Research Topic

Microelectronic Implants for Central and Peripheral Nervous System: Overview of Circuit and System Technology

About this Research Topic

Research on fundamental properties and collaborative operation of neo-cortical microcircuitry has accelerated in the recent years, driven by the conviction that a deeper understanding of human brain will open the way to new medical techniques. Microelectronics, has reached a state of maturity, where a single chip provides large amounts of computing power. Recent attempts in combining these two fields have successfully demonstrated some form of responsiveness between microelectronic circuitry and living matter. Novel microelectronic systems are developed as a major component of neurotechnolgy aiming at closed-loop control of tissues or organs suffering functional malfunction or disease, restoration of lost limb or organ functionality or bidirectional information passing and interpreting to increase human or amputee capability.

Among several contributors to neurotechnology, microelectronics plays a fundamental role that is evidenced by the emergence of multiple devices, circuit techniques and commercial products. Still, the domain is extremely dynamic and novelty is required to accommodate the usage of new fabrication technologies, the auronomous operation of implantable systems at extremely low power consumption, handling large amounts of data produced by modern and future massively multichannel bio-sensing devices, the extension towards new application fields in the form of therapeutic systems of newly considered diseases or disease prophylaxis. Furthermore, the widening usage of bio-medical and neuroprosthetic systems may result into the emergence of new challenges including the reliability of microelectronics, safety of produced data, invasiveness reduction that should also be tackled at the level of the new circuits and systems.

This Research Topic aim to gather results in recent neurotechnology in the form of a collection of review papers, and also present novel methods with high potential of creating the next generation of technology as an overview.

The focus of this Research Topic will be on ASIC/SoC and microelectronic circuit and system techniques that are applied to the development of advanced implantable bio-electronic and bio-medical systems, covering but not limited to low-power analog front-end interfaces for recording and stimulation, digital systems aiming at signal processing, feature extraction and pattern detection, power and data telemetry, enhanced ASIC fabrications aiming at new electrical or optical sensing and stimulating, full neuro-prosthetic systems and applications. In particular, thorough review manuscripts as well as manuscripts describing cutting-edge technology with the potential of becoming mainstream technology in the future are encouraged. A non-exhaustive list of topics is presented in the following.

• Biomedical circuits and systems, ASIC/SoC techniques for implanted medical applications
• Neuroprosthetic systems, control and implementations
• Bio-electronic interface modeling and closed-loop modeling
• Closed-loop in-vitro models of neurological disorders and healthy neuromodulation
• Bio-medical and bio-electronics translational research


Professor Ker is on the board of Amazingneuron. The other Topic Editors declare no competing interests with regards to the Research Topic theme.


Keywords: Neurotechnology, Neuroprosthetics, Neuromodulation, Bioelectronics, Implantable Microelectronics


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Research on fundamental properties and collaborative operation of neo-cortical microcircuitry has accelerated in the recent years, driven by the conviction that a deeper understanding of human brain will open the way to new medical techniques. Microelectronics, has reached a state of maturity, where a single chip provides large amounts of computing power. Recent attempts in combining these two fields have successfully demonstrated some form of responsiveness between microelectronic circuitry and living matter. Novel microelectronic systems are developed as a major component of neurotechnolgy aiming at closed-loop control of tissues or organs suffering functional malfunction or disease, restoration of lost limb or organ functionality or bidirectional information passing and interpreting to increase human or amputee capability.

Among several contributors to neurotechnology, microelectronics plays a fundamental role that is evidenced by the emergence of multiple devices, circuit techniques and commercial products. Still, the domain is extremely dynamic and novelty is required to accommodate the usage of new fabrication technologies, the auronomous operation of implantable systems at extremely low power consumption, handling large amounts of data produced by modern and future massively multichannel bio-sensing devices, the extension towards new application fields in the form of therapeutic systems of newly considered diseases or disease prophylaxis. Furthermore, the widening usage of bio-medical and neuroprosthetic systems may result into the emergence of new challenges including the reliability of microelectronics, safety of produced data, invasiveness reduction that should also be tackled at the level of the new circuits and systems.

This Research Topic aim to gather results in recent neurotechnology in the form of a collection of review papers, and also present novel methods with high potential of creating the next generation of technology as an overview.

The focus of this Research Topic will be on ASIC/SoC and microelectronic circuit and system techniques that are applied to the development of advanced implantable bio-electronic and bio-medical systems, covering but not limited to low-power analog front-end interfaces for recording and stimulation, digital systems aiming at signal processing, feature extraction and pattern detection, power and data telemetry, enhanced ASIC fabrications aiming at new electrical or optical sensing and stimulating, full neuro-prosthetic systems and applications. In particular, thorough review manuscripts as well as manuscripts describing cutting-edge technology with the potential of becoming mainstream technology in the future are encouraged. A non-exhaustive list of topics is presented in the following.

• Biomedical circuits and systems, ASIC/SoC techniques for implanted medical applications
• Neuroprosthetic systems, control and implementations
• Bio-electronic interface modeling and closed-loop modeling
• Closed-loop in-vitro models of neurological disorders and healthy neuromodulation
• Bio-medical and bio-electronics translational research


Professor Ker is on the board of Amazingneuron. The other Topic Editors declare no competing interests with regards to the Research Topic theme.


Keywords: Neurotechnology, Neuroprosthetics, Neuromodulation, Bioelectronics, Implantable Microelectronics


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

15 February 2021 Manuscript
15 March 2021 Manuscript Extension

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

15 February 2021 Manuscript
15 March 2021 Manuscript Extension

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..