = 0 and η = 1 obtained with the 3 = 500 MeV interaction highlight the temperature dependence from T = 20 to T = 0 MeV.

momentum, the results of the 414 MeV and 450 MeV force
go to zero relatively quickly, whereas the potential for the
500 MeV interaction shows a characteristic shallow minimum
around k = 800 MeV.

As asymmetry increases, the neutron single-particle potential
becomes more repulsive and shallower in terms of momentum
dependence. In contrast, protons experience a larger attraction
when they become the minority species. Their single-particle
potentials become significantly more attractive, and in the
astrophysically relevant region of η ≈ 0.8, they reach values
of 80 − 90 MeV at k = 0. The isospin dependence is to a
good approximation linear with isospin asymmetry, as expected
on general grounds [94]. I note however that the momentum
and isospin dependence of these single-particle potentials is
significantly different from those predicted by phenomenological
mean-field approaches [96].

Interestingly, the cutoff dependence of the results depends
on isospin asymmetry and on the specific nucleon. As neutrons
become the predominant species and their single-particle
potentials become shallower, the cutoff dependence in the low-
momentum single-particle potential below 400 MeV decreases.
In neutron matter, the differences between the potentials are of
the order of 1 MeV. On the contrary, as the isospin asymmetry
increases and the proton spectrum becomes more attractive, the
differences between interactions with different cutoffs increase
and become of the order of more than 10 MeV.

These differences can be explained by two interrelated factors.
One is of a relatively straightforward nature. np interactions play
no role in neutron matter, and hence the intrinsic differences
in the NN interaction are less likely to appear as several
partial waves channels are suppressed. In other words, if the
fits to the nn channels have intrinsically smaller differences
between forces than the corresponding np channels, neutron-
rich systems will show less cutoff dependence. Another factor

that plays an important role is the strength (in the sense of
“perturbativeness”) in different channels. In terms of χEFT,
the small cutoff dependence in neutron matter agrees with the
idea that neutron matter is a more perturbative system than
symmetric nuclear matter [69, 97, 98], because the strong np
components are missing. It is important to emphasize here that
the strong cutoff dependence of the impurity spectrum may not
be identified in the energetics of the system, but will clearly have
an impact on the dynamics of isospin asymmetric systems.

The momentum dependence of Uτ
k
is directly related to the

concept of the effective mass. SCGF simulations can be used
to extract not only the mass associated to the single-particle
spectrum, but also to the so-called ω− and k−effective masses.
A detailed analysis of these properties within the SCGF approach
is ongoing.

The on-shell imaginary part of the self-energy, Equation (7),
is interpreted as an inverse quasi-particle lifetime. For a normal
correlated many-fermion system at zero temperature Ŵk=kF
should be zero, thus signaling an infinite lifetime of quasi-
particles at the Fermi surface. The lifetime should be non-zero
everywhere else and, as discussed in the context of section 3.2,
its magnitude is a combination of phase-space and interaction
effects. Figure 10 provides an overview of the momentum
dependence of Ŵτ

k
for neutrons (top panels) and protons (bottom

panels) as a function of isospin asymmetry. As in the previous
figure, extrapolated zero-temperature results are shown.

The isospin and cutoff dependence of the results is very
different above and below the Fermi surface. Below the Fermi
surface, the SCGF simulations predict a non-zero width. Unlike
in BHF calculations, intermediate hole states account explicitly
for this non-zero width of hole states k < kF [94]. For
neutrons, this hole component is relatively independent of the
isospin asymmetry. In fact Ŵn

k=0 increases from values around
30 − 40 MeV in symmetric nuclear matter to 40 − 50 MeV
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FIGURE 10 | Neutron (top) and proton (bottom) inverse single-particle lifetimes as a function of the momentum. For details, see the caption of Figure 9.

around η = 0.6, and decreases again to values around 20 −

30 MeV in neutron matter. In contrast, for protons the hole
component decreases steadily with asymmetry. This reflects the
decrease in phase space of protons as asymmetry increases. For
both neutrons and protons, the cutoff dependence of the hole
component is of the order of 10 MeV and relatively independent
of isospin asymmetry.

Around the Fermi surface, for all isospin asymmetries, the
momentum dependence of Ŵτ

k
is rather universal. In most cases,

one cannot distinguish the curves from different interactions
within about 100 MeV of the Fermi surface. I demonstrate
again the importance of thermal effects for the 3 = 500 MeV
interaction at the two extreme asymmetries η = 0 (top left) and
η = 1 (top right panel). Whereas regions away from the Fermi
surface are temperature independent, these panels show that the
temperature dependence in Ŵτ

k
is prominent around k = kτ

F .
There, the quasi-particle width switches from zero at T = 0 to
a finite (and increasing) value with temperature. This is to be
expected, as the behavior around kF is governed by phase space
arguments [33, 53].

The particle component (at k > kτ
F) of Ŵ

τ
k
is remarkably more

cutoff dependent. The momentum dependence immediately
above kτ

F and up to about 500 − 600 MeV is very similar in
all cases, and shows an increase from zero up to an isospin-
dependent maximum for the 3 = 450 MeV and 414 MeV cases.
For neutrons (protons), the peak height decreases (increases)
from around 30 MeV in symmetric nuclear matter η = 0, to
around 25 MeV (50 MeV) in pure neutron matter η = 1. For
these two forcesŴτ

k
becomes a decreasing function ofmomentum

above k ≈ 500 MeV and eventually vanishes above k ≈ 1 GeV.
This is stark contrast to the 3 = 500 MeV interaction, where the
peak of the particle component occurs at much higher momenta
in the vicinity of k ≈ 1 GeV.

The peak is also relatively independent of the isospin
asymmetry, and very similar for neutrons and protons. This peak
and, in general, the relatively large values of Ŵτ

k
in this region are

indicative of the short lifetime of high-momentum states. The
cutoff dependence clearly indicates that this component of Ŵτ

k
depends strongly on the interaction, and the isospin dependence
suggests that it is mediated by isoscalar short-range physics
independently of the density of the individual components.

These results match with the findings for the spectral
functions reported in Figure 4. Whereas the width of the neutron
spectral function is qualitatively unaffected by a change in isospin
asymmetry, the width of the proton spectral function changes
significantly with asymmetry for the hole states k < kτ

F . Single-
particle widths provide an alternative way of characterizing
beyond mean-field correlations, since in the Hartree-Fock
approximation Ŵk = 0. The results in Figure 10 indicate that
some of the features of Ŵk are robust against isospin asymmetry
changes, whereas others are not. In particular, the relative
strong dependence of proton single-particle widths with isospin
asymmetry may be related to the isospin dependence of the
absorptive component of optical potentials [99].

3.5. Other Microscopic Properties
The microscopic results presented so far provide a very
complete picture of the dynamics of infinite nuclear systems.
The versatility and wide range of applications is an advantage
of SCGF techniques. On-shell and off-shell quantities provide
valuable information which, when complemented with modern
interactions based on χEFT, can help provide estimates
of systematic theoretical errors in simulations. A useful
characterization of in-medium nuclear properties can be
obtained from energy-weighted moments (or sum-rules) of the
spectral function. The first moment is connected to effective
single-particle energies [100, 101] and has been studied in
the context of both symmetric and asymmetric nuclear mater
at zero and finite temperatures [102–104]. The conclusions
reached by these studies in the early 2000s indicated that the
first moment is sensitive to NN interactions, and provides a
useful characterization of correlations. The second moment has
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only been studied more recently [76]. It measures fluctuations
around the single-particle peak, and is a connected to the energy
dependence of the imaginary part of the self-energy. Because the
latter is also particularly sensitive to the NN force, the second
moment can provide a measure of the Hamiltonian properties in
both nuclei and infinite nuclear matter.

The SCGF method can be used to study a variety of in-
medium quantities which are relevant for nuclear physics
experiments. For instance, in the late 1990s, SCGF methods were
used to provide a formal redefinition of scattering phaseshifts
in the medium [105]. Practical calculations also allowed for
predictions of in-medium scattering cross sections in dense
matter [106]. The finite lifetime of quasi-particles away from
the Fermi surface can be formally translated into an in-medium
nucleon mean-free path. This mean-free path is relevant for a
variety of nuclear physics considerations, from the validity of the
shell model [107] to the characterization of multi-fragmentation
reactions [108]. The consistent description of the real and
imaginary parts of the self-energy via dispersion relations
makes SCGF techniques particularly appealing in this context.
In [109], the mean-free path of nucleons in dense infinite
matter was computed by means of an extension of the SCGF
formalism to the complex plane. Calculations agree well with
results obtained with other methods and, most importantly,
with a variety of nuclear experiments at intermediate
energies [109].

Superfluidity in nuclear systems can be detected by the
appearance of in-medium bound states in the two-body
scattering matrix, or the two-body propagator. This can be
used to characterize the normal-superfluid phase diagram of
dense matter. Extensions of the SCGF method to the superfluid
domain are possible, by means of the symmetry-breaking
Gorkov formalism [43, 46]. Simulations in the normal phase,
however, can already provide relevant information for superfluid
properties, by extrapolating normal self-energies and spectral
functions to zero temperature as discussed above. With this data,
one can build effective gap equations that contain the effects
associated to the fragmentation of strength [110]. Results with the
three chiral interactions presented here indicate that short-range
correlations reduce the pairing gap, and provide a gap closure
at lower density compared to BCS solutions for both the singlet
and the triplet channel [74]. In principle, SCGF calculations
at different orders can also be used to estimate systematic
uncertainties in this method. This approach may provide a better
handle on the role of superfluidity at intermediate and high
densities, where the role of long-range correlations is poorly
understood [50, 111].

4. MACROSCOPIC PROPERTIES

Simulations based on SCGF methods can access the
thermodynamics of the system. Awide range of othermany-body
methods have been extended to the finite temperature domain,
including diagrammatic BHF approaches [112], variational
methods [113], and many-body perturbation theory techniques
[68, 114, 115]. All of these methods share common limitations

in terms of the definition of quasi-particles [116]. This can lead
to an inconsistency in terms of the chemical potential. On the
one hand, the chemical potential is typically obtained from a
normalization condition like Equation (4). On the other, one can
find µ from the thermodynamical relation

µ =
∂ǫ

∂ρ
, (13)

where ǫ is the energy density. Formally and numerically, these
two values may be different depending on the theoretical
framework under consideration.

A key advantage of the SCGF formulation at finite
temperature is that it guarantees that the two quantities are the
same, as long as the self-energy fulfills basic criteria [33]. These
criteria are related to the so-called 8−derivability, and lead to
a thermodynamically consistent theory [63]. In practice, this
means that in SCGF calculations there is no need to perform
numerically the derivative in Equation (13). This is particularly
convenient in calculations of the pressure, which can directly be
computed from the relation p = ρ(F/A − µ). I note, however,
that differences between microscopic and macroscopic chemical
potentials may arise at a numerical level, particularly when the
approximated treatment of 3NFs is considered [51].

I show the pressure as a function of density for symmetric
nuclear matter (left panel) and pure neutron matter (right panel)
in Figure 11. These have been computed with the three chiral
interactions discussed in this work and include the effect of 3NFs.
The results are computed at two finite temperatures T = 20
and 10 MeV, and are also extrapolated to T = 0. Note that
the extrapolation uses many more temperatures, which are not
displayed here for simplicity. The discussion below is brief, and
details of similar calculations can be found in [44, 48, 49].

For symmetric nuclear matter, the zero-temperature pressure
shows a characteristic van der Waals shape, with an area of
negative pressure that extends from zero up to the corresponding
saturation density of each interaction. This structure signals
the existence of a liquid-gas phase transition in nuclear matter
[48, 49, 112, 115]. At zero temperature, the pressure vanishes
at zero density and at the saturation point. Figure 11 indicates
that the three chiral interactions have significantly different
saturation densities, in the region ρ0 = (0.14 − 0.165) fm−3. As
temperature increases, the spinodal region (where dp/dρ < 0)
shrinks, until it disappears. At that stage, the pressure can still
have an inflection point, which will smoothen out only at the
corresponding critical temperature Tc of the liquid-gas phase
transition. Different many-body approaches based on the same
NN interaction predict different critical points [48]. Similarly,
the same many-body set-up with different interactions can yield
different critical points [115].

The recent SCGF analysis presented in [49] suggests that
the critical temperature predicted by several different χEFT
interactions can range from Tc ≈ 11.0MeV to Tc ≈ 18MeV. The
cutoff dependence in Figure 11 falls within this rage, and Tc lies
between about Tc ≈ 11 MeV for the 3 = 500 MeV interaction
and Tc ≈ 16.5 MeV for the 3 = 414 MeV interaction.
There is a clear correlation between the saturation energy and
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FIGURE 11 | Pressure as a function of density for symmetric nuclear matter (left) and pure neutron matter (right). Results for three NN interactions are shown at

three different temperatures: T = 0 10 and 20 MeV. At low density for neutron matter, the two bands display the results from the virial expansion.

the critical temperature, with more attractive saturation energies
leading to higher critical temperatures [49]. This intuitive
behavior is not supported by the analytical predictions of
mean-field models [117]. The relatively wide range of critical
temperatures dominates over the uncertainties associated to
the many-body approximation. Indeed, in [49], the maximum
difference obtained between BHF and SCGF predictions for the
critical temperature was about 2 MeV. While further many-body
benchmarks may be necessary to understand the full many-
body dependence of this result, it is clear that the Hamiltonian
uncertainty is relevant for finite temperature predictions [51]. In
fact, the cutoff dependence of a sub-saturation density property
like Tc can be taken as a sign that finite-temperature many-body
correlations are significant in this region.

The temperature dependence of the pressure in neutron
matter is relevant for astrophysical considerations, particularly
in the context of neutron star mergers [16] and proto-neutron
star formation [19]. The right panel of Figure 11 shows the
pressure on a semilogarithmic scale as a function of density. The
same three temperatures (0, 10 and 20 MeV) are presented. At
low densities, the pressure should be well-described in terms of
the model-independent virial expansion, which only depends on
neutron-neutron scattering phaseshifts [118]. The pressure for
fugacities z < 0.5 at T = 10 MeV and 20 MeV is shown with two
solid bands at low densities in the figure. Clearly, the low-density
SCGF results agree well with virial predictions. The low-density
pressure is in fact remarkably cutoff independent, and the first
distinguishable cutoff-dependent features only show up above
ρ ≈ 0.10 fm−3. This is in stark contrast to the case of symmetric
nuclear matter. Noticeably, this cutoff independence also holds
for the low-density, zero-temperature extrapolated results. All in
all, the cutoff andmany-body dependence of low-density neutron
matter predictions are well under control (independently of
temperature), as already discussed elsewhere [23, 28, 29, 69, 97].

The cutoff dependence in neutron matter is only clearly
distinguishable above saturation density. There, and toward the

high density limit of applicability of chiral interactions, the
3 = 500 MeV interaction is providing more pressure at a
given density. This is followed by a decreasing pressure from the
3 = 414 MeV and 3 = 450 MeV forces. It is interesting to note
that the last two switch orders with respect to symmetric nuclear
matter, where for a given density the 3 = 450 MeV interaction
provides more pressure than the 3 = 414 MeV interaction. The
cutoff dependence is only one of several systematic uncertainties
in these results. SCGF can also provide an estimate of the many-
body uncertainties, by performing calculations with self-energies
obtained not only at a ladder level, but also at the first- and
second-order level. The results of a recent analysis indicate that
the many-body uncertainty is smaller than that associated to the
underlying NN force by a factor of 2 − 3 at twice saturation
density [51].

With respect to the temperature dependence, one can
distinguish two distinct regimes. At sub-saturation densities,
cutoff independent results dominate. At higher densities,
reaching the degenerate supra-saturation regime, the cutoff
dependence overtakes temperature effects. A more quantitative
analysis of the temperature dependence can be obtained
by looking at the so-called thermal index (or adiabatic
index) of the equation of state [14]. It characterizes the
temperature dependence of the pressure (or energy) of
the system. Carbone and Schwenk have recently provided
an in-depth analysis of the density, temperature and
Hamiltonian dependence of the thermal index obtained
in SCGF simulations [18]. They find that some of the
assumptions made in previous literature regarding the
temperature and density independence of this quantity do
not hold. In addition, the effect of 3NFs is important in the
high-density regime.

The two extreme limits of isospin asymmetry are interesting
on their own, and provide insight into different relevant
phenomena. However, both in the study of the liquid-phase
transition [119] and in neutron-star astrophysics [73], the actual
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FIGURE 12 | Energy per particle (top) and pressure (bottom) as a function of density for different isospin asymmetries. Results have been extrapolated to zero

temperature. The thin lines have been generated from Skyrme functionals fitted to second-order calculations with the same underlying NN forces by Lim and

Holt [120]. The bands are obtained from fits to many-body perturbation theory calculations by Drischler et al. [73].

isospin dependence of the results is relevant. Arbitrary isospin-
asymmetric systems can be explored with SCGF simulations, and
the results in Figure 12 provide both the energy per particle
(top) and the pressure (bottom panels) as a function of density
for several asymmetries. Results are presented for the three
interactions with different cutoffs.

For comparison, I show two different sets of results based on
similar ab initio calculations. The narrow lines, labeled Sx450
and Sx414, correspond to Skyrme parametrizations derived
in [120]. These density functionals were in turn fit to asymmetric
matter calculations performed at second order in many-body
perturbation theory for the 3 = 450 MeV and 414 MeV
chiral interactions. I do not show the corresponding Sx500
Skyrme results, which were fitted to data with free-particle (rather
than self-consistently dressed) intermediate states. The internal
dressing of fermion lines is closer in spirit to the SCGF results
presented here, and one thus expects to find a better agreement. I
note that if non-perturbative effects were small, one would expect
an agreement between the fits and the SCGF data.

The bands in the different panels of Figure 12 have been
obtained from fits to second-order many-body perturbation
theory calculations for seven different chiral interactions in [73].
These fits reproduce the results obtained at second order in
perturbation theory with internal Hartree-Fock propagators.
These calculations are different to the SCGF approach in that
they implement a different averaging procedure for the 3NFs,
including an average value of the center-of-mass momentum.

The results from other methods are provided here for
reference and only represent a crude estimate of the many-
body uncertainties. The discussion below is therefore qualitative,
rather than quantitative. The top left panel of Figure 12 clearly
indicates that all these interactions and approximations are able
to provide saturation for symmetric nuclear matter. The SCGF
3 = 500 MeV results saturate at a too low density and a too

high energy per particle. In contrast, the 450 MeV and 414 MeV
interactions predict better saturation energies, but are slightly
off in terms of density. This may be due to deficiencies of the
interactions, the many-body scheme or the implementation of
the 3NFs into the SCGF approach [29]. I note however that the
saturation energy itself is an extrapolated quantity and a recent
reanalysis based on nuclear data suggests it may be a bit more
repulsive than anticipated [121].

Comparing the energy per particle to the results of the Sx
parametrizations, I find that the SCGF results for the 414 MeV
and 450 MeV chiral interactions are qualitatively similar to
those obtained in perturbation theory calculations in [70] (for
symmetric nuclear matter) and [120] (for asymmetric nuclear
matter). The ladder resummation in the SCGF calculations
seems to bring in repulsion at intermediate densities for isospin-
symmetric systems. This repulsive effect, of the order of a couple
of MeV in symmetric nuclear matter, reduces as the isospin
asymmetry increases.

As it is well-known, the energy per particle becomes more
repulsive as η increases. For pure neutron matter, and in the sub-
saturation region shown in the figure, the cutoff dependence of
the SCGF results is very small, certainly within 1 MeV. The size
of the cutoff dependence is in agreement with the initial findings
reported in [69], although the latter were obtained using third-
order perturbation-theory calculations. In fact, as the isospin
asymmetry of the system increases, the differences in energy
between the Sx414 and Sx450 results and the SCGF calculations
become much smaller. For densities above 0.06 fm−3, all
calculations agree in the density dependence of the energy per
particle of neutron matter. This is to be expected if one assumes
that neutron matter is more perturbative than symmetric nuclear
matter. The SCGF and the Sx414 and Sx450 results lie in the lower
range of the band provided by [73], which indicates that the cutoff
dependence associated to the three chiral interactions presented
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in this work is not necessarily representative of the systematic
uncertainty due to different Hamiltonians.

The reduced cutoff dependence of the results, as the isospin
asymmetry evolves from the left to the right panels, has
clear implications on the symmetry energy. Because symmetric
nuclear matter is more bound for the 3 = 414 MeV and 450
MeV forces, and the neutron matter energy is basically the same,
one expects the symmetry energies of these two forces to be
relatively larger than that of the 500 MeV interaction. Indeed,
computing the symmetry energy as the difference between the
two extremes of isospin at ρ = 0.16 fm−3, one finds values
that range from S0 = 31.5 MeV for the 414 MeV force up to
29.8 MeV and 25.4 MeV for the 450 MeV and 500 MeV forces.
These values are in agreement with those previously reported for
these forces in [122], and are somewhat smaller than empirical
determinations [8].

The bottom panels of Figure 12 provide a relatively similar
picture in terms of the pressure. In symmetric nuclear matter
(left panel), the pressure is negative at sub-saturation densities
and, other than the 3 = 500 MeV SCGF results, all results
agree qualitatively. The picture evolves as isospin asymmetry
increases. The spinodal, negative pressure zone decreases as η

becomes larger, as expected in general grounds [119]. For most
interactions, the critical asymmetry where the spinodal area
vanishes is in the range η = 0.6 to 0.8. At these relatively
large asymmetries, all the different many-body predictions are
contained with the bands obtained by Drischler et al. [73].
Noticeably, the results of the 3 = 500 MeV interaction that
were off the band at small asymmetries, fall into the band as
isospin asymmetry increases and neutron matter is approached.
This indicates that the discrepancies associated to this force with
respect to other simulations lie in the isovector component of
the interaction.

The cutoff dependence of the SCGF results offers only an
initial indication of the size of uncertainties associated to the
NN force. In qualitative terms, however, the behavior is similar
to that predicted by the bands in [73] which could be explored
with non-perturbative methods in the future. At the level of
the interaction, there are other sources of uncertainty (like
the low-energy constants or the regulator dependence) that are
not really considered by these exploratory considerations [51].
The dependence on the many-body method is also relevant
as the system becomes more and more isospin symmetric,
and quantities like the thermal index or the symmetry energy
may be substantially affected by the many-body method under
consideration. As such, benchmark comparisons in asymmetric
systems would provide an interesting testing ground for newly
developed forces.

5. CONCLUSIONS

In this work, I have briefly reviewed a set of SCGF techniques
that have been used over the last couple of decades to study
infinite nuclear systems. SCGF approaches are unique in terms
of their flexibility, which allows for both perturbative and non-
perturbative studies. The SCGF formalism can be formulated at

finite temperature and provide thermodynamically consistent
results. The same approach can be used to study the properties
of finite nuclei with similar many-body approximations
and equivalent interactions [42]. A single SCGF calculation
yields not only bulk nuclear properties, including binding
energies and thermodynamics, but also a wide range of
microphysics information, ranging from predictions associated
to the fragmentation of the single-particle strength to the
characterization of quasi-particle lifetimes. With an appropriate
account of 3NFs, this method can now competitively tackle
issues in infinite nuclear matter physics with the same level
of predictive power as other many-body approaches. The
predictions in terms of the density and isospin dependence
of fragmentation strengths are unique and provide an insight
that is also relevant for the understanding of the evolution of
correlations with isospin.

In this review, I have focused on the properties of symmetric
and asymmetric nuclear matter and neutron matter as obtained
from a set of three χEFT interactions based on N3LO NN
interactions and N2LO 3NFs. This provides a limited but already
illustrative set of results that spans a wide range in terms of
short-range physics. Of course, one would ideally perform these
simulations with the largest possible set of interactions to get a
more quantitative estimate of the dependence of the results on
the Hamiltonian. A more sophisticated treatment using Bayesian
analysis techniques could eventually improve the estimates of
systematic uncertainties [9].

The results indicate that the N3LO 3 = 500 MeV interaction
produces significantly different strength distributions than the
3 = 450 MeV and 414 MeV forces. As expected, the 500
MeV interaction provides high momentum components in the
momentum distribution, and also large additional components
in the self-energy. The two softer interactions provide results
which are significantly more perturbative. In other words, their
momentum distributions die out quicker in momenta and the
energy dependence of the associated self-energies is much more
limited. These generic results hold independently of the isospin
asymmetry. In fact, the results for the 450 MeV and 414 MeV
interactions are very similar across a wide range of density,
isospin asymmetry and temperatures. In pure neutron matter,
the 500 MeV interaction results are also very close to the 450
MeV and 414 MeV interactions. This can be translated into
a strong isospin dependence of the overall cutoff dependence.
This point has already been discussed in the past in [69, 122],
and our SCGF simulations confirm these trends from a different
many-body perspective.

SCGF provide access to quasi-particle properties that are
relevant in various contexts. Single-particle potentials for
neutrons and protons in neutron-rich matter show interesting
asymmetry dependences. It is well-known that the single-particle
potential for neutrons becomes less attractive with increasing
isospin asymmetry. At the same time, it becomes less sensitive
to the cutoff. In contrast, the proton potential becomes more
attractive in neutron-rich matter and, as the isospin asymmetry
increases, the cutoff dependence is enhanced. This behavior
should be reflected in the corresponding effective masses. The
asymmetry dependence of the single-particle width is also
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interesting, and again suggests substantial differences in the
minority and majority components.

When it comes to bulk properties, I find results that
are qualitatively close to those established with many-body
perturbation theory methods. Again, the predictions of the 3 =

500MeV interaction are noticeably different than the lower cutoff
results in the isospin symmetric case. In fact, the saturation
energy of this interaction is about 4−5MeVmore repulsive than
empirical estimates, in contrast to the lower cutoff simulations.
Results for the 450 MeV-414 MeV forces are more consistent
with each other. These also agree well with previous many-body
perturbation theory calculations based on these interactions in
isospin-symmetric, isospin-asymmetric nuclear matter and pure
neutron matter [68].

One can draw several conclusions from this analysis. The
isospin dependence of short-range correlations can be predicted
with SCGF techniques and appears to be less pronounced in
bulk systems than it is in finite nuclei [66, 67, 85, 87]. The
cutoff dependence of the results in isospin asymmetric systems
affects more the single-particle properties of protons than those
of neutrons. In this sense, the simulations of proton impurities in
pure neutron matter could provide some insight into the model-
dependence of neutron-proton forces. I also note that ab initio
simulations of single-particle potentials are significantly different
from those predicted by phenomenological approaches [96].

Looking forward, the SCGF method is at an advantage
with respect to some other methods in its handling of finite
temperature and isospin-asymmetry effects. For supra-saturation
densities, this is relevant for neutron star mergers, as well
as for neutron-star formation. There, the non-perturbative
nature of SCGF methods can handle short-range correlation
effects and hence provide meaningful results up to presumably
higher densities than perturbative calculations [51]. The effects
associated to the fragmentation of strength are also relevant
in a variety of high-density astrophysical settings, where

they have often been ignored. These include predictions
for the equation of state, but also for pairing properties
and response functions. Broadly speaking, previous SCGF
simulations that have tackled these issues have not relied on
systematically improvable chiral interactions that are also helpful
in providing estimates of theoretical uncertainties. Interestingly,
the low-density high-temperature regime of the neutrinosphere
in supernova explosions is also relevant for astrophysical
simulations, and it can be tackled with SCGF simulations. There,
SCGF methods can provide insight into quantities like single-
particle potential shifts [20, 92] and response functions needed
for neutrino processes [21]. Our results indicate that these should
be interaction-independent, and the dependence on the many-
body method will provide a good handle on systematic errors.
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The advent of high precision measurements of neutrinos and their oscillations calls for

accurate predictions of their interactions with nuclear targets utilized in the detectors.

Over the past decade, ab initio methods based on realistic nuclear interactions and

current operators were able to provide accurate description of lepton-nucleus scattering

processes. Achieving a comprehensive description of the different reaction mechanisms

active in the broad range of energies relevant for oscillation experiments required the

introduction of controlled approximations of the nuclear many-body models. In this

review, we give an overview of recent developments in the description of electroweak

interactions within different approaches and discuss the future perspectives to support

the experimental effort in this new precision era.

Keywords: lepton-nucleus interactions, ab-initio nuclear methods, electroweak interactions, nuclear structure

and interactions, neutrino-nucleus cross-sections

1. INTRODUCTION

Understanding neutrino properties and interactions is the main focus of the world-wide
accelerator-based neutrino-oscillation program. The new generation of short [1] and long-
baseline [2] neutrino experiments—such as the Deep Underground Neutrino Experiment
(DUNE)—will address fundamental questions and play a key role in the search of physics beyond
the Standard Model. In particular, the absolute scale of neutrino masses and the presence of charge
parity (CP) violation in the leptonic sector, which may contribute to our understanding of the
matter-antimatter asymmetry of the universe, will be determined. The existence of a fourth (sterile)
neutrino will be investigated, this could explain the excess of electron neutrinos from charged
current quasi-elastic events reported by the MiniBooNe collaboration [3].

Studying neutrino-nucleus interactions in the energy region of interest for oscillation
experiments is a multi-scale problem. In fact, the experiments [4–9] are sensitive to a broad
range of energy where different reaction mechanisms contribute [10, 11]. Quasielastic scattering
is dominant for energies of hundreds of MeVs, in this case the lepton interacts with individual
bound nucleons. In addition to this, there are corrections accounting for coupling of the probe
to interacting nucleons, belonging to a correlated pairs on connected via two-body currents.
For larger values of the energy, a struck nucleon can be excited to a baryon resonance state
and subsequently decays into pions, or give rise to deep-inelastic scattering (DIS) processes.
Constructing a framework able to describe these diverse reaction mechanisms on the same footing
is a formidable nuclear-theory challenge. Nuclear effective field theory (EFT) provides a systematic
way to construct nuclear interactions and currents performing a low-momentum expansion. In
addition, an estimate of the theoretical uncertainty–which will be crucial for the neutrino data
analyses– can be properly assessed. In the last decade there has been a tremendous progress in
the field of nuclear ab initio methods made possible by the increasing availability of computing
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resources and the development of new algorithms. Within these
approaches the nucleus is treated as a collection of nucleons
interacting with each other via two- and three-body forces
obtained within nuclear EFTS. The interaction with external
electroweak probes is described by one- and two-body effective
currents that are consistent with the nuclear potentials [12–17].

Among these ab initio many-body methods, the Green’s
Function Monte Carlo (GFMC) method utilizes quantum
Monte Carlo (QMC) techniques [18] to perform first-principle
calculations of nuclei up to 12C [19, 20]. More recently the
GFMC method has also been applied to the calculation of
the electroweak sum rules and response functions of 4He and
12C, including one and two-body currents [21–23]. In order to
do that, integral transform techniques have been utilized. The
accuracy of the inversion procedure adopted within the GFMC
to obtain the response function from its integral transform has
been compared and benchmarked with the Lorentz Integral
Transform method [24]. The GFMC electroweak responses
computed in the quasielastic sector are virtually exact for low
and moderate values of the momentum transfer. Initial and final
state correlations are fully retained within this approach [25,
26]. In order to extend the predictive power of this approach,
relativistic effects in nuclear kinematics were included [24]
leading to an excellent agreement with electron scattering data
off 4He. However, within this approach it is not possible to access
more exclusive channels, the calculations are fully inclusive. The
inclusion of explicit pion degrees of freedom in the nuclear wave
function [27], necessary to describe the resonance production
region, is extremely complicated and its achievement is still a long
way ahead.

The short-time approximation (STA) method has been
recently proposed to overcome some of the limitations of
GFMC [28]. In particular, this approach allows to compute
both the inclusive and exclusive response of nuclei in the high-
energy (short-time) limit–corresponding to the Fermi energy
and above– utilizing realistic nuclear interactions and currents.
In the STA the full ground-state dynamics is retained while
the hadronic final state is factorized at the two-nucleon level,
this approximation is expected to be valid at high-energy and
momentum transfer. It allows to account for the final state
interactions of the pairs involved in the interaction vertex and
to incorporate two-nucleon correlations and currents as well as
their interference, which are known be sizable in the GFMC
results [22–26]. While keeping consistently two-body physics
and ensuing quantum interference contributions, the STA is not
expected to accurately model the correct physics for low-lying
excitations or collective behavior like giant resonances. A good
agreement with the GFMC electromagnetic responses of 4He is
observed after enforcing the correct threshold behavior. Since the
STA involves only two active nucleons, it suitable to be improved
and include relativistic currents and kinematics as well pion
production channels.

In the past years, the framework based on the impulse
approximation (IA) and realistic spectral-functions (SFs) has
been largely utilized to describe electron-nucleus scattering data
in the limit of moderate and high momentum transfer [29, 30].
This scheme combines a realistic description of the initial target

state with a fully-relativistic interaction vertex and kinematics.
This is achieved factorizing the hadronic final state in terms
of a free nucleon state and enclosing all the information on
nuclear structure in the SF. The latter does not depend on
the momentum transfer and can be computed within non-
relativistic nuclear many-body approaches. In this review we
consider two nuclear SFs, derived within the correlated basis
function (CBF) formalism [31] and the self-consistent Green’s
function (SCGF) theory [32, 33]. These two approaches utilize
different nuclear forces and involve different approximations in
each of the SF calculations. Within the factorization scheme
lepton-nucleus scattering is rewritten as an incoherent sum
of elementary processes involving individual nucleons. This
framework has been extended and generalized to include two-
nucleon emission processes induced by relativistic meson-
exchange currents [34] and applied to calculate the electroweak
inclusive cross sections of carbon and oxygen [35, 36]. In
order to tackle the resonance production region, the electroweak
pion production amplitudes generated within the dynamical
coupled-channel (DCC) model [37–39] have been included in
the IA formalism. The results obtained convoluting the DCC
elementary amplitudes with the CBF SF will also be reported.

In this review, we present lepton-nucleus interaction results
obtained within different many-body methods. In section 2 we
outline the formalism and define the electroweak cross sections,
nuclear interactions and currents. In section 3 we discuss the
integral transform techniques utilized in the GFMC to obtain
the nuclear response functions. Sections 4 and 5 are devoted
to the STA and extended factorization scheme, respectively. We
present recent results obtained within each of the aforementioned
approaches for different nuclei. In section 6 we state out
conclusions and discuss future directions.

2. FORMALISM

We consider the scattering of an initial electron of four-
momentum k = (E, k) off a nucleus A at rest; in the final
state only the outgoing electron with momentum k = (E′, k′) is
detected. The inclusive double differential cross section for this
process can be written in Born Approximation as

( d2σ

dE′d�′

)

e
=
α2

Q4

E′

E
LµνR

µν (1)

where α ≃ 1/137 is the fine structure constant and �′ is the
scattering solid angle in the direction specified by k′. The energy
and themomentum transfer are denoted byω and q, respectively,
with Q2 = −q2 = q2 −ω2. The lepton tensor is fully determined
by the lepton kinematical variables. It can be written neglecting
the electron mass as

Lµν =
1

EE′
(kµk

′
ν + k′µkν − gµν k · k

′) . (2)

The hadronic tensor describes the transition between the initial
and final nuclear states |90〉 and |9f 〉, with energies E0 and Ef .
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For nuclei of spin-zero, it can be written as

Rµν(q,ω) =
∑

f

〈90|J
µ†(q,ω)|9f 〉〈9f |J

ν(q,ω)|90〉δ(E0 + ω − Ef ) . (3)

where we sum over all hadronic final states and Jµ(q,ω) is the
nuclear current operator whose structure will be discussed in
detail in section 2.1. For inclusive processes, the cross section
of Equation (1) only depends on the two response functions,
RL(q,ω) and RT(q,ω), which describe the interactions with a
virtual photon longitudinally (L) and transversely (T) polarized.
It is given by

( d2σ

dE′d�′

)

e
=

(

dσ

d�′

)

M

[

AL RL(|q|,ω)+ AT RT(|q|,ω)
]

, (4)

where the lepton kinematical factors are given by

AL =
( q2

q2

)2
, AT = −

1

2

q2

q2
+ tan2

θ

2
, (5)

and

(

dσ

d�′

)

M
=

[

α cos(θ/2)

2E′ sin2(θ/2)

]2

(6)

is the Mott cross section depending on the scattering angle θ .
The extension to neutral- and charge-current electroweak

processes is straightforward. Let us consider the scattering of a
neutrino (νℓ) or an anti-neutrino (ν̄ℓ) off a nuclear target. In
analogy with the electromagnetic case, we denote by k = (E, k)
and k = (E′, k′) the momentum of the initial and outgoing
lepton; the double-differential cross section can be written as [40,
41]

( dσ

dE′d�′

)

νℓ/ν̄ℓ
=

G2

4π2
k′E′ LµνR

µν , (7)

where G = GF and G = GF cos θc for neutral current (NC)
and charge current (CC) processes, respectively, with cos θc =

0.97425 [42] and for the Fermi coupling constant we use GF =

1.1803 × 10−5 [43]. The leptonic tensor contains an extra-
contribution proportional to the Levi Civita

Lµν =
1

EE′
(kµk

′
ν + k′µkν − gµν k · k

′ ± iǫµρνσ k
ρk′ σ ) , (8)

where the + (−) sign is for νℓ (ν̄ℓ) initiated reactions. The
hadronic tensor is the same as Equation (3) but the current
operator will have a vector and axial component, its explicit
expression will be given in section 2.1. We perform the
Lorentz contraction of the leptonic and hadronic tensor of
Equation (7), yielding

( dσ

dE′d�′

)

ν/ν̄
=

G2
F cos

2 θc

4π2

k′

2Eν

[

L̂CCRCC + 2L̂CLRCL

+L̂LLRLL + L̂TRT ± 2L̂T′RT′

]

. (9)

Taking the three-momentum transfer along the z axis and the
total three-momentum in the x − z plane, we can define q and
Q as

q = k− k′ = (ω, q) , q = (0, 0, qz)

Q = k+ k′ = (�,Q) , Q = (Qx, 0,Qz) , (10)

and write the leptonic kinematical factors as

L̂CC = �2 − q2z −m2
ℓ, L̂CL = (−�Qz + ωqz)

L̂LL = Qz
2 − ω2 +m2

ℓ, L̂T =
Qx

2

2
− q2 +m2

ℓ

L̂T′ = �qz − ωQz , (11)

with m2
ℓ = k′ 2 the mass of the outgoing lepton. The

five electroweak response functions correspond to different
components of the hadro tensor

RCC = R00, RCL = −
1

2
(R03 + R30)

RLL = R33, RT = R11 + R22

RT′ = −
i

2
(R12 − R21) . (12)

Note that electron and neutrino scattering cross sections are
written in a similar fashion as a contraction of the leptonic
and the hadronic tensor. This analogy will become even more
apparent in section 2.1 where we introduce the explicit expression
of the current operators and use the conserved vector current
(CVC) hypothesis to connect the vector part of the electroweak
current with the electromagnetic one. For this reason, any model
of neutrino-nucleus scattering has to be capable of describing
electron-scattering cross sections first [44].

2.1. Nuclear Hamiltonian and Current
Operator
The internal structure of nuclei and their reactions can be
described within non-relativistic many body approaches utilizing
an Hamiltonian in which the nucleons are the only active degrees
of freedom. Its general expression is given by

H =
∑

i

p2i
2mN

+
∑

i<j

vij +
∑

i<j<k

Vijk , (13)

where pi is the momentum of the i-th nucleon having mass
mN , while the potentials vij and Vijk model the nucleon-nucleon
(NN) and three-nucleon (3N) interactions, respectively. A model
of NN interaction has to be constrained by the large number
of NN scattering data available. Currently, very accurate results
have been obtained from both phenomenological approaches and
chiral effective field theory able to accurately fit these data.

The Argonne v18 is a finite, coordinate space NN potential
that has been fit to the full Nijmegen phase-shift database and
to low energy scattering parameters and deuteron properties.
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It can be written as a product of radial functions and spin-
isospin operator

vij =
∑

p=1,...,18

vp(rij)O
p
ij (14)

where rij = |ri−rj|. The first 14 operators are charge independent
(corresponding to the older Argonne v14 model)

O
p=1,...,14
ij =

[

1, σ i · σ j, Sij, L · S, L2, L2σ i · σ j, (L · S)2
]

,

×
[

1, τ i · τ j

]

(15)

where σ and τ are the Pauli matrices operating over the
nucleon spin and isospin degrees of freedom, respectively,
Sij = 3σ i · r̂ijσ j · r̂ij − σ i · σ j is the tensor operator, Lij =
1
2i (ri − rj) × (∇i − ∇j) is the relative angular momentum,

and Sij = 1
2 (σ i + σ j) is the total spin. The terms p =

15 . . . 18 are included in the formulation of the Argonne potential
to account for small violations of charge symmetry [45]. In
addition to the NN interactions, also phenomenological 3N
interactions have been developed. In particular the Illinois 7
(IL7) interaction is expressed as a sum of a two-pion-exchange
P-wave term (Fujita-Miyazawa), a two-pion-exchange S-wave
contribution, a three-pion-exchange contribution, and a 3N
central interaction [46]. These phenomenological NN and 3N
interactions were successfully utilized in QMC calculations of
nuclear properties, neutron drops, and neutron-star matter [18,
47–50].

In the last decades there has been a tremendous progress
in development of chiral EFT interactions as proven by
the availability of a number of different potentials [13, 51–
54]. However, it is only recently with their formulation in
coordinate space that the application of chiral forces within
QMC approaches became possible. These new local potentials
have been computed up to N2LO with consistent 3N terms in
Gezerlis et al. [55, 56], the1-isobar degrees of freedomwere fully
accounted for in the derivation of Piarulli et al. [57, 58].

In analogy with the nuclear Hamiltonian, the current operator
can be expressed as a sum of one- and two-body terms

Jµ =
∑

i

jµ(i)+
∑

i<j

jµ(ij)+ . . . (16)

The one-body electromagnetic current is given by

j
µ
EM = ū(p′)

[

F1γ
µ + iσµνqν

F2

2mN

]

u(p) , (17)

where p and p′ are the initial and final nucleon momentum. The
isoscalar (S) and isovector (V) form factors, F1 and F2, are given
by combination of the Dirac and Pauli ones, F1 and F2, as

F1,2 =
1

2
[FS1,2 + FV1,2τz] (18)

where τz is the is the isospin operator and

FS1,2 = F
p
1,2 + Fn1,2, FV1,2 = F

p
1,2 − Fn1,2 . (19)

The Dirac and Pauli form factors can be expressed in terms of the
electric and magnetic form factors of the proton and neutron as

F
p,n
1 =

G
p,n
E + τG

p,n
M

1+ τ
, F

p,n
2 =

G
p,n
M − G

p,n
E

1+ τ
(20)

with τ = Q2/4m2
N . Therefore, the electromagnetic current can

be schematically written as JµEM = J
µ
γ ,S + J

µ
γ ,z where the first is

the isoscar term and the second is the isovector multiplied by the
isospin operators τz . The one-body charge and current operator
are obtained from the non-relativistic reduction of the covariant
operator of Equation (17) including all the terms up to 1/m2

N in
the expansion. It leads to the following expression for isoscalar
charge, transverse (⊥) and longitudinal (‖) to q component of
the current operator

j0γ ,S =
GS
E

2
√

1+ Q2/4m2
N

− i
2GS

M − GS
E

8m2
N

q · (σ i × pi)

j⊥γ ,S =
GS
E

2mN
p⊥i − i

GS
M

4mN
(q× σ )i

j
‖
γ ,S =

ω

|q|
j0γ ,S . (21)

Note that the last relation has been obtained from current
conservation relation discussed in Equation (30). Analogously
to Equation (19), the isoscalar and isovector component of the
electric and magnetic form factors are written as

GS
E,M = G

p
E,M + Gn

E,M , GV
E,M = G

p
E,M − Gn

E,M . (22)

The isovector contribution to the current J
µ
γ ,z is obtained by

replacing GS
E,M → GV

E,Mτz . The electroweak interactions of
a neutrino or anti-neutrino with the hadronic target can be
induced by both CC and NC transitions. The current operator
is written as a different combination of vector and axial
terms. Note that in both cases the Conserved Vector Current
(CVC) hypothesis allows to relate the vector form factor to the
electromagnetic ones

J
µ
CC =Jµγ ,z + Jµa,z

J
µ
NC =− 2 sin2 θW J

µ
γ ,S + (1− 2 sin2 θW)Jµγ ,z + Jµa,z , (23)

where θW is the Weinberg angle (sin2 θW = 0.2312 [42]). The
fully relativistic expression of the axial one-body current operator
reads

j
µ
A = ū(p′)

[

− γ µγ5FA − qµγ5
FP

mN

]

u(p) . (24)

For CC processes the axial and pseudo-scalar form factors can be
written as

FA = FAτ±, FP = FPτ± , (25)

with τi,± = (τi,x ± τi,y)/2 being the isospin raising-lowering
operator.
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The dipole parametrization for the axial form factor is
routinely adopted in most of the calculations, it reads

FA =
gA

(1+ Q2/m2
A)

2
, (26)

where the nucleon axial-vector coupling constant is assumed
to be gA = 1.2694. The impact of the Q2 dependence
of the axial form factor on neutrino-nucleus cross-section
predictions has been discussed in Aguilar-Arevalo et al. [59] and
Bernard et al. [60]. The validity of the dipole parametrization
has been questioned and in these regards both lattice-QCD
calculations [61] and the so called “z-expansion” analysis [62]
has been recently proposed. The pseudo-scalar form factor is
obtained by using Partially Conserved Axial Current (PCAC)
arguments to write it in terms of the axial one

FP =
2m2

N

(m2
π + Q2)

FA . (27)

For NC transitions, we report the non-relativistic reduction of the
charge- and axial-current operator [63] (for brevity we neglect
order 1/m2

N terms)

j0a,z(i) = −
GA

4mN
τi,zσ i · (q+ pi) , ja,z(i) = −

GA

4mN
σ iτi,z .

(28)

The CC non-relativistic current is obtained by substituting in
the non-relativistic isovector term j

µ
γ ,z and j

µ
a,z of Equation (28),

τi,z/2 → τi,± and adding a pseudoscalar contribution

j
µ
a,PS =

GA

m2
π + Q2

τi,±q
µ
σ i · q . (29)

The electromagnetic current must satisfy the continuity equation

∇ · J+ i
[

H, J0
]

= 0 (30)

which links the two-body exchange current operator to the NN
interaction and leads to separate continuity equations for the
one- and two-body current operators. Chiral EFT formulations
allow to construct electroweak currents which are fully consistent
with the nuclear forces entering the hamiltonian. The gauge
invariance of the theory implies that the nuclear current
operators satisfy the continuity equation with the potentials order
by order of the chiral expansion. The calculation of the two-
body electromagnetic currents has been the subject of extensive
study carried out by different groups [64–68]. Another important
advantage of chiral EFT consists on having connected three-
nucleon interaction and the two-nucleon axial current; their
derivation up to one-loop is reported in Krebs et al. [69]
and Baroni et al. [70] while the 1-full expression obtained
consistently with the nuclear forces of Piarulli et al. [57, 58] can
be found in Baroni et al. [71].

The majority of the results that will be presented in this
review have been obtained utilizing the aforementioned AV18

FIGURE 1 | Feynman diagrams of the 1 contribution to two-body currents.

Solid, thick, and dashed lines represent nucleons, deltas, pions, respectively

while the wavy line correspond to the vector boson.

potential and related semi-phenomenological currents. The spin
and isospin dependence of the NN potential leads to a non-
vanishing commutator with the non-relativistic one-body charge
operator. In order to satisfy the continuity equation, the so-
called “model-independent” two-body currents jMI(ij) have to
be introduced; their longitudinal part is directly constrained by
the NN interaction while their transverse components are not
uniquely defined. The main contributions comes from the one-
pion and one-rho exchange current operator, their expression
is well-known and reported in Rocco et al. [72], Dekker et
al. [36] and Schiavilla et al. [73] both in their relativistic and
non-relativistic formulation.

In addition to the model-independent two body currents a
significant contribution comes from model dependent terms in
which the exchange of a pion is followed by the excitation of
a 1-resonance in the intermediate state. Due to the transverse
nature of this current, its expression is model dependent. In fact,
the form of the vector part is not determined from current-
conservation constraints [74].

Analogously to the one-body case, the two-body CC operator
is the sum of a vector and axial component. The relativistic
expression of the two-body current operator we present in
this work has been obtained following the parametrization of
Ruiz Simo et al. [75] where the pion-production amplitudes of
Hernandez et al. [76] are coupled to a second nucleonic line.
Starting from the vector component of jµCC, the electromagnetic
current operators can be obtained using the CVC hypothesis.
Adopting the momentum variables specified in Figure 1, the
expression of the CC1-current reads

(jµ1)CC =
3

2

fπNN f
∗

m2
π

{

5(k2)(2)
[(

−
2

3
τ (2)

+
IV

3

)

±
FπNN(k2)FπN1(k2)(j

µ
a )(1) −

(2

3
τ (2) +

IV

3

)

±

× FπNN(k2)FπN1(k2)(j
µ

b
)(1)

]

+ (1 ↔ 2)

}

(31)
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where k2 = p′ − k′ is the momentum of the π exchanged in the
two depicted diagrams, f ∗ = 2.14 and

5(k) =
γ5/k

k2 −m2
π

, (32)

FπN1(k) =
32
πN1

32
πN1 − k2

, (33)

FπNN(k) =
32
π −m2

π

32
π − k2

, (34)

with 3πN1 = 1150 MeV and 3π = 1300 MeV. In the above
equations, 5(k) describes the pion propagation and absorption,
while the πNN and πN1 couplings depend on the form factors
FπN1(k) and FπNN(k), respectively, accounting for the off-
shellness of the π and 1. The operator (IV )± = (τ (1) × τ (2))±
with ± → x ± iy raises-lowers the isospin components. In
Equation (31), jµa and j

µ

b
denote the N → 1 transition vertices

of the left and right diagrams, respectively. They are expressed as

jµa = (jµa )V + (jµa )A ,

(jµa )V =
CV
3

mN

[

kα2Gαβ (p1)
(

gβµ/q− qβγ µ
)]

γ5 ,

(jµa )A = CA
5

[

kα2Gαβ (p1)g
βµ

]

(35)

where k is the momentum of the initial nucleon, q is the
momentum transfer and p1 = q + k, yielding p01 = e(k) + ω.
For the left diagram we have

j
µ

b
= (jµ

b
)V + (jµ

b
)A ,

(jµ
b
)V =

CV
3

mN
γ5

[(

gαµ/q− qαγ µ
)

Gαβ (p1)k
β
2

]

,

(jµ
b
)A = CA

5

[

gαµGαβ (p1)k
β
2

]

. (36)

where p is the outgoing nucleon four-momentum and p1 =

p− q. The vector and axial form factors, denoted by CV
3 and CA

5 ,
are obtained from general principles and experimental results as
discussed inHernandez et al. [76] where their explicit expressions
is also reported. In the above equations all nucleons are on the

mass-shell with the time component p0 =

√

m2
N + Ep 2. For

the 1-propagator we adopted the Rarita-Schwinger convention
where Gαβ (p1) = Pαβ (p1)/(p21 −M2

1) is proportional to the
spin 3/2 projection operator

Pαβ (p1) = (/p1 +M1)
[

gαβ −
1

3
γ αγ β −

2

3

pα1p
β
1

M2
1

+
1

3

pα1γ
β − p

β
1γ

α

M1

]

. (37)

In order to account for the possible decay of the1 into a physical
πN we replace its real mass M1 = 1,232 MeV entering the
denominator of the free propagator, i.e., p21 − M2

1, by M1 −

iŴ(p1)/2 [72, 77]. The decay width Ŵ(p1)/2 is not a constant but
explicitly depends upon the energy, its expression can be found
in Dekker et al. [72].

3. INTEGRAL TRANSFORM TECHNIQUES

Evaluating the hadronic tensor of Equation (3) is highly non-
trivial as it requires to sum over the entire excitation spectrum of
the nucleus and to include one- and two-body current operators.
Integral transform techniques are extremely useful in reducing
the problem to a ground-state one instead of explicitly evaluating
each transition amplitude |90〉 → |9f 〉. We consider the
convolution of the response function with a smooth kernel

Eαβ (q, σ ) =

∫

dωK(σ ,ω)Rαβ(q,ω) =

∑

f

〈90|J
†
α(q)|9f 〉K(σ ,Ef − E0)〈9f |Jβ (q)|90〉 , (38)

using the closure property
∑

f |9f 〉〈9f | = 1 a generalized sum
rule depending on a continuous parameter σ can be obtained

Eαβ (q, σ ) = 〈90|J
†(q)K(σ ,H − E0)Jβ (q)|90〉 . (39)

With an appropriate choice of the kernel K, the right-hand
side of the above equation can be accurately computed within
different ab-initio methods. In order to retrieve the energy
dependence of the response function, the integral transform has
to be accurately inverted.

3.1. Lorentz Integral Transform Technique
The kernel used to compute the integral transform is a Lorentzian

K(σ ,ω) =
1

(ω − σ ∗)(ω − σ )
(40)

where σ is a complex parameter, generally defined for
convenience as

σ = E0 + σR + iσI . (41)

For simplicity we leave the Lorentz indices implicit and rewrite
Equation (39) substituting the Lorentz kernel as

E(q, σI , σR) = 〈90|J
†(q)

1

H − E0 − σR + iσi
1

H − E0 − σR − iσi
J(q)|90〉 = 〈9̃|9̃〉 , (42)

implying that the Lorentz Integral Transform (LIT) of the
response function is given by the norm of the |9̃〉 state. This
state is determined by solving a Schrödinger-like equation for a
quantum mechanical bound system

(H − E0 − σR − iσI)|9̃〉 = J(q)|90〉 (43)

for different values of σI and σR. In order to obtain the response
function, one first computes Ē(q, σI , σR) and then inverts it
numerically. This second step is highly non-trivial and belongs to
the class of so-called “ill-posed” problems. The devised method
consists on: (i) making an ansatz to write down the expression of
the response function as a function of a set of parameters ci (ii) the
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corresponding LIT is computed using this parametrization of the
nuclear response function (iii) the parameters ci are determined
from a least-squares fit of the LIT computed in (ii) with the
one calculated at the beginning, Ē(q, σI , σR). A more detailed
discussion of the inversion procedures utilized can be found in
Efros et al. [78] and Reiss et al. [79].

A very accurate determination the electromagnetic responses
of light nuclei has been achieved, for different values of q,
combining the LIT method with the hyperspherical harmonic
(HH) formalism [80–82]. This expansion method has been
successfully utilized to study nuclear, atomic and molecular few-
body systems; the wave function of the system is expanded in a
series of products of HH basis functions and hyperradial basis
functions allowing for a correct description of the large distance
components. The predictive power of the HH approach is limited
to relatively light mass number, to overcome this limitation the
Couple Cluster (CC) theory has been recently combined with the
LIT approach to tackle medium and large mass nuclei [83, 84].
The photoabsorption cross sections of 16,22 O and 40 Ca and
electromagnetic sum rules have been recently computed using
the LIT-CC approach in Simonis et al. [85].

3.2. Green’s Function Monte Carlo
The Green’s Function Monte Carlo (GFMC) is an ab-initio
method that allows to predict with high accuracy the structure
and low-energy transitions of A ≤ 12 nuclei [19]. This method is
utilized to project out the ground state starting from a trial wave
function |9T〉

|90〉 ∝ lim
τ→∞

exp[−(H − E0)τ ]|9T〉 ,

where E0 is a parameter used to control the normalization and
τ is the imaginary time. Recently, exploiting integral transform
techniques accurate predictions for the electromagnetic response
functions of 4He and 12C in the quasielastic sector have been
obtained. The inclusion of two-body currents yields to a very
good agreement between GFMC predictions and experimental
data [23, 25]. The integral transform of Equation (38) is evaluated
using a Laplace kernel and denoted as Euclidean response. Its
inelastic contribution is obtained as

Eαβ (q, σ ) =

∫ ∞

ω+
el

dωRαβ (q,ω)e
−ωσ , (44)

where ωel is the energy of the recoiling ground state. Using the
closure property, the sum over the final states can be removed,
the inelastic Euclidean responses can be written as the following
ground-state expectation value

Eα(|q|, σ )=〈90|J
†
α(q)e

−(H−E0)τ Jβ (q)|90〉 − |Fα(q)|
2e−σωel

(45)

where Fα(q) is the longitudinal elastic form factor and the
nucleon form factors entering in the current operator are
evaluated at the quasielastic peak Q2

qe = q2 − ω2
qe.

In order to obtain the response function the Laplace transform
has to be inverted. This is achieved exploiting maximum

entropy techniques, as described in Lovato et al. [25] and
in the supplemental material of Lovato et al. [86]. The LIT-
HH and GFMC results for the longitudinal electromagnetic
responses of 4He have been recently compared to benchmark the
inversion procedure used in the two approaches. The calculations
presented are based on the AV18 and IL7 combination of two-
and three-nucleon potential for the GFMC method and AV18
and UIX for the LIT-HH [45, 87]. The results are displayed
in Figure 2 for |q| = 300 and 500 MeV, the (red) dashed and
solid (blue) lines corresponding to the LIT-HH and GFMC
predictions, respectively, are found in good agreement and
correctly reproduce the experimental data taken from Carlson
et al. [88]. The small discrepancies between the two curves have
been discussed in Rocco et al. [24] and they do not originate from
the inversion techniques utilized in the two approaches.

Because of the non-relativistic nature of the GFMC approach,
it can be safely applied to compute electroweak responses in the
high momentum transfer region relevant for neutrino-nucleus
scattering. Relativistic corrections are in both one- and two-body
current operators up to order 1/m2

N as discussed in Carlson and
Schiavilla [63] for the one-body case. However, the quantum
mechanical framework is non-relativistic; an attempt of including
relativistic corrections in the kinematics has been recently carried
out in Rocco et al. [24]. The strategy consists on performing
the calculation in a reference frame that minimizes nucleon
momenta in the final state.

In electron-nucleus scattering processes, the quasielastic
region is dominated by a one-nucleon knock-out and this
condition is satisfied by the active nucleon Breit (ANB) frame
in which the target nucleus has a momentum −A q/2. In this
reference frame the momentum of the nucleons in the initial
state is about −q/2 while the one of the emitted particle is ≃
q/2. The momentum of the final state is higher in all the other
reference frames like for example the laboratory (LAB) system
where the emitted knocked-out nucleon has a momentum of
about q. Therefore, the ANB system can be utilized to minimize
relativistic corrections.

In order to compare with experimental data measured in the
LAB system, the results from the ANB need to be boosted back
to the LAB frame. The solid blue and red curves in Figure 3

performing the calculation of the longitudinal electromagnetic
response of 4He at |q| = 700 MeV in the LAB and ANB frame,
respectively, and boosting back to the LAB frame using Lorentz
transformation. The two curves peak in different positions and
have different strengths, this frame dependence of the results is a
clear indication that relativistic effects are sizable for these values
of q.

Relativistic effects in the kinematics can be included
employing the two-fragment model of Efros et al. [89] which
presents strong analogies with the procedure used to determine
NN potentials. In this case, the relative momentum of the two-
nucleon system p12 is determined in a relativistic fashion and
utilized to solve the Schrödinger equation with a non-relativistic
kinetic energy E12 = p212/2µ12, µ12 being the reduced mass.

The two-fragment model relies on the assumption that the
dominant reaction in the quasielastic region consists on the
break-up of the nucleus into a knocked-out nucleon with
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FIGURE 2 | Longitudinal electromagnetic response functions of 4He at |q| = 300 MeV (left) and |q| = 500 MeV (right) obtained inverting the Laplace and Lorentz

integral transforms compared to the experimental data of Carlson et al. [88].

FIGURE 3 | (Left) Longitudinal electromagnetic response functions of 4He at |q| = 700 MeV computed in the LAB and in the ANB frame are displayed by the blue

and red solid curves, respectively. The dashed curves have been obtained by applying the two-fragment model to consider two-body relativistic kinematics for the final

state energy. (Right) Double-differential electron-4He cross sections for Ee = 1108 MeV and θ = 37.5. The short-dashed red and dashed blue curves are the GFMC

calculation were only one- body and one- plus two-body contributions in the electromagnetic currents are accounted for. The results obtained in the ANB frame

corrected by the two-fragment model are displayed by the red solid line. The experimental data are taken from Benhar et al. [44].

momentum pfrN and a remaining (A − 1) system in its ground

state pfrX , respectively. The relative and center-of-mass momenta
of the nucleon and spectator system are obtained as

pfrf = µ(
pfrN
m

−
pfrX
MX

) , Pfrf = pfrN + pfrX , (46)

where MX and µ are the mass of the residual nucleus and the
reduced mass, respectively. The relative momentum pfr

f
can be

computed in a relativistic way utilizing the correct definition of
the final hadronic energy

E
fr

f
=

√

m2 + (pfr
f
+ (µ/MA−1)Pfrf )

2

+
√

M2
A−1 + (pfr

f
− (µ/m)Pfr

f
)2 ;

and used to determine the relativistically “fake” kinetic energy
(pfr

f
)2/2µ entering in the energy conserving δ-function of

Equation (3). A more detailed discussion of the approach can be
found in Rocco et al. [89] and Efros et al. [24].

The results computed within the two-fragment model are
displayed by the dashed curves in Figure 3. Note that, now the
position and the strength of the LAB rel and ANB rel curves are
the same. This implies that the position of the quasielastic peak
in the electromagnetic responses no longer depends upon the
reference frame and coincides with that of the ANB frame (solid
blue curve).

In order to compute the inclusive electromagnetic cross
section of Equation (4),RL andRT have to be evaluated for several
values of ω and |q|. Hence, due to the sizable computational
effort associated with the inversion of the Euclidean response
for a given value of |q|, the direct evaluation of Equation (4) is
not feasible within GFMC. In order to overcome this limitation,
an interpolation procedure based on the concept of scaling
was devised in Rocco et al. [24] and used for an accurate
and efficient interpolation of the GFMC responses. The right
panel of Figure 3 displays the double-differential electron-4He
cross sections for Ee = 1108 MeV and θ = 37.5. The red
and blue lines have been obtained including the one- body
and one- plus two-body contributions in the electromagnetic
currents. The inclusion of the meson exchange current leads
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to a substantial enhancement in the quasielastic region. The
same feature is present in the results of Lovato et al. [23, 25]
where the electromagnetic responses of 4He and 12C have been
calculated and compared with the experimental data. Separating
the longitudinal and transverse channel it has been observed
that the two-body term has a predominantly transverse nature;
its contribution is almost vanishing in the longitudinal channel
when electromagnetic processes are considered. The red solid
line indicates one plus two-body current results obtained in the
ANB frame, employing the two-body fragment model to account
for relativistic kinematics. The inclusion of relativistic effects
leads to a shift of the peak position toward lower values of ω and
to a reduction of its width.

Recently, GFMC calculations of the neutral-current responses
and cross sections for neutrino scattering off 12C have also
been performed [26]. A description of the two-body charge and
current operators used in this work is provided in Lovato et
al. [23] and Shen et al. [40] and references therein. The left
panel of Figure 4 shows the different spatial components of the
neutral-current response functions in 12C at momentum transfer
|q| = 570 MeV. The vector and axial contributions are shown

separately in all cases but for Rxy the entire strength is given
by the axial-vector interference. The dashed and solid lines have
been obtained including the one-body and one- and two-body
currents, respectively. Note that also in this case the two-body
term significantly increases in magnitude the response functions
in the quasielastic region. At variance with the electromagnetic
results, the axial component of the two-body operator in the
weak neutral charge produce substantial excess strength in the
longitudinal channels as clearly visible in the upper figure. While
in the transverse response, shown in the middle panel, we have
a two-body enhancement both from the axial and vector terms.
The xy response function in the lower panel which arises solely
on account of this interference is also modified by the two-body
contribution. In the right panel of Figure 4 the CC responses
in 4He at momentum transfer |q| = 600 MeV are displayed.
In analogy the NC case, we see that the enhancement given by
the inclusion of two-body currents is present in all the different
channels. However, in the longitudinal one it is not as significant
as for the NC scattering. This has to be ascribed to the relative
strength of the axial contribution to the total response which in
this case is much smaller than the vector one.

FIGURE 4 | (Left) Adapted from Lovato et al. [26] under the Creative Commons CCBY license. Neutral-current response functions in 12C at momentum transfer |q| =

570 MeV obtained with one-body only (dashed lines) and one- and two-body (solid lines) currents. The vector and axial contribution corresponds to the red and green

curves, the black curves display the full result in which the axial-vector interference is accounted for. The upper, middle, and lower panel corresponds to the charge,

transverse and xy component of the response function. (Right) Charge-current response functions in 4He at momentum transfer |q| = 600 MeV. The different lines are

the same as for the left panel.
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4. SHORT TIME APPROXIMATION

A novel approach to calculate the short-time propagation
resulting from two- nucleon dynamics has been recently
developed [28]. The STA method utilizes QMC techniques to
evaluate path integrals of one- and two-nucleon currents in
real time and predict the response function of nuclei in the
quasielastic region. The expression of this response is reported
in Equation (3) and can be rewritten as

Rµν(q,ω) =

∫ ∞

−∞

dt

2π
ei(ω+E0−Ef )t

∑

f

〈90|J
µ†(q,ω)|9f 〉〈9f |J

ν(q,ω)|90〉

=

∫ ∞

−∞

dt

2π
ei(ω+E0)t〈90|J

µ†(q,ω) e−iHt Jν(q,ω)|90〉

(47)

where the sum over final states has been replaced with a real-
time propagator. In the following, we drop the Lorentz indices to
simplify the notation and replace J(q,ω) → J(q) with ω = ωqe,
the one- and two-body current operators utilized are the same
as for the GFMC results [40]. The main assumption underlying
the STA is that only the active pair of nucleons propagate, this
qualitatively amounts to rewrite the final state as

∑

f |9f 〉 →
∑

f ′ f ′′ |φ
2
f ′
〉|9A−2

f ′′
〉 where |φ2

f ′
〉 is the correlated two-nucleon

state. To evaluate the response function, two completeness
relations on the coordinate states are inserted, yielding

〈90|J
µ† e−iHt Jν |90〉 =

∫

dr1 . . . drAdr
′
1 . . . dr

′
A〈90|J

µ†|r1 . . . rA〉

× 〈r1 . . . rA|e
−iHt|r′1 . . . r

′
A〉〈r

′
1 . . . r

′
A|J

ν |90〉 .
(48)

In the STA the current-current correlator is rewritten keeping the
one- and two-body terms

Jµ† e−iHt Jν =
(

∑

i

jµ†(i)+
∑

i<j

jµ†(ij)
)

e−iHt
(

∑

i′

jν(i′)

+
∑

i′<j′

jν(i′j′)
)

=
∑

i

jµ†(i)e−iHtjν(i)+
∑

i6=j

jµ†(i)e−iHtjν(j)

+
∑

i6=j

(

jµ†(i)e−iHtjν(ij)+ jµ†(ij)e−iHtjν(i)

+ jµ†(ij)e−iHtjν(ij)
)

(49)

the contributions with three or more active nucleons have
been neglected. This amounts to include only two-nucleon
interactions in the Hamiltonian; the A-nucleon particle

propagator is approximated as

〈r1 . . . rA|e
−iHt|r′1 . . . r

′
A〉 = 〈r1 . . . rA|e

−i(Hcm
ij +Hrel

ij +HA−2)t|r′1 . . . r
′
A〉

= 〈Rij|e
−iHcm

ij t
|R′ij〉〈rij|e

−iHrel
ij t

|r′ij〉e
−iĒA−2t

A
∏

k6=i,j

δ(rk − r′k) (50)

where Hcm
ij = P2ij/(4mN) and Hrel

ij = p2ij/mN + vij. The A −

2 nucleons are treated as static spectators and their energy is
assumed to be peaked around a constant value ĒA−2.

We put the two equations together and define j
µ†
L jνR =

(

jµ†(i)jν(j)+ jµ†(i)jν(ij)+ jµ†(j)jν(ij)) yielding

Rµν (q,ω) =
A(A− 1)

2

∫

dtei(ω+E0−ĒA−2)t

∫

dr12dR12dr
′
12dR

′
12dRA−2〈90|j

µ†
L |r12R12;RA−2〉

× 〈R12|e
−iHcm

12 t|R′12〉〈r12|e
−iHrel

12 t|r′12〉〈r
′
12R

′
12;RA−2|j

ν
R|90〉 .
(51)

The two-nucleon propagator 〈r12|e
−iHrel

12 t|r′12〉 is obtained by
summing over the bound and continuum eigenstates of Hrel

12 .
Note that the interaction effects in the active pair are exactly
accounted for. It is convenient to rewrite the STA response in
terms of an integral over the relative- and center-of-mass energy
of the pair as

Rµν(q,ω) =

∫ ∞

0
de

∫ ∞

0
dEcmδ(ω + E0 − e− Ecm)D

µν(e,Ecm) .

(52)

Within the factorization scheme outlined above, interaction
effects at the two-nucleon level are fully retained, and
the interference between one- and two-body terms in the
electromagnetic current operator are consistently accounted for.
The low-energy properties of the system (discrete transition
and collective excitation of the nucleus) and the correct energy
threshold for the quasielastic region can not be described within
the STA. For this reason, some corrections have to be introduced
in order to recover the exact value of the threshold for the
quasielastic scattering. In particular, the response density is
folded with a gaussian kernel

D̃(e′,Ecm) =

∫ ∞

0
deD(e, Ecm)N exp

{

−
[ e′ − ω(e)

ωth

]2
}

(53)

where ω(e) =
√

e2 + ω2
th exp−e/ω̄ and N is defined requiring

that the sum rules are preserved

∫ ∞

0
deN exp

{

−
[ e′ − ω(e)

ωth

]2
}

= 1 . (54)

The two parameters controlling the shift and width of the
gaussian folding are ωth and ω̄, respectively. The values chosen
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FIGURE 5 | Transverse electromagnetic response of 4He obtained within the STA and GFMC approaches. The left and right panel corresponds to |q| = 300 and 500

MeV, respectively. The dashed (blue) and solid (red) lines are STA calculations prior and including the shift; the solid (black) line displays the GFMC results. Figure

adapted from Pastore et al. [28].

to reproduce the physical threshold of ∼ 20 MeV of 4He are
ωth = 35 MeV and a 15 MeV width.

A comparison between the STA and GFMC electromagnetic
response function of 4He is shown in Figure 5 for |q| = 300
and 500 MeV. The dashed line displays the STA results without
any knowledge of the threshold while in the full red line the
correct behavior at threshold has been enforced as explained in
Equation (53). Including these corrections leads to a shift of
the response toward larger values of the energy transfer and a
redistribution of the strength; while for |q| = 300 MeV this effect
is sizable the results at |q| = 500 are only slightlymodified. In both
configurations the STA results which include the shift accurately
reproduce the GFMC ones.

The role played by final-state interactions within the pair is
analyzed in the left panel of Figure 6 where the solid and dashed
lines correspond to the transverse electromagnetic response of
4He obtained with and without interactions effects, respectively.
Their inclusion leads to a visible shift in the position of the
quasielastic peak toward left. The breakdown of the response into
one-body current diagonal and off-diagonal terms, interference
between one- and two-body currents, and two-body currents
only, is also shown. It is interesting to note that the off-diagonal
terms, routinely neglected in the IA scheme, provide a negative
contribution depleting the response strength. In analogy with
the GFMC findings, the interference between one-and two-body
currents provides an important enhancement in the quasielastic
region; contrary to the pure two-body current which does not
provide a significant contribution to the response function in
this kinematics. This is likely to be ascribed to the static limit
adopted in both the GFMC and STA approaches to derive the
non-relativistic expression of the 1 current. As discussed in
Dekker et al. [72] in the static limit all energy dependence of the
1 propagator disappears and the resonance behavior in the dip
region is not present.

The isospin dependence of pairs in the back-to-back
kinematics, i.e., pairs with low initial center-of-mass momentum
and high relative momentum, is studied in the right panel of

Figure 6. These pairs can be singled-out in the response densities
by requiring the pair center-of-mass momentum P being close
to |q| and the relative momentum in the final state being large.
Figure 6 displays the response densities at fixed energy Ecm ≃

|q|2/(4mN) as a function of the relative energy of the pair e.
The solid and dot-dashed curves have been obtained with and
without interactions within the pair. The comparison between
the full results (black line) and the one-body total (magenta
line) shows that the two-nucleon currents do not provide a
large contribution at low relative energies. While, the full result
becomes substantially larger than the one-body current term for
e ≥ 250 MeV. The back-to-back momentum distributions of
np pairs are known to dominate over pp or nn pairs at high
relative momenta because of tensor correlations as discussed in
Schiavilla et al. [90]. In addition to that, the two-nucleon currents
are almost entirely in the np pairs, and increase the response by
roughly a factor of∼ 2 around at e = 300 MeV.

5. EXTENDED FACTORIZATION SCHEME

For large values of ω and |q|, a non-relativistic calculation of
the hadron tensor is no longer reliable. Since both the final
state and the transition currents depends upon the momentum
transfer, relativity has to be properly accounted for. Factorizing
the hadronic final state allows one to overcome these difficulties
by providing a relativistic description of |9f 〉 and of the current
operator. In addition to that, realistic spectral functions are used
to accurately model the dynamics of the target nucleus and
account for correlation effects. We start by only retaining the
one-body current terms and rewriting the hadronic final state as

Jµ =
∑

i

jµ(i), |9f 〉 → |p〉 ⊗ |ψA−1
f

〉 (55)

where |p〉 is a plane wave describing the propagation of the
final-state nucleon with momentum |p| and energy e(p) =
√

|p|2 +m2
N , while |ψ

A−1
f

〉 describes the (A− 1)-body spectator
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FIGURE 6 | (Left) Transverse electromagnetic response of 4He at |q| = 500 MeV without (dashed lines) and with (solid lines) interacting two-nucleons in the final state.

The different contributions corresponding to one-body current diagonal terms, one-body current off-diagonal terms, interference between one- and two-body

currents, and two-body currents only are separately shown. (Right) Transverse response densities of 4He at |q| = 500 MeV and final center of mass energy

Ecm = |q|2/(2mN ). The solid cyan and magenta solid line display the diagonal only and diagonal plus off-diagonal one-body term, respectively. The solid black curve

corresponds to the total one- plus two-body current result while in the blue dashed and red dashed isolate the contribution of the nn and pp pairs is singled-out.

Figure adapted from Pastore et al. [28].

system. The energy and momentum of the latter are obtained by
energy and momentum conservation relations

EA−1
f

= ω + E0 − e(p) , PA−1
f

= q− p . (56)

The incoherent contribution to the one-body hadron tensor
can be easily obtained from Equation (55) and by inserting a
single-nucleon completeness relation

R
µν

1b =

∫

d3k

(2π)3
dEPh(k,E)

m2
N

e(k)e(k+ q)

∑

i

〈k|j
µ
i

†
|k+ q〉

〈k+ q|jνi |k〉δ(ω̃ + e(k)− e(k+ q)) , (57)

where mN is the rest mass of the initial nucleon. We introduced
ω̃ defined as ω̃ = ω − E+mN − e(k). To describe the scattering
off a bound nucleon with momentum k, the four-momentum
transfer employed in the hadronic tensor is replaced by q =

(ω, q) → q̃ = (ω̃, q). The factors mN/e(k) and mN/e(k+ q)
ensures the implicit covariant normalization of the nucleon
quadri-spinors. The hole-spectral function Ph(k,E) provides the
probability distribution of removing a nucleon with momentum
k from the target nucleus, leaving the residual (A − 1)-nucleon
systemwith an excitation energy E. The calculation of the spectral
function of finite nuclei is a challenging problem that has seen the
endeavor of multiple theory groups. In this work we will focus on
the results obtained within the Correlated Basis Function and the
Self Consistent Green’s Function many-body methods, shortly
outlined in section 5.1.

For low and moderate values of |q|, interactions between the
struck particle and the spectator system become relevant. For this
reason, the IA results must be modified to include them [30].
This is achieved by including in the energy spectrum of the
propagating nucleon the real part of the optical potential U of
Cooper et al. [91] which accounts for its interactions with the

mean-field created by the residual system. This potential has to
be evaluated for a given kinetic energy of the nucleon tkin(p) =
√

p2 +m2 −m, and modifies its energy as

ẽ(k+ q) = e(k+ q)+ U
(

tkin(k+ q)
)

. (58)

The rescattering processes of the propagating nucleon are
described by a convolution scheme which amounts to fold the
IA responses with a function fk+q, normalized as

∫ +∞

−∞

dωfk+q(ω) = 1 . (59)

The one-body hadron tensor then reads

R
µν

1b (q,ω)
FSI

=

∫

d3k

(2π)3
dEPh(k,E)

∫

dω′ fk+q(ω − ω′)

m2
N

e(k)e(k+ q)

∑

i

〈k|j
µ
i

†
|k+ q〉〈k+ q|jνi |k〉

× δ(ω′ + E− ẽ(k+ q))θ(|k+ q| − pF) . (60)

where a generalization of the Glauber theory is utilized to derive
the folding function [92]

fp(ω) = δ(ω)
√

Tp +

∫

dt

2π
eiωt

[

ŪFSI
p (t)−

√

Tp

]

= δ(ω)
√

Tp + (1−
√

Tp)Fp(ω) . (61)

A more detailed discussion on how to obtain the nuclear
transparency Tp and the finite width function Fp(ω) can be found
in Benhar et al. [29] and Benhar et al. [93].

The inclusion of two body-currents requires an extension of
the factorization ansatz of Equation (55). In Benhar et al. [34]
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and Rocco et al. [35, 36] the amplitudes involving two-nucleon
currents have been included by rewriting the hadronic final state
as

|ψA
f 〉 → |pp′〉a ⊗ |ψA−2

f
〉 (62)

where |p p′〉a = |p p′〉 − |p′ p〉 is the anti-symmetrized two-
nucleon plane wave state. The two-body current component of
the hadron tensor reads [34]

W
µν

2b (q,ω) =
V

4

∫

dE
d3k

(2π)3
d3k′

(2π)3
d3p

(2π)3
m4

N

e(k)e(k′)e(p)e(p′)
Ph(k, k

′,E)

× 2
∑

ij

〈k k′|j
µ
ij

†
|p p′〉a〈p p

′|jνij|k k
′〉δ(ω − E+ 2mN − e(p)− e(p′)) .

(63)

where Ph(k, k
′,E) is a two-hole spectral function which in Benhar

et al. [34] and Rocco et al. [35, 36] has been approximated as the
product of the one-nucleon ones. Note that, while this is correct
for infinite nuclear matter, its application to mediummass nuclei
such as 12C is questionable and should be further investigated.

The production of real pions in the final state will be crucial
for the correct understanding of the DUNE results. In order to
include this reaction mechanism, we can write the hadronic final
state as

|ψA
f 〉 → |pπp〉 ⊗ |ψA−1

f
〉 , (64)

where pπ denotes both the four-momentum (p0π , pπ ) and the
isospin tπ of the emitted pion. In analogy with the one-body
case reported in Equation (57), the one-body one-pion (1b1π)
incoherent contribution to the hadron tensor is given by

W
µν

1b1π (q,ω) =

∫

d3k

(2π)3
dEPh(k,E)

d3pπ

(2π)3
m2

N

e(k)e(k+ q− pπ )
∑

i

〈k|j
µ
i

†
|pπp〉〈pπp|j

ν
i |k〉

∣

∣

∣

p=k+q−pπ

× δ(ω − E+mN − e(k+ q− pπ )− eπ (pπ )) ,
(65)

where eπ (pπ ) =
√

p2 +m2
π is the energy of the outgoing pion.

The expression of ω̃ is the same as for the one-body current
process. In order to describe the real emission of a pion we
need the transition amplitude between the initial one-nucleon
state |k〉 to the pion-nucleon |pπp〉 final state. These matrix
elements have been obtained within the sophisticated dynamical
couple-channel (DCC) model able to describe the πN → πN,
γN → πN, and N(e, e′π)N reactions accounting for meson-
baryon channels and nucleon resonances up to an invariant of
W = 2 GeV. About 26,000 data points of the πN, γN →

πN, ηN,K3,K6 data from the channel thresholds to W ≤

2.1 GeV have been fitted to obtain the parameters adopted within
the DCCmodel. The extension to the electroweak sector has been
recently performed [38].

Within the DCC model the following Hamiltonian is defined

HAO = H0 +
∑

c,c′

vc,c′ +
∑

N∗

∑

c

[ŴN∗ ,c + Ŵ
†
N∗ ,c] , (66)

to generate the matrix element 〈pπp|j
ν
i |k〉 of Equation (65).

In the above equation H0 is the free Hamiltonian while the
production of an N∗ state from a meson-baryon channel c is
described by the vertex ŴN∗ ,c. The energy independent meson-
exchange potentials vc,c′–where c, c′ = γN,πN, ηN,K3,K6–
are derived from phenomenological Lagrangians by using the
unitary transformation method [94, 95]. This hamiltonian is
used to generate 〈pπp|j

ν
i |k〉 of Equation (65). Convoluting the

DCC elementary current matrix elements for π-production with
the spectral function formalism allows to predict electroweak
interactions of finite nuclei in large energy transfer region
presented in section 5.2.

5.1. Determination of the Hole Spectral
Function of Finite Nuclei
The accurate determination of SFs suitable to encompass both
single-particle aspects and short-range dynamics is crucial for the
theoretical description of lepton-nucleus scattering. Its definition
can be given either in terms of nuclear overlaps or as the
imaginary part of a two-point hole Green’s Function

Ph(k,E) =
∑

f

|〈ψA
0 |[|k〉 ⊗ |ψA−1

f
〉]|2δ(E+ EA−1

f
− EA0 )

=
1

π
Im〈ψA

0 |a
†
k

1

E− (H − EA0 )− iǫ
ak|ψ

A
0 〉 . (67)

Within the CBF, the hole SF of finite nuclei is written as a sum
of two terms [31], Ph(k,E) = PMF

h
(k,E) + Pcorr

h
(k,E) displaying

distinctly different energy andmomentum dependences. The first
term is associated to the low momentum and removal-energy
region. The spectroscopic factor obtained from (e, e′p) scattering
measurements are utilized to obtain the first term within a
modified mean field (MF) picture. The correlated contribution
Pcorr
h

(k,E) includes the unbound states of the A − 1 spectator
system in which at least one of the spectator nucleons is in
a continuum state. The local density approximation (LDA) is
adopted to compute this term for finite nuclei

Pcorrh (k,E) =

∫

d3R ρA(R)P
corr
h,NM(k,E; ρA(R)) . (68)

where the correlation component of the SF obtained within the
CBF theory for isospin-symmetric nuclear matter for a given
density ρ is convoluted with the density profile of the nucleus
ρA(R). The applicability of the LDA in obtaining the correlation
part of the SF in finite nuclei relies on the observation that
short-range nuclear dynamics is not affected by surface and shell
effects. This strength of Pcorr

h
(k,E) is concentrated in the high

momentum and removal energy region as opposed to PMF
h

(k,E).
For momenta larger than the Fermi one, the spectral function
coincides with the correlation term.
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FIGURE 7 | (Left) Results obtained SCGF approach are compared to experimental data (dotted lines and square points) from references Emrich et al. [100] and

Ottermann et al. [101] for the charge density distributions of 40Ca (left) and 40Ar (right). The shaded areas represent the total experimental error, while the colored

bands displays the theoretical uncertainties due to model-space convergence. (Right) Neutron spectral function of 40Ar computed within the SCGF. The particle and

hole spectral function corresponds to the region above and below the Fermi level E = 6.3 MeV, respectively, indicated by the red arrow.

The SCGF approach is a many-body approach which scales
polynomially with the number of particle and allows reach nuclei
with A up to ∼100. The spectral function is determined within
an ab initio theory starting from individual interactions among
the nucleons. The central quantity of the SCGF formalism is
the one-body Green’s function which is directly related to the

spectral function through Ph(k,E) = − 1
π
Im

[

Gh(p, p;µ − E)
]

,

as expressed in the last equality in Equation (67). This is obtained
by adopting an iterative procedure to solve the associated Dyson
equation [96, 97] where the irreducible self-energy –which
encodes nuclear medium effects in the particle [98]– explicitly
depends on the propagator itself. To extend the predictive power
of the approach to open shell nuclei, the SCGF has been recently
reformulated within Gorkov’s theory. The particle number is
no longer conserved in this new formulation of the propagator
in which a grand canonical Hamiltonian is utilized. Breaking
of the particle-number symmetry allows one to include pairing
correlations and eliminate the degeneracies that would otherwise
prevent microscopic calculations for open-shell systems.

The results obtained for the neutron and proton spectral
functions of 40Ar, 40Ca, and 48Ti isotopes have been recently
presented in Barbieri et al. [99]. The SCGF calculations are
performed employing a spherical harmonic oscillator basis in
a model space of 14 major shells and varying the frequency
h̄� to study the uncertainties resulting from the truncation
of the model space. The saturating chiral interactions at next
to next to leading order (NNLOsat) are utilized in order to
correctly reproduce radii as well as charge density distributions
of nuclei. In the left panel of Figure 7 the charge density profiles
computed within the SCGF (solving the Gorkov’s equations) or
40Ca and 40Ar are compared to experimental data from Emrich
et al. [100] and Ottermann et al. [101]. The shaded area in
the theoretical curves has been obtained by performing the

calculation at the extremes of the range h̄� = 14 − 20 MeV–
which from the analysis of Somá et al. [102] turns out to be
the optimal one for the convergence of radii and energies–
and taking the differences between the results. The authors of
Barbieri et al. [99] interpreted this band as a conservative estimate
for the theoretical errors due to model space convergence. The
right panel of Figure 7 displays the computed hole (particle)
Ph(p)(p,E) spectral function for neutron removal (addition)
from 40Ar.

In analogy with PMF
h

(k,E) introduced in the discussion of
the CBF results, the peaks present at low E and k correspond
to nucleons that occupy the valence shell close to the Fermi
surface. In the high momentum and removal energy region,
which is typically associated with short range correlation physics,
the SCGF spectral function presents a mild tail (not shown
in Figure 7). In this regards, it has to be noted that the
CBF spectral function relies on the semi-phenomenological
AV18 Hamiltonian, which naturally encompass short-range
correlations. On the other hand, the NNLOsat interaction is a
relatively soft interaction, with a cutoff of 450 MeV which is able
to produce tails for large values of the momentum. However,
the strength in that region is significantly smaller than the one
obtained using AV18 [103].

5.2. Results
In this section we present different scattering results obtained
using the CBF and SCGF spectral function. In the left panel
of Figure 8 we gauge the differences between the two spectral
functions by comparing the results obtained for the double-
differential cross section of electron-12C scattering at Ee =

620 MeV and θe = 36◦. In the theoretical results we
focused on the quasielastic region, including only the one-
body current operator of Equation (17). The dashed and solid
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FIGURE 8 | (Left) Inclusive 12C(e,e’) cross sections at 620 MeV and 36◦ scattering angle. The solid and dashed curves correspond to the SCGF and CBF SF

calculations, respectively. The red lines correspond to the IA calculation in which the outgoing nucleon is free while in the blue ones FSI corrections have been taken

into account. (Right) Inclusive Ar(e,e’) cross section at 2.2 GeV and 15.5◦ scattering angle. The solid (dashed) line shows the quasielastic cross section without (with)

the inclusion of FSI obtained utilizing the SCGF spectral function calculations. Experimental data are taken from Dai et al. [104, 105] and show both the quasielastic

peak and the contribution from meson production at larger missing energies.

FIGURE 9 | (Left) Inclusive 12C(e,e’) cross sections at 730 MeV and 37◦ scattering angle. The short-dashed (blue) line and dashed (red) line correspond to one- and

two-body current contributions, respectively. The dash-dotted (magenta) lines represent π production contributions. The solid (black) line is the total results obtained

summing the three different terms. (Right) Same as left panel but for CC νµ scattering on 12C. The energy of the νµ is 1 GeV and the scattering angle is 30◦.

curve correspond to the CBF and SCGF SFs, the blue and
red lines have been obtained with and without including FSI
effects. Calculations carried out employing the two different
many-body approaches are in very nice agreement, although
they are obtained from different nuclear interactions. FSI effects
have been introduced following the procedure discussed in
Equation (60). The overall effect is a shift in the position
of the quasielastic peak to the left and a redistribution of
the strength which leads to a correct reproduction of the
experimental data. The right panel of Figure 8 shows the
inclusive electron scattering on 40Ar at the energy and kinematics
of the E12-14-012 JLab experiment compared with the SCGF
results with and without FSI displayed by the dot-dashed blue
and solid red curve, respectively. The real part of the 40Ca
optical potential taken from Cooper et al. [106]–the one of Ar
in not available in the literature–and the folding function of
Benhar et al. [93] were adopted to obtain the FSI corrections.
The prediction based on the NNLO sat interaction and SCGF
spectral function slightly underestimates the experimental data

at the quasielastic peak. Overall, there is a small discrepancy
which is compatible with the errors associated to the nuclear
forces [54].

The left panel of Figure 9 shows the double-differential
electron-12C cross sections for Ee = 730 MeV, θe = 37◦. The
theoretical results have been obtained using the CBF spectral
function and correcting for FSI effects in the quasielastic region.
The solid black line corresponds to the total cross section
obtained summing up the contributions associated with the
different reaction mechanisms. The dashed blue line displays
the one-body current contribution while MEC leading to two-
nucleon emission are given by the short-dashed red line. The
dot-dashed magenta line corresponds to the emission of a real
pion and a nucleon. A good agreement between theory and data
is observed for the different kinematics analyzed. Note that, the
strength associated with pion production is necessary to correctly
reproduce the peak in the1-production region.

The interference between one- and two-body currents has
not yet been included. Although the authors of Benhar et
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al. [34] argue that the inclusion of this contribution within
the factorization scheme leads to a small enhancement the
dip region, the GFMC and STA calculations presented in
sections 3 and 4 display a significant increase in the transverse
response due to the interference contribution. Therefore, the
consistent implementation of this term within the spectral
function formalism is a necessary step to be undertaken in order
to properly compare with the GFMC and STA results.

The results obtained for the double-differential CC νµ-12C
scattering cross sections are shown in the right panel of Figure 9
for Eν = 1 GeV, θµ = 30◦. The calculations have been carried
out within the same framework employed in the electromagnetic
case, utilizing the CBF spectral function and including an axial
term in all the current operators. In order to compare with
experimental data a folding with the energy distribution of a
given neutrino flux is needed.

6. CONCLUSIONS

The success of current- and next- generation of neutrino-
oscillation experiments strongly depend on the availability of
accurate nuclear physics calculations of the dynamics and
electroweak interactions of nuclei with quantified theoretical
uncertainties. This motivated the advent of many recent
theoretical works focused on improving the description of lepton
interactions with nuclei. In this review we outlined the main
features of three different many-body approaches.

The GFMC is an ab-initio method which provides extremely
accurate predictions for the electroweak response functions of
nuclei up to 12C in which correlations are fully retained. In
these results the strength and energy-dependence of two-nucleon
processes induced by correlation effects and interaction currents
provide a sizable contribution in the quasielastic region. The
main limitations of this method come from its non-relativistic
and fully inclusive nature, i.e., the transition to a given hadronic
final state can not be easily identified. Choosing a reference
frame that minimizes nucleon momenta allows to extend the
applicability of GFMC to larger lepton energies, correctly
reproducing experimental data for a large set of kinematics.
For moderate values of momentum transfers, comparing the
predictions based on more approximate schemes of nuclear
dynamics with the accurate GFMC results in the quasielastic
region is extremely important in order to test and validate them.

In the STA, two-nucleon physics is fully accounted for
including ground-state correlations and final state interactions
among the pair. Within this approach the interference between
one- and two-nucleon current is included. When the physical
threshold is enforced in the STA calculations, a very good
agreement with the GFMC quasi-elastic response of light nuclei
is observed for momentum transfers near and above the
Fermi momentum.

The formalism based on IA and realistic SF combines a
non-relativistic description of the target nucleus including

realistic interactions with relativistic currents and kinematics.
The results obtained utilizing two-different spectral functions
corresponding to the CBF and SCGF calculations have been
compared in the quasielastic region. The original formulation
of the factorization scheme utilized in the IA only included
one-nucleon matrix elements, its recent generalization allowed
to include meson-exchange currents and pion-production
mechanisms. The elementary amplitudes corresponding to
pion-production processes were computed capitalizing on
the sophisticated DCC model [37–39], which provides robust
predictions up to an invariant mass ofW ≤ 2.1 GeV. Theoretical
calculations that include different reaction mechanisms
are in good agreement with inclusive electron-scattering
off 12C.

Over the last decade, we witnessed a great progress in
the development of many-body techniques aimed at studying
nuclear properties and interactions. These methods rely on
nuclear EFT to consistently derive the nuclear Hamiltonian and
many-body currents. Despite this success, their application on
the broad energy region explored by oscillation experiments
involves non-trivial difficulties that have to be explored and
understood, such as how to transition to regions where
resonance-production occur and how to correctly include
relativistic effects. To address these points, models based on a
factorization of the hadronic final state have been developed.
Benchmark these models with the low-energy description
provided by correct many-body calculations and understand
the limit of validity of the approximations done will play a
crucial role in providing robust predictions of neutrino-nucleus
interactions.
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Recent progress in the numerical solution of the nuclear many-body problem and in

the development of nuclear Hamiltonians rooted in Quantum Chromodynamics, has

opened the door to first-principle computations of nuclear reactions. In this article,

we discuss the current status of ab initio calculations of nucleon-nucleus optical

potentials for medium-mass systems, with a focus on results obtained with the

coupled-cluster method.

Keywords: nuclear reactions, nuclear structure, optical potential, ab-initio method, Green’s function, chiral

effective field theory

1. INTRODUCTION

Understanding the structure and dynamics of atomic nuclei in terms of nucleons and their mutual
interactions is one of the main goals of nuclear physics. At the typical energy scale of nuclear
phenomena, the quarks and gluons degrees of freedom are not resolved. As a consequence, in this
context, nucleons can be treated as point-like particles and the nuclear problem with protons and
neutrons can be viewed as a low-energy effective approximation to QCD. Within the framework
of Effective Field Theory (EFT), inter-nucleon interactions consistent with the chiral symmetry
can nowadays be derived systematically in terms of nucleon-nucleon, three-nucleon, and higher
many-nucleon forces [1–6]. Starting with a given Hamiltonian, ab initio calculations of nuclei aim
at solving the many-body Schrödinger equation without any uncontrolled approximations. Within
the last decades, the increase in computing power and the development of powerful many-body
methods, combined with the use of chiral-EFT interactions, have enabled a quantitative description
of light andmedium-mass nuclei ab initio [7–12].With the inclusion of continuum effects in many-
body methods, ab-initio calculations have also reached parts of the nuclear chart far from stability
where the coupling to continuum states and decay channels plays an important part in the structure
of nuclei [13–21].

A lot of progress has been made as well in the development of ab initio methods for nuclear
reactions. The No-Core Shell Model with the Resonating Group Method (NCSM/RGM) or with
continuum (NCSMC) have successfully described scattering and transfer reactions for light targets
[22–24], the Green’s Function Monte Carlo [25, 26] has recently been applied to nucleon-alpha
scattering using chiral NN, 3N forces [27], and lattice-EFT computations of alpha-alpha scattering
have recently been reported [28]. For medium-mass nuclei, nucleon-nucleus optical potentials and
elastic scattering cross sections have been computed with chiral forces within the Self Consistent
Green’s Function (SCGF) approach [9, 29–31] and the coupled-cluster method [32–34].

The optical potential plays an important role in reaction theory. It is usual (and practical) in
this context to reduce the many-body problem into a few-body one where only the most relevant
degrees of freedom are retained [35]. Correspondingly, the many-body Hamiltonian is replaced
by a few-body Hamiltonian expressed in terms of optical potentials, i.e., effective interactions

198
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between the particles considered at the few-body level.
Traditionally, optical potentials have been constructed by
fitting to data, particularly data on β-stable isotopes [36, 37]. For
instance, global phenomenological nucleon-nucleus potentials
enable the description of scattering processes for a large range
of nuclei and projectile energies. However, extrapolation of
these phenomenological potentials to exotic regions of the
nuclear chart are unreliable and have uncontrolled uncertainties.
Moreover, since fitting to two-body elastic scattering data (as it
is most often done) does not constrain the off-shell behavior of
potentials1, a dependence on the choice of potentials may arise
in transfer reactions observables (and other reactions) as shown
in e.g., [38–40]. It is then critical, in order to advance the field
of nuclear reactions and notably for reactions with exotic nuclei
undertaken at rare-isotope-beam facilities [41, 42], to connect the
optical potentials to an underlying microscopic theory of nuclei.
Since potentials derived from ab initio approaches are built up
from fundamental nuclear interactions without tuning to data,
theymay have a greater predictive power in regions of the nuclear
chart that are unexplored experimentally. Furthermore, they
can guide new parametrization of phenomenological potentials
by providing insights on form factors, energy-dependence and
dependence on the isospin-asymmetry of the target.

It is useful for pedagogical purpose and the introduction
of key concepts, to start with the derivation of the optical
potential within the Feshbach projection formalism [43, 44].
Let us consider the process of scattering of a nucleon on a
target A. One can partition the Hilbert space for this A + 1
system into P the subspace of elastic scattering states and Q

the complementary subspace. Denoting P and Q the projectors
operators on respectively P and Q, by construction one has
P + Q = Id. We introduce H the Hamiltonian of the system and
E its energy. The optical potential describing the elastic scattering

process can be identified with the effective Hamiltonian H
eff
P (E)

acting in P, which by construction, reproduces the eigenvalues of
H with a model wavefunction in P . One can show that

H
eff
P (E) = HPP +HPQ

1

E−HQQ + iη
HQP (1)

where HPP ≡ PHP, HPQ ≡ PHQ, . . . and η → 0+. The optical

potential H
eff
P (E) is non-local and from Equation (1), it is clear

that it is also energy-dependent and complex. The imaginary
(absorptive) component of the potential represents the loss of
flux in the elastic channel due to the opening of other channels,
for instance, the excitation of the target to a state of energy EAi
for E > EAi or breakup channels. By adding the Hilbert space of
the A−1 system (hole states in the target) in the formalism, it has
been shown that the resulting optical potential corresponds to the
self-energy defined in Green’s function theory [45]. The particle
part of the self-energy is equivalent to the optical potential (1),
whereas the hole part describes the structure of the target. By
including information on both the (A + 1)- and (A − 1)-system
in the formalism, the Green’s function approach, which will be

1Two phase-equivalent potentials will reproduce the same elastic two-body
scattering data but may have different off-shell behavior.

used in this paper, provides a consistent treatment of scattering
and structure.

In this article, we present some recent results for the ab-initio
computation of nucleon-nucleus optical potential for medium-
mass nuclei, constructed by combining the Green’s function
approach with the coupled-cluster method [10]. The coupled-
cluster method is an efficient tool for the computation of
ground- and low-lying excited states in nuclei with a closed
(sub-)shell structure and in their neighbors with ±2 nucleons.
By including complex continuum basis states in the formalism,
it also provides a versatile framework to consistently compute
bound, resonant states and scattering processes [13, 15–17, 32].
In our approach, the optical potential is obtained by solving
the Dyson equation after a direct computation of the Green’s
function with the coupled-cluster method. As we will see in
section 2, the inclusion of complex continuum basis states
enables also a precise computation of Green’s functions and
optical potentials.

We want to point out here that there has been a lot
of work over the years to compute optical potentials from
various microscopic approaches. In the following, we mention
some of the most recent works dedicated to that goal (for
a more exhaustive review we refer the reader to, e.g., [46]).
The authors in [47] have computed optical potentials for
neutron and proton elastic scattering on 40Ca based on the
application of the self-consistent Hartree-Fock and Random-
Phase Approximations to account for collective states in the
target. Using the phenomenological Gogny interaction, a good
reproduction of data for scattering at E ≤ 30 MeV has been
reported in [47]. In Whitehead et al. [48, 49], nucleon-nucleus
potentials are computed for finite nuclei from a folding of
optical potentials obtained by many-body perturbation theory
calculations in nuclear matter with chiral forces. In these
papers, several calcium isotopes are considered and an overall
satisfactory agreement with data is achieved. For the scattering
of nucleons at intermediate and high energy (E & 100 MeV)
optical potentials can be derived within the multiple scattering
formalism [50, 51] where the optical potential is obtained
based on the folding of the nucleon-nucleon T-matrix or G-
matrix with the nuclear density [52–54]. Recent applications
of this approach, in which the nucleon-nucleus T-matrix
and the density are computed consistently starting from the
same chiral-EFT interaction, have been reported and shown
a successful reproduction of data [55, 56]. In the Dispersive
Optical Model [46, 57–59], a (semi-) phenomenological potential
is constructed by exploiting formal properties of the Green’s
function, such as the dispersion relation, which connects the
real part and imaginary part of the potential [60]. Applications
of this data-driven approach have been made using local
and non-local form factors of the potential for Ca and
Pb isotopes.

This paper is organized as follows. In section 2, we will
briefly review the formalism to construct optical potentials by
combining the Green’s function approach and the coupled-
cluster method. In section 3, recent results for neutron-40,48Ca
optical potentials at negative and positive energies are presented.
In section 4, we will discuss challenges and possible solutions
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for the construction of fully predictive optical potentials with the
coupled-cluster method. Finally, we will conclude in section 5.

2. COUPLED CLUSTER GREEN’S
FUNCTION

In this part, we will briefly review the formalism for deriving
ab-initio nucleon-nucleus optical potentials by combining the
Green’s function approach and the coupled-cluster method. We
start first by introducing below, key quantities of the Green’s
function formalism.

2.1. Green’s Function and Dyson Equation
Given a single-particle basis {|α〉, |β〉, . . .}, the Green’s function
[61] of a nucleus A has matrix elements

G(α,β ,E) = 〈90|aα

1

E− (H − EAgs)+ iη
a†
β |90〉

+〈90|a
†
β

1

E− (EAgs −H)− iη
aα|90〉. (2)

Here, H is the Hamiltonian and |90〉 the ground state of A with
the energy EAgs and by definition η → 0+. The operators a†

α and
aβ create and annihilate a fermion in the single-particle state α

and β , respectively. α is shorthand for the quantum numbers
α = (n, l, j, jz , τz)2. By inserting completeness relations expressed
with the eigenstates of the A ± 1 systems in (2), one obtains the
Lehmann representation of the Green’s function:

G(α,β ,E) =
∑

i

〈90|aα|9
A+1
i 〉〈9A+1

i |a†
β |90〉

E− (EA+1
i − EAgs)+ iη

+
∑

j

〈90|a
†
β |9

A−1
j 〉〈9A−1

j |aα|90〉

E− (EAgs − EA−1
j )− iη

, (3)

where |9A+1
i 〉 (|9A−1

j 〉) is an eigenstate ofH for theA+1 (A−1)

system with energy EA+1
i (EA−1

j ). To simplify the notation, the
completeness relations are written in (3) as discrete summations
over the states in the A±1 systems. The Lehmann representation
has the merit to reveal somewhat more clearly some of the
information content of the Green’s Function. As one can see from
(3), the poles of the Green’s function correspond to the energies
of the eigenstates of H in the A± 1 systems.

The Green’s function fulfills the Dyson equation

G(E) = G(0)(E)+ G0(E)6∗(E)G(E), (4)

where G0(E) is the Green’s function associated with a single-
particle potential U and 6∗(E) the irreducible self energy. The
optical potential is given by

Vopt(E) ≡ 6∗(E)+ U. (5)

2n, l, j, jz , τz label the radial quantum number, the orbital angular momentum,
the total orbital momentum, its projection on the z-axis, and the isospin
projection, respectively.

The potential U is usually taken as the Hartree-Fock (HF)
potential since the corresponding Green’s function is a first-
order approximation to G(E) in Equation (4). In our approach,
since the Green’s function is directly computed with the coupled-
cluster method and is input of Equation 4, the resulting optical
potential is independent of the choice of U.

For E+ ≡ E − EAgs ≥ 0, Vopt(E) corresponds to the
optical potential for the elastic scattering from the A-nucleon
ground state [61]. In other words, the scattering amplitude
ξE+ (r) = 〈90|ar|9E+〉 (here |9E+〉 is the elastic scattering state
of a nucleon on the target with the energy E+ and ar is the
annihilation operator of a particle at the position r) fulfills the
Schrödinger equation

−
h̄2

2µ
∇2ξ (r)+

∫

dr′Vopt(r, r′,E)ξ (r′) = E+ξ (r), (6)

where µ is the reduced mass of the nucleus-nucleon system. For
simplicity, we have suppressed any spin and isospin labels. The
optical potential is non-local, energy-dependent and complex
[61] and for E+ ≥ 0, its imaginary component describes the loss
of flux in the elastic channels to other channels. For E+ < 0,
Equation (6) admits a discrete number of physical solution at
En = EA+1

n −EAgs, which corresponds to the bound states energies
in A+1. In that case, the solutions are given by the overlap ξn(r) =
〈90|ar|9

A+1
n 〉 where |9A+1

n 〉 is a bound state of energy EA+1
n in

the A+ 1 system3.
In the following section, we present the main steps

involved in the computation of the Green’s function with the
coupled-cluster method.

2.2. Coupled-Cluster Green’s Function
We start with the computation of the ground state |90〉 of the
A-nucleon system.Working in the laboratory frame, the intrinsic
Hamiltonian reads

H =

A
∑

i=1

Epi
2

2m
−

EP2

2mA
+

∑

i<j

Vij +
∑

i<j<k

Vijk, (7)

with Epi the momentum of nucleon i of mass m and EP =
∑A

i=1 Epi
the momentum associated with the center of mass motion.
The terms Vij and Vijk are nucleon-nucleon (NN) and three-
nucleon forces (3NFs), respectively. It is useful to rewrite the
Hamiltonian as

H =

A
∑

i=1

Ep2i
2m

(

1−
1

A

)

+
∑

i<j

(

Vij −
EpiEpj

mA

)

+
∑

i<j<k

Vijk, (8)

where one separates the one-body and two- (three-)body
contributions. The single-particle basis solution of the HF
potential generated by H in Equation (8) is a good starting point
for coupled-cluster calculations. Denoting by |80〉 the HF state,
the ground state of the target is represented as

|90〉 = eT |80〉, (9)

3Similarly, for E = EAgs − EA−1
n , the solution of the optical potential Vopt(E) are the

radial overlap ξ−n (r) = 〈90|a
†
r |9

A−1
n 〉 [61].
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where T denotes the cluster operator

T = T1 + T2 + · · · =
∑

i,a

tai a
†
aai +

1

4

∑

ijab

tabij tijaba
†
aa

†
b
ajai + . . . (10)

The operators T1 and T2 induce 1p− 1h and 2p− 2h excitations
of the reference state, respectively. Here, the single-particle states
i, j, ... refer to hole states occupied in the reference state |80〉

while a, b, ... denote valence states above the reference state. In
practice, the expansion (10) is truncated. In the coupled cluster
method with singles and doubles (CCSD) all operators Ti with
i > 2 are neglected. In that case, the ground-state energy and
the amplitudes tai , t

ab
ij are obtained by projecting the state (9) on

the reference state and on all 1p-1h and 2p-2h configurations
for which

〈80|H|80〉 = E,

〈8a
i |H|80〉 = 0,

〈8ab
ij |H|80〉 = 0. (11)

Here,

H ≡ e−THeT = H + [H,T]+
1

2!
[[H,T] ,T]+ . . . (12)

denotes the similarity transformed Hamiltonian, which is
computed by making use of the Baker-Campbell-Hausdorff
expansion [10]. For two-body forces and in the CCSD
approximation, this expansion terminates at 4-fold nested
commutators4. The CCSD equations (11) show that the CCSD
ground state is an eigenstate of the similarity-transformed
Hamiltonian H̄ = e−THeT in the space of 0p − 0h, 1p − 1h,
2p − 2h configurations. The operator eT being not unitary, H̄ is
not Hermitian. As a consequence, its left- and right-eigenvectors
form a bi-orthonormal set [10].

Denoting 〈80,L| the left eigenvector for the ground state of
A, we can now write the matrix elements of the coupled cluster
Green’s function Gcc as

GCC(α,β ,E) ≡ 〈80,L|aα

1

E− (H − EAgs)+ iη
a†
β |80〉

+〈80,L|a
†
β

1

E− (EAgs −H)− iη
aα|80〉. (13)

Here, aα = e−Taαe
T and a†

β = e−Ta†
βe

T are the
similarity-transformed annihilation and creation operators,
respectively. These are computed with the Baker-Campbell-
Hausdorff expansion (12).

In principle, the Green’s function could be computed from
the Lehman decomposition (3) with the solutions of the particle-
attached equation of-motion (PA-EOM) and particle-removed
equation-of motion (PR-EOM) for the A + 1 and A − 1

4The 3NFs component Vijk of the Hamiltonian in (8) is truncated at the normal-
ordered two-body level in the HF basis (see section 3).

systems, respectively [10]. However, as the sum over all states
in Equation (3) involves also eigenstates in the continuum, this
approach is difficult to pursue in practice. Instead, we make use
of the Lanczos continued fraction technique, which allows for
an efficient and numerically stable computation of the Green’s
function [33, 62–66].

By definition of the Green’s function, the parameter η in the
matrix elements (2) is such that η → 0+. However, in this limit,
because of the appearance of poles at energies E = (EA+1

i − EAgs)
in the Green’s function (see Equation 3), the calculation of optical
potential for elastic scattering becomes numerically unstable. In
order to resolve this issue, we compute an analytic continuation
of the Green’s function in the complex-energy plane by working
in a Berggren basis [17, 67–73] (generated by the HF potential)
that includes bound, resonant, and complex-continuum states.
The solutions of the (PA-EOM) and (PR-EOM) in the Berggren
basis, i.e., the eigenstates of the A ± 1 systems, are either bound,
resonant or complex-scattering states. In other words, the poles
of the analytically continuedGreen’s function are located either at
negative real or complex energy. As a result, the Green’s function
matrix elements for E ≥ 0 smoothly converge to a finite value as
η → 0+ (this is illustrated below in Figure 1).

The scattering states entering the Berggren basis are defined
along a contour L+ in the fourth quadrant of the complex
momentum plane, below the resonant single-particle states.
According to the Cauchy theorem, the shape of the contour L+

is not important, under the condition that all resonant states lie
between the contour and the real momentum axis. The Berggren
completeness reads

∑

i

|ui〉〈ũi| +

∫

L+
dk|u(k)〉〈 ˜u(k)| = 1̂, (14)

where |ui〉 are discrete states corresponding to bound and
resonant solutions of the single-particle potential, and |u(k)〉
are complex-energy scattering states along the complex-contour
L+. In practice, the integral along the complex continuum is
discretized yielding a finite discrete basis set.

In Figure 1, we illustrate the numerical stability provided by
the use of the Berggren basis for the computation of the Green’s
function. We are interested in the level density [74, 75]

ρlj(E) = −
1

π
Tr

[

Im(Glj(E)− G
(0)
lj
(E))

]

, (15)

where Glj(E) and G0
lj
(E) are respectively the component of the

Green’s functions and the HF Green’s function in the (l, j) partial
wave5. We show in Figure 1, the Jπ = 3/2+ level density in
17O calculated with the NNLOsat interaction. The ground state
in 16O is computed at the CCSD level while the Green’s function
is computed with the PA-EOM and PR-EOM Lanczos vectors
truncated at the 2p− 1h and 1p− 2h excitation level, respectively
(other details of the calculation are also the same as in section 3).
As η approaches 0, the level density smoothly converges, and

5Since the Green’s functions are here defined by adding (and removing) a nucleon
from the 0+ ground state in the target A, the quantum number (l, j) are conserved.
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FIGURE 1 | Computed level densities in 17O. For the Jπ = 3/2+ level density,

results are shown for several values of the parameter η to illustrate the smooth

convergence pattern for η → 0. The inset shows the energies of the ground

state, first excited and 3/2+ resonant states in 17O calculated at the

PA-EOM-CCSD truncation level (see text for details).

the position of the peak at η = 0 corresponds, as expected, to
the position of the Jπ = 3/2+ resonance in 17O (see inset in
Figure 1, which shows the PA-EOM-CCSD energies in 17O). For
completeness, we also show the Jπ = 5/2+, 1/2+ level densities.
In these cases, the level density at negative energies are equal to
a Dirac delta function peaked at respectively the ground state
and first excited state energies in 17O (see inset in Figure 1). For
purpose of illustration in Figure 1, we have used a finite value
of η for the Jπ = 5/2+, 1/2+ densities and set the height of the
corresponding peaks to 1.

3. SELECTED RESULTS

We now show in this section a few results of the computation
of neutron optical potentials for the double-magic nuclei 40Ca
and 48Ca.

All calculations presented here are performed using the
NNLOsat chiral interaction [5], which reproduces the binding
energy and charge radius of both systems [76, 77]. We want to
point out here that a proper reproduction of the distribution of
nuclear matter, and, more specifically, nuclear radii is critical in
order to obtain an accurate account of reactions observables. All
results are obtained from coupled-cluster calculations truncated
at the CCSD level, while the Lanczos vectors in the PA-EOM
(PR-EOM) have been truncated at the 2p − 1h (1p − 2h)
excitation level. Since the computation of the Green’s function is
performed using the laboratory coordinates [the Hamiltonian H
in Equation (8) is defined with these coordinates], the calculated
optical potential is identified with the optical potential in the
relative coordinates of the n−A Ca system. This identification
will result in a small error, which is a decreasing function of the
target mass number A [33, 34] (see also section 4).

The HF calculations are performed in a mixed basis of
harmonic oscillator and Berggren states, depending on the partial

FIGURE 2 | Diagonal part of the n+40 Ca optical potential for the bound

states in 41Ca computed with the NNLOsat interaction. Results are shown for

several values of Nmax and the corresponding bound state energies (with

respect to the 40Ca ground state) are shown in the table (in MeV). The

components of the HF potential in the associated partial waves are shown for

(Nmax ,N3) = (14, 16) (see text for details).

wave. The NNLOsat interaction contains two-body and three-
body terms. Denoting N2 and N3 the cutoffs in the harmonic
oscillator (HO) basis of respectively, the two-body and three-
body part of the interaction, we set N2 = N3 = Nmax except
for the most extensive calculations where N2 = 14 and N3 =

16. Finally, we truncate the three-nucleon forces at the normal-
ordered two-body level in the HF basis. This approximation has
been shown to work well in light- and medium mass nuclei [78,
79]. The harmonic oscillator frequency is kept fixed at h̄ω =16
MeV (for more details see [33, 34]).

We start with the computation of the n+40 Ca optical
potentials associated with the bound states in 41Ca. At the PA-
EOM-CCSD level of truncation considered here, there are only
three bound states supported by the NNLOsat Hamiltonian. In
order to show the convergence pattern of the potentials, we
present in Figure 2 results at several values of Nmax with the
corresponding bound state energies. We present the diagonal
part of the potentials, and for comparison the HF potential
[for (Nmax,N3) = (14, 16)] in each partial wave is also shown
in Figure 2. The energies are shown in the table in Figure 2

along with the experimental values. As expected, the convergence
of energies is slower for higher-energy states. The difference
between the 41Ca energies at (Nmax,N3) = (14,14) and (14,16)
is ∼220 keV in the case of the ground-state, whereas it is
∼350 keV in the case of the Jπ = 1/2− second excited state.
Even though the absolute binding energy is underestimated in
the CCSD approximation, when compared to experiment [the
CCSD binding energy of 40Ca is 299.28 MeV for (Nmax,N3) =
(14, 16), whereas the experimental value is 342.05 MeV], the
neutron separation energies are consistently within 600 keV of
the experimental values for 40,48Ca6. The eigenenergies of these

6By including both perturbative triple excitations and perturbative estimates for
the neglected residual 3NFs (3NF terms beyond the normal-ordered two-body
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FIGURE 3 | Differential elastic cross section for 40Ca(n, n)40Ca at 5.2 MeV

(top) and 48Ca(n, n)48Ca at 7.8 MeV (bottom) calculated with the NNLOsat

interaction. Results obtained with the phenomenological Koning-Delaroche

potential potential are shown (dashed line) for comparison. Data points are

taken from Koning and Delaroche[36] (errors on the data are smaller than the

symbols).

potentials are equal, by construction, to the bound states energies
when using the effective mass mA/(A − 1) instead of the actual
reduced mass. This can be traced to Equation (8) where the
effective mass associated with the one-body kinetic operator is
equal tomA/(A− 1) (see also section 4).

We now consider the neutron elastic scattering on 40Ca and
48Ca. The phase shift is computed in each partial wave with the
optical potential calculated in the largest space (Nmax,N3) =

(14, 16). The angular distributions are then obtained by summing
the contributions from each partial wave. Figure 3 shows the
resulting differential elastic cross section for 40Ca(n, n)40Ca at
5.2 MeV and 48Ca(n, n)48Ca at 7.8 MeV. We find that at these
energies the inclusion of partial waves with angular momentum
L ≤ 5 and L ≤ 6 is sufficient for 40Ca and 48Ca, respectively,
the contribution of partial waves with higher L being negligible
(see also the computations of elastic scattering on 40,48Ca at
other energies in Rotureau et al. [34]). The angular distributions
obtained with the phenomenological Koning Delaroche (KD)
potential [36] and the measured cross sections are also shown
in Figure 3 for comparison. As Figure 3 indicates, the data at
small angle where the cross section is larger, are well-reproduced
for 48Ca whereas the computed cross section is slightly above
the data for 40Ca. Overall, the shape of the experimental cross
sections and the positions of the minima are well-reproduced for
both nuclei, as expected from the correct reproduction of matter
densities in 40,48Ca by the NNLOsat interaction.

approximation), a good agreement with experimental binding energies can be
obtained for 40,48Ca [76].

The experimental energy of the first two excited-states in
40Ca, namely E(0+) = 3.35 MeV and E(3−) = 3.74 MeV are
below the scattering energy Escat = 5.2 MeV of the elastic process
40Ca(n, n)40Ca shown in Figure 3. In other words, the channels
for excitation of the 40Ca target are open at this scattering energy.
This should result in a loss of flux in the initial elastic channel
and the corresponding occurrence of an absorptive imaginary
part in the phase shifts. The first excited 0+ state, which has a
strong 4p−4h components, cannot be properly reproduced at the
truncation level considered here: its computed energy, solution of
the EOM-CCSD equations, is ∼16 MeV above the ground state.
On the other hand, the 3− excited state is well-reproduced with
EEOM−CCSD(3−) = 3.94 MeV. Nevertheless, we have found that
the computed absorption is practically negligible and none of
the computed phase shifts at Escat = 5.2 MeV have a significant
imaginary part. A similar pattern happens for 48Ca(n, n)48Ca at
7.8 MeV: in that case, the first excited state E(2+) = 3.83 MeV is
fairly well-reproduced, the computed value is EEOM−CCSD(2+) =
4.65 MeV, but again the absorption in that case is negligible too.

Although some excited states below the scattering energy
are reproduced by the EOM-CCSD calculations, the absorption
is negligible in both situations. This suggests that at the
level of truncation considered here, namely 2p − 1h above
the CCSD ground state, the computed wavefunctions are not
correlated enough (in the perturbative expansion of the Dyson
equation Equation (4), the absorption appears at second-
order, beyond the HF contribution [61]). In other words,
at these energies, the computed level density (15) in the
n+A Ca system is too small. We have observed that only at
higher energy E & 20 MeV the absorption starts to increase
significantly (a similar pattern can be seen in Figure 4 of
Rotureau et al. [33] for the CCSD computation of n+16 Ooptical
potential). It is possible to increase artificially the absorption
by using a finite value of η in Equation (13). This amounts
to increasing the correlations content of the coupled-cluster
wavefunctions and as shown in Rotureau et al. [33, 34], the
computed elastic cross section in that case will decrease. In
section 4, we will return to this lack of absorption in the
computed potential.

We should emphasize here that the computation of the
optical potential with the coupled-cluster method is carried out
without any free parameter. It is then not surprising that it
does not allow for the same quality of reproduction of data
as a phenomenological potential, such as the KD interaction
(see Figure 3). But still, since microscopic optical potentials
are built up from fundamental nuclear interactions without
tuning to data, they may yield guidance for parameterizations
of phenomenological potential, by providing information on the
form factor, energy dependence and dependence on the isospin
asymmetry of the targets. A recent series of studies has shown that
non-locality can affect transfer reaction observables (e.g., [38–
40]) and it is expected that it can equally affect other reaction
channels. Microscopic potential can provide guidance on this
aspect of the optical potential. Keeping in mind that a potential
is not an observable and is not uniquely defined (for a given
potential, it is possible to modify its high-energy component
with a unitary transformation without affecting experimental

Frontiers in Physics | www.frontiersin.org 6 July 2020 | Volume 8 | Article 285203

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Rotureau Coupled-Cluster Computations of Optical Potential

FIGURE 4 | Real part of the neutron potential in several partial waves for
40,48Ca at respectively 5.2 and 7.8 MeV. The potentials are shown at fixed

values of R (equal to the charge radius in both nuclei) and as a function of

r − r′. Symbols corresponds to the calculated potentials and the lines are the

results of a fit with a Gaussian form factor (see text for details).

predictions [80, 81]), we focus in the following on the non-
locality of the CCSD optical potential.

We plot in Figure 4, the n+40,48 Ca potentials in several
partial waves, at a fixed value of R = (r + r′)/2 and as a
function of r − r′. We fix R to be equal to the charge radius in
both nuclei, namely 3.48 and 3.46 fm for respectively 40Ca and
48Ca [5]. We consider the same energy as previously, namely
5.2 MeV for 40Ca and 7.8 MeV for 48Ca. A fit of the potential
using a Gaussian form factor, is also shown in Figure 4. As one
can see, the shape of potentials in Figure 4 are well-reproduced
by the fit. For 40Ca, the values of the range β of the fitted
Gaussian somehow varies slightly with the partial wave: we obtain
β = 1.02, 0.94, 0.98 fm for the f7/2, p3/2 and p1/2 component
of the potentials, respectively. For 48Ca, β = 1.04, 0.93, 0.91
fm for the f5/2, p1/2 and and d5/2 partial waves, respectively.
We have observed even smaller variations of the range with the
energies although a more exhaustive study would be required
to draw definitive conclusion about the dependence of β on
the value of R and the energy. Nevertheless, in all cases, the
non-local pattern of the optical potential display a Gaussian
dependence, which corresponds to the choice made for the non-
local form factor in the phenomenological potentials by Perey
and Buck [82]. Note that due to the non-hermiticity of the
Coupled Cluster Hamiltonian (see section 2.2) the potential is
slightly non-symmetric in r and r′. However, since this effect is
small [33, 34], it is hardly noticeable in Figure 4.

4. CHALLENGES

In this section, we discuss some challenges and possible solutions
for the development of fully predictive ab-initio optical potentials
with the coupled-cluster method.

We saw in the previous section that with the ab-initio optical
potentials computed at the CCSD level, one can arrive at
an overall fair reproduction of data for medium-mass nuclei.
However, the absorptive part of the potential was shown to be
negligible at low energy. This lack of absorption was linked to
neglected configurations in the computed Green’s function.

Currently, ab-initio computation of optical potentials for
medium-mass nuclei using chiral NN and 3NFs, have only
been performed with the coupled-cluster method and the Self
Consistent Green’s Function (SCGF) method [31]. The SCGF is
based on an iterative solution of the Dyson equation performed
until a self-consistency between the input Green’s function and
the result of the Dyson equation has been reached [9]. In Idini
et al. [31], the authors compute neutron optical potential for
16O and 40Ca with the NNLOsat interaction and include up to
2p − 1h configurations in the Green’s function. In that work,
the minima in the elastic cross sections are well-reproduced for
both systems, and as in the CCSD computation of the potential,
an overall lack of absorption was observed and attributed to
neglected configurations in the model space.

The natural next step to address the lack of absorption at
the CCSD level would be to include higher-order correlations
in the Green’s function by considering next order excitations
in the coupled-cluster calculations, namely triple corrections.
One should expect in that case an increased level density in
the A + 1 system and as a result, a larger absorptive part of
the optical potential. Coupled-cluster calculations with triple
corrections are routinely used for nuclear spectroscopy [10] and
have recently been implemented in the computation of the dipole
polarizability of 48Ca [83]. In that paper, the authors show that by
including 3p − 3h excitations in the computation of the nuclear
response function to an electromagnetic probe (the Green’s
function is a similar object since it is the response function to
the addition/removal of a nucleon), the results improve over
previous computations at CCSD.

For most nuclei, and particularly for heavier systems, there
are many compound-nucleus resonances above the particle
threshold. Since these states consist of a high number of particle-
hole excitations they cannot be reproduced accurately by ab-
initio methods and are usually best described by a stochastic
approach [84]. In order to account for the formation of the
compound nucleus and the resulting loss of flux in the elastic
channel, one could add a polarization term to the ab-initio
potential. A possible way to compute this term would be to use
Random Matrix Theory to generate an effective Hamiltonian
belonging to a Gaussian Orthogonal Ensemble [85].

Since the coupled-cluster Green’s function is computed in
the laboratory frame, the optical potential solution of the Dyson
equation is defined with respect to the origin of that frame O.
As mentioned in section 3, we have identified this potential with
the potential in the relative n − A coordinate. For the medium-
mass nuclei considered here, this prescription creates a small
error, which decreases with A [33, 34, 86]. For light systems, a
correction to the optical potential becomes necessary to account
for the identification between laboratory and relative coordinates.
It has been demonstrated that the coupled cluster wavefunction
factorizes to a very good approximation into a product of an
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intrinsic wave function and a Gaussian in the center-of-mass
coordinate [87]. Since both the potential and the center-of-mass
wavefunction of the target are computed in the laboratory frame,
it seems reasonable to suggest that such a correction could be
introduced in the form of a folding of the potential with the
center-of-mass wavefunction (nevertheless, such a prescription
would have to be worked out and checked). Another possible
way to introduce a correction of the potential could be to use the
integral method utilized in the GFMC approach (see e.g., [88])
for computation of overlap functions (see also e.g., [89, 90]).

5. SUMMARY

In this article, we have presented recent developments in the
computation of nucleon-nucleus optical potential constructed by
combining the Green’s function and the coupled-cluster method.
A key element in this approach is the use of the Berggren basis,
which enables a consistent description of bound, resonant states
and scattering process of the (nucleon-target) system and at the
same time, allows to properly deal with the poles of the Green’s
function on the real energy axis.

We have shown results for optical potentials at negative and
positive energy for the double magic systems 40Ca and 48Ca
using a chiral NN and 3NFs that reproduces the binding energy
and charge radii in both systems. We pointed out that a proper
reproduction of the distribution of nuclear matter, and, more
specifically, nuclear radii, by the Hamiltonian, is essential to give
an accurate account of reaction observables. At the truncation
level considered here, namely 2p−2h and 2p−1h / 2h−1p in the
computation of the target and the Green’s function, respectively,

an overall fair agreement with data was obtained. Nevertheless,
in that case, the optical potential at positive energy suffers from
a lack of absorption, which stems from the neglect of higher-
order configurations. In (near) future development, higher-order
excitations in the coupled-cluster expansion will be included to
address this issue.

In the future, the Green’s function formalism and coupled-
cluster method could be combined for applications to other
reaction channels, such as transfer, capture, breakup, and
charge-exchange. Another possible approach toward the ab-initio
computation of transfer reactions with medium-mass nuclei
is the Green’s Function Transfer (GFT) method [91]. Using
the optical potential and Green’s function computed with the
coupled-cluster method as input of the GFT equations, as well
as phenomenological ingredients, a very good reproduction of
data for populating the ground states in 41,49Ca was obtained
with this approach. Although the current implementations of the
GFTmethod require phenomenological inputs, future extensions
of the formalism should allow ab-initio computation of transfer
reactions [91].
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