Research Topic

From Whole-Cell to Single Synapse Engrams - Breaking the Code for Memory Formation, Storage and Recall

About this Research Topic

The term “engram” refers to the physical elements serving learning and memory. A growing body of literature, mainly focusing on hippocampal circuits, has identified and manipulated cellular engrams, which are defined as neurons whose activity is both necessary and sufficient for the establishment of new ...

The term “engram” refers to the physical elements serving learning and memory. A growing body of literature, mainly focusing on hippocampal circuits, has identified and manipulated cellular engrams, which are defined as neurons whose activity is both necessary and sufficient for the establishment of new memories. However, more questions are raised, as researchers strive to define a cellular and, possibly, synaptic code for memory storage and retrieval. Indeed, synaptic plasticity (i.e., potentiation or depression of synaptic transmission) can be considered as a "local" phenomenon, involving a subset of the dendritic spine equipment of a given neuron or neuronal ensemble. In addition, plastic changes can have different magnitudes or polarities among the various dendritic compartments of a neuron.

The current conceptual and experimental approach is based on the manipulation of whole neurons serving engram formation. The "cellular engram" approach has provided fundamental information on the mechanisms of learning and memory, but is limited by its low spatial resolution. Thus, a paradigm shift, allowing a zooming in to "synaptic engrams" is required. This can be accomplished by creating new tools for studying synaptic engrams under multiple points of view: structural, functional, behavioral, “omics”. These tools should be designed with the specific aim of answering the following main questions:

1) Do synaptic engrams established in response to different learning and memory processes (e.g., different behavioral paradigms) have a different distribution?
2) Do synaptic engrams created in different brain areas share common functional/morphological/molecular principles?
3) Do synaptic engrams have a specific molecular or functional fingerprint?
4) Do different neuronal types have a specific role in engram formation?
5) Do neurons collaborate with other cell types in establishing engrams?
6) How do neurological and neurodegenerative pathologies affect synaptic engrams?

Our Research Topic will gather contributions from Experts in the study of learning and memory to providing a comprehensive overview of the state of the art of research on memory engrams. Contributions employing diverse approaches, namely molecular biology, imaging, proteomics, transcriptomics, optogenetics and electrophysiology are encouraged and welcome. In addition, selected reviews of the current literature on engrams and memory will be accepted.

The ideal contribution should be focusing on the application of the technical approaches outlined above to the study of memory engrams, thus adding new bricks to the building of our knowledge on the mechanisms serving the creation and maintenance of the physical information storage units of the brain.


Keywords: cFos, Arc, fluorescent proteins, optogenetics, dendritic spines, synapse potentiation


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

31 July 2019 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

31 July 2019 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..