Research Topic

Supraspinal control of automatic postural responses: which pathway does what?

About this Research Topic

Rapid corrective actions, termed automatic postural responses, are essential to counter the destabilizing effect of mechanical perturbations during natural behaviors. Previous research has demonstrated that automatic postural responses of the limbs and body share a number of capabilities in adapting to the ...

Rapid corrective actions, termed automatic postural responses, are essential to counter the destabilizing effect of mechanical perturbations during natural behaviors. Previous research has demonstrated that automatic postural responses of the limbs and body share a number of capabilities in adapting to the prevailing circumstances and these abilities reflect contributions from multiple supraspinal pathways, including brainstem nuclei, basal ganglia, and primary motor cortex. However, we do not know the context-dependent contribution from specific generators, whether different neural pathways have a common role across different effectors, and how sensory and central deficits in one pathway are accommodated by those remaining. Bridging these gaps is essential to integrate the diverse set of studies, develop general theories of motor control, and explicate how the nervous system addresses the partially distinct behavioral demands of co-evolved effector system. The considerable flexibility and multiple interacting pathways of automatic postural responses also make it ideal for understanding how powerful formal theories, like optimal feedback control, are achieved by a distributed hierarchical neural network. We welcome empirical, theoretical, and review contributions to address these outstanding questions. Approaches of particular (non-exclusive) interest include 1) motor responses to mechanical perturbations, 2) motor responses to startling acoustic stimuli, 3) altered postural function with particular disease states, 4) neural stimulation and recording in human subjects and behaving animals, and 5) computational modeling of multiple neural controllers for postural control.


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top