Research Topic

Pathway, Genetic and Process Engineering of Microbes for Biopolymer Synthesis

  • Submission closed.

About this Research Topic

Dependence on petroleum to sustain our current lifestyle has generated a myriad of pollutants that impose burdens on the natural environment, ranging from greenhouse gases and toxic byproducts to plastics that may remain intact for centuries. More conventional manufacturing procedures use microbes as cell ...

Dependence on petroleum to sustain our current lifestyle has generated a myriad of pollutants that impose burdens on the natural environment, ranging from greenhouse gases and toxic byproducts to plastics that may remain intact for centuries. More conventional manufacturing procedures use microbes as cell factories for the synthesis of biopolymers from renewable materials, whose biodegradability is critical to the reduction of plastic accumulation in nature. New DNA manipulation tools are constantly being developed and, together with our capacity to sequence the whole genome of host microbes, these tools have allowed us to unveil the metabolic capabilities of biopolymer-producing bacterial strains and to alter pathway function as well as genetic architecture. These approaches can now be rationally modified with the aim of both increasing the production of target products or tailoring the chemical structure of the biopolymer. In addition, biosynthetic genetic circuits can be designed and inserted into the biocatalyst to obtain novel biopolymers from different renewable carbon substrates.

To truly advance towards the complete replacement of conventional chemical processes based on petroleum, bioprocesses must first be developed and further optimized to a point where the natural or engineered bacterial strain performs at its best. With this, we will hopefully achieve the highest possible productivity of biopolymers by harnessing bioreactors that are guided by mathematical modeling and/or control. All these approaches are currently being applied for microbial synthesis of industrial biopolymers such as polyhydroxyalkanoates (PHAs), alginates, and polylactic acid (PLA), or building blocks of natural polymers like lactic, succinic, and adipic acid. The use of low cost substrates, or even waste materials, will have a substantial impact on the economics of biopolymer production and, overall, will eventually allow the rapidly evolving fields of industrial and systems biotechnology to contribute to a circular economy.

This Research Topic is intended to present a series of original articles and review papers covering recent developments on microbial synthesis of biopolymers such as PHAs, alginates, PLA and some of the precursors. This Topic also includes the description of novel biopolymer-producing strains, metabolic engineering of natural or novel pathways, design of new genetic circuits for synthesizing modified biopolymers, as well as process development in bioreactors for high-level production of target biopolymers.

Professor Bruce Ramsay holds a patent for a method of synthesising medium chain length polyhydroxyalkanoate. All other Guest Editors declare no competing interests with regards to the Research Topic subject.


Keywords: Polyhydroxyalkanoates, alginates, polylactic acid, succinic and lactic acid, metabolic engineering, process development


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Recent Articles

Loading..

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..

Topic Editors

Loading..

Submission Deadlines

Submission closed.

Participating Journals

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..