Research Topic

Tactile Intelligence in Robots

  • Submission closed.

About this Research Topic

Dexterous skills in humans are arguably one of the most challenging abilities for robots to learn. These require incessant coupling between action and tactile perception maneuvered by a central core such as the brain. Specifically, the implementation of tactile feedback in a robotic system has only begun ...

Dexterous skills in humans are arguably one of the most challenging abilities for robots to learn. These require incessant coupling between action and tactile perception maneuvered by a central core such as the brain. Specifically, the implementation of tactile feedback in a robotic system has only begun recently along with the advancement in tactile sensor technology, which now calls for novel methods to realize human-like touch covering from sensors to perception. This tactile intelligence is the key to the development of robots that are able to grasp and manipulate objects in various circumstances. Development of robot tactile intelligence would also deepen our understanding of tactile information processing in the human nervous system.

To make a robot touch and feel like a human, it is natural to translate the principles of the human nervous system into robot intelligence. However, relatively little is known about neural mechanisms of tactile sensation and perception compared to visual or auditory modalities. Hence, more engineering-oriented approaches employing cutting-edge machine learning algorithms have been adopted to implement tactile intelligence in robots. They can provide practical solutions to the problems of object manipulation by a robot but may benefit much more from the understanding of biological bases of human tactile perceptual capabilities. For instance, it is desirable to create artificial neural networks that mimic somatosensory nervous systems and integrate them with advanced machine learning techniques in order to have robots gain human-like dexterous skills.

This research proposal aims to investigate the implementation of tactile intelligence in robots inspired by neural mechanisms of tactile information processing in order to improve object grasping and manipulation with tactile feedback. It also aims to collect current learning methods for robots to exploit tactile information from the sensors. Theoretical work as well as cognitive models to explain emergence of tactile perception from biological systems are welcomed. This proposal also emphasizes human studies on tactile perception that can provide insights on robot learning for object manipulation tasks.

This research topic is interdisciplinary with a goal to integrate state-of-the-art researches from diverse domains. Topics include, but not limited to:

- Learning mechanisms through touch
- Human tactile perception mechanisms translated into robots
- Biologically inspired tactile information processing of tactile sensor signals
- Methods to transform raw tactile sensor signals into perceptual information
- Artificial tactile intelligence for object manipulation and recognition
- Robot learning algorithms to gain tactile intelligence
- Neural mechanisms for closed-loop of hand action and tactile perception
- Intelligent tactile sensor technology


Keywords: robot object manipulation, tactile sensation and perception, tactile learning, dexterous skill, somatosensory system


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top
);