Research Topic

Mechanisms underlying firing in healthy and sick human motoneurons

About this Research Topic

During the second half of the last century an enormous amount of knowledge about mammalian motoneuron pools has been collected. This progress was enabled mostly by the development of the precise techniques of intracellular recordings in acute animal experiments, many of which were conducted under deep ...

During the second half of the last century an enormous amount of knowledge about mammalian motoneuron pools has been collected. This progress was enabled mostly by the development of the precise techniques of intracellular recordings in acute animal experiments, many of which were conducted under deep anaesthesia. Recently obtained evidence indicates that anaesthetics used at that times changed certain properties of the cell membrane, which might affect firing of the neuron. Experiments on normal humans gets around this problem, which lets one compare MN firing characteristics in humans and reduced preparations.
Firing pattern of human motoneurons is obtained indirectly by recording from a few muscle fibres of a motor unit. Since there is one-to-one relationship between motor unit and motoneuron firing, the analysis of motor unit firing is equivalent to the analysis of motoneuron firing. This analysis, based on the essential knowledge about motoneuron physiology, gained from the direct measurements in animal experiments and verified by computer simulations, allows one to draw conclusions about the physiological properties of human motoneurons. For obvious reasons, human motoneuron studies rely on indirect measurement methods, so the analysis and interpretation of their results should be performed with caution. On the other hand, human experiments provide the unique opportunity to study intact motoneurons during normal physiological behavior. Thus, combining information obtained from animal and human experiments, and computer simulations, gives insight to so far underexplored problems of motor control.
Despite the years of extensive research, there are still many unsolved problems in human motoneuron research. One of the less explored area is the question of interaction of motoneuron with supraspinal commands and neighboring interneurons, such as Renshaw cells or Ib inhibitory interneurons; their role in shaping motor control commands is still unclear. The role of persistent inward currents in normal motoneuron activity and the changes of motoneuron properties in neuromuscular system dysfunctions are far from being fully understood. We welcome contributions dealing with these and other questions, both experimental and from computer modeling. Reviews and opinions are also very important and would be highly appreciated.


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top