Recent evidence of domain-specific working memory (WM) systems has identified the areas and networks which are involved in phonological, orthographic, and semantic WM, as well as in higher level domain-general WM functions. The contribution of these areas throughout the process of verbal learning and recall is still unclear. In the present study, we asked, what is the contribution of domain-specific specialized WM systems in the course of verbal learning and recall? To answer this question, we regressed the perfusion data from pseudo-continuous arterial spin labeling (pCASL) MRI with all the immediate, consecutive, and delayed recall stages of the Rey Auditory Verbal Learning Test (RAVLT) from a group of patients with Primary Progressive Aphasia (PPA), a neurodegenerative syndrome in which language is the primary deficit. We found that the early stages of verbal learning involve the areas with subserving phonological processing (left superior temporal gyrus), as well as semantic WM memory (left angular gyrus, AG_L). As learning unfolds, areas with subserving semantic WM (AG_L), as well as lexical/semantic (inferior temporal and fusiform gyri, temporal pole), and episodic memory (hippocampal complex) become more involved. Finally, a delayed recall depends entirely on semantic and episodic memory areas (hippocampal complex, temporal pole, and gyri). Our results suggest that AG_L subserving domain-specific (semantic) WM is involved only during verbal learning, but a delayed recall depends only on medial and cortical temporal areas.
Prior behavioral and neuroimaging evidence supports a separation between working memory capacities in the phonological and orthographic domains. Although these data indicate distinct buffers for orthographic and phonological information, prior neural evidence does indicate that nearby left inferior parietal regions support both of these working memory capacities. Given that no study has directly compared their neural substrates based on data from the same individuals, it is possible that there is a common left inferior parietal region shared by both working memory capacities. In fact, those endorsing an embedded processes account of working memory might suggest that parietal involvement reflects a domain-general attentional system that directs attention to long-term memory representations in the two domains, implying that the same neural region supports the two capacities. Thus, in this work, a multivariate lesion-symptom mapping approach was used to assess the neural basis of phonological and orthographic working memory using behavioral and lesion data from the same set of 37 individuals. The results showed a separation of the neural substrates, with regions in the angular gyrus supporting orthographic working memory and with regions primarily in the supramarginal gyrus supporting phonological working memory. The results thus argue against the parietal involvement as supporting a domain-general attentional mechanism and support a domain-specific buffer account of working memory.