Research Topic

Latest Advances on Excitatory Synapse Biology

About this Research Topic

The development and function of the human brain, and its remarkable capacity for experience dependent change, hinge on the organization and dynamics of synapses. In the central nervous system, excitatory synapses represent the primary means of information processing by local circuits and communication between ...

The development and function of the human brain, and its remarkable capacity for experience dependent change, hinge on the organization and dynamics of synapses. In the central nervous system, excitatory synapses represent the primary means of information processing by local circuits and communication between brain regions. The molecular composition, structural organization, signaling function, and plasticity of excitatory synapses underlie experience-dependent changes in brain function associated with learning and memory. Not surprisingly, disruption of excitatory synapse signaling, function and plasticity is implicated in a broad range of neurological and psychiatric diseases, including schizophrenia, autism, depression, substance abuse and addiction, Parkinson's disease, Alzheimer's disease, traumatic brain injury, stroke and epilepsy. Therefore, synaptic studies not only provide fundamental insight into a linchpin of the nervous system but also is essential to develop novel therapeutics and progress in lessening the burden of human neurological diseases and improving mental health.
In the past decade, major progress has been made in understanding the architecture and functionalities of excitatory synapses. These advances, largely triggered by the advent of novel technologies (cryo-electron and super-resolution microscopy, optogenetics and optopharmacology, deep sequencing, single-cell genetics, etc…) have profound implications in our understanding of the normal and disease brain.

This Research Topic aims to capture recent progress and excitement across the breadth of synapse biology, with a focus on glutamatergic synapses of the mammalian brain and an emphasis on molecular, cellular, physiological and physiopathological mechanisms.

We aim to cover the following topics:
- Glutamate receptor structure, regulation and trafficking
- Synapse maturation and scaffolding
- Signaling mechanisms at excitatory synapses
- Experience-dependent modulation of synapses and circuits
- Synaptic plasticity and behavior
- Synaptic dysfunction in neuropsychiatric disorders.

Besides the journal Frontiers in Synaptic Neuroscience, we envision strong interest for sister Frontiers journals, including Frontiers in Molecular Neuroscience, Frontiers in Cellular Neuroscience and Frontiers in Behavioral Neuroscience.


Keywords: Synapse, Receptor, Neuron, Plasticity, Neurodevelopmental disorders


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

31 August 2020 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

31 August 2020 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..