Research Topic

Dynamics and Flexible Architecture of Photosynthetic Membranes

  • Submission closed.

About this Research Topic

In the last thirty years, huge research efforts have led to the structural elucidation of the protein-nanomachines involved in conversion of sunlight into chemical energy that fuels the metabolism of photosynthetic organisms and beyond. Consequently, we now have an excellent set of high-resolution structures ...

In the last thirty years, huge research efforts have led to the structural elucidation of the protein-nanomachines involved in conversion of sunlight into chemical energy that fuels the metabolism of photosynthetic organisms and beyond. Consequently, we now have an excellent set of high-resolution structures that puts photosynthetic thylakoid membranes among the best-characterized biomembranes. However, understanding of the structure and function of individual complexes is only the starting point for in-depth understanding of the intact photosynthetic membrane, a complex, structured, and dynamic system whose components must interact with other and must be constantly synthesized, regulated, and degraded. Recent break-throughs in electron and light microscopy and elaboration of biochemical and biophysical analysis techniques allow deep insights in the overall architecture of photosynthetic membranes as well as in the arrangement of nanomachines in membranes and down to the plasticity of individual complexes. Now, the scene is set to study the flexibility and dynamics of photosynthetic machineries with unprecedented resolution that became a research focus over the last years. Why is knowledge about the structural dynamics of photosynthetic membranes important? Because reorganization of the photosynthetic machinery in plants, algae, and cyanobacteria is essential for developmental/biogenesis, functional, regulatory, acclimation, repair, and degradation processes in thylakoid membranes, in short, for all aspects of photosynthetic energy conversion. We now know that thylakoid membranes constantly change their shape on different structural levels. The plasticity of the photosynthetic apparatus controlled by environmental factors is central for the survival and fitness of photosynthetic organisms. Thus, understanding the dynamics and flexibility of structural alterations in thylakoids is required for improving crop and biofuel prospects and for synthetic biological approaches to increase photosynthetic performance.
This Research Topic of Frontiers in Plant Sciences covers structural aspects ranging from the overall thylakoid membrane level (μm) down to the molecular scale (nm) and from higher plants to cyanobacteria. It will demonstrate that structural reorganization of photosynthetic membranes is realized on many different spatial and temporal levels and is essential to the photosynthetic lifestyles of plants and microalgae.


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top