Research Topic

Novel Tools for the Study of Structural and Functional Networks in the Brain

  • Submission closed.

About this Research Topic

Neuroscience is the scientific field dedicated to the study of the brain and the nervous system. Neuroscience is inherently an interdisciplinary field. Throughout history, advances in physics have made possible many advances in neuroscience. Early optical investigations led to the development of the ...

Neuroscience is the scientific field dedicated to the study of the brain and the nervous system. Neuroscience is inherently an interdisciplinary field. Throughout history, advances in physics have made possible many advances in neuroscience. Early optical investigations led to the development of the microscope, the theory of electricity and magnetism led to the discovery and application of electroencephalogram (EEG), quantum mechanics led to nuclear magnetic resonance, which is the foundation of magnetic resonance imaging, and more recently, graph theory has provided models that describe brain networks and their functions. Despite the impressive progress made so far, much remains to be explored. The goal of this Research Topic is to identify and address outstanding issues in the study of structural and functional networks in the brain.

The detailed understanding of the brain is one of the main frontiers in modern science. Neuroscience offers an exceptional opportunity for interdisciplinary research where biology, physics, mathematics, statistics, engineering, and other fields of science come together to advance our knowledge on the structure and function of the brain and its many connected networks. Investigations of the brain take place on multiple scales, including macroscale at the level of brain regions, mesoescale at the level of neuronal populations, and microscale at the level of single neurons and neuron-neuron interactions. Integration over these scales requires novel techniques. New and developing technique such as optogenetics, structural and functional magnetic resonance connectivity frameworks, high field MRI (7T and above), in-vivo optical imaging, and causal models of functional data are already having a big impact.

This Frontiers Research Topic attempts to advance this area across a broad front by soliciting submissions on novel experimental and computational techniques devoted to the study of brain networks. Specific topics of interest include but not limited to: novel imaging techniques, innovative statistical techniques, multiple imaging modality integration, new hardware developments, and unique graph theoretical frameworks (i.e. complex network analysis).


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top