Research Topic

Yeast Differentiation: From Cell-to-Cell Heterogeneity to Replicative Aging and Regulated Cell Death

About this Research Topic

Being a unicellular species, baker’s yeast Saccharomyces cerevisiae is an uncommon model for the study of developmental processes. However, yeast colonies can undergo some developmental programs and are capable of differentiation. Yeast populations also undergo genome evolution such that the deletion of most ...

Being a unicellular species, baker’s yeast Saccharomyces cerevisiae is an uncommon model for the study of developmental processes. However, yeast colonies can undergo some developmental programs and are capable of differentiation. Yeast populations also undergo genome evolution such that the deletion of most any single gene can drive the selection for a new mutation affecting cell growth and/or cell death. This tractable model provides many advantages and can be expected to continue serving as a rich source of new insight into pathogenic fungi, multicellular organisms and basic biology.

Yeast populations are both genetically and epigenetically heterogeneous in their behavior and responses to cell stress and anti-fungal agents. This heterogeneity can be a result of transcriptional noise, differentiation in spatially distinct microenvironments, genetic variation through selection of natural replication errors and aging of individual cells. Cell-cell heterogeneity can also arise from asymmetric division when S. cerevisiae actively sort their intracellular constituents between mother and daughter cells. All these factors impinge on cell behaviors within yeast cell aggregates and colonies where spatial differentiation of individual cells resembles multicellular organisms, and where cell growth and death are ongoing processes. Although the evolutionary conservation and biological roles of programmed cell death in yeast are still unclear, the cell death mechanisms are of special practical interest as potential therapeutic targets. By studying cell death pathways induced by cell stress and chemical compounds, we gain additional insights into drug resistance mechanisms.

In this Research Topic, we aim to gather a fresh look at yeast aging and cell death as a terminal part of genetically regulated developmental programs. We welcome Original Research, Review and Methods articles addressing the following aspects of yeast biology:

• Genetic heterogeneity in yeast populations
• Individual cell heterogeneity and bet-hedging of yeast clonal populations
• Asymmetry of cell division and yeast replicative aging
• Yeast death and differentiation in stationary phase
• Development and differentiation of yeast colonies and biofilms
• Physiological scenarios of regulated and programmed cell death
• Mechanisms of drug resistance and drug-induced cell death
• Gene mutation-driven genome evolution
• Acquired mutations in nutrient-sensing pathways



Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

14 October 2020 Manuscript
21 December 2020 Manuscript Extension

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

14 October 2020 Manuscript
21 December 2020 Manuscript Extension

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..