Research Topic

Microscopic Structure Effect on the Macroscopic Property of Geomaterials

About this Research Topic

The formation of natural geomaterials like rocks and soils has gone through a long period of geological history. The complex geological environment leads to the various microstructure of the geomaterials like the minerals, porosity, and fractures. It is widely accepted that the properties of geomaterials are closely related to the intrinsic microstructure such as chemical and mineralogical composition, grain size, and joint orientation. The use of quantitative microstructural analysis for the evaluation of macroscopic properties is a hot topic. The development of experimental and numerical methods like micro-CT and homogenization provides novel solutions to analyze the microscopic structure effect on the macroscopic behavior such as deformation features and physics of fracture. This research not only gives a better understanding of physical and mechanical behavior but also has high significance in engineering.

This research topic aims to give a comprehensive understanding of the relationship between intrinsic microstructure and macroscopic properties. The emphasis is on microstructure that can be observed with the naked eye, a scanning electron microscope or micro-CT, and the physical mechanical properties like deformation modulus, permeability, and failure mode. There are three goals in this research topic. Firstly, the recent advances in a numerical and experimental method in the analysis of microstructure effects are collected. Second, a very powerful framework to understand the macroscopic behavior incorporating theoretical, numerical, and experimental analysis is provided. Third, the qualitative and quantitative analysis of the microstructure effect and the application in geotechnical engineering is discussed.

This research topic provides a platform for publishing original articles and reviews on recent numerical and experimental advances and applications on microscopic structure effect analysis of geomaterials. We welcome high-quality papers on theoretical developments, laboratory testing, field investigations, computational methods, and case studies. Potential topics include but are not limited to the following:
1. Experimental and site characterization including 3D printing, micro-CT scanning, heterogeneous and noncontinuous feature, in-situ testing & monitoring.
2. Microstructure description and generation methods like Mont-Carlo simulation and deep learning method.
3. Advanced numerical methods such as discrete element modeling, peridynamics, meshfree method, micromechanical continuum models, fluid-solid coupling


Keywords: Microscopic structure, Macroscopic property, Heterogeneity, Numerical simulation, Experimental study


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

The formation of natural geomaterials like rocks and soils has gone through a long period of geological history. The complex geological environment leads to the various microstructure of the geomaterials like the minerals, porosity, and fractures. It is widely accepted that the properties of geomaterials are closely related to the intrinsic microstructure such as chemical and mineralogical composition, grain size, and joint orientation. The use of quantitative microstructural analysis for the evaluation of macroscopic properties is a hot topic. The development of experimental and numerical methods like micro-CT and homogenization provides novel solutions to analyze the microscopic structure effect on the macroscopic behavior such as deformation features and physics of fracture. This research not only gives a better understanding of physical and mechanical behavior but also has high significance in engineering.

This research topic aims to give a comprehensive understanding of the relationship between intrinsic microstructure and macroscopic properties. The emphasis is on microstructure that can be observed with the naked eye, a scanning electron microscope or micro-CT, and the physical mechanical properties like deformation modulus, permeability, and failure mode. There are three goals in this research topic. Firstly, the recent advances in a numerical and experimental method in the analysis of microstructure effects are collected. Second, a very powerful framework to understand the macroscopic behavior incorporating theoretical, numerical, and experimental analysis is provided. Third, the qualitative and quantitative analysis of the microstructure effect and the application in geotechnical engineering is discussed.

This research topic provides a platform for publishing original articles and reviews on recent numerical and experimental advances and applications on microscopic structure effect analysis of geomaterials. We welcome high-quality papers on theoretical developments, laboratory testing, field investigations, computational methods, and case studies. Potential topics include but are not limited to the following:
1. Experimental and site characterization including 3D printing, micro-CT scanning, heterogeneous and noncontinuous feature, in-situ testing & monitoring.
2. Microstructure description and generation methods like Mont-Carlo simulation and deep learning method.
3. Advanced numerical methods such as discrete element modeling, peridynamics, meshfree method, micromechanical continuum models, fluid-solid coupling


Keywords: Microscopic structure, Macroscopic property, Heterogeneity, Numerical simulation, Experimental study


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

22 August 2021 Abstract
20 December 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

22 August 2021 Abstract
20 December 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..