Research Topic

Signaling Control by Compartmentalization Along the Endocytic Route

  • Submission closed.

About this Research Topic

Many different receptors systems are regulated by endomembrane traffic, including signals from receptors activated by extracellular cues such as receptor tyrosine kinases, G protein-coupled receptors, morphogen receptors, and immune receptors. Notably, each receptor system is uniquely regulated by membrane ...

Many different receptors systems are regulated by endomembrane traffic, including signals from receptors activated by extracellular cues such as receptor tyrosine kinases, G protein-coupled receptors, morphogen receptors, and immune receptors. Notably, each receptor system is uniquely regulated by membrane internalization of receptor-ligand signaling complexes, and traffic to a variety of endosomal compartments. The canonical view of regulation of receptor signaling by endocytosis involves downregulation of receptors by receptor sequestration from the extracellular milieu rich in ligands, or degradation of receptor-ligand complexes following traffic to the lysosome. However, it has become apparent that a wide variety of receptors and their downstream signals exhibit actions unique to specific endomembrane compartments. As such, regulated endocytosis and membrane traffic defines not only the duration and magnitude of signaling, but also allows activation of distinct signaling events in a spatially defined manner, thus specifying unique cellular outcomes.

Recent emerging work has illuminated the requirement for spatial organization of receptor signaling along the endomembrane system. For example, clathrin structures at the plasma membrane serve as signaling hubs, in addition to endocytic portals. A subset of signaling specific clathrin structures is required for activation of PI3K-Akt signaling by the epidermal growth factor receptor (EGFR) and for MAPK activation by some GPCRs. Interestingly, the regulation of receptor signaling by membrane traffic extends well beyond receptor tyrosine kinases and G protein-coupled receptors, and also occurs for integrins that play a key role in anoikis avoidance. Moreover, some recent systematic analysis using proximity biotinylation of signal organization along the endomembrane system have revealed some important new insights into the spatial organization of signaling of GPCRs.

The reciprocal regulation of membrane traffic and signaling as an emerging paradigm is well appreciated. However, some recent advances in understanding the molecular mechanisms by which this regulation occurs, as well as systematic analysis of spatiotemporal signal organization are revealing key new insight into receptor signaling. This Research Topic hopes to bring together a wide range of leading experts in signaling by specific receptor and signaling complexes and highlights how the properties and outcomes of each signaling system is defined by spatial and temporal organization with respect to the endomembrane system. While the concept of regulation of receptor signaling by membrane traffic was first proposed nearly 25 years ago, this Research Topic is timely given the renewed interest in this phenomenon in recent literature, in particular with the identification of novel mechanisms by which signaling is spatially controlled, and the emergence of new modeling approaches to probe these hypotheses and recent systematic studies of protein interactions and cellular organization. This Research Topic will thus examine emerging mechanisms by which signaling is controlled by multiscale (nano- to micron-scale) spatiotemporal organization of signals along the endomembrane system, from the plasma membrane to a myriad of cellular locales.


Keywords: membrane organization, compartmentalized signaling, clathrin-coated pits, caveolae, endosomes


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..

Comments

Loading..

Add a comment

Add comment
Back to top