Research Topic

Statistical and Computational Methods for Microbiome Multi-Omics Data

  • Submission closed.

About this Research Topic

Culture-independent studies of the human microbiome and microbial communities using multiple high-throughput functional profiling technologies, including metagenomics, metatranscriptomics, metaproteomics, and metabolomics have become a powerful tool for surveying the whole community. This has been highlighted by an increase in longitudinal and population-level microbiome-wide studies that rely on multi-omics profiling to simultaneously characterize community function, dynamics, and biochemical signatures across diverse disease states and environments. The field of microbiome multi-omics, however, has not yet reached the maturity attained in other established molecular epidemiology fields such as cancer biomarker discovery and genome-wide association studies for making the leap from ‘omics survey to rational microbiome-based therapeutics.

One of the primary limitations to leveraging this large body of ‘big data’ is computational and statistical. Among these are the technical nature of the data associated: high-dimensionality, count and compositional data structure, sparsity (zero-inflation), over-dispersion, and hierarchical, spatial, and temporal dependence, among others. To combat these challenges, specialized methods and software are needed to accurately characterize microbial communities within and across large studies, while maintaining both statistical rigor and biological relevance.

This Research Topic thus focuses on studies (e.g. original research, perspectives, reviews, commentaries, and opinion papers) that investigate and discuss novel experimental design and downstream biostatistical considerations for integrated analysis of microbial community multi-omics profiles (16S amplicon, metagenomics, metatranscriptomics, metaproteomics, metabolomics, and other culture-independent molecular data). We believe this topic is both timely and fundamental for improving our current understanding of the microbiome. The diverse collection of articles on this topic will (i) provide a useful reference for both current and future investigators in translational and clinical microbiome research, and (ii) establish best practice guidelines for analyzing and integrating microbial multi-omics data, including but not limited to:

• biologically informed strain- or species-level ecological interaction discovery
• meta-analysis for batch effect correction and population structure discovery
• integrative analysis for precision medicine
• longitudinal and time-series analyses
• machine learning methods for predictive analyses


Keywords: Microbial Ecology, Metagenomics, Metabolomics, Metatranscriptomics, Metaproteomics


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Culture-independent studies of the human microbiome and microbial communities using multiple high-throughput functional profiling technologies, including metagenomics, metatranscriptomics, metaproteomics, and metabolomics have become a powerful tool for surveying the whole community. This has been highlighted by an increase in longitudinal and population-level microbiome-wide studies that rely on multi-omics profiling to simultaneously characterize community function, dynamics, and biochemical signatures across diverse disease states and environments. The field of microbiome multi-omics, however, has not yet reached the maturity attained in other established molecular epidemiology fields such as cancer biomarker discovery and genome-wide association studies for making the leap from ‘omics survey to rational microbiome-based therapeutics.

One of the primary limitations to leveraging this large body of ‘big data’ is computational and statistical. Among these are the technical nature of the data associated: high-dimensionality, count and compositional data structure, sparsity (zero-inflation), over-dispersion, and hierarchical, spatial, and temporal dependence, among others. To combat these challenges, specialized methods and software are needed to accurately characterize microbial communities within and across large studies, while maintaining both statistical rigor and biological relevance.

This Research Topic thus focuses on studies (e.g. original research, perspectives, reviews, commentaries, and opinion papers) that investigate and discuss novel experimental design and downstream biostatistical considerations for integrated analysis of microbial community multi-omics profiles (16S amplicon, metagenomics, metatranscriptomics, metaproteomics, metabolomics, and other culture-independent molecular data). We believe this topic is both timely and fundamental for improving our current understanding of the microbiome. The diverse collection of articles on this topic will (i) provide a useful reference for both current and future investigators in translational and clinical microbiome research, and (ii) establish best practice guidelines for analyzing and integrating microbial multi-omics data, including but not limited to:

• biologically informed strain- or species-level ecological interaction discovery
• meta-analysis for batch effect correction and population structure discovery
• integrative analysis for precision medicine
• longitudinal and time-series analyses
• machine learning methods for predictive analyses


Keywords: Microbial Ecology, Metagenomics, Metabolomics, Metatranscriptomics, Metaproteomics


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top
);