In this paper, we address the problem of constant-beamwidth beamforming using nonuniform planar arrays. We propose two techniques for designing planar beamformers that can maintain different beamwidths in the XZ and YZ planes based on constant-beamwidth linear arrays. In the first technique, we utilize Kronecker product beamforming to find the weights, thus eliminating matrix inversion. The second technique provides a closed-form solution that allows for a tradeoff between white noise gain and directivity factor. The second technique is applicable even when only a subset of the sensors is used. Since our techniques are based on linear arrays, we also consider symmetric linear arrays. We present a method that determines where sensors should be placed to maximize the directivity and increase the frequency range over which the beamwidth remains constant, with a minimal number of sensors. Simulations demonstrate the advantages of the proposed design methods compared to the state-of-the-art. Specifically, our method yields a 1000-fold faster runtime than the competing method, while improving the wideband directivity factor by over 8 dB without compromising the wideband white noise gain in the simulated scenario.
In this paper, we address the problem of dual-microphone speech reinforcement for improving in-car speech communication via howling control. A speech reinforcement system acquires speech from a speaker’s microphone and delivers it to the other listeners in the car cabin through loudspeakers. A car cabin’s small space makes it vulnerable to acoustic feedback, resulting in the appearance of howling noises. The proposed system aims to maintain a desired high amplification gain over time while not compromising the output speech quality. The dual-microphone system consists of a microphone for speech acquisition and another microphone that monitors the environment for howling detection, where its location depends on its howling detection sensitivity. The proposed algorithm contains a gain-control segment based on the magnitude-slope-deviation measure, which reduces the amplification-gain in the case of howling detection. To find the optimal locations of the howling-detection microphone in the cabin, for a devised set of scenarios, a Pareto optimization method is applied. The Pareto optimization considers the bi-objective nature of the problem, i.e., minimizing both the relative gain-reduction and the overall speech distortion. It is shown that the proposed dual-microphone system outperforms a single-microphone-based system. The performance improvement is demonstrated by showing the higher howling detection sensitivity of the dual-microphone system. Additionally, a microphone constellation design process, for optimal howling detection, is provided through the utilization of the Pareto fronts and anti-fronts approach.
In this paper we present Active Inference-Based Design Agent (AIDA), which is an active inference-based agent that iteratively designs a personalized audio processing algorithm through situated interactions with a human client. The target application of AIDA is to propose on-the-spot the most interesting alternative values for the tuning parameters of a hearing aid (HA) algorithm, whenever a HA client is not satisfied with their HA performance. AIDA interprets searching for the “most interesting alternative” as an issue of optimal (acoustic) context-aware Bayesian trial design. In computational terms, AIDA is realized as an active inference-based agent with an Expected Free Energy criterion for trial design. This type of architecture is inspired by neuro-economic models on efficient (Bayesian) trial design in brains and implies that AIDA comprises generative probabilistic models for acoustic signals and user responses. We propose a novel generative model for acoustic signals as a sum of time-varying auto-regressive filters and a user response model based on a Gaussian Process Classifier. The full AIDA agent has been implemented in a factor graph for the generative model and all tasks (parameter learning, acoustic context classification, trial design, etc.) are realized by variational message passing on the factor graph. All verification and validation experiments and demonstrations are freely accessible at our GitHub repository.