Research Topic

Mapping Connectivity of the Human Cerebral Cortex

  • Submission closed.

About this Research Topic

Recent advances in non-invasive connectivity mapping techniques, such as diffusion MRI and resting state functional connectivity, have resulted in a resurgence of interest in the investigation of the connectivity of the human cerebral cortex. The connectivity of the various cerebral cortical areas, which is ...

Recent advances in non-invasive connectivity mapping techniques, such as diffusion MRI and resting state functional connectivity, have resulted in a resurgence of interest in the investigation of the connectivity of the human cerebral cortex. The connectivity of the various cerebral cortical areas, which is only beginning to be studied in humans, has been examined in detail in the macaque monkey during the last 50 years using experimental anatomical anterograde and retrograde tracer techniques. These techniques provide exquisite detail of the origin, course and termination of axons from one cortical area to another. This experimental research, therefore, provides specific hypotheses to be tested in the human with new emerging non-invasive connectivity mapping methods, as well as a framework within which to interpret findings in the human. The human cerebral cortex poses substantial challenges because its topology is very variable and its detailed organization not very well known. Connectivity can be used to map the boundaries of anatomical subregions within large-scale systems, and holds promise as a powerful resource for defining homotopic areas across brains and between hemispheres. Nonetheless, it is worthwhile to consider the limitations inherent in these methodologies so that the limits of the conclusions drawn can be fully appreciated. We aim to bring together articles critically addressing connectivity-mapping techniques, such as diffusion tensor imaging-based tractography and resting-state functional connectivity, in the specific context of anatomical investigation. In order to make fruitful contributions to the study of neuroanatomy, the application of these techniques requires special consideration. Each technique comes with unique strengths and weaknesses, bounding the interpretation of results. For instance, what is the relationship between various measures of functional connectivity and axonal connections? And what is the appropriate scale of subdivision? Given recent developments, it is appropriate to review achievements thus far, ongoing prospects, and future limitations as applied to the complex anatomy of the cerebral cortex.


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top