Research Topic

Deep Learning and Digital Humanities

  • Submission closed.

About this Research Topic

Progresses in convolutional neural networks are currently pushing the boundaries of machine learning. In just a couple of years, image and text analyses have reached levels of performance that open new avenues for finding patterns in large-scale digital archives and data fluxes. For this reason, Deep Learning ...

Progresses in convolutional neural networks are currently pushing the boundaries of machine learning. In just a couple of years, image and text analyses have reached levels of performance that open new avenues for finding patterns in large-scale digital archives and data fluxes. For this reason, Deep Learning is likely to soon change the entire Digital Humanities landscape, being at the core of a new family of search engines. In the coming years, we expect to see the invention of new tools based on Deep Learning networks that could be applied to fields as different as art history, literary studies, history, archaeology, musicology, and more.

However, the lack of transparency of convolutional neural networks also raises a number of epistemological issues. Indeed, the generalization of tools that perform extremely well but lack explicitness in their inner functioning can be problematic. What will be the impact of Deep Learning algorithms on scholarship? Will it be possible for scholars to train machines instead of programming them? Will convolutional networks be at the basis of new research methodologies? Will they open to a new kind of hermeneutics?

At a more societal level, to what extent can Digital Humanities research help to assess the increasing role of Deep Learning algorithms in everyday digital interactions? Can we detect when Deep Learning algorithms perform censorship or surveillance services? Can we add an ethical dimension to their functioning, avoiding for instance the use of particular discriminating features in their decisions? Can we use other algorithms to map and make explicit the functioning of Deep Learning networks?

This Research Topic welcomes all contributions that deal with Deep Learning applications to Cultural Heritage, Image, Textual and Musical scholarship, and Digital Humanities in general, or that question the societal and cultural impacts of the rapid rise of this technology.


Keywords: Deep Learning, Convolutional Neural Networks, Digital Humanities, Big Data, Hermeneutics, Epistemology, Digital Art History, Digital Musicology, Digital Literary studies


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top