Cognitive and information processing deficits are core features and important sources of disability in schizophrenia. Our understanding of the neural substrates of these deficits remains incomplete, in large part because the complexity of impairments in schizophrenia makes the identification of specific deficits very challenging. Vision science presents unique opportunities in this regard: many years of basic research have led to detailed characterization of relationships between structure and function in the early visual system and have produced sophisticated methods to quantify visual perception and characterize its neural substrates. We present a selective review of research that illustrates the opportunities for discovery provided by visual studies in schizophrenia. We highlight work that has been particularly effective in applying vision science methods to identify specific neural abnormalities underlying information processing deficits in schizophrenia. In addition, we describe studies that have utilized psychophysical experimental designs that mitigate generalized deficit confounds, thereby revealing specific visual impairments in schizophrenia. These studies contribute to accumulating evidence that early visual cortex is a useful experimental system for the study of local cortical circuit abnormalities in schizophrenia. The high degree of similarity across neocortical areas of neuronal subtypes and their patterns of connectivity suggests that insights obtained from the study of early visual cortex may be applicable to other brain regions. We conclude with a discussion of future studies that combine vision science and neuroimaging methods. These studies have the potential to address pressing questions in schizophrenia, including the dissociation of local circuit deficits vs. impairments in feedback modulation by cognitive processes such as spatial attention and working memory, and the relative contributions of glutamatergic and GABAergic deficits.
Anomalous perception has been investigated extensively in schizophrenia, but it is unclear whether these impairments are specific to schizophrenia or extend to other psychotic disorders. Recent studies of visual context processing in schizophrenia (Tibber et al., 2013; Yang et al., 2013) point to circumscribed, task-specific abnormalities. Here we examined visual contextual processing across a comprehensive set of visual tasks in individuals with bipolar disorder and compared their performance with that of our previously published results from schizophrenia and healthy participants tested on those same tasks. We quantified the degree to which the surrounding visual context alters a center stimulus' appearance for brightness, size, contrast, orientation and motion. Across these tasks, healthy participants showed robust contextual effects, as indicated by pronounced misperceptions of the center stimuli. Participants with bipolar disorder showed contextual effects similar in magnitude to those found in healthy participants on all tasks. This result differs from what we found in schizophrenia participants (Yang et al., 2013) who showed weakened contextual modulations of contrast but intact contextual modulations of perceived luminance and size. Yet in schizophrenia participants, the magnitude of the contrast illusion did not correlate with symptom measures. Performance on the contrast task by the bipolar disorder group also could not be distinguished from that of the schizophrenia group, and this may be attributed to the result that bipolar patients who presented with greater manic symptoms showed weaker contrast modulation. Thus, contrast gain control may be modulated by clinical state in bipolar disorder. Stronger motion and orientation context effects correlated with worse clinical symptoms across both patient groups and especially in schizophrenia participants. These results highlight the complexity of visual context processing in schizophrenia and bipolar disorder.
Schizophrenia patients have deficits in cognitive function that are a core feature of the disorder. AX-CPT is commonly used to study cognition in schizophrenia, and patients have characteristic pattern of behavioral and ERP response. In AX-CPT subjects respond when a flashed cue “A” is followed by a target “X,” ignoring other letter combinations. Patients show reduced hit rate to “go” trials, and increased false alarms to sequences that require inhibition of a prepotent response. EEG recordings show reduced sensory (P1/N1), as well as later cognitive components (N2, P3, CNV). Behavioral deficits correlate most strongly with sensory dysfunction. Oscillatory analyses provide critical information regarding sensory/cognitive processing over and above standard ERP analyses. Recent analyses of induced oscillatory activity in single trials during AX-CPT in healthy volunteers showed characteristic response patterns in theta, alpha, and beta frequencies tied to specific sensory and cognitive processes. Alpha and beta modulated during the trials and beta modulation over the frontal cortex correlated with reaction time. In this study, EEG data was obtained from 18 schizophrenia patients and 13 controls during AX-CPT performance, and single trial decomposition of the signal yielded power in the target wavelengths. Significant task-related event-related desynchronization (ERD) was observed in both alpha and beta frequency bands over parieto-occipital cortex related to sensory encoding of the cue. This modulation was reduced in patients for beta, but not for alpha. In addition, significant beta ERD was observed over motor cortex, related to motor preparation for the response, and was also reduced in patients. These findings demonstrate impaired dynamic modulation of beta frequency rhythms in schizophrenia, and suggest that failures of oscillatory activity may underlie impaired sensory information processing in schizophrenia that in turn contributes to cognitive deficits.
Background: Individuals with schizophrenia spectrum diagnoses have deficient visual information processing as assessed by a variety of paradigms including visual backward masking, motion perception and visual contrast sensitivity (VCS). In the present study, the VCS paradigm was used to investigate potential differences in magnocellular (M) vs. parvocellular (P) channel function that might account for the observed information processing deficits of schizophrenia spectrum patients. Specifically, VCS for near threshold luminance (black/white) stimuli is known to be governed primarily by the M channel, while VCS for near threshold chromatic (red/green) stimuli is governed by the P channel.
Methods: VCS for luminance and chromatic stimuli (counterphase-reversing sinusoidal gratings, 1.22 c/degree, 8.3 Hz) was assessed in 53 patients with schizophrenia (including 5 off antipsychotic medication), 22 individuals diagnosed with schizotypal personality disorder and 53 healthy comparison subjects.
Results: Schizophrenia spectrum groups demonstrated reduced VCS in both conditions relative to normals, and there was no significant group by condition interaction effect. Post-hoc analyses suggest that it was the patients with schizophrenia on antipsychotic medication as well as SPD participants who accounted for the deficits in the luminance condition.
Conclusions: These results demonstrate visual information processing deficits in schizophrenia spectrum populations but do not support the notion of selective abnormalities in the function of subcortical channels as suggested by previous studies. Further work is needed in a longitudinal design to further assess VCS as a vulnerability marker for psychosis as well as the effect of antipsychotic agents on performance in schizophrenia spectrum populations.
It is known that individuals with schizophrenia exhibit signs of impaired face processing, however, the exact perceptual and cognitive mechanisms underlying these deficits are yet to be elucidated. One possible source of confusion in the current literature is the methodological and conceptual inconsistencies that can arise from the varied treatment of different aspects of face processing relating to emotional and non-emotional aspects of face perception. This review aims to disentangle the literature by focusing on the performance of patients with schizophrenia in a range of tasks that required processing of non-emotional features of face stimuli (e.g., identity or gender). We also consider the performance of patients on non-face stimuli that share common elements such as familiarity (e.g., cars) and social relevance (e.g., gait). We conclude by exploring whether observed deficits are best considered as “face-specific” and note that further investigation is required to properly assess the potential contribution of more generalized attentional or perceptual impairments.
Background: Schizophrenia patients exhibit deficient processing of perceptual and cognitive information. However, it is not well-understood how basic perceptual deficits contribute to higher level cognitive problems in this mental disorder. Perception of biological motion, a motion-based cognitive recognition task, relies on both basic visual motion processing and social cognitive processing, thus providing a useful paradigm to evaluate the potentially hierarchical relationship between these two levels of information processing.
Methods: In this study, we designed a biological motion paradigm in which basic visual motion signals were manipulated systematically by incorporating different levels of motion noise. We measured the performances of schizophrenia patients (n = 21) and healthy controls (n = 22) in this biological motion perception task, as well as in coherent motion detection, theory of mind, and a widely used biological motion recognition task.
Results: Schizophrenia patients performed the biological motion perception task with significantly lower accuracy than healthy controls when perceptual signals were moderately degraded by noise. A more substantial degradation of perceptual signals, through using additional noise, impaired biological motion perception in both groups. Performance levels on biological motion recognition, coherent motion detection and theory of mind tasks were also reduced in patients.
Conclusion: The results from the motion-noise biological motion paradigm indicate that in the presence of visual motion noise, the processing of biological motion information in schizophrenia is deficient. Combined with the results of poor basic visual motion perception (coherent motion task) and biological motion recognition, the association between basic motion signals and biological motion perception suggests a need to incorporate the improvement of visual motion perception in social cognitive remediation.
The causes of schizophrenia are still unknown. For the last 100 years, though, both “absent” and “perfect” vision have been associated with a lower risk for schizophrenia. Hence, vision itself and aberrations in visual functioning may be fundamental to the development and etiological explanations of the disorder. In this paper, we present the “Protection-Against-Schizophrenia” (PaSZ) model, which grades the risk for developing schizophrenia as a function of an individual's visual capacity. We review two vision perspectives: (1) “Absent” vision or how congenital blindness contributes to PaSZ and (2) “perfect” vision or how aberrations in visual functioning are associated with psychosis. First, we illustrate that, although congenitally blind and sighted individuals acquire similar world representations, blind individuals compensate for behavioral shortcomings through neurofunctional and multisensory reorganization. These reorganizations may indicate etiological explanations for their PaSZ. Second, we demonstrate that visuo-cognitive impairments are fundamental for the development of schizophrenia. Deteriorated visual information acquisition and processing contribute to higher-order cognitive dysfunctions and subsequently to schizophrenic symptoms. Finally, we provide different specific therapeutic recommendations for individuals who suffer from visual impairments (who never developed “normal” vision) and individuals who suffer from visual deterioration (who previously had “normal” visual skills). Rather than categorizing individuals as “normal” and “mentally disordered,” the PaSZ model uses a continuous scale to represent psychiatrically relevant human behavior. This not only provides a scientific basis for more fine-grained diagnostic assessments, earlier detection, and more appropriate therapeutic assignments, but it also outlines a trajectory for unraveling the causes of abnormal psychotic human self- and world-perception.