Research Topic

Advances in Molecular Docking and Structure-Based Modelling

  • Submission closed.

About this Research Topic

Knowledge of the three-dimensional structure of macromolecules is an incredible source for understanding biological processes. It would allows us, for example, to apprehend an enzymatic reaction, even to be able to define how to modify it and propose approaches for drug design, etc. Nonetheless, ...

Knowledge of the three-dimensional structure of macromolecules is an incredible source for understanding biological processes. It would allows us, for example, to apprehend an enzymatic reaction, even to be able to define how to modify it and propose approaches for drug design, etc. Nonetheless, experimentally determined structures of specific macromolecules or their biologically relevant complex forms are often not available. Hence, computational approaches have been developed to generate atomic models of macromolecules, complexes with other macromolecules, and complexes with small ligands. Some models also use experimental data as restraints in their simulations. These modeling approaches have limitations, but are also of impressive interest ranging from basic research to applied biotechnology, biomedicine and drug design.

With the increasing amount of structural information (coming from X-ray crystallography, Nuclear Magnetic Resonance or cryogenic electron microscopy), the computational approaches such as molecular modelling, molecular dynamics, docking and chemoinformatics, are often required for better interpretation of data. All these in silico methodologies are complex, have limitations and must be used with appropriate statistical and quality measures. The objective of this Research Topic is to bring together work using robust and recent computational methodologies, which relates to the computational analysis of structures and complexes. We are also interested in work exploring new developments and applications that integrate docking approaches and complex experimental data such as cryo-EM.

For this Research Topic, we welcome contributions of research articles and reviews covering recent computational methodological developments in the following areas of Structural Bioinformatics, Cheminformatics and Computational Biology:

• Analysis of macromolecular structure-function relationships, especially protein structures that are ordered or disordered
• Molecular dynamics simulations to comprehend protein flexibility, dynamics and folding. These MDs can be classical all atoms, coarse-grained, or using enhanced sampling approaches such as Replica-Exchange Molecular Dynamics or metadynamics
• Docking approaches to predict binding of natural or non-natural ligands and answering biological or biotechnological questions such as drug design
• Integration of experimental data restraints in macromolecular structure modeling


Keywords: Structural models, macromolecule complexes, docking, computational approaches


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..