Research Topic

Closed-Loop Iterations Between Neuroscience and Artificial Intelligence

About this Research Topic

"If the human brain were so simple that we could understand it, we would be so simple that we couldn’t.” This interesting quote from Emerson M. Pugh reflects our current position in trying to understand the human brain.
Indeed, we are currently still far away from understanding how our brain works, we require multi-disciplinary inputs and efforts to unravel its intrinsic complexity.

Basic research outputs’ applications, public health and industrial applications, such as artificial intelligence (AI) and machine learning will benefit from advances in brain research. On the other hand, AI will accelerate the research of neuroscience.

To connect neuroscience and AI we need to provide adequate models that draw from computational neuroscience.
Computational neuroscience could bridge these two fast-developing fields through adequate models representing and simulating the brain’s unique architecture and functions. To perform image and data analysis we also need to implement brain-inspired intelligence. A closed-loop may be organized relying on the iterations between neuroscience and AI.
AI should take advantage of brain research data, novel insights from neuroscience may then improve AI’s design and performance. Additionally, AI and deep learning, in particular, could be used in medical informatics for brain diseases.

Recently, genetic systems have proven to be more intelligent than assumed. Neural networks, such as a classical classifying, or associative perceptron networks, can be implemented on the scale of a simple genetic network inside the cell. The brain is a network of networks.

In addition, the integrated information theory, a theoretical framework to understand consciousness and the link between the brain and consciousness, represents a milestone in the ongoing effort to explain what consciousness is, and the reason why it might be associated with certain physical systems.
AI advances have also enhanced neuroimaging techniques and data analysis allowing for a fine investigation of brain structure (e.g. neuron morphology), function (e.g. hemodynamics) and disease (e.g. Alzheimer’s disease). Further discoveries in brain research will help to promote brain-inspired intelligence.

This Research Topic aims to provide a state-of-the-art review of the use of artificial intelligence in brain research and data analysis, integrating neuroscience, mathematics, and informatics and setting a paradigm for computational neuroscience. We welcome all types of articles focusing on:

• AI applied in neuroscience
• AI-inspired by neuroscience
• Closed-loop iterations between AI and neuroscience


Keywords: Closed-loop iteration, Neuroscience, Artificial intelligence, Computational Neuroscience, Brain disease


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

"If the human brain were so simple that we could understand it, we would be so simple that we couldn’t.” This interesting quote from Emerson M. Pugh reflects our current position in trying to understand the human brain.
Indeed, we are currently still far away from understanding how our brain works, we require multi-disciplinary inputs and efforts to unravel its intrinsic complexity.

Basic research outputs’ applications, public health and industrial applications, such as artificial intelligence (AI) and machine learning will benefit from advances in brain research. On the other hand, AI will accelerate the research of neuroscience.

To connect neuroscience and AI we need to provide adequate models that draw from computational neuroscience.
Computational neuroscience could bridge these two fast-developing fields through adequate models representing and simulating the brain’s unique architecture and functions. To perform image and data analysis we also need to implement brain-inspired intelligence. A closed-loop may be organized relying on the iterations between neuroscience and AI.
AI should take advantage of brain research data, novel insights from neuroscience may then improve AI’s design and performance. Additionally, AI and deep learning, in particular, could be used in medical informatics for brain diseases.

Recently, genetic systems have proven to be more intelligent than assumed. Neural networks, such as a classical classifying, or associative perceptron networks, can be implemented on the scale of a simple genetic network inside the cell. The brain is a network of networks.

In addition, the integrated information theory, a theoretical framework to understand consciousness and the link between the brain and consciousness, represents a milestone in the ongoing effort to explain what consciousness is, and the reason why it might be associated with certain physical systems.
AI advances have also enhanced neuroimaging techniques and data analysis allowing for a fine investigation of brain structure (e.g. neuron morphology), function (e.g. hemodynamics) and disease (e.g. Alzheimer’s disease). Further discoveries in brain research will help to promote brain-inspired intelligence.

This Research Topic aims to provide a state-of-the-art review of the use of artificial intelligence in brain research and data analysis, integrating neuroscience, mathematics, and informatics and setting a paradigm for computational neuroscience. We welcome all types of articles focusing on:

• AI applied in neuroscience
• AI-inspired by neuroscience
• Closed-loop iterations between AI and neuroscience


Keywords: Closed-loop iteration, Neuroscience, Artificial intelligence, Computational Neuroscience, Brain disease


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

14 June 2020 Abstract
15 November 2020 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

14 June 2020 Abstract
15 November 2020 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..