Research Topic

An Integrative Approach to Thermoregulation

About this Research Topic

Temperature is one of the most relevant environmental abiotic variables, which affects living organisms in many different ways. Thermoregulatory mechanisms per se have been the object of extensive physiological research for a long time, and in the past several decades a great amount of knowledge has been accumulated. Now, we not only have a better understanding of how temperature is regulated at different levels of organization (from molecules, cells and organs to tissues and whole organisms) in ectothermic and endothermic organisms, but also how such organisms as a whole are affected by the outside thermal environment to maintain homeostasis.

More recently, questions have been addressed in order to understand how biological traits may vary continuously as a function of temperature, and what the mechanisms underlying such traits are, which in some cases may involve different thermal sensitivities with regards to enzyme degradation and hormone secretion, for example. Other important questions that have also recently been raised are those regarding how climate variability influences plastic and evolutionary responses to climate change, and how thermoregulatory behavior alters the evolution of thermal tolerances and the impacts of climate change over short and long terms.

Comparative studies at the population level reveal evolutionary differences among populations found in different geographical locations (latitudinal, longitudinal and altitudinal), and based on such studies we are now beginning to understand, for example, how food quality combined with temperature may also affect organisms in different ways. Unraveling the triggers, the mechanisms and the consequences of adaptive evolutionary changes in response to environment thermal variability is one of the main objectives of current biological investigation, taking into consideration a broader and more integrative approach.

Field-based natural history and experiments with laboratory-based biochemistry and physiology, associated with new available research tools, have allowed investigators to develop theoretical models to predict how traits (behavior, morphology and physiology) of organisms interact with climatic conditions and how these interactions affect key fitness components such as potential activity time, development and growth rates, water balance and food requirements. In addition, modern technologies combined with available databases have also been providing new knowledge of the environment in which an organism actually functions as a way to help answering those intricate questions.

The aim of this Research Topic is not only to bring to a larger audience the current advances in the field of thermoregulation, now understood within this broader context, but also to stimulate debates and further investigation in this complex research area.


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Temperature is one of the most relevant environmental abiotic variables, which affects living organisms in many different ways. Thermoregulatory mechanisms per se have been the object of extensive physiological research for a long time, and in the past several decades a great amount of knowledge has been accumulated. Now, we not only have a better understanding of how temperature is regulated at different levels of organization (from molecules, cells and organs to tissues and whole organisms) in ectothermic and endothermic organisms, but also how such organisms as a whole are affected by the outside thermal environment to maintain homeostasis.

More recently, questions have been addressed in order to understand how biological traits may vary continuously as a function of temperature, and what the mechanisms underlying such traits are, which in some cases may involve different thermal sensitivities with regards to enzyme degradation and hormone secretion, for example. Other important questions that have also recently been raised are those regarding how climate variability influences plastic and evolutionary responses to climate change, and how thermoregulatory behavior alters the evolution of thermal tolerances and the impacts of climate change over short and long terms.

Comparative studies at the population level reveal evolutionary differences among populations found in different geographical locations (latitudinal, longitudinal and altitudinal), and based on such studies we are now beginning to understand, for example, how food quality combined with temperature may also affect organisms in different ways. Unraveling the triggers, the mechanisms and the consequences of adaptive evolutionary changes in response to environment thermal variability is one of the main objectives of current biological investigation, taking into consideration a broader and more integrative approach.

Field-based natural history and experiments with laboratory-based biochemistry and physiology, associated with new available research tools, have allowed investigators to develop theoretical models to predict how traits (behavior, morphology and physiology) of organisms interact with climatic conditions and how these interactions affect key fitness components such as potential activity time, development and growth rates, water balance and food requirements. In addition, modern technologies combined with available databases have also been providing new knowledge of the environment in which an organism actually functions as a way to help answering those intricate questions.

The aim of this Research Topic is not only to bring to a larger audience the current advances in the field of thermoregulation, now understood within this broader context, but also to stimulate debates and further investigation in this complex research area.


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

24 April 2020 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

24 April 2020 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..