Skip to main content

About this Research Topic

Submission closed.

The behavior of users in the digital world, such as online shopping or social media activity, is increasingly supported by personalized systems like recommender systems and personalized learning. Early work on personalized systems was mainly data-driven, based on behavioral data, such as ratings, likes, and ...

The behavior of users in the digital world, such as online shopping or social media activity, is increasingly supported by personalized systems like recommender systems and personalized learning. Early work on personalized systems was mainly data-driven, based on behavioral data, such as ratings, likes, and purchases. Although these systems are useful for both users and service providers, the main downside is the limited interpretability and explainability of the data. Such limitations in both interpretability and explainability translate in using data without understanding the root-cause of behaviors. Recent work has thus started to adopt a more theory-driven approach by including psychological theories and models to improve personalized systems. These systems take advantage of psychological theories/models to explain and predict behaviors of users, and allow for a deeper understanding of users’ behavior, preferences, and needs, which in turn also lead to more generalizable results.

Moreover, digital behavior has also been used to infer user traits and characteristics. For example, social media activities have been used to predict personality traits and intelligence, whereas the field of affective computing has been active in devising methodologies for inferring emotional states from digital signals.

This Research Topic aims at collecting state-of-the-art research that supports personalized services with psychological theories/models. We encourage authors to submit original research articles, case studies, reviews, theoretical and critical perspectives, and viewpoint articles within the usage of psychological theories/models in personalized Human-Computer Interaction (HCI) on topics including, but not limited to:

- Psychological theories/models that explain online behavior, such as:
• Personality;
• Emotions;
• Cognitive biases and illusions;
• Learning styles;
• Emotional contagion (e.g., in group settings).

- Psychological theories/models to personalize digital interactions, such as in:
• User interfaces;
• Recommendations;
• Social robots and chatbots;
• E-learning.

- Prediction of psychological models drawing data from digital behavior information resources, such as:
• Social media;
• E-commerce;
• Physical activities;
• Online learning;
• Group scenarios (e.g., group recommender systems).

Keywords: Psychology, Personalization, User Modeling, Human-Computer Interaction, Theory-Driven


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors

Loading..

Topic Coordinators

Loading..

Recent Articles

Loading..

Articles

Sort by:

Loading..

Authors

Loading..

views

total views views downloads topic views

}
 
Top countries
Top referring sites
Loading..

Share on

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.