Nowadays, deep representations have been attracting much attention owing to the great performance in various tasks. However, the interpretability of deep representations poses a vast challenge on real-world applications. To alleviate the challenge, a deep matrix factorization method with non-negative constraints is proposed to learn deep part-based representations of interpretability for big data in this paper. Specifically, a deep architecture with a supervisor network suppressing noise in data and a student network learning deep representations of interpretability is designed, which is an end-to-end framework for pattern mining. Furthermore, to train the deep matrix factorization architecture, an interpretability loss is defined, including a symmetric loss, an apposition loss, and a non-negative constraint loss, which can ensure the knowledge transfer from the supervisor network to the student network, enhancing the robustness of deep representations. Finally, extensive experimental results on two benchmark datasets demonstrate the superiority of the deep matrix factorization method.
The art of oil painting reflects on society in the form of vision, while technology constantly explores and provides powerful possibilities to transform the society, which also includes the revolution in the way of art creation and even the way of thinking. The progress of science and technology often provides great changes for the creation of art, and also often changes people's way of appreciation and ideas. The oil painting image feature extraction and recognition is an important field in computer vision, which is widely used in video surveillance, human-computer interaction, sign language recognition and medical, health care. In the past few decades, feature extraction and recognition have focused on the multi-feature fusion method. However, the captured oil painting image is sensitive to light changes and background noise, which limits the robustness of feature extraction and recognition. Oil painting feature extraction is the basis of feature classification. Feature classification based on a single feature is easily affected by the inaccurate detection accuracy of the object area, object angle, scale change, noise interference and other factors, resulting in the reduction of classification accuracy. Therefore, we propose a novel multi-feature fusion method in merging information of heterogenous-view data for oil painting image feature extraction and recognition in this paper. It fuses the width-to-height ratio feature, rotation invariant uniform local binary mode feature and SIFT feature. Meanwhile, we adopt a modified faster RCNN to extract the semantic feature of oil painting. Then the feature is classified based on the support vector machine and K-nearest neighbor method. The experiment results show that the feature extraction method based on multi-feature fusion can significantly improve the average classification accuracy of oil painting and have high recognition efficiency.
The problems of data abnormalities and missing data are puzzling the traditional multi-modal heterogeneous big data clustering. In order to solve this issue, a multi-view heterogeneous big data clustering algorithm based on improved Kmeans clustering is established in this paper. At first, for the big data which involve heterogeneous data, based on multi view data analyzing, we propose an advanced Kmeans algorithm on the base of multi view heterogeneous system to determine the similarity detection metrics. Then, a BP neural network method is used to predict the missing attribute values, complete the missing data and restore the big data structure in heterogeneous state. Last, we ulteriorly propose a data denoising algorithm to denoise the abnormal data. Based on the above methods, we construct a framework namely BPK-means to resolve the problems of data abnormalities and missing data. Our solution approach is evaluated through rigorous performance evaluation study. Compared with the original algorithm, both theoretical verification and experimental results show that the accuracy of the proposed method is greatly improved.
With the rapid development of social network, intelligent terminal and automatic positioning technology, location-based social network (LBSN) service has become an important and valuable application. Point of interest (POI) recommendation is an important content in LBSN, which aims to recommend new locations of interest for users. It can not only alleviate the information overload problem faced by users in the era of big data, improve user experience, but also help merchants quickly find target users and achieve accurate marketing. Most of the works are based on users' check-in history and social network data to model users' personalized preferences for interest points, and recommend interest points through collaborative filtering and other recommendation technologies. However, in the check-in history, the multi-source heterogeneous information (including the position, category, popularity, social, reviews) describes user activity from different aspects which hides people's life style and personal preference. However, the above methods do not fully consider these factors' combined action. Considering the data privacy, it is difficult for individuals to share data with others with similar preferences. In this paper, we propose a privacy protection point of interest recommendation algorithm based on multi-exploring locality sensitive hashing (LSH). This algorithm studies the POI recommendation problem under distributed system. This paper introduces a multi-exploring method to improve the LSH algorithm. On the one hand, it reduces the number of hash tables to decrease the memory overhead; On the other hand, the retrieval range on each hash table is increased to reduce the time retrieval overhead. Meanwhile, the retrieval quality is similar to the original algorithm. The proposed method uses modified LSH and homomorphic encryption technology to assist POI recommendation which can ensure the accuracy, privacy and efficiency of the recommendation algorithm, and it verifies feasibility through experiments on real data sets. In terms of root mean square error (RMSE), mean absolute error (MAE) and running time, the proposed method has a competitive advantage.