The Palm Grove ecosystems situated in the southeastern region of Morocco are highly vulnerable to compromise, encountering significant challenges due to insufficient precipitation and limited availability of groundwater. The objective of this study is to evaluate the groundwater quality of the Tinejdad-Touroug aquifer for domestic and irrigation purposes. Groundwater flows from southwest to northeast mostly in Quaternary conglomerate-lacustrine facies in the Rheris basin. The results show that the domination of the major ions is in the following order: Cl−>HCO3−>SO42−>Na+>Ca2+>Mg2+>NO3−>K+>NO2−>NH4+. Piper diagram showed the predominance of a single mixed chemical facies Cl-SO4-Ca-Mg, as well as the presence of exceptions of some samples that showed other facies variations. The water quality index (WQI) assessments of the campaigns that were examined demonstrate that the recorded percentages of poor quality water ranged from 40% to 90% while the percentages of good quality water varied from 7.7% to 54.5%. The remaining samples reveal different classes with varying percentages. Most of the sites in all campaigns had drinking water parameters that exceeded the values established by the World Health Organization (WHO) and Moroccan standards. Nevertheless, the parameters of Temperature, pH, TH, DO, Ca2+, SO42−, K+, NH4+, and bacteriological parameters were within the required limits. The results of the assessment based on electrical conductivity suggest a significant increase in salinity levels, with an average of 2744.75 µS/cm in 2000, 3248.58 µS/cm in 2007, and 2957.84 µS/cm in 2021. The findings of the study reveal a positive assessment regarding the quality of the water samples examined during the eight sampling campaigns, as indicated by the PI and KR indices. However, additional investigation of the SAR, Na%, and MH indices revealed that three water samples acquired from separate surveys are not appropriate for irrigation purposes, showing that groundwater must be controlled until it can be properly used. The outcomes accentuate the necessity of consistent monitoring and evaluation of water quality parameters to establish the safe and sustainable exploitation of water resources for domestic and agricultural purposes. Elevated salinity levels in Quaternary aquifers resulting from natural mechanisms such as increased rates of evaporation and geological factors may have contributed to the degradation of groundwater quality.
Biomineralization technology offers an eco-friendly and efficient method for stabilizing heavy metals (HMs) in ecosystem. This technology comprises two primary methods: microbially induced carbonate precipitation (MICP) and enzyme-induced carbonate precipitation (EICP). Biomineralization provides a superior alternative to stabilize heavy metals due to its low energy consumption, reduced carbon dioxide emissions, and superior biocompatibility. In the process of biomineralization, heavy metal ions precipitate and co-precipitate with calcium carbonate, forming a solidified and stabilized product. Despite its many advantages, little attention has been paid to the impact of biomineralization on mitigation of ammonia nitrogen of bio-treated polluted water and the strength of contaminated soil, limiting its further applications in ecological environment restoration. This paper summarizes recent advancements in biomineralization for solidifying and stabilizing (S/S) heavy metals in contaminated water and soil. Key factors inhibiting this method’s application include the concentration and combinations of heavy metal ions, the concentration of ammonia nitrogen in polluted water, and the properties of contaminated soil. Finally, this paper offers recommendations on the optimization of further research and experimental design of biomineralization on S/S polluted water and contaminated soil.
The impact of the operation of inter-basin water diversion projects on the integrity and stability of regional ecosystems cannot be ignored. In this study, water quality samplings were conducted monthly at 16 national monitoring sites in the mid-downstream of the Hanjiang River (HJR, the downstream of the water source of the South-to-North Water Diversion Project of China) over 3 years, covering seven physiochemical water quality indicators and six heavy metal elements. The water quality index (WQI) and multivariate statistical techniques were introduced to comprehensively evaluate water quality status and understand the corresponding driving factors of water quality variations. The heavy metal risks were evaluated using the Nemerow Pollution Index (Pn), the Heavy Metal Pollution Index (HPI), and the human health risk assessment model. The results showed that after the operation of the Middle Route of the South-to-North Water Diversion Project of China (MRSNWDPC), water quality in the mid-downstream of the HJR was generally at a “good” status, with the average WQI of 86.37, showing no water quality deterioration trends. The operation of the MRSNWDPC did significantly decrease the monthly flow in the HJR by about 4.05–74.27%, and the flow variation processes also became more stable than before. Most water quality indicators and WQIs have no correlations with the flow and water level changes. The human health risks of all heavy metal elements caused by dermal exposure and ingestion pathways increased over time. The average individual health risk caused by carcinogenic heavy metal Cr was the highest. Chromium is the major carcinogenic factor and should be a critical indicator to pay special attention to for water risk management in the HJR. This study provides a scientific reference for the water quality safety management of HJR under the influence of a water diversion project.
Understanding the water quality and its influencing factors of different water bodies is essential for managing water resources in closed inland lake basins in semi-arid regions. However, generally, groundwater or surface water is assessed separately, and the differences among different water bodies are neglected. This study assessed the water quality and its influencing factors of different water bodies in the Daihai Lake Basin (a closed inland lake basin in a semi-arid region) by analysing the hydrochemical data of groundwater, and spring, river, and lake waters in the dry and wet seasons. The dominant hydrochemical type of groundwater (81.48%), spring water (80%), and river water (83.33%) was HCO3–Ca•Mg, while that of lake water was Cl-Na (100%). Groundwater, spring water, and river water were suitable for drinking and agricultural irrigation; however, the groundwater quality was worse in the wet season than in the dry season. Na+ and Cl– majorly affected the lake water quality. The mean NO3– concentration in groundwater was 28.39 mg/L, and its non-carcinogenic hazard quotient indicated that high risk areas were mainly distributed in Tiancheng and northern Maihutu. The hydrochemical compositions of groundwater, spring water, and river water were mainly influenced by rock (silicate and carbonate) weathering and cation exchange, and agricultural activities were the main sources of groundwater NO3–. Moreover, the lake hydrochemical composition was mainly affected by evaporation and halite dissolution. Thus, groundwater NO3– pollution and lake water salinisation should be prioritised. These findings provide a more thorough understanding of water quality and its influencing factors in the closed inland lake basin in the semi-arid region, and can be used to develop the protection of ecosystems and water resources management strategies in the Daihai Lake Basin.
Frontiers in Earth Science
Climate Change and Water Resource Management: Building Resilience