Skip to main content

About this Research Topic

Submission closed.

COVID-19 is a pandemic that has spread all over the world. With the US now projected at over 6 million cases, and a lot more people are assumed to be exposed and asymptomatic, based on the seroprevalence studies. With the many COVID-19 related datasets that have been collected, AI is helping us fight this ...

COVID-19 is a pandemic that has spread all over the world. With the US now projected at over 6 million cases, and a lot more people are assumed to be exposed and asymptomatic, based on the seroprevalence studies. With the many COVID-19 related datasets that have been collected, AI is helping us fight this virus with applications such as early detection and diagnosis, contact tracing, projection of cases and mortality, development of drugs and vaccines, etc. We invite submission of papers describing timely and innovative research on all aspects of using AI in the fight against COVID.

We invite submission of papers describing timely and innovative research on fighting COVID-19 using AI. Some examples that have been delivered in our BIOKDD 2020 workshop (http://home.biokdd.org/biokdd20/program.html) include:

(i) bioinformatics (e.g., SARS-CoV-2 study using signature mutations and human leukocyte antigen)
(ii) data curation (e.g., COVID-19 knowledge graph and knowledge base, gene signature database, 1Point3Acres CovidNet, COVID-19 literature curation),
(iii) deep learning models (e.g., for case projection, COVID-19 detection using chest X-ray), and
(iv) statistical methods (e.g., analysis using Bayesian inference and virtual reality).

We welcome papers in all aspects of using AI in the fight against COVID-19, such as clinical, epidemiological, data-driven machine learning, statistical research in developing AI for COVID-19, as well as application-oriented papers that make innovative technical contributions for this fight against COVID-19. Submissions to this research topic can include but are not limited to:

- Bioinformatics approaches for sequence analysis and omics analysis of COVID-19
- Literature mining over COVID-19 publications
- Drug and vaccine development for COVID-19
- Medical imaging approaches for COVID-19 prognoses/diagnoses
- Epidemic monitoring and prediction of COVID-19 transmission
- Benchmarking of models and methods fighting COVID-19
- Case and contact tracking of COVID-19 infections and deaths
- Data integration, querying and sharing of COVID-19 related datasets
- COVID-19 related clinical data analysis
- Methods using data mining, machine learning (including deep learning) to fight COVID-19

Keywords: Data Science, AI, Medicine, COVID-19, Bioinformatics


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors

Loading..

Topic Coordinators

Loading..

Recent Articles

Loading..

Articles

Sort by:

Loading..

Authors

Loading..

total views

total views article views downloads topic views

}
 
Top countries
Top referring sites
Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.