Research Topic

Adverse Outcome Pathways and New Approach Methodologies: Evolution, Opportunities, and Challenges

About this Research Topic

With the vast and increasing accumulation of biological data, combined with rapidly evolving technological advances in both life science and computer science, there comes an opportunity to evolve our approach to the practical applications of biological research to fully take advantage of this progress. To increase the utility of biological data, these data must be evaluated for quality, placed into context with other relevant information and be publicly available (preferably in a machine-readable format). One such framework for transforming data in this way is the Adverse Outcome Pathway (AOP) framework. Originally developed to support the use of New Approach Methodologies (NAMs) in chemical safety evaluation, as well as to facilitate regulatory update of NAMs, the AOP framework allows the assimilation of all types of information at different levels of biological organization, from molecular to population, that pertain to a particular biological process. This allows the explicit description (and thereby understanding) of the sequence of biological events (or “key events”) that occur as a result of a perturbation of this pathway, either by chemical exposure, disease, or other “stressor.” A comprehensive description of a chemical’s potential activity or disease likely involves multiple AOPs or AOP networks.

Generally, prediction of adverse outcomes requires the assimilation of multiple streams of evidence within a decision context – or an Integrated Approach to Testing and Assessment (IATA). Within IATA, AOPs provide the transparent biological understanding that supports development and testing of biological hypotheses, weight of evidence arguments, design of testing strategies, development of NAMs, hazard identification and assessment, and/or risk assessment. As quantitative understanding of the relationships between key events improves, the AOP can support the development of prediction models.

In addition to the application of AOPs in toxicology, AOPs can be similarly applied to the field of biomedicine to support the understanding of disease and aid in drug design. Overall, the AOP framework is essential to evolving the future utility of biological information and NAMs, in the realms of chemical safety and medical research.

This Research Topic will present a comprehensive overview of the AOP and IATA frameworks, and target the solicitation of case studies related to the use of AOPs to support IATA in chemical safety assessment or disease that highlight different applications. Each of the case authors will be tasked with providing an overview of the benefits and challenges of applying the AOP framework.


Keywords: AOP Framework, New Approach Methodologies, NAMs, in vitro methods, mechanistic-based approaches, Integrated Approaches to Testing and Assessment, IATA


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

With the vast and increasing accumulation of biological data, combined with rapidly evolving technological advances in both life science and computer science, there comes an opportunity to evolve our approach to the practical applications of biological research to fully take advantage of this progress. To increase the utility of biological data, these data must be evaluated for quality, placed into context with other relevant information and be publicly available (preferably in a machine-readable format). One such framework for transforming data in this way is the Adverse Outcome Pathway (AOP) framework. Originally developed to support the use of New Approach Methodologies (NAMs) in chemical safety evaluation, as well as to facilitate regulatory update of NAMs, the AOP framework allows the assimilation of all types of information at different levels of biological organization, from molecular to population, that pertain to a particular biological process. This allows the explicit description (and thereby understanding) of the sequence of biological events (or “key events”) that occur as a result of a perturbation of this pathway, either by chemical exposure, disease, or other “stressor.” A comprehensive description of a chemical’s potential activity or disease likely involves multiple AOPs or AOP networks.

Generally, prediction of adverse outcomes requires the assimilation of multiple streams of evidence within a decision context – or an Integrated Approach to Testing and Assessment (IATA). Within IATA, AOPs provide the transparent biological understanding that supports development and testing of biological hypotheses, weight of evidence arguments, design of testing strategies, development of NAMs, hazard identification and assessment, and/or risk assessment. As quantitative understanding of the relationships between key events improves, the AOP can support the development of prediction models.

In addition to the application of AOPs in toxicology, AOPs can be similarly applied to the field of biomedicine to support the understanding of disease and aid in drug design. Overall, the AOP framework is essential to evolving the future utility of biological information and NAMs, in the realms of chemical safety and medical research.

This Research Topic will present a comprehensive overview of the AOP and IATA frameworks, and target the solicitation of case studies related to the use of AOPs to support IATA in chemical safety assessment or disease that highlight different applications. Each of the case authors will be tasked with providing an overview of the benefits and challenges of applying the AOP framework.


Keywords: AOP Framework, New Approach Methodologies, NAMs, in vitro methods, mechanistic-based approaches, Integrated Approaches to Testing and Assessment, IATA


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

31 May 2021 Abstract
30 September 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

31 May 2021 Abstract
30 September 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..