Research Topic

Bioinspired Design and Control of Robots with Intrinsic Compliance

About this Research Topic

Intrinsic compliance, i.e. passive compliance, is one of the crucial properties of human and biological systems. In mammals, compliance results from the viscoelastic properties of muscle fibres and the series-elastic tendon structures which can be modulated at the muscle and joint level through the activation of the agonist and/or antagonistic muscles. Several technologies have been proposed to mimic the intrinsic compliance, such as series elastic actuators with fixed compliance, variable stiffness actuators, and soft artificial muscles. There is an ever-increasing interest in implementing robots with intrinsic compliance to the fields of wearable robotics, prosthetics robotics, and walking robotics, because of their ability to absorb impact shocks, to safely interact with users, and to store and release energy in passive elastic elements.

One critical barrier to the development of robots with intrinsic compliance is the necessity for greater design inspiration and integration from bionic viewpoints. For instance, the design of compliant actuators to mimic the real muscle function is difficult because of the complex muscle structure and biomechanical properties. Besides, the control of robots with intrinsic compliance is still challenging due to the complexity and modelling difficulty of compliant components. For instance, the physical coupling between stiffness and position mechanisms in VSAs makes the control design complicated. How to control robots with intrinsic compliance in a more efficient way using bioinspired techniques in model learning, policy learning, and disturbance estimation, is an exciting topic.

This Research Topic welcomes all contributions related to bioinspired design and control approaches for robots with intrinsic compliance. More specifically, we aim to introduce the recent progress of the design of compliant or soft robots inspired by biomechanical advancements and to address the challenges in developing bioinspired control strategies for compliant or soft robots in various applications, while proposing new ideas and directions for future development. All types of articles are welcome among those permitted in the Frontiers in Neurorobotics platform.


Keywords: Series elastic actuator, variable stiffness actuator, soft robot design and control, robot adaptive and learning control, bioinspired robot control


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Intrinsic compliance, i.e. passive compliance, is one of the crucial properties of human and biological systems. In mammals, compliance results from the viscoelastic properties of muscle fibres and the series-elastic tendon structures which can be modulated at the muscle and joint level through the activation of the agonist and/or antagonistic muscles. Several technologies have been proposed to mimic the intrinsic compliance, such as series elastic actuators with fixed compliance, variable stiffness actuators, and soft artificial muscles. There is an ever-increasing interest in implementing robots with intrinsic compliance to the fields of wearable robotics, prosthetics robotics, and walking robotics, because of their ability to absorb impact shocks, to safely interact with users, and to store and release energy in passive elastic elements.

One critical barrier to the development of robots with intrinsic compliance is the necessity for greater design inspiration and integration from bionic viewpoints. For instance, the design of compliant actuators to mimic the real muscle function is difficult because of the complex muscle structure and biomechanical properties. Besides, the control of robots with intrinsic compliance is still challenging due to the complexity and modelling difficulty of compliant components. For instance, the physical coupling between stiffness and position mechanisms in VSAs makes the control design complicated. How to control robots with intrinsic compliance in a more efficient way using bioinspired techniques in model learning, policy learning, and disturbance estimation, is an exciting topic.

This Research Topic welcomes all contributions related to bioinspired design and control approaches for robots with intrinsic compliance. More specifically, we aim to introduce the recent progress of the design of compliant or soft robots inspired by biomechanical advancements and to address the challenges in developing bioinspired control strategies for compliant or soft robots in various applications, while proposing new ideas and directions for future development. All types of articles are welcome among those permitted in the Frontiers in Neurorobotics platform.


Keywords: Series elastic actuator, variable stiffness actuator, soft robot design and control, robot adaptive and learning control, bioinspired robot control


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

31 March 2019 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

31 March 2019 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top
);