Research Topic

Next Evolutions in Charged Particle Therapy

About this Research Topic

Over 150,000 patients have been treated to-date using particle therapy since its birth in the mid-20th century and recent efforts in radiation oncology research and development have seen a surge in clinical applications of charged particle beams. With advances in compact facility design and enhanced precision in dose delivery, proton and carbon ion centers are sprouting worldwide for patient treatment.

Consequently, the scientific literature related to particle beam applications in medicine is increasing exponentially. Understanding the physical phenomena, biological processes of radiation induced damage, their associated uncertainties and impact on clinical outcome remains a principal focus. Moreover, recent initiatives aim to transition the field into the next phase of novel treatment and delivery techniques for improved efficacy with reduced uncertainties and adverse side-effects.

This Research Topic will consider fundamental and translational research in physics, biology and medicine for charged particle therapy, with subjects for submission including (but not limited to) the following:

- Measurement and modeling of the physical and biological mechanisms of ion-beam induced effects, driving forward next-generation treatment concepts (e.g., novel beams, delivery techniques, multi-modality approaches, FLASH effect, combinatorial treatments with drugs such as radio-sensitizer/DNA repair inhibitors, etc.)
- Patient-specific and/or biologically-informed treatment planning and design via detection of biological markers, novel imaging techniques, etc.
- Novel dosimetry approaches and detectors towards modernizing clinical methods and understanding physical and biological uncertainties specific to particle therapy

- Acceleration and delivery techniques for efficient and robust treatments using charged particles, e.g. emerging topics in particle acceleration, arc, ultra-high dose rate, multi-ion delivery, and image-guidance.
- Accurate, efficient and novel robust treatment planning optimization strategies (novel ions, LET, TCP/NTCP models, etc.)
- Advanced imaging techniques for improving clinical oncology practice (e.g. DECT, MRI-based plan, ion-CT/radiography)
- Neural network, artificial intelligence, deep learning and quantum computing in particle therapy. 

In this collection, the bridging of modern-day oncology research, to the future clinical reality is addressed. Topics can focus on preclinical or clinical investigations (physics, biology, and medical contributions) in particle therapy, with light and heavy ion beams, including proton, helium, carbon, oxygen, neon, etc. Original research, perspective articles, reviews, short communications and technical notes in particle therapy are welcomed.

Please note: manuscripts consisting solely of bioinformatics or computational analysis of public genomic or transcriptomic databases which are not accompanied by validation (independent cohort or biological validation in vitro or in vivo) are out of scope for this section and will not be accepted as part of this Research Topic.


Keywords: radiation, radiotherapy, charged particle therapy, charge particle imaging, MRI, MR-guided proton therapy, medical physics, ion beam dosimetry, FLASH


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Over 150,000 patients have been treated to-date using particle therapy since its birth in the mid-20th century and recent efforts in radiation oncology research and development have seen a surge in clinical applications of charged particle beams. With advances in compact facility design and enhanced precision in dose delivery, proton and carbon ion centers are sprouting worldwide for patient treatment.

Consequently, the scientific literature related to particle beam applications in medicine is increasing exponentially. Understanding the physical phenomena, biological processes of radiation induced damage, their associated uncertainties and impact on clinical outcome remains a principal focus. Moreover, recent initiatives aim to transition the field into the next phase of novel treatment and delivery techniques for improved efficacy with reduced uncertainties and adverse side-effects.

This Research Topic will consider fundamental and translational research in physics, biology and medicine for charged particle therapy, with subjects for submission including (but not limited to) the following:

- Measurement and modeling of the physical and biological mechanisms of ion-beam induced effects, driving forward next-generation treatment concepts (e.g., novel beams, delivery techniques, multi-modality approaches, FLASH effect, combinatorial treatments with drugs such as radio-sensitizer/DNA repair inhibitors, etc.)
- Patient-specific and/or biologically-informed treatment planning and design via detection of biological markers, novel imaging techniques, etc.
- Novel dosimetry approaches and detectors towards modernizing clinical methods and understanding physical and biological uncertainties specific to particle therapy

- Acceleration and delivery techniques for efficient and robust treatments using charged particles, e.g. emerging topics in particle acceleration, arc, ultra-high dose rate, multi-ion delivery, and image-guidance.
- Accurate, efficient and novel robust treatment planning optimization strategies (novel ions, LET, TCP/NTCP models, etc.)
- Advanced imaging techniques for improving clinical oncology practice (e.g. DECT, MRI-based plan, ion-CT/radiography)
- Neural network, artificial intelligence, deep learning and quantum computing in particle therapy. 

In this collection, the bridging of modern-day oncology research, to the future clinical reality is addressed. Topics can focus on preclinical or clinical investigations (physics, biology, and medical contributions) in particle therapy, with light and heavy ion beams, including proton, helium, carbon, oxygen, neon, etc. Original research, perspective articles, reviews, short communications and technical notes in particle therapy are welcomed.

Please note: manuscripts consisting solely of bioinformatics or computational analysis of public genomic or transcriptomic databases which are not accompanied by validation (independent cohort or biological validation in vitro or in vivo) are out of scope for this section and will not be accepted as part of this Research Topic.


Keywords: radiation, radiotherapy, charged particle therapy, charge particle imaging, MRI, MR-guided proton therapy, medical physics, ion beam dosimetry, FLASH


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

23 August 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

23 August 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..