Research Topic

Structural underpinnings of synaptic function

About this Research Topic

The synapse is a complex nanomachine that lies at the heart of neuronal processing. This Special Topic focuses on the functional implications of synaptic architecture. By the 1960's, important aspects of synaptic function had been established, including the requirement for presynaptic calcium entry via voltage-gated channels, releasing neurotransmitter that would then activate specialized receptors in the postsynaptic membrane, leading to postsynaptic currents. In this first era of synaptic research, electrophysiology was developing in parallel with anatomy. The morphological identification of specialized presynaptic terminals packed with small vesicles played a major role in the widespread acceptance of Katz's model of quantal transmitter release.

As already recognized by Aristotle, biological structure and function are intimately linked. Function is perhaps the more interesting scientific question, but structure is more directly answerable. In this Special Topic, we examine multiple aspects of synaptic architecture. This information constrains function, and also provides clues to aspects of synaptic function that are not yet fully understood. Conversely, some readily-accessible aspects of synaptic function provide clues to aspects of structure not yet directly visualizable.

In this work we will focus on excitatory synapses. From a strict perspective, the "synapse" perhaps only means the locus of specialized contact between a pre- and postsynaptic structure. We use the term more generally to encompass the entire region, which typically includes the presynaptic terminal, the cleft region, and the postsynaptic spine. Focusing first on structure itself, we begin with a detailed analysis at the highest resolution now available (as provided by electron tomography), then to a broader survey of the diversity of synaptic features using transmission electron microscopy, and an investigation of structural plasticity using modern tools of light microscopy. As a second part of this work, we consider the organization of specific proteins within the synaptic region, using EM for optimal resolution, and LM to permit multichannel and in vivo study; this is complemented by indirect evidence from electrophysiology. We close with modeling work that points to functional implications of structural results.


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

The synapse is a complex nanomachine that lies at the heart of neuronal processing. This Special Topic focuses on the functional implications of synaptic architecture. By the 1960's, important aspects of synaptic function had been established, including the requirement for presynaptic calcium entry via voltage-gated channels, releasing neurotransmitter that would then activate specialized receptors in the postsynaptic membrane, leading to postsynaptic currents. In this first era of synaptic research, electrophysiology was developing in parallel with anatomy. The morphological identification of specialized presynaptic terminals packed with small vesicles played a major role in the widespread acceptance of Katz's model of quantal transmitter release.

As already recognized by Aristotle, biological structure and function are intimately linked. Function is perhaps the more interesting scientific question, but structure is more directly answerable. In this Special Topic, we examine multiple aspects of synaptic architecture. This information constrains function, and also provides clues to aspects of synaptic function that are not yet fully understood. Conversely, some readily-accessible aspects of synaptic function provide clues to aspects of structure not yet directly visualizable.

In this work we will focus on excitatory synapses. From a strict perspective, the "synapse" perhaps only means the locus of specialized contact between a pre- and postsynaptic structure. We use the term more generally to encompass the entire region, which typically includes the presynaptic terminal, the cleft region, and the postsynaptic spine. Focusing first on structure itself, we begin with a detailed analysis at the highest resolution now available (as provided by electron tomography), then to a broader survey of the diversity of synaptic features using transmission electron microscopy, and an investigation of structural plasticity using modern tools of light microscopy. As a second part of this work, we consider the organization of specific proteins within the synaptic region, using EM for optimal resolution, and LM to permit multichannel and in vivo study; this is complemented by indirect evidence from electrophysiology. We close with modeling work that points to functional implications of structural results.


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

10 January 2018 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

10 January 2018 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top