Research Topic

Influence of Inter- and Intra-Synaptic Factors on Information Processing in the Brain

About this Research Topic

Any brain activity depends on the interaction of thousands of neurons, each of which depending on the interaction of thousands of synapses. While neurons are the building blocks of the brain, their interactions occur by means of synaptic transmission, thus making synapses the main loci of information transfer, and leading to the emergence of neuronal code.

Any project aimed at understanding nervous system function or information processing in the brain strongly benefits from realistic models of synaptic activity. Such a modeling task proves challenging for many reasons. First, synaptic responses display a wide range of variability. Indeed, even a single synapse can generate a large amount of variability in its responses depending on many pre- and postsynaptic factors, the source of which is, in many cases, of stochastic nature. Second, synaptic responses also display a wide range of responses that differ with activity and time. Finally, experimental research on this topic, although able to furnish provide a large amount of information, remains limited for physical reasons. So far, the best way to approach the problem is a good combination of experimental research accompanied by and set side by side with theoretical and/or computational modeling of synaptic activity.

This Research Topic is intended to bring together foundational work aimed at shedding much-needed light on the details underlying synaptic mechanisms and resulting functions through experimental and computational approaches. Its scope aims to showcase recent developments and ideas in the study of synaptic dynamics, and the interplay between structure and the dynamical processes that take place in both healthy and pathological brains. This Research Topic includes, but is not limited to, studies of presynaptic mechanisms (e.g. modulation of release process), neuron-glia interactions, receptors and channels characterization, metabotropic receptor activation, intracellular molecular pathways, plasticity-related changes and energy-dependent processes. The research presented may range from the molecular level (e.g. work on a specific receptor type), up to single neuron/cell integration in the spatial scale, while dynamics studied may span from microseconds (diffusion processes) to minutes in the temporal scale.


Keywords: Excitatory Synapse, Inhibitory Synapses, Synaptic Modeling, Synaptic Integration, Brain Information Processing


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Any brain activity depends on the interaction of thousands of neurons, each of which depending on the interaction of thousands of synapses. While neurons are the building blocks of the brain, their interactions occur by means of synaptic transmission, thus making synapses the main loci of information transfer, and leading to the emergence of neuronal code.

Any project aimed at understanding nervous system function or information processing in the brain strongly benefits from realistic models of synaptic activity. Such a modeling task proves challenging for many reasons. First, synaptic responses display a wide range of variability. Indeed, even a single synapse can generate a large amount of variability in its responses depending on many pre- and postsynaptic factors, the source of which is, in many cases, of stochastic nature. Second, synaptic responses also display a wide range of responses that differ with activity and time. Finally, experimental research on this topic, although able to furnish provide a large amount of information, remains limited for physical reasons. So far, the best way to approach the problem is a good combination of experimental research accompanied by and set side by side with theoretical and/or computational modeling of synaptic activity.

This Research Topic is intended to bring together foundational work aimed at shedding much-needed light on the details underlying synaptic mechanisms and resulting functions through experimental and computational approaches. Its scope aims to showcase recent developments and ideas in the study of synaptic dynamics, and the interplay between structure and the dynamical processes that take place in both healthy and pathological brains. This Research Topic includes, but is not limited to, studies of presynaptic mechanisms (e.g. modulation of release process), neuron-glia interactions, receptors and channels characterization, metabotropic receptor activation, intracellular molecular pathways, plasticity-related changes and energy-dependent processes. The research presented may range from the molecular level (e.g. work on a specific receptor type), up to single neuron/cell integration in the spatial scale, while dynamics studied may span from microseconds (diffusion processes) to minutes in the temporal scale.


Keywords: Excitatory Synapse, Inhibitory Synapses, Synaptic Modeling, Synaptic Integration, Brain Information Processing


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

31 December 2017 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

31 December 2017 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top