Research Topic

New Insights on Bruton’s Tyrosine Kinase Inhibitors

About this Research Topic

Pharmaceutical inhibitors of BTK (Bruton’s Tyrosine Kinase) are breakthrough medicines for various forms of leukemia and lymphoma. Many new compounds are under development and the field is rapidly expanding. While treatment for tumors has paved the way for the development of blockers, other indications, such as autoimmunity, are expected to become major future indications. BTK is an intracellular enzyme found in hematopoietic cells. When defective, it manifests itself as a primary immunodeficiency, which owing to the location of the BTK gene on the X-chromosome, essentially only affects boys. These patients lack mature B-lymphocytes, cannot mount adequate antibody responses, and hence become susceptible to infections. The first member of this new class of compounds, ibrutinib (Imbruvica®) has been FDA approved for the treatment of mantle cell lymphoma, chronic lymphocytic leukemia, Waldenström’s macroglobulinemia, marginal zone lymphoma, and graft-versus-host disease. Worldwide more than 20 inhibitors are under development. Apart from ibrutinib, acalabrutinib and zanubrutinib are both now FDA approved, and evobrutinib has reached far in clinical development. These four inhibitors all bind irreversibly to cysteine 481 in the kinase domain. Reversibly interacting, non-covalent binding blockers, which have a different mode of binding to the catalytic region, have also been developed.

Over time a large percentage of patients treated with irreversibly binding inhibitors no longer respond. Resistance is mainly caused by mutations affecting either BTK, preventing the covalent binding to C481, or in BTK’s substrate, phospholipase C 2 (PLCG2). The mutations in the PLCG2 gene cause the enzyme to become constitutively active. Even if the non-covalent inhibitors have not yet been extensively studied, there are indications that patients with resistance to covalent blockers will still be sensitive to reversible inhibitors. Clinical trials of non-covalent inhibitors are ongoing in patients with resistance to covalent blockers.

The various inhibitors differ in their specificity. Ibrutinib is known to bind irreversibly also to some other enzymes carrying the corresponding cysteine, and to interact non-covalently with another set of kinases, too. The interaction profiles of acalabrutinib, evobrutinib and zanubrutinib are more restricted, with the goal of reducing side effects. The inhibition of other kinases seems to be the underlying mechanism for many of the side effects. BTK inhibitors have been combined with other drugs, and recently it was reported that the combination of ibrutinib and a BCL-2 blocker resulted in very deep remissions in CLL.

This Research Topic covers various aspects of BTK inhibitors. We welcome the submission of hypothesis and treatment recommendations, as well as a limited number of mini-reviews focusing on, but not limited to, the following subtopics:

1. Novel inhibitors and their biological activity, including off-target effects in immune cells.
2. Structure-function relationships related to small-molecule binding to BTK/TEC-family members
3. Drug resistance and underlying mechanisms, including genetic aspects
4. Observations in leukemia and lymphoma patients treated with BTK inhibitors
5. Observations in patients treated for non-malignant disease with BTK inhibitors such as autoimmune diseases


Keywords: BTK, kinase, BTK inhibitor, ibrutinib, leukemia, lymphoma, autoimmunity, drug resistance


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Pharmaceutical inhibitors of BTK (Bruton’s Tyrosine Kinase) are breakthrough medicines for various forms of leukemia and lymphoma. Many new compounds are under development and the field is rapidly expanding. While treatment for tumors has paved the way for the development of blockers, other indications, such as autoimmunity, are expected to become major future indications. BTK is an intracellular enzyme found in hematopoietic cells. When defective, it manifests itself as a primary immunodeficiency, which owing to the location of the BTK gene on the X-chromosome, essentially only affects boys. These patients lack mature B-lymphocytes, cannot mount adequate antibody responses, and hence become susceptible to infections. The first member of this new class of compounds, ibrutinib (Imbruvica®) has been FDA approved for the treatment of mantle cell lymphoma, chronic lymphocytic leukemia, Waldenström’s macroglobulinemia, marginal zone lymphoma, and graft-versus-host disease. Worldwide more than 20 inhibitors are under development. Apart from ibrutinib, acalabrutinib and zanubrutinib are both now FDA approved, and evobrutinib has reached far in clinical development. These four inhibitors all bind irreversibly to cysteine 481 in the kinase domain. Reversibly interacting, non-covalent binding blockers, which have a different mode of binding to the catalytic region, have also been developed.

Over time a large percentage of patients treated with irreversibly binding inhibitors no longer respond. Resistance is mainly caused by mutations affecting either BTK, preventing the covalent binding to C481, or in BTK’s substrate, phospholipase C 2 (PLCG2). The mutations in the PLCG2 gene cause the enzyme to become constitutively active. Even if the non-covalent inhibitors have not yet been extensively studied, there are indications that patients with resistance to covalent blockers will still be sensitive to reversible inhibitors. Clinical trials of non-covalent inhibitors are ongoing in patients with resistance to covalent blockers.

The various inhibitors differ in their specificity. Ibrutinib is known to bind irreversibly also to some other enzymes carrying the corresponding cysteine, and to interact non-covalently with another set of kinases, too. The interaction profiles of acalabrutinib, evobrutinib and zanubrutinib are more restricted, with the goal of reducing side effects. The inhibition of other kinases seems to be the underlying mechanism for many of the side effects. BTK inhibitors have been combined with other drugs, and recently it was reported that the combination of ibrutinib and a BCL-2 blocker resulted in very deep remissions in CLL.

This Research Topic covers various aspects of BTK inhibitors. We welcome the submission of hypothesis and treatment recommendations, as well as a limited number of mini-reviews focusing on, but not limited to, the following subtopics:

1. Novel inhibitors and their biological activity, including off-target effects in immune cells.
2. Structure-function relationships related to small-molecule binding to BTK/TEC-family members
3. Drug resistance and underlying mechanisms, including genetic aspects
4. Observations in leukemia and lymphoma patients treated with BTK inhibitors
5. Observations in patients treated for non-malignant disease with BTK inhibitors such as autoimmune diseases


Keywords: BTK, kinase, BTK inhibitor, ibrutinib, leukemia, lymphoma, autoimmunity, drug resistance


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

31 January 2021 Manuscript
28 March 2021 Manuscript Extension

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

31 January 2021 Manuscript
28 March 2021 Manuscript Extension

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..