Skip to main content

About this Research Topic

Submission closed.

In the burdened scenes of everyday life, our brains must select from among many competing inputs for perceptual synthesis - so that only the most relevant receive full attention and irrelevant (distracting) information is suppressed. At the same time, we must remain responsive to salient events outside our ...

In the burdened scenes of everyday life, our brains must select from among many competing inputs for perceptual synthesis - so that only the most relevant receive full attention and irrelevant (distracting) information is suppressed. At the same time, we must remain responsive to salient events outside our current focus of attention - and balancing these two processing modes is a fundamental task our brain constantly needs to solve. Both the physical saliency of a stimulus, as well as top-down predictions about imminent sensations crucially influence attentional selection and consequently the response to unexpected events.

Research over recent decades has identified two separate brain networks involved in predictive top-down control and reorientation to unattended events (or oddball stimuli): the dorsal and ventral fronto-parietal attention systems of the human brain. Moreover, specific electrophysiological brain responses are known to characterize attentional orienting as well as the processing of deviant stimuli. However, many key questions are outstanding. What are the exact functional differences between these cortical attention systems? How are they lateralised in the two hemispheres? How do top-down and bottom-up signals interact to enable flexible attentional control? How does structural damage to one system affect the functionality of the other in brain damaged patients? Are there sensory-specific and supra-modal attentional systems in the brain?

In addition to these questions, it is now accepted that brain responses are not only affected by the saliency of external stimuli, but also by our expectations about sensory inputs. How these two influences are balanced, and how predictions are formed in cortical networks, or generated on the basis of experience-dependent learning, are intriguing issues.

In this Research Topic, we aim to collect innovative contributions that shed further light on the (cortical) mechanisms of attentional control in the human brain. In particular, we would like to encourage submissions that investigate the behavioural correlates, functional anatomy or electrophysiological markers of attentional selection and reorientation. Special emphasis will be given to studies investigating the context-sensitivity of these attentional processes in relation to prior expectations, trial history, contextual cues or physical saliency. We would like to encourage submissions employing different research methods (psychophysical recordings, neuroimaging techniques such as fMRI, MEG, EEG or ECoG, as well as neurostimulation methods such as TMS or tDCS) in healthy volunteers or neurological patients. Computational models and animal studies are also welcome. Finally, we also welcome submission of meta-analyses and reviews articles that provide new insights into, or conclusions about recent work in the field.

Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors

Loading..

Topic Coordinators

Loading..

Recent Articles

Loading..

Articles

Sort by:

Loading..

Authors

Loading..

total views

total views article views downloads topic views

}
 
Top countries
Top referring sites
Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.