Research Topic

Graph Embedding Methods for Multiple-Omics Data Analysis

About this Research Topic

There has been an increasing growth of complex multiple-omics data sets due to the advent of advanced high throughput biotechnologies such as single-cell sequencing and Next-Generation sequencing. In contrast to the traditional single omics approach, it aims to identify causative connections rather than ...

There has been an increasing growth of complex multiple-omics data sets due to the advent of advanced high throughput biotechnologies such as single-cell sequencing and Next-Generation sequencing. In contrast to the traditional single omics approach, it aims to identify causative connections rather than consequential changes. This yields a global view by integrating the information derived independently from single genomic, transcriptomic, proteomic, and metabolomic levels. For example, this approach can further assist in designing better diagnostic tools and therapies for the treatment of diseases. Thus, the multi-omics data analysis is important to offer more evidence for exploring biological mechanisms.

Graph embedding methods have shown powerful capability in analyzing multiple-omics data, alongside genetic, phenotypic, and environmental factors-based approaches. However, there remain challenges and gaps between computer theories and real-world application requirements, the integration of multi-omics data from different technical platforms for instance. Therefore, this gives rise to the increasing demand for applications of the graph embedding methods to multiple-omics data analyses.

This Research Topic intends to provide an international forum for researchers to showcase their up-to-date computational methods for multiple-omics data analysis. We invite submissions of high-quality papers on original research, which have not been published previously.

Topics of interest include, but not limited to, graph embedding methods for the analysis of:
• Genomics data
• Proteomics data
• Metabolomics data
• Transcriptomics data
• Lipidomics data
• Immunomics data
• Glycomics data
• Multi-omics data fusion


Keywords: Multi-Omics, Graph Embedding, Computational Methods, Data Integration


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

22 November 2020 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

22 November 2020 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..