As a part of the overall information-processing system of the brain, postural control is related to the cognitive processes of working memory. Previous studies have suggested that cognitive tasks and postural control processes can compete for resources in common brain areas, although there is an “inverted U” relationship between arousal level and behavioral control – the arousal level of individuals changes when performing cognitive tasks. However, the exact neural connections between the two are unclear. This may be related to the nature of cognitive tasks. Some studies believe that posture occupies not only spatial information processing resources but also visual non-spatial information processing resources. Other studies believe that posture control only occupies spatial information processing resources in the central system, but does not occupy non-spatial information processing resources. Previous studies used different cognitive task materials and reached different conclusions. In this study, we used the same visuospatial and non-spatial materials, the n-back visual working memory paradigm, the event-related potential technique to investigate the effects of visuospatial and non-spatial working memory tasks on adolescents’ postural control under different cognitive loads. The results of this study showed that in both visuospatial and non-spatial conditions, the N1 effect of the parieto-occipital lobe was larger during upright posture than in the sitting position (160–180 ms), the P300 effect of the central parieto-occipital region (280–460 ms) was induced by working memory in different postures, and the P300 wave amplitude was higher in the sitting position than in the upright position. We demonstrated that upright postural control enhances early selective attention but interferes with central memory encoding, thus confirming that postural control and visuospatial and non-spatial working memory share brain regions and compete with each other.
In the realm of visual working memory research, the retro-cue paradigm helps us study retro-cue effects such as retro-cue benefit (RCB) and retro-cue cost (RCC). RCB reflects better performance with cued items, while RCC indicates poorer performance with uncued items. Despite consistent evidence for RCB, it’s still uncertain whether it remains when previously uncued items are cued afterward. Additionally, research findings have been inconsistent. This study combines prior experiments by controlling the proportion of cue types and the number of memory items. Besides, using a CDA index to assess the status of items after the cue appeared. Results showed better performance under the double-cue condition (involving two cues pointing inconsistently with only the second cue being valid) compared to the neutral-cue condition, and better performance under the single-cue condition compared to double-cue. EEG data revealed that after the appearance of the second cue in the double-cue condition, there was a significant increase in CDA wave amplitude compared to the single-cue condition. Behavior results suggests that RCB occurs under double-cue but to a lesser extent than the single-cue. And EEG outcomes indicates that individuals did not remove the uncued item from their visual working memory after the first cue. Instead, they kept it in a passive state and then shifted it to an active state after the appearance of the second cue.
Objective: To explore the characteristics and mechanisms of working memory impairment in patients with frontal lobe epilepsy (FLE) through a memory game paradigm combined with eye tracking technology.
Method: We included 44 patients with FLE and 50 healthy controls (HC). All participants completed a series of neuropsychological scale assessments and a short-term memory game on an automated computer-based memory evaluation platform with an eye tracker.
Results: Memory scale scores of FLE patients including digit span (U = 747.50, p = 0.007), visual recognition (U = 766.50, p = 0.010), and logical memory (U = 544.00, p < 0.001) were significantly lower than HC. The patients with FLE took longer to complete the four levels of difficulty of the short-term memory game than healthy controls (level 1: U = 2974.50, p = 0.000; level 2: U = 3060.50, p = 0.000; level 3: U = 2465.00, p = 0.000; level 4: U = 2199.00, p = 0.000). During the memory decoding period, first fixation on the targets took significantly longer for FLE patients for all difficulty levels compared to controls (level 1: U = 3407.00, p = 0.008; level 2: U = 3618.00, p = 0.036; level 3: U = 3345.00, p = 0.006; level 4: U = 2781.00, p = 0.000). The average fixation duration per target among patients with FLE was found to be significantly longer compared to HC (level 1: U = 2994.50, p = 0.000; level 2: U = 3101.00, p = 0.000; level 3: U = 2559.50, p = 0.000; level 4: U = 2184.50, p = 0.000). The total fixation duration on AOI/total completion time of FLE patients was significantly lower than those of HC for levels 1 to 3 (level 1: U = 1557.00, p = 0.000; level 2: U = 2333.00, p = 0.000; level 3: U = 2757.00, p = 0.000). Furthermore, the eye tracking data during the memory decoding phase were correlated with neuropsychological scale scores (p < 0.05).
Conclusion: Patients with FLE exhibited short-term memory impairment probably due to deficits in attentional maintenance, especially during the memory decoding phase. Eye tracking technology provided the possibility to help separate and quantify visual attention from memory processing, contributing to exploring underlying mechanisms of memory impairment in FLE.