Research Topic

(Epi)genetic Advances in Developmental Origins of Later Life Metabolic Diseases

About this Research Topic

Metabolic and adult-onset diseases arise at the confluence of genetics and environmental factors. However, genetic and postnatal environmental exposures cannot fully explain the distressing rise in disease prevalence. Strong evidence supports the notion that many adult-onset diseases are linked to early exposures (preconception as well as in utero). Prenatal development is a period of rapid growth and cell differentiation; hence, epigenomic alterations during this period make individuals particularly vulnerable to adverse conditions with significant impact on organ structure, function, and propensity for clinically defined diseases later in life. Therefore, epigenetics remodeling may serve as biological memory of early life exposures, with resulting shifts in gene regulatory marks affecting long-term cellular identity, function, and cell fate.

Recent findings in epigenetics significantly help us to advance our understanding of mechanisms involved in age-related and metabolic diseases’ developmental programming. Thus, our ability to further explore epigenetics in its full complexity and at a higher resolution through integrative models is instrumental to providing new insights in developmental programming of adult diseases.

This Research Topic welcomes Original Research, Methods, Commentaries, Perspectives, and Reviews on the state-of-the-art research and the future directions for early epigenetics influences on later life metabolic diseases. Specifically, we encourage the submission related to the following (but not limited to) topics:

• How epigenetic cellular memory and cellular plasticity participate in metabolic and later life diseases.
• Multigenerational and transgenerational epigenetic inheritance, including both maternal and paternal transmission, on later life and metabolic diseases onset and evolution.
• Stem cell epigenetic therapy applied to metabolic and later life diseases.
• Advances in integrative and bioinformatic analysis of epigenetic data.
• Epigenetics in the midst of single-cell technology.
• Epigenetics and sexual dimorphism effects on metabolic and later life diseases.


Keywords: Developmental programming, Epigenetics, Metabolic Diseases


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Metabolic and adult-onset diseases arise at the confluence of genetics and environmental factors. However, genetic and postnatal environmental exposures cannot fully explain the distressing rise in disease prevalence. Strong evidence supports the notion that many adult-onset diseases are linked to early exposures (preconception as well as in utero). Prenatal development is a period of rapid growth and cell differentiation; hence, epigenomic alterations during this period make individuals particularly vulnerable to adverse conditions with significant impact on organ structure, function, and propensity for clinically defined diseases later in life. Therefore, epigenetics remodeling may serve as biological memory of early life exposures, with resulting shifts in gene regulatory marks affecting long-term cellular identity, function, and cell fate.

Recent findings in epigenetics significantly help us to advance our understanding of mechanisms involved in age-related and metabolic diseases’ developmental programming. Thus, our ability to further explore epigenetics in its full complexity and at a higher resolution through integrative models is instrumental to providing new insights in developmental programming of adult diseases.

This Research Topic welcomes Original Research, Methods, Commentaries, Perspectives, and Reviews on the state-of-the-art research and the future directions for early epigenetics influences on later life metabolic diseases. Specifically, we encourage the submission related to the following (but not limited to) topics:

• How epigenetic cellular memory and cellular plasticity participate in metabolic and later life diseases.
• Multigenerational and transgenerational epigenetic inheritance, including both maternal and paternal transmission, on later life and metabolic diseases onset and evolution.
• Stem cell epigenetic therapy applied to metabolic and later life diseases.
• Advances in integrative and bioinformatic analysis of epigenetic data.
• Epigenetics in the midst of single-cell technology.
• Epigenetics and sexual dimorphism effects on metabolic and later life diseases.


Keywords: Developmental programming, Epigenetics, Metabolic Diseases


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

18 December 2020 Abstract
30 April 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

18 December 2020 Abstract
30 April 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..