Research Topic

New Models of Diffusion Weighted MRI Signal and Alternative Methods for Characterization of White Matter Integrity

  • Submission closed.

About this Research Topic

Recent advances in diffusion weighted (DW) magnetic resonance imaging (MRI) provided non-invasive, in vivo means for assessment of white matter integrity in human subjects. The novel mathematical approaches of data analysis and visualization made possible the use of DWI to study white matter integrity along ...

Recent advances in diffusion weighted (DW) magnetic resonance imaging (MRI) provided non-invasive, in vivo means for assessment of white matter integrity in human subjects. The novel mathematical approaches of data analysis and visualization made possible the use of DWI to study white matter integrity along with nerve fiber connections.

Accordingly, recent tractography studies of several diseases and
disorders unveiled information about nerve fiber pathways and white matter integrity. This has significantly improved guidance
potential for diagnosis, prognosis and treatment of acute and
chronic symptoms in neurological diseases and psychiatric disorders such as stroke, multiple sclerosis, epilepsy, Alzheimer’s disease, Parkinson’s disease, schizophrenia, depression and traumatic brain injury (TBI).

A majority of tractography methods are based on diffusion tensor (DT) model which is limited in describing complex tissue structure such as the nerve fiber junctions. In addition, the constraints of higher order analysis methods, such as symmetry, prevent innately an elaborate description of biological tissue microstructure due to information loss/deterioration. These raise the concern about the
sufficiency and the accuracy of white matter integrity/pathology information and metrics obtained with current methods.
Consequently, after achieving the proof of utility, DW-MRI
methodologies are currently open for improvements and refinements.

The purpose of this Research Topic is to investigate new analysis
methods and new mathematical models with possible introduction of new acquisition techniques. This will be achieved by returning to the first principles of DW-MRI signal formation in order to explore new horizons that remained veiled due to constraints and boundaries imposed by existing methodologies. Particular emphasis will be given to approaches that will allow unconstrained evidence based discoveries using DW-MRI signal. Biological, synthetic and numerical phantoms created for test and validation purposes are highly encouraged.

In parallel, physiological description of white matter integrity disruption and its reflection on DW-MRI signal is central to the theme of the Research Topic.

The aim is geared up towards the identification of the nerve fiber DW-MRI signal, separating the portion of the signal from other elements within biological tissue, whereby an accurate calculation of surrogate markers/descriptors of white matter integrity would be achieved. Accordingly, comparison and/or combination of alternative MRI methods (e.g. susceptibility imaging) with DW-MRI are in focus of interest and are highly welcomed.


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top