Research Topic

Restoring Functional Behaviors After Traumatic Peripheral Nerve Injuries

About this Research Topic

Peripheral nerve injuries (PNIs) by trauma are the most common neuronal injury in civilian and military populations and significantly burden health care systems. Mammals (including humans) with PNIs experience: (1) immediate loss of sensory and motor functions mediated by the denervated target tissues; (2) rapid (3-7d) Wallerian Degeneration (WD) of severed distal axonal segments; and, (3) slow (~1mm/day) regeneration by naturally occurring axonal outgrowths from surviving, severed proximal stumps that produce poor (if any) functional recovery because of slow axonal regeneration for long distances and lack of axonal guidance. Denervated muscle fibers and sensory organs often atrophy before any re-innervation can occur.

The most common traumatic PNI is a peripheral segmental nerve gap or ablation defect. i.e., a segmental-loss peripheral nerve injury (PNI), as opposed to a simple cut PNI that can be primarily repaired by using microsutures through the epineurium/perineurium to appose the severed proximal/distal nerve ends (neurorrhaphy), a major advance in treatment of PNIs made many decades ago. Segmental-loss PNIs in more proximal portions of limbs and/or PNIs that involve ablations of > 5mm often especially have very poor, if any, restoration of function or coordinated voluntary behaviors. This morbidity is a major public health problem because current options for treating such PNIs often fail or lead to only partial recovery that leaves patients permanently disabled. Recently, however significant advances have been made in peripheral nerve repair that leads to significant functional recovery of voluntary behaviors is experimental animals. This issue focuses on those advances and their translation to clinical practice.

The articles in this Research Topic focus on recent advances in cellular/molecular mechanisms that demonstrably restore voluntary behavioral functions after traumatic injuries to peripheral nerves in mammals. Each article should concentrate on the cellular/molecular mechanisms, but also demonstrate that these mechanisms lead to voluntary behavioral recovery—as opposed to increased numbers of regenerating axons or electrical activity per se. The emphasis and goal of each article should be translation to clinical recovery.


Keywords: axotomy, Wallerian degeneration, allografts, autografts, nerve conduits, axonal regeneration


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Peripheral nerve injuries (PNIs) by trauma are the most common neuronal injury in civilian and military populations and significantly burden health care systems. Mammals (including humans) with PNIs experience: (1) immediate loss of sensory and motor functions mediated by the denervated target tissues; (2) rapid (3-7d) Wallerian Degeneration (WD) of severed distal axonal segments; and, (3) slow (~1mm/day) regeneration by naturally occurring axonal outgrowths from surviving, severed proximal stumps that produce poor (if any) functional recovery because of slow axonal regeneration for long distances and lack of axonal guidance. Denervated muscle fibers and sensory organs often atrophy before any re-innervation can occur.

The most common traumatic PNI is a peripheral segmental nerve gap or ablation defect. i.e., a segmental-loss peripheral nerve injury (PNI), as opposed to a simple cut PNI that can be primarily repaired by using microsutures through the epineurium/perineurium to appose the severed proximal/distal nerve ends (neurorrhaphy), a major advance in treatment of PNIs made many decades ago. Segmental-loss PNIs in more proximal portions of limbs and/or PNIs that involve ablations of > 5mm often especially have very poor, if any, restoration of function or coordinated voluntary behaviors. This morbidity is a major public health problem because current options for treating such PNIs often fail or lead to only partial recovery that leaves patients permanently disabled. Recently, however significant advances have been made in peripheral nerve repair that leads to significant functional recovery of voluntary behaviors is experimental animals. This issue focuses on those advances and their translation to clinical practice.

The articles in this Research Topic focus on recent advances in cellular/molecular mechanisms that demonstrably restore voluntary behavioral functions after traumatic injuries to peripheral nerves in mammals. Each article should concentrate on the cellular/molecular mechanisms, but also demonstrate that these mechanisms lead to voluntary behavioral recovery—as opposed to increased numbers of regenerating axons or electrical activity per se. The emphasis and goal of each article should be translation to clinical recovery.


Keywords: axotomy, Wallerian degeneration, allografts, autografts, nerve conduits, axonal regeneration


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

30 September 2021 Abstract
01 February 2022 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

30 September 2021 Abstract
01 February 2022 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..