Everyone knows what bottom-up is, and how it is different from top-down. At least one is tempted to think so, given that both terms are ubiquitously used, but only rarely defined in the psychology and neuroscience literature. In this review, we highlight the problems and limitations of our current understanding of bottom-up and top-down processes, and we propose a reformulation of this distinction in terms of predictive coding.
If perception corresponds to hypothesis testing (Gregory, 1980); then visual searches might be construed as experiments that generate sensory data. In this work, we explore the idea that saccadic eye movements are optimal experiments, in which data are gathered to test hypotheses or beliefs about how those data are caused. This provides a plausible model of visual search that can be motivated from the basic principles of self-organized behavior: namely, the imperative to minimize the entropy of hidden states of the world and their sensory consequences. This imperative is met if agents sample hidden states of the world efficiently. This efficient sampling of salient information can be derived in a fairly straightforward way, using approximate Bayesian inference and variational free-energy minimization. Simulations of the resulting active inference scheme reproduce sequential eye movements that are reminiscent of empirically observed saccades and provide some counterintuitive insights into the way that sensory evidence is accumulated or assimilated into beliefs about the world.
Recent years have seen the emergence of an important new fundamental theory of brain function. This theory brings information-theoretic, Bayesian, neuroscientific, and machine learning approaches into a single framework whose overarching principle is the minimization of surprise (or, equivalently, the maximization of expectation). The most comprehensive such treatment is the “free-energy minimization” formulation due to Karl Friston (see e.g., Friston and Stephan, 2007; Friston, 2010a,b – see also Fiorillo, 2010; Thornton, 2010). A recurrent puzzle raised by critics of these models is that biological systems do not seem to avoid surprises. We do not simply seek a dark, unchanging chamber, and stay there. This is the “Dark-Room Problem.” Here, we describe the problem and further unpack the issues to which it speaks. Using the same format as the prolog of Eddington’s Space, Time, and Gravitation (Eddington, 1920) we present our discussion as a conversation between: an information theorist (Thornton), a physicist (Friston), and a philosopher (Clark).