Research Topic

Mechanisms Linking Transport and Utilization of Metabolic Fuels to the Impact of Nutrition and Exercise upon Health

About this Research Topic

Tissues such as skeletal muscle and liver exhibit a high capacity for oxidative disposal of macronutrients. Dietary intake, including factors such as macronutrient composition and caloric intake, can have substantial effects on the delivery and uptake of fuels into tissues and within cells. Additionally, exercise training (through both acute and chronic effects of exertion), can also substantially change the uptake and metabolic partitioning of fuels within skeletal muscle, liver, and other organs. However, it has become clear that the transport of metabolites to tissues, and within cells to mitochondria and intracellular storage depots, is dysfunctional in states of metabolic disease (e.g., diabetes, fatty liver disease) and has serious implications for overall health. Improved knowledge of how nutrition and exercise alter the transport and utilization of metabolic fuels is therefore key to furthering our understanding of the health benefits of these lifestyle factors.

Much is known about the molecular regulation of fuel uptake into cells, such as expression or localization of transport proteins, and knowledge of factors regulating mitochondrial biogenesis and function is growing rapidly. Even in tissues with a high capacity for fuel oxidation, fuel storage is also a critical function and is regulated by various factors, such as perilipin proteins for lipid droplet stabilization, capacity for glycogen synthesis as a factor in glucose storage, and translation initiation as a factor in non-oxidative amino acid use. Vascular health is also important for proper delivery of nutrients and metabolic fuels to tissues. Much is known about the basic biology of these processes. From translational and clinical research, knowledge of diet and exercise prescription to achieve specific health outcomes is also reasonably strong. However, new hypotheses, and additional support for established hypotheses, is needed to link health outcomes to transport and metabolism of nutrients and metabolic fuels. Through this Research Topic, we encourage authors to link basic science knowledge to clinical impacts of diet and exercise, in order to further our understanding of the role of fuel metabolism in the health effects of lifestyle.

We invite original mechanistic research aimed at linking changes in energy substrate transport and metabolism to specific health benefits of diet and exercise. We also invite reviews of the literature in which new hypotheses are proposed describing how specific metabolic changes may leads to health improvements in response to dietary macronutrient composition, energy intake, and exercise. We encourage submissions of the following article types: Original Research, Brief Research Report, Review, Systematic Review, Mini Review, General Commentary, Hypothesis and Theory, and Opinion. Potential topics to address are listed as examples below, and work in related areas will also be considered.

• Lipotoxicity or inflammation as a mechanism underlying changes in insulin sensitivity in response to diet or exercise
• Changes in mitochondrial function in response to positive or negative energy balance
• Changes in resting metabolic rates or substrate selection as a mechanism for improved metabolic health
• Lipid droplet biology and its role in disease susceptibility
• Mechanisms underlying the benefits of lifestyle factors in the prevention or treatment of non-alcoholic fatty liver disease
• Metabolic signals driving crosstalk between tissues, such as myokine signals from muscle to brain impacting cognitive health
• Muscle quality and performance as a function of ectopic lipid accumulation within the tissue bed
• Endothelial function as a factor in metabolic fuel delivery

Brian Irving is a co-investigator on a clinical trial 'Surgical Weight-Loss to Improve Functional Status Trajectories Following Total Knee Arthroplasty (SWIFT Trial) (SWIFT)' sponsored by Ethicon-Endosurgery. All other Topic Editors declare no competing interests with regards to the Research Topic subject.


Keywords: Mitochondria, Fatty Acids, Amino Acids, Glucose, Insulin Sensitivity


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Tissues such as skeletal muscle and liver exhibit a high capacity for oxidative disposal of macronutrients. Dietary intake, including factors such as macronutrient composition and caloric intake, can have substantial effects on the delivery and uptake of fuels into tissues and within cells. Additionally, exercise training (through both acute and chronic effects of exertion), can also substantially change the uptake and metabolic partitioning of fuels within skeletal muscle, liver, and other organs. However, it has become clear that the transport of metabolites to tissues, and within cells to mitochondria and intracellular storage depots, is dysfunctional in states of metabolic disease (e.g., diabetes, fatty liver disease) and has serious implications for overall health. Improved knowledge of how nutrition and exercise alter the transport and utilization of metabolic fuels is therefore key to furthering our understanding of the health benefits of these lifestyle factors.

Much is known about the molecular regulation of fuel uptake into cells, such as expression or localization of transport proteins, and knowledge of factors regulating mitochondrial biogenesis and function is growing rapidly. Even in tissues with a high capacity for fuel oxidation, fuel storage is also a critical function and is regulated by various factors, such as perilipin proteins for lipid droplet stabilization, capacity for glycogen synthesis as a factor in glucose storage, and translation initiation as a factor in non-oxidative amino acid use. Vascular health is also important for proper delivery of nutrients and metabolic fuels to tissues. Much is known about the basic biology of these processes. From translational and clinical research, knowledge of diet and exercise prescription to achieve specific health outcomes is also reasonably strong. However, new hypotheses, and additional support for established hypotheses, is needed to link health outcomes to transport and metabolism of nutrients and metabolic fuels. Through this Research Topic, we encourage authors to link basic science knowledge to clinical impacts of diet and exercise, in order to further our understanding of the role of fuel metabolism in the health effects of lifestyle.

We invite original mechanistic research aimed at linking changes in energy substrate transport and metabolism to specific health benefits of diet and exercise. We also invite reviews of the literature in which new hypotheses are proposed describing how specific metabolic changes may leads to health improvements in response to dietary macronutrient composition, energy intake, and exercise. We encourage submissions of the following article types: Original Research, Brief Research Report, Review, Systematic Review, Mini Review, General Commentary, Hypothesis and Theory, and Opinion. Potential topics to address are listed as examples below, and work in related areas will also be considered.

• Lipotoxicity or inflammation as a mechanism underlying changes in insulin sensitivity in response to diet or exercise
• Changes in mitochondrial function in response to positive or negative energy balance
• Changes in resting metabolic rates or substrate selection as a mechanism for improved metabolic health
• Lipid droplet biology and its role in disease susceptibility
• Mechanisms underlying the benefits of lifestyle factors in the prevention or treatment of non-alcoholic fatty liver disease
• Metabolic signals driving crosstalk between tissues, such as myokine signals from muscle to brain impacting cognitive health
• Muscle quality and performance as a function of ectopic lipid accumulation within the tissue bed
• Endothelial function as a factor in metabolic fuel delivery

Brian Irving is a co-investigator on a clinical trial 'Surgical Weight-Loss to Improve Functional Status Trajectories Following Total Knee Arthroplasty (SWIFT Trial) (SWIFT)' sponsored by Ethicon-Endosurgery. All other Topic Editors declare no competing interests with regards to the Research Topic subject.


Keywords: Mitochondria, Fatty Acids, Amino Acids, Glucose, Insulin Sensitivity


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

30 November 2020 Abstract
30 April 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

30 November 2020 Abstract
30 April 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..