Research Topic

Multi-Omics Approaches to Study Signaling Pathways

  • Submission closed.

About this Research Topic

Integration of multi-omics data offers several advantages to investigate biological pathways in a more comprehensive manner. It provides better understanding of how a genotype influences a phenotype, as well as the molecular mediators at the transcript and protein levels that regulate the underlying pathway ...

Integration of multi-omics data offers several advantages to investigate biological pathways in a more comprehensive manner. It provides better understanding of how a genotype influences a phenotype, as well as the molecular mediators at the transcript and protein levels that regulate the underlying pathway mechanisms. Also, it has the potential to reveal key biological insights into pathways that would otherwise not be made apparent through single-omics studies. On the other-hand, the vast amount of multi-omics data generated has also created new challenges to integrate, visualize and interpret these data in order to study pathways.

Omics technologies have revolutionized our ability to generate global data in a high-throughput manner. Data generation has outpaced our ability to interpret the data and take complete advantage of the information that it provides. Although several methodologies and tools have been developed to deal with high throughput data at either the genome, epigenome, transcriptome or proteome level, they are limited in their ability to integrate these datasets to uncover their relationships for the analysis of biological pathway cross-talk. Thus, novel methodologies and tools that can integrate and leverage the advantages of integrating multi-omics datasets for pathway analysis would be valuable. Moreover, machine learning or deep learning approaches are also required for the model-based inference of multi-omics data for analysis of pathways.

This Research Topic welcomes contributions covering several areas of multi-omics approaches to studying signalling pathways, including:
• novel methodologies for integration, visualization and interpretation of multi-omics data for pathway analysis by incorporating multiple features including gene regulatory networks and protein-protein interactions
• novel methodologies for statistical handling of complexities of fundamental aspects of multi-omics datasets for the analysis of pathways
• applications of machine learning approaches to multi-omics datasets to predict/ infer models of signaling pathways
• new user-friendly tools for pathway analysis, in the form of libraries or application programming interfaces for programming languages, as command line interface and/or as web interface

We welcome a variety of article types including Original Research, Review, Hypothesis and Theory, Methods, Mini Review, Perspective and Systematic Review.


Keywords: NGS, Systems biology, Alternative splicing, Phosphoproteomics, Signaling networks, GTF/GFF format, BioPAX, SBML, PSI-MI, Principal component analysis, Clustering, Regression, Artificial intelligence


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..