Research Topic

Physiology and Physiopathology of Breath-Holding Activity

About this Research Topic

The dive response is a number of physiological changes associated with diving, including bradycardia and reduced cardiac output, resulting in increased arterial blood pressure despite peripheral vasoconstriction in human divers. It was proposed that the main objective of the dive response is to conserve oxygen for hypoxia sensitive organs like the brain and the heart, but in marine adapted species like dolphins, it possibly also helps assure that the available oxygen is used in a way to extend the aerobic dive limit. In some species, and human, it appears that the spleen contracts, releasing red blood cells into the bloodstream, and thereby, increasing the available oxygen. However, the reflex mechanisms and their interdependencies (diving reflex, trigeminal cardiac reflex, baroreflex among others) are still poorly known in different species including humans.

Likewise, studies investigating human reactions to the marine environment at depth are scarce. Furthermore, apnea could very well serve as an excellent model of natural hypoxia to increase hypoxic tolerance which could be complementary or even replace the current techniques of hypoxic training and/or preconditioning at natural or simulated altitude. However, to date, there is little information available on the optimal apnea training modalities for improving performance in sportsmen and women. Finally, the consequences of the lack of oxygen on health go far beyond the physiopathology of divers. The human body's resistance to hypoxia interests several disciplinary fields and varied pathologies such as sudden infant death syndrome, sleep apnea, loss of consciousness, neurodegenerative pathologies and finally cancers.

This Research Topic focuses on the cardiovascular, respiratory, metabolic and up to molecular genetic changes of the human body to apnea and the combination of apnea with exercise and training. The different reflexes involved in coping with this hypoxic situation will be discussed. The effects of apnea training in the short and long term on the different systems will also be discussed. Better understanding of the physiopathological consequences of apnea on the lungs, the cardiovascular system and the brain in the more or less long term in healthy individuals is a focus additionally.

Possible applications in the health field of continuous and/or intermittent hypoxia may also be relevant to this topic. The animal model specifically adapted to the aquatic environment and hypoxic situations will shed light on other human pathologies where resistance to hypoxia is paramount.


Keywords: Apnea, hypoxia, training, marine mammals


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

The dive response is a number of physiological changes associated with diving, including bradycardia and reduced cardiac output, resulting in increased arterial blood pressure despite peripheral vasoconstriction in human divers. It was proposed that the main objective of the dive response is to conserve oxygen for hypoxia sensitive organs like the brain and the heart, but in marine adapted species like dolphins, it possibly also helps assure that the available oxygen is used in a way to extend the aerobic dive limit. In some species, and human, it appears that the spleen contracts, releasing red blood cells into the bloodstream, and thereby, increasing the available oxygen. However, the reflex mechanisms and their interdependencies (diving reflex, trigeminal cardiac reflex, baroreflex among others) are still poorly known in different species including humans.

Likewise, studies investigating human reactions to the marine environment at depth are scarce. Furthermore, apnea could very well serve as an excellent model of natural hypoxia to increase hypoxic tolerance which could be complementary or even replace the current techniques of hypoxic training and/or preconditioning at natural or simulated altitude. However, to date, there is little information available on the optimal apnea training modalities for improving performance in sportsmen and women. Finally, the consequences of the lack of oxygen on health go far beyond the physiopathology of divers. The human body's resistance to hypoxia interests several disciplinary fields and varied pathologies such as sudden infant death syndrome, sleep apnea, loss of consciousness, neurodegenerative pathologies and finally cancers.

This Research Topic focuses on the cardiovascular, respiratory, metabolic and up to molecular genetic changes of the human body to apnea and the combination of apnea with exercise and training. The different reflexes involved in coping with this hypoxic situation will be discussed. The effects of apnea training in the short and long term on the different systems will also be discussed. Better understanding of the physiopathological consequences of apnea on the lungs, the cardiovascular system and the brain in the more or less long term in healthy individuals is a focus additionally.

Possible applications in the health field of continuous and/or intermittent hypoxia may also be relevant to this topic. The animal model specifically adapted to the aquatic environment and hypoxic situations will shed light on other human pathologies where resistance to hypoxia is paramount.


Keywords: Apnea, hypoxia, training, marine mammals


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

15 January 2021 Abstract
21 May 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

15 January 2021 Abstract
21 May 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..