Emotional deception and emotional attachment are regarded as ethical concerns in human-robot interaction. Considering these concerns is essential, particularly as little is known about longitudinal effects of interactions with social robots. We ran a longitudinal user study with older adults in two retirement villages, where people interacted with a robot in a didactic setting for eight sessions over a period of 4 weeks. The robot would show either non-emotive or emotive behavior during these interactions in order to investigate emotional deception. Questionnaires were given to investigate participants' acceptance of the robot, perception of the social interactions with the robot and attachment to the robot. Results show that the robot's behavior did not seem to influence participants' acceptance of the robot, perception of the interaction or attachment to the robot. Time did not appear to influence participants' level of attachment to the robot, which ranged from low to medium. The perceived ease of using the robot significantly increased over time. These findings indicate that a robot showing emotions—and perhaps resulting in users being deceived—in a didactic setting may not by default negatively influence participants' acceptance and perception of the robot, and that older adults may not become distressed if the robot would break or be taken away from them, as attachment to the robot in this didactic setting was not high. However, more research is required as there may be other factors influencing these ethical concerns, and support through other measurements than questionnaires is required to be able to draw conclusions regarding these concerns.
Researchers, industry, and practitioners are increasingly interested in the potential of social robots in education for learners on the autism spectrum. In this study, we conducted semi-structured interviews and focus groups with educators in England to gain their perspectives on the potential use of humanoid robots with autistic pupils, eliciting ideas, and specific examples of potential use. Understanding educator views is essential, because they are key decision-makers for the adoption of robots and would directly facilitate future use with pupils. Educators were provided with several example images (e.g., NAO, KASPAR, Milo), but did not directly interact with robots or receive information on current technical capabilities. The goal was for educators to respond to the general concept of humanoid robots as an educational tool, rather than to focus on the existing uses or behaviour of a particular robot. Thirty-one autism education staff participated, representing a range of special education settings and age groups as well as multiple professional roles (e.g., teachers, teaching assistants, speech, and language therapists). Thematic analysis of the interview transcripts identified four themes: Engagingness of robots, Predictability and consistency, Roles of robots in autism education, and Need for children to interact with people, not robots. Although almost all interviewees were receptive toward using humanoid robots in the classroom, they were not uncritically approving. Rather, they perceived future robot use as likely posing a series of complex cost-benefit trade-offs over time. For example, they felt that a highly motivating, predictable social robot might increase children's readiness to learn in the classroom, but it could also prevent children from engaging fully with other people or activities. Educator views also assumed that skills learned with a robot would generalise, and that robots' predictability is beneficial for autistic children—claims that need further supporting evidence. These interview results offer many points of guidance to the HRI research community about how humanoid robots could meet the specific needs of autistic learners, as well as identifying issues that will need to be resolved for robots to be both acceptable and successfully deployed in special education contexts.
Prior research has demonstrated the importance of children's peers for their learning and development. In particular, peer interaction, especially with more advanced peers, can enhance preschool children's language growth. In this paper, we explore one factor that may modulate children's language learning with a peer-like social robot: rapport. We explore connections between preschool children's learning, rapport, and emulation of the robot's language during a storytelling intervention. We performed a long-term field study in a preschool with 17 children aged 4–6 years. Children played a storytelling game with a social robot for 8 sessions over two months. For some children, the robot matched the level of its stories to the children's language ability, acting as a slightly more advanced peer (Matched condition); for the others, the robot did not match the story level (Unmatched condition). We examined children's use of target vocabulary words and key phrases used by the robot, children's emulation of the robot's stories during their own storytelling, and children's language style matching (LSM—a measure of overlap in function word use and speaking style associated with rapport and relationship) to see whether they mirrored the robot more over time. We found that not only did children emulate the robot more over time, but also, children who emulated more of the robot's phrases during storytelling scored higher on the vocabulary posttest. Children with higher LSM scores were more likely to emulate the robot's content words in their stories. Furthermore, the robot's personalization in the Matched condition led to increases in both children's emulation and their LSM scores. Together, these results suggest first, that interacting with a more advanced peer is beneficial for children, and second, that children's emulation of the robot's language may be related to their rapport and their learning. This is the first study to empirically support that rapport may be a modulating factor in children's peer learning, and furthermore, that a social robot can serve as an effective intervention for language development by leveraging this insight.