About this Research Topic
This research topic of Frontiers in Public Health: Digital Health section focuses on cutting-edge approaches to big data use in public health as well as their critical assessment. The data streams discussed might include linked data from traditional surveillance systems, mobile GPS data, personalized data from health intervention apps, participatory surveillance, sensor data, social media, online search and more. Research investigating cross-linking of various data streams is particularly welcomed, as well as applications of machine learning, natural language processing, and signal processing.
While much has been published in this area, methods and applications continue to evolve, fueled by an increasing cross-pollination between disciplines, changing competencies and limitless creativity. We encourage submissions from researchers and practitioners across academia, industry and government, highlighting theoretical and applied uses of big data to advance public health practice and improve the health of populations around the globe. Papers may also highlight positive and/or negative implications of big data use. Submissions will be assessed based on novelty, creativity and contribution across domains.
Keywords: Digital health, public health, artificial intelligence, big data, social computing, early warning systems, computational epidemiology
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.