Research Topic

Assessing Sleep Neuroplasticity in Pathological Conditions and in Extreme Environments Through Neurophysiological and Multi-faceted Daily Lifestyle Patterns

About this Research Topic

The role of sleep is crucial for preserving optimal physical and mental well-being. There is concrete scientific evidence demonstrating a reciprocal relationship among sleep quality and cognitive functioning. Sleep is also affected by our life-style preferences and may be deteriorated due to reduced mobility/exercise, obesity and alcohol consumption or smoking. It is also degraded prior to neurodegeneration or mental/psychiatric disorders, providing a valuable marker of the symptoms’ severity and disease progression. Sleep is also dependent of environmental conditions and extreme environments such as weightlessness, isolation and confinement.

Sleep quality is often assessed by polysomnographic (PSG) recordings which typically involve a minimum number of electroencephalographic (EEG), electrocardiograhic (ECG), electroculogrammic (EOG) and electromyographic (EMG) sensors. The studies employing the aforementioned modalities usually focus on the identification of sleep stages, macro-architecture (latency, duration), main sleep characteristics (spindles, K-complexes, arousals, awakening events) and breathing disorders (apnea/hypopnea events). Although this type of analysis may quantify the majority of pathologic conditions associated with sleep, it provides minimal knowledge on a system level and the dynamic nature of the functional interactions among brain regions during sleep as well as their deviations from normal functioning.

Network neuroscience and contemporary mathematical tools when combined with advanced data acquisition modalities (high-density EEG, functional Magnetic Resonance Imaging / fMRI) may map the functional connectome with excellent temporal and spatial resolution. This approach is hypothesized to provide robust connectivity and network features which are often correlated with biomarkers and could identify pre-clinical pathological patterns. They could also serve as an objective outcome measure of interventions aiming to ameliorate disease symptoms. Recent advances in unobtrusive sensorial data acquisition give rise to a plethora of wearable or textile devices which map activity and daily living patterns. Sensorial features are usually fused with neurophysiological recordings for providing multi-modal, biomedical engineering, computational frameworks within the context of precision medicine for assessing sleep and sleep-related breathing disorders at early stages. This heterogeneous data fusion results in a big data problem which employs advanced deep learning techniques (e.g. computational networks) for providing novel sleep analytics for pathology prediction and therapy recommendations.

Therefore, we welcome studies that answer fundamental neuroscientific and biomedical questions like (but not limited to) the following:
• How physiological aging, neurodegeneration and psychiatric disorders affect sleep neurobiology, macro-architecture and brain functioning?
• How sleep quality is affected by extreme environments (e.g. isolation, weightlessness, immobility)?
• Is it possible to predict forthcoming sleep quality patterns correlated with the daily lifestyle and activity patterns?
• Could we develop robust machine learning approaches for automatic sleep staging based on polysomnographic and/or sensorial data information?
• Which are the most appropriate biomedical engineering approaches for assessing sleep quality by contactless recordings and/or heterogeneous data fusion?
• How sleep mechanisms promote learning and neuroplasticity? Can we propose novel (beyond the art) ways for enhancing sleep quality and/or dream mapping?


Keywords: Extreme environments, Functional connectivity, Mental disorders, Neuroplasticity, Sleep quality


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

The role of sleep is crucial for preserving optimal physical and mental well-being. There is concrete scientific evidence demonstrating a reciprocal relationship among sleep quality and cognitive functioning. Sleep is also affected by our life-style preferences and may be deteriorated due to reduced mobility/exercise, obesity and alcohol consumption or smoking. It is also degraded prior to neurodegeneration or mental/psychiatric disorders, providing a valuable marker of the symptoms’ severity and disease progression. Sleep is also dependent of environmental conditions and extreme environments such as weightlessness, isolation and confinement.

Sleep quality is often assessed by polysomnographic (PSG) recordings which typically involve a minimum number of electroencephalographic (EEG), electrocardiograhic (ECG), electroculogrammic (EOG) and electromyographic (EMG) sensors. The studies employing the aforementioned modalities usually focus on the identification of sleep stages, macro-architecture (latency, duration), main sleep characteristics (spindles, K-complexes, arousals, awakening events) and breathing disorders (apnea/hypopnea events). Although this type of analysis may quantify the majority of pathologic conditions associated with sleep, it provides minimal knowledge on a system level and the dynamic nature of the functional interactions among brain regions during sleep as well as their deviations from normal functioning.

Network neuroscience and contemporary mathematical tools when combined with advanced data acquisition modalities (high-density EEG, functional Magnetic Resonance Imaging / fMRI) may map the functional connectome with excellent temporal and spatial resolution. This approach is hypothesized to provide robust connectivity and network features which are often correlated with biomarkers and could identify pre-clinical pathological patterns. They could also serve as an objective outcome measure of interventions aiming to ameliorate disease symptoms. Recent advances in unobtrusive sensorial data acquisition give rise to a plethora of wearable or textile devices which map activity and daily living patterns. Sensorial features are usually fused with neurophysiological recordings for providing multi-modal, biomedical engineering, computational frameworks within the context of precision medicine for assessing sleep and sleep-related breathing disorders at early stages. This heterogeneous data fusion results in a big data problem which employs advanced deep learning techniques (e.g. computational networks) for providing novel sleep analytics for pathology prediction and therapy recommendations.

Therefore, we welcome studies that answer fundamental neuroscientific and biomedical questions like (but not limited to) the following:
• How physiological aging, neurodegeneration and psychiatric disorders affect sleep neurobiology, macro-architecture and brain functioning?
• How sleep quality is affected by extreme environments (e.g. isolation, weightlessness, immobility)?
• Is it possible to predict forthcoming sleep quality patterns correlated with the daily lifestyle and activity patterns?
• Could we develop robust machine learning approaches for automatic sleep staging based on polysomnographic and/or sensorial data information?
• Which are the most appropriate biomedical engineering approaches for assessing sleep quality by contactless recordings and/or heterogeneous data fusion?
• How sleep mechanisms promote learning and neuroplasticity? Can we propose novel (beyond the art) ways for enhancing sleep quality and/or dream mapping?


Keywords: Extreme environments, Functional connectivity, Mental disorders, Neuroplasticity, Sleep quality


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

07 August 2020 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

07 August 2020 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..