Towards Neuroscience-Inspired Intelligent Computing: Theory, Methods, and Applications

52.8K
views
63
authors
11
articles
Editors
3
Impact
Loading...
5,954 views
8 citations
Review
27 July 2022

As information technology is moving toward the era of big data, the traditional Von-Neumann architecture shows limitations in performance. The field of computing has already struggled with the latency and bandwidth required to access memory (“the memory wall”) and energy dissipation (“the power wall”). These challenging issues, such as “the memory bottleneck,” call for significant research investments to develop a new architecture for the next generation of computing systems. Brain-inspired computing is a new computing architecture providing a method of high energy efficiency and high real-time performance for artificial intelligence computing. Brain-inspired neural network system is based on neuron and synapse. The memristive device has been proposed as an artificial synapse for creating neuromorphic computer applications. In this study, post-silicon nano-electronic device and its application in brain-inspired chips are surveyed. First, we introduce the development of neural networks and review the current typical brain-inspired chips, including brain-inspired chips dominated by analog circuit and brain-inspired chips of the full-digital circuit, leading to the design of brain-inspired chips based on post-silicon nano-electronic device. Then, through the analysis of N kinds of post-silicon nano-electronic devices, the research progress of constructing brain-inspired chips using post-silicon nano-electronic device is expounded. Lastly, the future of building brain-inspired chips based on post-silicon nano-electronic device has been prospected.

3,898 views
13 citations

With the deployment of 5G Internet of Things (IoT) in the power system, the efficiency of smart grid is improved by increasing two-way interactions in different layers in smart grid. However, it introduces more attack interfaces that the traditional information security system in smart grid cannot response in time. The neuroscience-inspired models have shown their effectiveness in solving security and optimization problems in smart grid. How to improve the security mechanism in smart grid while taking into account the optimization of data transmission efficiency using neuroscience-inspired algorithms is the problem to be solved in this study. Therefore, an information security system based on artificial neural network (ANN) and improved multiple protection model is proposed. Based on the ANN algorithm, the link state sample space is used to train the model to obtain the optimal transmission path in 5G power communication network. Integrating the intelligent link state module, the zero-trust security protection platform using case-based learning algorithm is designed and taken as the first protection, the network security logical isolation facility is taken as the second protection, and the forward and backward isolation facilities are set as the third protection to achieve the strengthened security of 5G IoT in smart grid. The experimental results show the efficiency and effectiveness of the proposed algorithms. In addition, the experimental results also show that the proposed system can resist malicious terminal access, terminal hijacking, data tampering and eavesdropping, protocol fuzzy, and denial-of-service attacks, so as to reduce the security risks of 5G IoT in smart grid. Since the proposed system can be easily integrated into the existing smart grid structure in China, the proposed system can provide a reference for the design and implementation of 5G IoT in smart grid.

5,908 views
8 citations
3,679 views
8 citations
Original Research
18 March 2022
An Adaptive Time-Varying Impedance Controller for Manipulators
Xu Liang
8 more and 
Guangping He

Aiming at the situation that the structural parameters of the general manipulators are uncertain, a time-varying impedance controller based on model reference adaptive control (MRAC) is proposed in this article. The proposed controller does not need to use acceleration-based feedback or to measure external loads and can tolerate considerable structure parameter errors. The global uniform asymptotic stability of the time-varying closed-loop system is analyzed, and a selection approach for control parameters is presented. It is demonstrated that, by using the proposed control parameter selection approach, the closed-loop system under the adaptive controller is equivalent to an existing result. The feasibility of the presented controller for the general manipulators is demonstrated by some numerical simulations.

4,930 views
5 citations
Original Research
11 November 2021

Finger gesture recognition (FGR) plays a crucial role in achieving, for example, artificial limb control and human-computer interaction. Currently, the most common methods of FGR are visual-based, voice-based, and surface electromyography (EMG)-based ones. Among them, surface EMG-based FGR is very popular and successful because surface EMG is a cumulative bioelectric signal from the surface of the skin that can accurately and intuitively represent the force of the fingers. However, existing surface EMG-based methods still cannot fully satisfy the required recognition accuracy for artificial limb control as the lack of high-precision sensor and high-accurate recognition model. To address this issue, this study proposes a novel FGR model that consists of sensing and classification of surface EMG signals (SC-FGR). In the proposed SC-FGR model, wireless sensors with high-precision surface EMG are first developed for acquiring multichannel surface EMG signals from the forearm. Its resolution is 16 Bits, the sampling rate is 2 kHz, the common-mode rejection ratio (CMRR) is less than 70 dB, and the short-circuit noise (SCN) is less than 1.5 μV. In addition, a convolution neural network (CNN)-based classification algorithm is proposed to achieve FGR based on acquired surface EMG signals. The CNN is trained on a spectrum map transformed from the time-domain surface EMG by continuous wavelet transform (CWT). To evaluate the proposed SC-FGR model, we compared it with seven state-of-the-art models. The experimental results demonstrate that SC-FGR achieves 97.5% recognition accuracy on eight kinds of finger gestures with five subjects, which is much higher than that of comparable models.

8,775 views
8 citations
5,743 views
8 citations
Recommended Research Topics